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ABSTRACT

Finding suitable citations for scientific publications can be
challenging and time-consuming. To this end, context-aware
citation recommendation approaches that recommend publications
as candidates for in-text citations have been developed. In this paper,
we present C-REX, a web-based demonstration system available at
http://c-rex.org for context-aware citation recommendation based
on the Neural Citation Network [5] and millions of publications
from the Microsoft Academic Graph. Our system is one of the first
online context-aware citation recommendation systems and the first
to incorporate not only a deep learning recommendation approach,
but also explanation components to help users better understand
why papers were recommended. In our offline evaluation, our
model performs similarly to the one presented in the original paper
and can serve as a basic framework for further implementations.
In our online evaluation, we found that the explanations of
recommendations increased users’ satisfaction.
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1 MOTIVATION

Citing is an important concept of scientific writing, as it allows
writers to give reference and to support mentioned concepts or
claims. Due to the increasing amount of literature published every
year [17], it can be hard to keep an overview of the literature on the
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Figure 1: Our C-Rex system for citation recommendation.

topic at hand when writing publications.! This is where citation
recommendation can help [1, 7]. The concept of context-aware
citation recommendation, as considered in this paper, is that users
input text (e.g., sentences) for which they require a citation, and
the system recommends publications that may fit the text as
citations. Figure 1 illustrates this concept. Context-aware citation
recommendation requires obtaining a sufficient understanding of
the citation context as input text; on the other hand, it requires
identifying the top k relevant publications (e.g., k = 5) from a
collection of up to millions of publications.

Several approaches to context-aware citation recommendation
have been proposed [7]. However, existing running systems have
not been trained, evaluated, or deployed based on the Microsoft
Academic Graph (MAG) [22]. The MAG distinguishes itself from
other publications’ metadata collections in that it is particularly
large - as of December 2020, modeling more than 120 million
scientific publications and 240 million publications in total -
and it also covers very recent publications in contrast to the
widely used, rather small publication corpora [7] such as the
ACL Anthology Network (ACL-AAN) [21] or the ACL Anthology
Reference Corpus (ACL-ARC) [2]. Thus, we train, evaluate, and
deploy the current state-of-the-art recommendation approach
Neural Citation Network (NCN) [5] on the MAG data set. Second,
almost no approach exists that has been deployed online as a
running demonstration system. To the best of our knowledge, the
only published context-aware citation recommendation systems
are RefSeer [3] and CITEWERTS [9]. However, both systems lack
explanations of the recommended publications, making it difficult
for users to understand why a publication is recommended. Thus,

!In this paper, “paper” and “publication” are used synonymously.
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Figure 2: The neural citation network (NCN) architecture.

we implement and deploy an online demonstration system based

on the NCN model that highlights decisive information despite

the usage of a deep learning-based recommendation model. Our

demonstration system C-Rex? is available at http://c-rex.org/.
Overall, we make the following contributions:

(1) We incorporate explainability components to the
state-of-the-art NCN based on deep learning approach and
indicate decisive words for each recommendation to the
user.

(2) We adapt the implementation of the NCN to the MAG as
and underlying data set, utilizing millions of up-to-date
publications’ metadata.

(3) We develop a UI/UX design that allows parallel requests and a
semi-automatic pipeline that ensures updates so that recently
published data can also be considered and recommended.

(4) We evaluate our citation recommendation system, C-REX,
both offline and online.

Frontend and backend source code is provided at https://github.
com/sebastiancelis98/CitationRexApp, while information about the
training process is available at https://github.com/michaelfaerber/
NCN4MAG.

Our paper is structured as follows. In Section 2, we give an
overview of our approach. In Section 3, we describe the evaluations
performed offline and online. After outlining related work in
Section 4, we conclude in Section 5.

2 APPROACH

The system’s back end consists of a Flask server running a neural
network in Python 3, as well as a PostgreSQL database containing
the publications’ metadata. The front end consists of a JavaScript
web application running on the flutter framework. In the following,
we describe the recommendation method and the data processing.

2.1 Recommendation Method

The starting point of our citation recommendation system
is the Neural Citation Network (NCN) [5]. As depicted in
Figure 2, this state-of-the-art approach for context-aware citation

2C-Rex stands for Comprehensive System for Recommending In-Text Citations with
Explanations.
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recommendation relies on an encoder-decoder architecture: By
analyzing the link between a citation context and a cited publication
in a given publication collection, the model learns to “re-predict”
the link for new but similar citation contexts. This is accomplished
by using a time-delay neural network (TDNN), a CNN variant,
to encode the words given in the citation context. The output
is weighted by an attention layer and then decoded by a gated
recurrent unit (GRU) to return the cited publication’s title. Our
system does not require the citing author’s name as input.

The NCN has shown state-of-the-art performance given large
training data sets [5]. Given the reimplementation of Farber et al. [8],
we adapt the citation recommendation approach to the data of
the Microsoft Academic Graph (MAG). Furthermore, to provide
our system as an online demonstration system, we implement
a corresponding user interface and interfaces between the front
end and the back end. We use Flask and PyTorch as the leading
frameworks for the implementation. To extract words from the
input text that were decisive for the recommendation, we utilize
the attention layer of the NCN, which lets us extract weights for
each word in the titles of the recommended publications.

2.2 Dataset

The model is trained and tested based on context-citation pairs
from existing publications. To this end, we use a current version
(i.e., as of 2020-10) of the MAG [22]. In total, the MAG contains
the metadata of more than 120 million scientific publications and
more than 1 billion context—citation pairs, and thereby provides a
solid and realistic basis for recommending suitable publications for
the purpose of citing. Since the NCN has not been trained on data
from the MAG, we need to adapt its implementation to MAG data.
For our online demonstration system, we train the NCN model
based on all computer science publications in the MAG (24.1 million
publications). For the offline evaluation, we used the MAG computer
science publications published between 2014 and 2019.

Furthermore, we deploy a semi-automatic process, including
MAG data retrieval and neural network training, that allows us to
update the neural network model based on fresh MAG data.? In
this way, our system is kept up to date.

3See our documentation at https://github.com/michaelfaerber/NCN4MAG.
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Figure 3: Citation recommendation with different system setups.

Table 1: Results of the offline evaluation.

Model Recall MAP MRR NDCG
Neural Citation Network  0.1762 0.1050 0.1080  0.1279
TDNN-to-RNN 0.1496 0.0747 0.0767 0.1046

3 EVALUATION

In the following, we present an offline evaluation of our
recommendation approach, as well as an online evaluation based
on the running citation recommendation system.

3.1 Offline Evaluation

Evaluation Setting. Following the NCN model proposed by Ebesu
etal. [5], we conducted an offline evaluation using English computer
science publications in the MAG dataset published between 2014
and 2019. The NCN model relies on citation contexts and author
information. After preprocessing the data, we obtained a set of
4.2 million context-citation pairs. We divided the data by year into
three parts, taking 2017 as a split year: publications published before
2017 formed a training set with 3,576,180 citation-context pairs,
publications published in 2017 were a validation set with 317,906
pairs, and those after 2017 were in the test set with 398,747 pairs. The
preprocessing phases included tokenization, lemmatizing the data,
removing stopwords, cutting citation contexts to a maximum of 100
words and citing titles to a maximum of 30 words. We considered the
first 5 authors for each publication and replaced missing authors
with the <UNK> token. We numericalized the citation contexts,
citation titles, and authors using a vocabulary size of 20,000 terms.
Further, we generated word embeddings for the numericalized data
using a PyTorch embedding layer. The embeddings are initialized
randomly from a standard normal distribution and learned during
the training process. For the decoder part, we preselected candidate
citation titles using the BM25 ranking function, similar to Ebesu et

al. [5].
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The hyperparameters were determined according to a set of
experiments with varying hyperparametric settings. We varied all
the parameters in the network and chose the best performing ones.
The network capacity, which defines the embedding dimension, the
number of convolutional filters and the hidden size of the RNN,
was set to 256. The batch size was 64, and the number of recurrent
layers in the RNN decoder was two. For the NCN context encoder,
the region size filters were [4,4,5]; for the author encoder, the region
size filters were [1,2]. During the training phase, we used gradient
clipping at 5, dropout probability of 0.2 and Adam optimizer [10]
for a total of 5 training iterations.

Evaluation Results. We evaluated two context-aware citation
recommendation models, following the implementations proposed
by Ebesu et al. [5]. The NCN is the original model with a
TDNN-based encoder for citation contexts together with author
information and a GRU-based decoder for cited titles of candidate
documents. The second model, called TDNN-to-RNN, followed the
NCN model but did not use author information. We report the
models’ performances in terms of recall, MAP, MRR and nDCG in
Table 1.

The NCN model outperformed the TDNN-to-RNN model,
showing a slight advantage of incorporating the author information
in the recommendation model. We could not reproduce the NCN
model’s performance as reported in the original paper. We achieved
a recall@10 of 0.176, which is less than the recall@10 of 0.29
reported by Ebesu et al [5]. Looking at the TDNN-to-RNN model, we
obtained a recall@10 of 0.1496, which was similar to the originally
reported recall@10 of 0.1579. The author information seems to have
played an important role in Ebesu et al’s study, since the recall@10
increased from 0.1579 to 0.291 when using author metadata. In
our case, the author’s information had no strong influence on the
model performance. This can be explained by the fact that we used
a different database than Ebensu et al. The author metadata in
our MAG dataset is noisy to some extent, and author names may
have been incomplete or duplicated [6]. Cleaning the MAG data
and thus providing more accurate recommendations is considered
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Table 2: Explanation goals.

Explanation goal ~Description

Effectiveness Help users make good decisions
Efficiency Help users make decisions faster
Persuasiveness Convince users to try or buy
Satisfaction Increase the ease of use or enjoyment
Transparency Explain how the system works

Trust Increase users’ confidence in the system

a future goal. Nevertheless, given previous research [5, 8], our
recommendation model performs as expected when considering no
author information. In light of the latest research on language
models, we suggest considering neural network architectures
based on Transformers and BERT to solve the local citation
recommendation task.

3.2 Online Evaluation

Evaluation Setting. We designed the online evaluation to
determine the explanatory capabilities of our recommendation
system. To evaluate the extent to which the explanations succeeded
in meeting the widely used explanation goals [27], we created three
different versions of our system (see Figure 3):

e The basic system provides basic publications’ metadata
(title, author’s name, and URL).
e The metadata system provides additional metadata, such

as the publication year, venue, citation count, and publisher.

e The explanation components system provides
metadata as well as highlighted words explaining the
recommendations.

We divided the system’s users into two groups: experts, who
had written four or more scientific publications, and non-experts,
who had written fewer than four scientific publications. Of the 15
participants, two were experts and 13 non-experts. They used the
three systems for the citation recommendation and gave feedback
based on effectiveness, efficiency, persuasiveness, satisfaction, and
transparency [26] with descriptions in Table 2. All answers were
given on a scale from one to five.

Evaluation Results. The results for each explanation goal
are shown in Table 3. System 1 (basic system) obtained the
lowest ratings across all explanation goals. In contrast, System 3,
with explanation components, obtained the highest scores for all
six explanation goals. It achieved a considerably higher rating
regarding efficiency, satisfaction, and transparency. This means
that our system with explanations helps users (1) to make faster
decisions, (2) to solve the task of citing more satisfactorily, and
(3) to understand what each recommendation is based on better
than the other two systems.

4 RELATED WORK

Citation recommendation approaches. A thorough overview
of citation recommendation approaches and datasets is provided
by Farber et al. [7]. Citation recommendation approaches differ in
their settings. If only a fragment of an input text document is used

444

M. Férber et al.

Table 3: Evaluation of the explanation goals.

Basic = Metadata Explanation

Info. Components
Effectiveness 2.7 3.2 3.9
Efficiency 2.8 3.5 4.1
Persuasiveness 3.0 3.7 3.7
Satisfaction 2.8 4.0 4.1
Transparency 2.6 3.0 4.1
Trust 2.5 3.3 3.7

as the citation context (e.g., a sentence [11, 14] or a window of 50
words), we call it local citation recommendation or context-aware
citation recommendation. If there is no specific citation context, but
instead the whole input text document or the document’s abstract
is used for the recommendation (see, e.g., [18, 20, 23, 24]), we
call it global citation recommendation or non-context-aware citation
recommendation (following He et al. [13]). Such differences in the
setup make it particularly difficult to compare the performance of
citation recommendation approaches [7].

McNee [19] in 2002 and Strohman et al. [23] in 2007 published
the first global citation recommendation papers, while local citation
recommendation was first introduced by He et al. [13] in 2010. He
et al. expanded their model in [12]. Huang et al. [14] built upon
the idea by translating specific keywords in the contexts (source
language) into cited documents (target language), thereby creating
a de facto machine translation system for citation recommendation.

Tang et al. [25] introduced embedding-based approaches to the
field of context-aware citation recommendation. Jiang et al. [15,
16] also used embeddings in the context of cross-language global
citation recommendation. Similar works were carried out by Cai et
al. [4] and Zhang et al. [28] in 2018.

In this paper, we based our approach on the NCN approach by
Ebesu et al. [5], as their approach has yielded state-of-the-art results
and is currently widely used in the scientific community [8].

Citation recommendation demonstration systems. To the
best of our knowledge, the only published context-aware citation
recommendation demonstration systems are the RefSeer system
[3] and the CITEWERTS system [9]. Both systems are based on
traditional information retrieval techniques (e.g., LSI) and do not
provide explanations of the recommended publications in their user
interfaces.

5 CONCLUSION

With CITEREX, we proposed a large-scale context-aware citation
recommendation system to the public. Our system combines a
state-of-the-art recommendation approach with the Microsoft
Academic Graph as a very large and up-to-date dataset about
publications, and is designed to present not only recommendations,
but also indicate explanations. In the offline evaluation, we achieved
similar results to Ebesu et al. [5] when considering no author
information. Our online evaluation showed that explanation
components enhance the users’ interactions with the system. In
future work, we will optimize the system with regard to runtime
and expand the domains of publications used.
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