16 research outputs found

    Iris image reconstruction from binary templates: An efficient probabilistic approach based on genetic algorithms

    Full text link
    This is the author’s version of a work that was accepted for publication in Computer Vision and Image Understanding. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Computer Vision and Image Understanding, 117, 10, (2013) DOI: 10.1016/j.cviu.2013.06.003A binary iriscode is a very compact representation of an iris image. For a long time it was assumed that the iriscode did not contain enough information to allow for the reconstruction of the original iris. The present work proposes a novel probabilistic approach based on genetic algorithms to reconstruct iris images from binary templates and analyzes the similarity between the reconstructed synthetic iris image and the original one. The performance of the reconstruction technique is assessed by empirically estimating the probability of successfully matching the synthesized iris image against its true counterpart using a commercial matcher. The experimental results indicate that the reconstructed images look reasonably realistic. While a human expert may not be easily deceived by them, they can successfully deceive a commercial matcher. Furthermore, since the proposed methodology is able to synthesize multiple iris images from a single iriscode, it has other potential applications including privacy enhancement of iris-based systems.This work has been partially supported by projects Contexts (S2009/TIC-1485) from CAM, Bio-Challenge (TEC2009-11186) and Bio-Shield (TEC2012-34881) from Spanish MECD, TABULA RASA (FP7-ICT-257289) and BEAT (FP7-SEC-284989) from EU, and Cátedra UAM-Telefónica

    A novel hand reconstruction approach and its application to vulnerability assessment

    Full text link
    This is the author’s version of a work that was accepted for publication in Information Sciences. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Information Sciences, 238 (2014) DOI: 10.1016/j.ins.2013.06.015The present work proposes a novel probabilistic method to reconstruct a hand shape image from its template. We analyse the degree of similarity between the reconstructed images and the original samples in order to determine whether the synthetic hands are able to deceive hand recognition systems. This analysis is made through the estimation of the success chances of an attack carried out with the synthetic samples against an independent system. The experimental results show that there is a high chance of breaking a hand recognition system using this approach. Furthermore, since it is a probabilistic method, several synthetic images can be generated from each original sample, which increases the success chances of the attack.This work has been partially supported by projects Contexts (S2009/TIC-1485) from CAM, Bio-Challenge (TEC2009-11186), BIOSINT (TEC2012-38630-C04-02) and Bio-Shield (TEC2012-34881) from Spanish MINECO, TABULA RASA (FP7-ICT-257289) and BEAT (FP7-SEC-284989) from EU, and Cátedra UAM-Telefónica. Marta Gomez-Barrero is supported by a FPU Fellowship from Spanish MECD

    On Generative Adversarial Network Based Synthetic Iris Presentation Attack And Its Detection

    Get PDF
    Human iris is considered a reliable and accurate modality for biometric recognition due to its unique texture information. Reliability and accuracy of iris biometric modality have prompted its large-scale deployment for critical applications such as border control and national identification projects. The extensive growth of iris recognition systems has raised apprehensions about the susceptibility of these systems to various presentation attacks. In this thesis, a novel iris presentation attack using deep learning based synthetically generated iris images is presented. Utilizing the generative capability of deep convolutional generative adversarial networks and iris quality metrics, a new framework, named as iDCGAN is proposed for creating realistic appearing synthetic iris images. In-depth analysis is performed using quality score distributions of real and synthetically generated iris images to understand the effectiveness of the proposed approach. We also demonstrate that synthetically generated iris images can be used to attack existing iris recognition systems. As synthetically generated iris images can be effectively deployed in iris presentation attacks, it is important to develop accurate iris presentation attack detection algorithms which can distinguish such synthetic iris images from real iris images. For this purpose, a novel structural and textural feature-based iris presentation attack detection framework (DESIST) is proposed. The key emphasis of DESIST is on developing a unified framework for detecting a medley of iris presentation attacks, including synthetic iris. Experimental evaluations showcase the efficacy of the proposed DESIST framework in detecting synthetic iris presentation attacks

    Reversing the Irreversible: A Survey on Inverse Biometrics

    Full text link
    With the widespread use of biometric recognition, several issues related to the privacy and security provided by this technology have been recently raised and analysed. As a result, the early common belief among the biometrics community of templates irreversibility has been proven wrong. It is now an accepted fact that it is possible to reconstruct from an unprotected template a synthetic sample that matches the bona fide one. This reverse engineering process, commonly referred to as \textit{inverse biometrics}, constitutes a severe threat for biometric systems from two different angles: on the one hand, sensitive personal data (i.e., biometric data) can be derived from compromised unprotected templates; on the other hand, other powerful attacks can be launched building upon these reconstructed samples. Given its important implications, biometric stakeholders have produced over the last fifteen years numerous works analysing the different aspects related to inverse biometrics: development of reconstruction algorithms for different characteristics; proposal of methodologies to assess the vulnerabilities of biometric systems to the aforementioned algorithms; development of countermeasures to reduce the possible effects of attacks. The present article is an effort to condense all this information in one comprehensive review of: the problem itself, the evaluation of the problem, and the mitigation of the problem. The present article is an effort to condense all this information in one comprehensive review of: the problem itself, the evaluation of the problem, and the mitigation of the problem.Comment: 18 pages, journal, surve

    Recent developments in the study of rapid human movements with the kinematic theory: Applications to handwriting and signature synthesis

    Get PDF
    International audienceHuman movement modeling can be of great interest for the design of pattern recognition systems relying on the understanding of the fine motor control (such as on-line handwriting recognition or signature verification) as well as for the development of intelligent systems involving in a way or another the processing of human movements. In this paper, we briefly list the different models that have been proposed in order to characterize the handwriting process and focus on a representation involving a vectorial summation of lognormal functions: the Sigma-lognormal model. Then, from a practical perspective, we describe a new stroke extraction algorithm suitable for the reverse engineering of handwriting signals. In the following section it is shown how the resulting representation can be used to study the writer and signer variability. We then report on two joint projects dealing with the automatic generation of synthetic specimens for the creation of large databases. The first application concerns the automatic generation of totally synthetic signature specimens for the training and evaluation of verification performances of automatic signature recognition systems. The second application deals with the synthesis of handwritten gestures for speeding up the learning process in customizable on-line recognition systems to be integrated in electronic pen pads

    Computer-aided Semantic Signature Identification and Document Classification via Semantic Signatures

    Get PDF
    In this era of textual data explosion on the World Wide Web, it may be very hard to find documents that are similar to the documents that are of interest to us. To overcome this problem we have developed a type of semantic signature that captures the semantics of target content (text). Semantic signatures from a text/document of interest are derived using the software package semantic signature mining tool (SSMinT). This software package has been developed as a part of this thesis work in collaboration with Sri Ramya Peddada. These semantic signatures are used to search and retrieve documents with similar semantic patterns. Effects of different representations of semantic signatures on the document classification outcomes are illustrated. Retrieved document classification accuracies of Euclidean and Spherical K-means clustering algorithms are compared. A Chi-square test is presented to prove that the observed and expected numbers of documents retrieved (from a corpus) are not significantly different. From this Chi-square test it is proved that the semantic signature concept is capable of retrieving documents of interest with high probability. Our findings indicate that this concept has potential for use in commercial text/document searching applications

    Biometric Spoofing: A JRC Case Study in 3D Face Recognition

    Get PDF
    Based on newly available and affordable off-the-shelf 3D sensing, processing and printing technologies, the JRC has conducted a comprehensive study on the feasibility of spoofing 3D and 2.5D face recognition systems with low-cost self-manufactured models and presents in this report a systematic and rigorous evaluation of the real risk posed by such attacking approach which has been complemented by a test campaign. The work accomplished and presented in this report, covers theories, methodologies, state of the art techniques, evaluation databases and also aims at providing an outlook into the future of this extremely active field of research.JRC.G.6-Digital Citizen Securit
    corecore