16,872 research outputs found

    An operational calculus for the Mould operad

    Get PDF
    The operad of moulds is realized in terms of an operational calculus of formal integrals (continuous formal power series). This leads to many simplifications and to the discovery of various suboperads. In particular, we prove a conjecture of the first author about the inverse image of non-crossing trees in the dendriform operad. Finally, we explain a connection with the formalism of noncommutative symmetric functions.Comment: 16 pages, one reference added and minor changes in v

    Dendroidal sets as models for homotopy operads

    Get PDF
    The homotopy theory of infinity-operads is defined by extending Joyal's homotopy theory of infinity-categories to the category of dendroidal sets. We prove that the category of dendroidal sets is endowed with a model category structure whose fibrant objects are the infinity-operads (i.e. dendroidal inner Kan complexes). This extends the theory of infinity-categories in the sense that the Joyal model category structure on simplicial sets whose fibrant objects are the infinity-categories is recovered from the model category structure on dendroidal sets by simply slicing over the point.Comment: This is essentially the published version, except that we added an erratum at the end of the paper concerning the behaviour of cofibrations with respect to the tensor product of dendroidal set

    Grassmann Integral Representation for Spanning Hyperforests

    Full text link
    Given a hypergraph G, we introduce a Grassmann algebra over the vertex set, and show that a class of Grassmann integrals permits an expansion in terms of spanning hyperforests. Special cases provide the generating functions for rooted and unrooted spanning (hyper)forests and spanning (hyper)trees. All these results are generalizations of Kirchhoff's matrix-tree theorem. Furthermore, we show that the class of integrals describing unrooted spanning (hyper)forests is induced by a theory with an underlying OSP(1|2) supersymmetry.Comment: 50 pages, it uses some latex macros. Accepted for publication on J. Phys.

    Boolean Dimension, Components and Blocks

    Full text link
    We investigate the behavior of Boolean dimension with respect to components and blocks. To put our results in context, we note that for Dushnik-Miller dimension, we have that if dim(C)d\dim(C)\le d for every component CC of a poset PP, then dim(P)max{2,d}\dim(P)\le \max\{2,d\}; also if dim(B)d\dim(B)\le d for every block BB of a poset PP, then dim(P)d+2\dim(P)\le d+2. By way of constrast, local dimension is well behaved with respect to components, but not for blocks: if ldim(C)d\text{ldim}(C)\le d for every component CC of a poset PP, then ldim(P)d+2\text{ldim}(P)\le d+2; however, for every d4d\ge 4, there exists a poset PP with ldim(P)=d\text{ldim}(P)=d and dim(B)3\dim(B)\le 3 for every block BB of PP. In this paper we show that Boolean dimension behaves like Dushnik-Miller dimension with respect to both components and blocks: if bdim(C)d\text{bdim}(C)\le d for every component CC of PP, then bdim(P)2+d+42d\text{bdim}(P)\le 2+d+4\cdot2^d; also if bdim(B)d\text{bdim}(B)\le d for every block of PP, then bdim(P)19+d+182d\text{bdim}(P)\le 19+d+18\cdot 2^d.Comment: 12 pages. arXiv admin note: text overlap with arXiv:1712.0609

    The modular structure of an ontology: Atomic decomposition

    Get PDF
    Extracting a subset of a given ontology that captures all the ontology’s knowledge about a specified set of terms is a well-understood task. This task can be based, for instance, on locality-based modules. However, a single module does not allow us to understand neither topicality, connectedness, structure, or superfluous parts of an ontology, nor agreement between actual and intended modeling. The strong logical properties of locality-based modules suggest that the family of all such modules of an ontology can support comprehension of the ontology as a whole. However, extracting that family is not feasible, since the number of localitybased modules of an ontology can be exponential w.r.t. its size. In this paper we report on a new approach that enables us to efficiently extract a polynomial representation of the family of all locality-based modules of an ontology. We also describe the fundamental algorithm to pursue this task, and report on experiments carried out and results obtained.
    corecore