4,533 research outputs found

    Changing a semantics: opportunism or courage?

    Full text link
    The generalized models for higher-order logics introduced by Leon Henkin, and their multiple offspring over the years, have become a standard tool in many areas of logic. Even so, discussion has persisted about their technical status, and perhaps even their conceptual legitimacy. This paper gives a systematic view of generalized model techniques, discusses what they mean in mathematical and philosophical terms, and presents a few technical themes and results about their role in algebraic representation, calibrating provability, lowering complexity, understanding fixed-point logics, and achieving set-theoretic absoluteness. We also show how thinking about Henkin's approach to semantics of logical systems in this generality can yield new results, dispelling the impression of adhocness. This paper is dedicated to Leon Henkin, a deep logician who has changed the way we all work, while also being an always open, modest, and encouraging colleague and friend.Comment: 27 pages. To appear in: The life and work of Leon Henkin: Essays on his contributions (Studies in Universal Logic) eds: Manzano, M., Sain, I. and Alonso, E., 201

    Completeness of Flat Coalgebraic Fixpoint Logics

    Full text link
    Modal fixpoint logics traditionally play a central role in computer science, in particular in artificial intelligence and concurrency. The mu-calculus and its relatives are among the most expressive logics of this type. However, popular fixpoint logics tend to trade expressivity for simplicity and readability, and in fact often live within the single variable fragment of the mu-calculus. The family of such flat fixpoint logics includes, e.g., LTL, CTL, and the logic of common knowledge. Extending this notion to the generic semantic framework of coalgebraic logic enables covering a wide range of logics beyond the standard mu-calculus including, e.g., flat fragments of the graded mu-calculus and the alternating-time mu-calculus (such as alternating-time temporal logic ATL), as well as probabilistic and monotone fixpoint logics. We give a generic proof of completeness of the Kozen-Park axiomatization for such flat coalgebraic fixpoint logics.Comment: Short version appeared in Proc. 21st International Conference on Concurrency Theory, CONCUR 2010, Vol. 6269 of Lecture Notes in Computer Science, Springer, 2010, pp. 524-53

    The Complexity of Synthesizing Uniform Strategies

    Full text link
    We investigate uniformity properties of strategies. These properties involve sets of plays in order to express useful constraints on strategies that are not \mu-calculus definable. Typically, we can state that a strategy is observation-based. We propose a formal language to specify uniformity properties, interpreted over two-player turn-based arenas equipped with a binary relation between plays. This way, we capture e.g. games with winning conditions expressible in epistemic temporal logic, whose underlying equivalence relation between plays reflects the observational capabilities of agents (for example, synchronous perfect recall). Our framework naturally generalizes many other situations from the literature. We establish that the problem of synthesizing strategies under uniformity constraints based on regular binary relations between plays is non-elementary complete.Comment: In Proceedings SR 2013, arXiv:1303.007

    A History of Until

    Get PDF
    Until is a notoriously difficult temporal operator as it is both existential and universal at the same time: A until B holds at the current time instant w iff either B holds at w or there exists a time instant w' in the future at which B holds and such that A holds in all the time instants between the current one and w'. This "ambivalent" nature poses a significant challenge when attempting to give deduction rules for until. In this paper, in contrast, we make explicit this duality of until to provide well-behaved natural deduction rules for linear-time logics by introducing a new temporal operator that allows us to formalize the "history" of until, i.e., the "internal" universal quantification over the time instants between the current one and w'. This approach provides the basis for formalizing deduction systems for temporal logics endowed with the until operator. For concreteness, we give here a labeled natural deduction system for a linear-time logic endowed with the new operator and show that, via a proper translation, such a system is also sound and complete with respect to the linear temporal logic LTL with until.Comment: 24 pages, full version of paper at Methods for Modalities 2009 (M4M-6

    About Norms and Causes

    Full text link
    Knowing the norms of a domain is crucial, but there exist no repository of norms. We propose a method to extract them from texts: texts generally do not describe a norm, but rather how a state-of-affairs differs from it. Answers concerning the cause of the state-of-affairs described often reveal the implicit norm. We apply this idea to the domain of driving, and validate it by designing algorithms that identify, in a text, the "basic" norms to which it refers implicitly

    Dyck algebras, interval temporal logic and posets of intervals

    Get PDF
    We investigate a natural Heyting algebra structure on the set of Dyck paths of the same length. We provide a geometrical description of the operations of pseudocomplement and relative pseudocomplement, as well as of regular elements. We also find a logic-theoretic interpretation of such Heyting algebras, which we call Dyck algebras, by showing that they are the algebraic counterpart of a certain fragment of a classical interval temporal logic (also known as Halpern-Shoham logic). Finally, we propose a generalization of our approach, suggesting a similar study of the Heyting algebra arising from the poset of intervals of a finite poset using Birkh\"off duality. In order to illustrate this, we show how several combinatorial parameters of Dyck paths can be expressed in terms of the Heyting algebra structure of Dyck algebras together with a certain total order on the set of atoms of each Dyck algebra.Comment: 17 pages, 3 figure

    Diamonds are Forever

    Get PDF
    We defend the thesis that every necessarily true proposition is always true. Since not every proposition that is always true is necessarily true, our thesis is at odds with theories of modality and time, such as those of Kit Fine and David Kaplan, which posit a fundamental symmetry between modal and tense operators. According to such theories, just as it is a contingent matter what is true at a given time, it is likewise a temporary matter what is true at a given possible world; so a proposition that is now true at all worlds, and thus necessarily true, may yet at some past or future time be false in the actual world, and thus not always true. We reconstruct and criticize several lines of argument in favor of this picture, and then argue against the picture on the grounds that it is inconsistent with certain sorts of contingency in the structure of time

    A decidable weakening of Compass Logic based on cone-shaped cardinal directions

    Get PDF
    We introduce a modal logic, called Cone Logic, whose formulas describe properties of points in the plane and spatial relationships between them. Points are labelled by proposition letters and spatial relations are induced by the four cone-shaped cardinal directions. Cone Logic can be seen as a weakening of Venema's Compass Logic. We prove that, unlike Compass Logic and other projection-based spatial logics, its satisfiability problem is decidable (precisely, PSPACE-complete). We also show that it is expressive enough to capture meaningful interval temporal logics - in particular, the interval temporal logic of Allen's relations "Begins", "During", and "Later", and their transposes
    • …
    corecore