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DYCK ALGEBRAS, INTERVAL TEMPORAL LOGIC AND POSETS
OF INTERVALS *

LUCA FERRARI!

Abstract. We investigate a natural Heyting algebra structure on the set of Dyck paths of the
same length. We provide a geometrical description of the operations of pseudocomplement and rela-
tive pseudocomplement, as well as of regular elements. We also find a logic-theoretic interpretation
of such Heyting algebras, which we call Dyck algebras, by showing that they are the algebraic coun-
terpart of a certain fragment of a classical interval temporal logic (also known as Halpern-Shoham
logic). Finally, we propose a generalization of our approach, suggesting a similar study of the Heyting
algebra arising from the poset of intervals of a finite poset using Birkhoff duality. In order to illustrate
this, we show how several combinatorial parameters of Dyck paths can be expressed in terms of the
Heyting algebra structure of Dyck algebras together with a certain total order on the set of atoms
of each Dyck algebra.

Key words. Dyck path, Heyting algebra, temporal logic, poset of intervals

AMS subject classifications. 03B44,06A07,06D20,68R05

1. Introduction. Among the plethora of different logics generalizing and ex-
tending the classical one, a family of logics which has proved very useful especially in
computer science is that of temporal logics. A temporal logic is essentially a kind of
logic which allows one to deal with statements whose truth values can vary in time.
Applications in computer science concern, for example, formal verification, where tem-
poral logics show their expressiveness in stating requirements of hardware or software
systems. Starting from the generic idea stated above, one can conceive several different
types of temporal logics, depending on the structure of time states and on how time
states are managed. A particularly interesting class of temporal logics are the so-called
interval temporal logics. An interval temporal logic is characterized by the fact that
the truth of a statement depends on the time interval it is evaluated on (rather than
the time instant). Such kinds of logic are useful, for instance, when it is important to
work with properties which remain true (or false) for a certain amount of time. The
relevance of these logics for computer science is even more evident: think, for instance,
of processes, for which it is meaningful to reason in terms of time intervals rather than
time instants. More generally, interval temporal logics have been successfully applied
to temporal databases, specification, design and verification of hardware components
and concurrent real-time processes; see, for instance [GMS] and the references therein.

To work with any interval temporal logic, it is important to understand which
kinds of relations among intervals of time instants are relevant to the specific logic
one wish to consider. The classification of all possible such relations has been pursued
by Allen [A, AF], who has also defined an algebraic structure to deal with them. The
modal logic of time intervals resulting by considering the whole set of Allen’s relations
is usually referred to as the Halpern-Shoham logic [HS]. Typically, one selects a subset
of Allen’s relations, thus defining the related fragment of the Halpern-Shoham logic.
Most studied in this context are decidability questions, as witnessed by many works
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appeared in recent years (an example related to a fragment which is relevant to our
paper is [MM]).

In the present paper, we propose a combinatorial description of a specific interval
temporal logic whose underlying time model is a finite linear order (an account of the
behavior of interval temporal logic over strongly discrete linear orders, including finite
linear orders, can be found in [BDMMSS]). Specifically, we consider what is sometimes
called the logic of sub-intervals, that is, the interval temporal logic in which, from the
truth of a statement on a certain interval of time instants I, the truth of that state-
ment on all sub-intervals of I follows. We show that, given a linearly ordered set of
time instants of cardinality n — 1, the algebraic counterpart of the associated logic of
sub-intervals is given by a certain Heyting algebra structure on the set of Dyck paths
of semilength n, which is more precisely the canonical Heyting algebra structure asso-
ciated with the distributive lattice structure on Dyck paths of semilength n induced by
ordering them by geometric inclusion (i.e., a Dyck path P is declared to be less than
or equal to a Dyck path @ whenever, in the usual two-dimensional drawing of Dyck
paths, P lies weakly below Q, see [FP] and also the next section). We also give a fully
geometric description of relative pseudocomplement and pseudocomplement in such
Dyck algebras, thus supplementing similar results that have been illustrated in a more
algebraic fashion by Miihle in [Muh]. In particular, we would like to point out that, in
comparison with the work of Miihle, our approach has at least two main advantages.
First of all, our geometric language is much simpler than that of [Muh], and this fact
allows an easier visualization of the obtained results, as well as shorter and clearer
proofs. A second benefit lies in the possibility of generalizing quite easily what have
been obtained for Dyck paths to other classes of lattice paths; we will illustrate this
fact by discussing the cases of Motzkin and Schrioder paths, for which we will be able
to describe (relative) pseudocomplement and regular elements in a very natural and
effective way. Finally, we try to broaden the scope of our work, by proposing a possible
generalization. The idea is to consider the poset of intervals (ordered by inclusion) of
any poset P (rather than a totally ordered set) and to investigate properties of the
Heyting algebra #H obtained from P by classical (generalized) Birkhoff duality. More
specifically, we ask what properties of H can be expressed in terms of the partial order
P. In the specific case of a finite totally ordered P (which is the case studied in the
present paper), we illustrate the above project from a combinatorial point of view,
namely, we express several statistics of combinatorial interest in terms of the Heyting
algebra structure of Dyck paths together with the partial order structure on the atoms
of such an algebra. We close our paper by proposing some further directions of future
research.

2. Heyting algebras of Dyck paths. Given a Cartesian coordinate system, a
Dyck path is a lattice path starting from the origin, ending on the z-axis, never falling
below the z-axis and using only two kinds of steps, u(p) = (1, 1) and d(own) = (1, —1).
A Dyck path can be encoded by a word w on the alphabet {u,d} such that in every
prefix of w the number of u is greater than or equal to the number of d and the total
number of u and d in w is the same (the resulting language is called Dyck language
and its words Dyck words). The length of a Dyck path is the length of the associated
Dyck word (which is necessarily an even number). A peak in a Dyck path is a pair of
consecutive steps of the form ud; a hill is a peak at height 0 (i.e., lying on the z-axis).
A factor of a Dyck path is any minimal subsequence of consecutive steps starting and
ending on the z-axis; every Dyck path can be clearly decomposed in a unique way as
the product (juxtaposition) of its factors. In particular, a hill is also called a trivial
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factor. A pyramid is a subsequence of consecutive steps of the form u*d* (k > 1)
starting and ending on the x-axis. In particular, a hill is a pyramid. A return is a
point of the path, other than the starting one, lying on the z-axis. We will usually
refer to a return by using its abscissa (which is necessarily an even number).

The set D,, of Dyck paths of semilength n can be endowed with a very natural
poset structure. Given P,@Q € D,,, we say that P < ) when, in the above described
two-dimensional drawing of Dyck paths, P lies weakly below ). Properties of the
posets D,, = (D,,, <) have been investigated in [FM1, FM2, FM3, FP]. In particular,
it is shown that D,, is a distributive lattice, and for this reason it will be called the
Dyck lattice of order n. We point out that this last assertion is a consequence of the
(easy to observe) fact that D, is isomorphic to the dual of the Young lattice of integer
partitions whose Ferrers diagrams fit into the staircase diagram (n—1,n—2,...,2,1)
[S]. The language of Dyck paths, however, gives a geometric flavor to the subject
which allows one to express several properties in a more fascinating way, as well as to
suggest possible analogies with other families of lattice paths.

Recall that a join-irreducible element of a poset P is an element a such that,
ifa=avy,then a = x or a = y. In particular, if P has minimum 0, an atom is
an element covering 0 (hence an atom is join-irreducible). Moreover, a subset I of
P is a down-set whenever, for every z,y in P, if y € [ and « < y, then = € I. The
well-known Birkhoff representation theorem (see, for instance, [DP]) states that every
finite distributive lattice is isomorphic to the lattice of down-sets of the poset of its
join-irreducibles. As a consequence, every element of a finite distributive lattice is the
join of the join-irreducibles below it. Concerning Dyck lattices, a join-irreducible is a
path all of whose factors are hills except for a single pyramid having at least 4 steps
(see [FM1]). In particular, an atom is a join-irreducible in which the unique nontrivial
pyramid has exactly 4 steps.

Since Dyck lattices are finite distributive lattices, they also have a canonical
Heyting algebra structure. Recall that a Heyting algebra is a lattice H with minimum
0 and maximum 1 such that the relative pseudocomplement of x with respect to y
exists for all x,y € ‘H. By definition, the relative pseudocomplement of x with respect
to y is the element = v~ y defined as follows:

a:wv)yz\/{ze']-ﬂx/\zéy}.

The Heyting algebra of Dyck paths of semilength n will be denoted ©,,, and we
will call it the Dyck algebra of order n.

In a Heyting algebra H, two important notions are those of pseudocomplement
and of regular element. The pseudocomplement of x is defined as ~z = x v~ 0. It can
be shown that x <~~z. The converse, however, does not hold in general. An element
x of H is said to be regular whenever x =~~ x. The subposet of regular elements of
a Heyting algebra forms a Boolean algebra.

The main aim of the present section is to give a combinatorial description of
relative pseudocomplement and pseudocomplement in Dyck algebras, as well as to
characterize the Boolean algebra of the regular elements. We point out that similar
results have been obtained in [Muh]. Our statements, however, have a more geometric
flavor, which would hopefully result in a more natural way of capturing the above
mentioned notions.

For any pair of Dyck paths (P, Q) of semilength n, we define the crossing set
C(P,Q) € [2n] u {0} = {0,1,2,...,2n} of (P,Q) by declaring x € C(P, Q) whenever
exactly one of the following conditions holds:
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1. x € {0,2n};
2. P and @ have a common point having abscissa x; moreover, P has an up step
starting at that point and @ has a down step starting at that point;
3. P and @ have a common point having abscissa x; moreover, P has a down
step arriving at that point and @ has an up step arriving at that point.
Roughly speaking, an element of the crossing set of (P,Q) is either the ab-
scissa of the starting/ending point of the two paths or the abscissa of a point in
which the two paths cross in a specific way. More precisely, suppose that C(P, Q) =
{xo, 1,22, ..., Tk}, where the z;’s are listed in increasing order (so that zy = 0 and
xp = 2n). If i is even, then P lies weakly below @ between z; and z;41 (“weakly”
meaning that P and @) may coincide in some point other than those of abscissas x;
and x;41); if ¢ is odd, then P lies strictly above @ between x; and x;41. Notice that
k is necessarily an odd number (or, which is the same, the cardinality of C'(P, Q) is
even): indeed, both at the beginning and at the end P lies weakly below @ (since both
paths necessarily start with an up step and end with a down step). Finally, observe
that clearly C(P, Q) # C(Q, P) in general. In Figure 1, the elements of C(P,Q) are
the abscissas of the points represented by black bullets.

PROPOSITION 1. Let P,Q € D, and let C(P,Q) = {xo,x1,Za,...,x,} be the
crossing set of (P,Q). Then P v~ Q € D,, is the Dyck path constructed as follows:
1. if i is even, then the portion of P v~ @ between x; and x;,1 is the unique
subpath of the form u®d® whose starting and ending points are the same as
P and Q, for suitable nonnegative integers o and [3;
2. if i is odd, then P v~ QQ coincides with @ between x; and x;41.

Proof. We observe that, if i # 0 is even, then necessarily P has an up step starting
at abscissa x; and @) has a down step starting at abscissa x;, whereas, if ¢ # k is odd,
then P has a down step ending at abscissa x; and @ has an up step ending at abscissa
x;. Thus, between x; and z;.1, if ¢ is even then P lies weakly below @, otherwise
(i.e. if ¢ is odd) P lies strictly above @ (this last statement is true also in the cases
1 =0,k). As a consequence, if i is even, P v @) can run as high as possible between
x; and x;,1; this is achieved by putting as many up steps as possible immediately
after z;, followed by the correct number of down steps, which means that the portion
of P v @ between z; and x4 is of the form u®d?, as required. On the other hand,
if ¢ is odd, then P v~ @ must coincide with ) between z; and z;,1, in order to have
(P vw» Q) A P <@, and this is clearly the maximum subpath between z; and z;41
which satisfies such a condition. 0

The result of the above proposition can be restated less formally, but maybe more
expressively, as follows: P v @ is obtained from @ by replacing those portions of
path in which P lies weakly below @) with the highest possible Dyck factors.

In Figure 1 we give an example of how to compute P v @) starting from P and
@, as described in the above proposition.

As a consequence, we have the following result, which gives us a recipe to compute
pseudocomplements in Dyck algebras (see Figure 2). In the statement of the corollary,
we will use the expression “sequence of k consecutive hills”, which should be clear in
the case k > 0. By convention, with the expression “sequence of 0 consecutive hills”
we will mean a point of the path lying on the z-axis (other than the starting and the
ending ones) and neither preceded nor followed by a hill (in other words, a return
between two nontrivial factors).

COROLLARY 2. Let Pe€ D,,. Then ~P = P~ ( is obtained from P by
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FiG. 1. P is red and dashed, Q is blue and solid and P v Q is green and thick.

1. replacing each sequence of k = 0 consecutive hills starting at abscissa x and
ending at abscissa x' with a pyramid of suitable height starting at max(0,z—2)
and ending at min(z’ + 2,2n), and

2. completing the path by suitably adding a (finite) set of hills.

F1a. 2. A Dyck path (black) and its pseudocomplement (green).

To conclude this section, we will give a characterization of regular elements of
Dyck algebras. Similarly to the previous results, our description will be in terms of
the geometric shape of the path.

PROPOSITION 3. A Dyck path is reqular if and only if its factors are all pyramids.

Proof. For any Dyck path P, it follows from the previous corollary that all factors
of ~ P are pyramids. Therefore, if P is regular, then P =~~ P, and all factors of P
are pyramids.

For the converse, observe that the pseudocomplement operation exchanges re-
turns and non-returns of a Dyck path (that is, (x,0) is a return of P if and only if
(z,0) is not a return of ~ P). Now, if P is a concatenation of pyramids, then P is
uniquely determined by its returns, and the above observation implies that ~~ P = P,
i.e. P is regular. O

Recall that, given a poset P, a closure operator is a map ~ : P — P such that,
forall z,y in P, (i) 2 <7, (it) * <y =7 <y and (i73) T = T. A general fact of the
theory of Heyting algebras is that performing twice the pseudocomplement operation
gives a closure operator. Thus, in the specific case of Dyck algebras, given a path P,
its closure P =~~ P is obtained by turning each of its factors into the unique pyramid
greater than it and having the same number of steps.

We close by noticing that the Boolean algebra structure of regular elements of ©,,
can be naturally described in terms of compositions. Indeed, the map which associates
a concatenation of pyramids in ©,, with the integer composition (of n) whose parts
are the heights of the pyramids (read from left to right) is clearly a bijection. The
partial order induced by ®,, on the subset of its regular elements can be translated
along such a bijection into the so called refinement order on compositions of n, whose
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covering relation is defined as follows: a composition A is covered by a composition 7
when 7 is obtained from A by summing two consecutive parts (see Figure 3). These
Boolean algebras on compositions have occasionally surfaced in the literature, see for
instance [AS, BLvW, EJ].

Fic. 3. The Boolean algebra of regular elements of ®4 and its isomorphic representation in
terms of compositions of 4.

2.1. Motzkin and Schroéder algebras. The same approach we have developed
for Dyck algebras can be tried also for algebras defined by other classes of paths. Here
we give a brief description of the cases of Motzkin and Schroder paths, in order to
illustrate how essentially the same arguments allow to find similar results.

A Motzkin path is defined like a Dyck path, with the difference that the allowed
steps are u(p) = (1,1), d(own) = (1,—1) and h(orizontal) = (1,0). The set M, of
Motzkin paths of length n can be endowed with a poset structure analogous to that of
Dyck paths, which turns out to be a distributive lattice as well. So we can define the
Motzkin algebra of order n to be the Heyting algebra 9t,, of Motzkin paths of length
n canonically associated with the above mentioned distributive lattice structure.

Our next goal is to find a way to compute relative pseudocomplements in Motzkin
algebras. As we will see, the strategy is the same as in Dyck algebras, and is based
on the correct definition of the crossing set of a pair of Motzkin paths. To properly
state it, we need a few preliminary notations, which will be given below. Apart from
the technical differences with the Dyck case, the role of the crossing sets of the pair
(P, Q) is the same: providing the (unique) common factorization of P and @ into
factors of maximal length such that, in each piece of the factorization, either P lies
weakly below @ or P lies strictly above Q.

In the set {u, d, h} of possible steps of a Motzkin path we introduce a total (strict)
order < defined as follows: d <t h <t u. Moreover, given two Motzkin paths P and @
of the same length, we say that a pair of steps {sp, sg}, where sp belongs to P and
s¢g belongs to @, constitutes a fake crossing whenever sp and sg intersect in a point
having noninteger coordinates. It is clear that, in a fake crossing, either sp = u and
sg =dor sp =d and sg = u. To distinguish the two cases, we will call the former a
Q-fake crossing and the latter a P-fake crossing.

Given a pair (P, @) of Motzkin paths of the same length, the crossing set of (P, Q)
is the set C(P, Q) € [n] u {0} defined by declaring x € C(P, Q) whenever exactly one
of the following conditions holds:

1. x € {0,n};

2. P and @ have a common point having abscissa x; moreover, denoting with
sp and sq the steps of P and @ (respectively) starting at that point, we have
5@ < sp;
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3. P and ) have a common point having abscissa x; moreover, denoting with
sp and sq the steps of P and ) (respectively) arriving at that point, we have
sp 15Q;

4. there is a Q-fake crossing between abscissas = and = + 1;

5. there is a P-fake crossing between abscissas ¢ — 1 and =x.

We can now state the promised characterization of relative pseudocomplement in
IM,,. It is an almost verbatim transcription of Proposition 1, and also the proof follows
essentially the same lines, so we will just sketch it.

PROPOSITION 4. Let P,Q € M, and let C(P,Q) = {xo,x1,x2,...,2} be the
crossing set of (P, Q). Then P v Q € M, is the Motzkin path constructed as follows:
e denote with 3531) and S(Ql) the first step of P and Q, respectively; if s(Ql) < 5531),
then
1. if i is odd, then the portion of P v~ Q between x; and x;,1 is the
unique subpath of the form u®h“d® whose starting and ending points
are the same as P and Q, for suitable nonnegative integers o and B and
we {0,1};
2. if i is even, then P v QQ coincides with @ between x; and x;41.
e otherwise, just swap the two previous cases.

Proof. The crossing set C(P, Q) = {xo, 1, ..., 2z} determines a partition of the
linear order [0,n] into intervals in such a way that, in each interval, either P lies
strictly above @ (except possibly for the first and the last steps, either of which may
constitute a fake crossing) or P lies weakly below (). In particular, notice that, in
the latter case (P lies weakly below @), there cannot be fake crossings neither at the
beginning nor at the end of the interval. As a consequence, if in the interval delimited
by x; and x;41 P lies weakly below @, the related portion of path of P v ) must
run as high as possible, and so it must be of the form u®h®d?; moreover, necessarily
w < 1, otherwise we would not get the highest factor in the considered interval (since
any pair of consecutive horizontal steps could be replaced with a peak). On the other
hand, if in the interval delimited by x; and x;4+; we are not in the previous situation,
then necessarily the related portion of path of P v () must coincide with @, and it
is not difficult to realize that this is also true if there are fake crossings. 0

Starting from the above characterization of the relative pseudocomplement oper-
ation, we can derive descriptions of the pseudocomplement and of the regular elements
that are strikingly similar the the analogous ones for Dyck algebras. We will then limit
ourselves to provide the statements of such results.

ProproSITION 5. Let P € M,,. Then ~P = P v 0 is obtained from P by

1. replacing each sequence of k = 0 consecutive horizontal steps on the x-axis
starting at abscissa x and ending at abscissa x' with a factor of the form
u®h®d® of suitable height, with w < 1, starting at max(0,z — 1) and ending
at min(z’ + 1,n), and

2. completing the path by suitably adding a (finite) set of horizontal steps on the
T-awis.

PROPOSITION 6. A Motzkin path is reqular if and only if it is the concatenation

of horizontal steps on the x-axis and factors of the form u®*h“d®, with w < 1.

Analogously to what happens for Dyck algebras, also the Boolean algebras of
regular elements of the Motzkin algebras are isomorphic to the same algebras of
compositions. More specifically, the isomorphism maps a regular Motzkin path into
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the composition obtained by reading the path from left to right and replacing each h
step on the z-axis with 1 and each factor u*h“d® with 2o + w.

The case of Schroder paths is even easier than that of Motzkin paths, since it
shows even more similarities with the case of Dyck paths. Recall that a Schroder path
is defined as Dyck and a Motzkin path, but now the allowed steps are u(p) = (1, 1),
d(own) = (1,—1) and double horizontal h? = (2,0). As for the previous cases, we can
consider the Schréoder algebra &, canonically obtained from the usual distributive
lattice structure on the set S,, of Schroder paths of semilength n. As for Motzkin
paths, define the partial order <1 on the set of steps of Schréder paths by setting
d <t h? < u. Given P,Q € S, the crossing set C(P,Q) < [2n] u {0} is defined by
declaring x € C(P, Q) whenever exactly one of the following conditions holds:

1. ¢ €{0,2n};

2. P and @ have a common point having abscissa x; moreover, denoting with
sp and sq the steps of P and @ (respectively) starting at that point, we have
sqQ < sp;

3. P and @ have a common point having abscissa x; moreover, denoting with
sp and sq the steps of P and @) (respectively) arriving at that point, we have
sp <15Q;

PROPOSITION 7. Let P,Q € S, and let C(P,Q) = {xg,x1,22,...,Tk} be the
crossing set of (P, Q). Then P v Q € Sy, is the Schréder path constructed as follows:

g) and 58) the first step of P and Q, respectively; if 5(@1) < 5531),

e denote with s
then
1. if i is odd, then the portion of P v~ @ between x; and x;,1 is the unique
subpath of the form u®d® whose starting and ending points are the same
as P and Q, for suitable nonnegative integers a and [3;
2. if i is even, then P v Q) coincides with @ between x; and x;41.

e otherwise, just swap the two previous cases.

PROPOSITION 8. Let P € S,,. Then ~P = P v 0 is obtained from P by

1. replacing each sequence of k = 0 consecutive double horizontal steps on the
x-azis with a pyramid of suitable height, and

2. completing the path by suitably adding a (finite) set of double horizontal steps
on the x-axis.

PROPOSITION 9. A Schréder path is regular if and only if it is the concatenation
of double horizontal steps on the x-axis and pyramids.

Again, there is a description of the Boolean algebra of regular elements of
Schréder algebras in terms of the usual algebras of compositions, where the isomor-
phism is the function which maps a regular Schroder paths into the composition
obtained by reading the path from left to right and replacing each double horizontal
step with 1 and each pyramid u“d® with a.

3. The logic of sub-intervals. The aim of this section is to give a logic-
theoretic interpretation of Dyck algebras. More specifically, it turns out that Dyck
algebras provide the natural algebraic counterpart of a special sort of intuitionistic
logics, which are more precisely a certain class of interval temporal logics.

Let T, = {t1,t2,...,t,} be a finite linearly ordered set, with t; < to < -+ < t5.
The elements of 7, will be sometimes called time states. Denote by Int(T,) the set
of all intervals of T,, i.e. I € Int(7,) when there exist ¢;,t; € 7, such that I =
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[ti,t;] = {t |t: <t < t;}. In the following we will consider Int(7,) partially ordered
by inclusion.

Next we define a set of propositions in a recursive fashion, as usual. We point out
that the logic we are going to describe is related to the Halpern-Shoham logic [HS],
which is one of the logics of time intervals. In particular, the propositional logic of
interest to us appears to be intimately related to the fragment of the Halpern-Shoham
logic in which a single modal operator is considered, namely the so-called operator
“during”. A paper dealing with this fragment is [MPS], where the authors show that
it is decidable over finite linear orders. We also remark that, on the other hand, in
[MM] a strictly related fragment is shown to be undecidable over discrete structures.
Another interesting reference is [SS], where a connection between the logic of (strict)
sub-intervals and the logic of Minkowski spacetime is explored.

The set of propositions ITL, is defined as follows, by means of the usual connec-
tives:

e | .T € ITL,; for all 1 < i < n, ¢; € ITL, (the ¢;’s are the propositional
variables);
o if o0 € ITL,, then o v, o A, 0 > Y, —p € ITL,.

We give an interval-based semantics, for which each proposition ¢ can be true
or false depending on how it is evaluated on a specific interval I € Int(7,). More
formally, if we denote by 24 the set of all maps from a set A to the set 2 = {0,1}, we
define a map v as follows:

v: ITL, — 2M47x)
s vy, Int(T,) — {0,1}

where v, (I) = 0 (resp., 1) if ¢ is false (resp., true) when evaluated on the interval
I. In the following we will usually write ¢(I) in place of v, (). In particular, we say
that ¢ is valid when ¢(I) =1 for all I € Int(7,).

Thus we have a general evaluation map v, which associates with every proposition
¢ a specific valuation v, which says on which intervals ¢ is true. The behavior of
valuations with respect to connectives is defined as usual. More precisely:

e (pv)(I) =1 whenever p(I) =1or ¢(I) =1;

o (pA)(I) =1 whenever (I) =1 and (I) = 1;

e (—p)(I) =1 whenever p(I) = 0;

e (¢ = ¥)(I) = 1 whenever holds: if ¢(I) =1 then ¢(I) = 1.

Moreover, concerning propositional variables, we define €;(I) to be true if and only
it I = [t;,t;] = {t:}. We have therefore all that we need to evaluate any proposition
pelITL,.

Notice that, at this point, the partial order structure of Int(7,) does not play
any role. We now introduce two new connectives whose semantics instead depend on
such partial order. These connectives are denoted by [J and ¢, and their semantics is
defined as follows:

e (Op)(I) = 1 when, for all intervals J € I, p(J) = 1;
e (Op)(I) = 1 when there exists an interval J € I such that o(J) = 1.
Notice that []is “idempotent”, in the sense that, for all intervals I, ((Tp)(I) =

@) (1)
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We are now ready to describe the subset of ITL, which will be relevant to us.
Define ©,, = {p € ITL,, | ¢ — [y is valid}. Intuitively, this means that, if ¢ is true
in I, then ¢ is true in all sub-intervals of I.

We remark here that, from a purely logic-theoretic point of view, the construction
of the set ©,, can be suitably described in the framework of modal companions of an
superintuitionistic logic, see for instance [CZ]. However, the main goal of this section
is to provide a combinatorial description of the logic of ©,,, which we believe to be
new.

As a subset of ITL,, it is not clear a priori if ©,, is interesting from a semantic
point of view. We will now clarify this point, by showing that ©,, is closed with respect
to some, but not all, of the classical connectives.

ProOPOSITION 10. If p, 9 € O, then p A, v Y € O,,.

Proof. Given I € Int(T,), suppose that (¢ A ¥)(I) = 1, that is p(I) = ¢(I) = 1.
Since ¢, € O, we have that, for all intervals J < I, it is ¢(J) = ¢(J) = 1, which
means that (O(e A ¥))(I) =1, i.e. p At € Oy,

Similarly, if we suppose that (¢ v ¥)(I) = 1, we then have that ¢(I) = 1 or
»(I) = 1. Assume, for instance, that ¢(I) = 1. Then, for all intervals J € I, it is
©(J) = 1, which implies (¢ vp)(J) = 1. We can thus conclude that (C(¢ v ¢))(I) = 1,
ie.pvipeB,. |

PROPOSITION 11. O,, is not closed with respect to —, that is there exists a propo-
sition @ € ©,, such that —¢ ¢ O,,.

Proof. Consider the proposition ¢ = €1 v €2, and take the interval I = {t1,t2}.
We have clearly ¢(I) = 0, and so (—¢)(I) = 1. Now let J = {t1} € I: we then get
©(J) = 1. Therefore we have found an interval J € I such that (—¢)(J) = 0, which
implies that ((O(—y))(I) = 0. We can thus conclude that ((—¢) — O(—¢))(I) = 0,
as desired. Notice that this argument clearly works for any proposition of the type
Ei VEijt1- O

PROPOSITION 12. ©,, is not closed with respect to —, that is there exist proposi-
tions @, € O, such that ¢ — 1) ¢ O,,.

Proof. This proposition can be seen as a corollary of the previous one, since it
is not difficult to prove that, for any interval I, (—¢)(I) = (¢ — L)(I). However we
will explicitly provide an example not of that form.

Given ¢ = €1 v €2 and 9 = €9, we clearly have that ¢, € 0,,. Now, given
I = {ta,t3}, we have p(I) = 0, hence (p — ¥)(I) = 1. Set J = {t2} S I, we get
w(J) =1 and ¢(J) =0, that is (¢ — ¢)(J) = 0. What we have proved so far is that
there is an interval I such that (o — 9)(I) = 1 having a sub-interval J for which
(¢ = ¥)(J) = 0. The very last statement (the one concerning J) means that ((1(¢ —
))(J) = 0. Therefore we can conclude that ((¢ — ¢) — (O(¢ — ¥)))(I) = 0, and so
p— ¢ O 0

The facts that we have recorded so far tell us that the connectives v and A have
a nice behavior inside ©,,; the same cannot be said for the connectives — and —. We
now define two new connectives ~ and v~ which can afford better notions of negation
and implication inside ©,,.

Given an interval I of 7, we define the semantics of ~ and v as follows:
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e (~¢)(I) =1 whenever VJ € I, o(J) = 0;
e (o ww )(I) =1 whenever VJ S I, if ¢(J) =1, then ¢(J) = 1.

Thus, roughly speaking, we say that ~ ¢ is true on I whenever ¢ is false on all
sub-intervals of I, and that ¢ v 1) is true on I whenever v is true on all sub-intervals
of I on which ¢ is true. We will call ~ and v pseudonegation and pseudoimplication,
respectively.

Observe that the semantics of pseudonegation and pseudoimplication can be de-
scribed in terms of classical negation and implication and the connectives [] and ¢.
In fact, for any interval I, (~ ¢)(I) = (=0p)(I) = (O—p)(I) and (¢ w» P)(I) =
(d(e — ¥))(I). Moreover, as an immediate consequence of the definitions, we have
(~e)(I) = (v L)(I).

It is an easy task (and so we leave it to the reader) to prove that, if ¢, € O,
then ~¢, ¢ vwv 1) € ©,. We now show that pseudonegation has the typical behavior
of an intuitionistic negation.

PROPOSITION 13. Given ¢ € ©, and I € Int(T,), if p(I) =1, then (~~¢)(I) =
1. The converse, however, does not hold in general.

Proof. We observe that (~~ ¢)(I) = 1 if and only if, for all intervals J < I,
there exists an interval K < J such that ¢(K) = 1. Since ¢ € O, if we suppose
that ¢(I) = 1, then we have that, for all intervals J € I, ¢(J) = 1, hence the thesis
follows.

To show that the converse does not hold in general, consider the proposition
¢ = €1 ves and the interval I = {t1,t2}. We immediately see that ¢(I) = 0. Moreover,
the fact that (~~p)(I) = 1 is equivalent to the fact that, for all intervals J < {t1, ¢},
there exists an interval K € J such that (g1 v e2)(K) = 1. It is now easy to realize
that the last statement is true. O

PROPOSITION 14. Given ¢ € O, and I € Int(T,), (~¢)(I) = 1 if and only if
(~v~~p)(I) = 1.
Proof. =) This is a special case of the previous proposition.
<) Suppose that (~~~ ¢)(I) = 1, then we have that, for all intervals J € I,
(~~@)(J) = 0. Thanks to the previous proposition, this implies that, for all
intervals J € I, p(J) =0, that is (~¢)(I) = 1, as required. O

We are now ready to show that pseudonegation and pseudoimplication are the
“right connectives” in order to describe the Heyting algebra structure of Dyck paths.
Given ¢, 1 € ©,,, we say that ¢ and 1) are equivalent when v(p) = v(1). In this case we
write ¢ H 1. It is now left to the reader to show that H is an equivalence relation on
©,, which preserves v, A, v, ~; this means that, denoting with * any of the above
mentioned binary connectives, if 1, p2,%1,%2 € ©, are such that ¢; H (2 and
Y1 H 19, then 1 x1b1 H @2 * 1o (and a similar fact holds for the unary connective
~). Thus we can endow O,/ H with the distributive lattice structure in which v
and A are well-defined on equivalence classes thanks to the above considerations.
Denote with [0,,] the resulting distributive lattice. Thus, for instance, given ¢, v € ©,,,
denoting with [¢], [¢/] € ©,/ H the associated equivalence classes, in [O,,] we have
that [¢] v [6] = [p v 6], [¢] A [¥] = [ A ¥] and [ig] v [] = [ wor 5]. Our next
goal is to show that the canonical Heyting algebra structure on [©,,] is given precisely
by the pseudoimplication operation vw.
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PROPOSITION 15. For every p,v € ©,, we have:

[p] v [W] = \{lal € 0./ H [ [] A [a] < [¢]}.

In other words, v is the relative pseudocomplement operation in the canonical
Heyting algebra structure of [0,,].

Proof. We start by observing that the partial order relation < associated with the
lattice structure of [©,] can be described as follows: [¢] < [¢] whenever ¢(I) < ¥(I),
for all intervals I (which means that, if ¢(I) = 1, then ¢(I) = 1; this is the usual
partial order derived from an algebra of propositions). The reader is invited to see that
< is well defined since, if the above condition is satisfied, then the same inequalities
hold when ¢ and 1 are replaced by ¢ and ', for any ¢’ € [¢], ¥’ € [¢].

Now suppose that S = {[a] € O,/ H | [¢] A [e] < [¥]} = {[e1], [e2],- .., [ar]}-
Thus we wish to show that [¢p v ¢] = [a1 v az v -+ v a,]. The first step will be
to prove that [¢ v 9] € S. Indeed, recall that the propositions «; are characterized
by the fact that [ A a;] < [¢]. Now, given I € Int(T,), suppose that (¢ A (¢ v
¥))(I) = 1. This implies that ¢(I) = 1. Then, in order to have (p v ¥)(I) = 1,
necessarily ¥ (I) = 1. This is enough to conclude that [p A (p v )] < [¢], and so
that [p v 9] € S, as desired.

To conclude the proof, we will now show that [p v %] is an upper bound of
S, i.e. [ v ] =[], for all @ < 7. To this aim, suppose that «;(I) = 1, for some
interval I; it will be enough to show that (¢ v~ 9)(I) = 1. Given J € I such that
©(J) = 1, then we also have a;(J) =1 (since a; € ©,,), and so (p A «;)(J) = 1, hence
¥(J) = 1. We have thus shown that (¢ v )(I) = 1, as desired. |

As usual, to avoid heavy notations, the whole Heyting algebra structure on the
set [O,,] will simply be denoted [0,,]. The next lemma is crucial in the proof of our
main theorem.

LEMMA 16. For any ¢ € ITL,, set g =~~ . Given an interval I of [n], set
er = V,es €i- Then, for any ¢ € ©,,, there exists an antichain of intervals Iy, I, ..., I,
of [n] such that

p H e ven VvV ver.

r

Moreover, when the intervals are listed in increasing order of their minima, the above
one is the unique proposition of that form equivalent to .

Proof. Fix ¢ € ©,,. Denote with Z € Int(7,) the set of all maximal intervals such
that ¢(I) = 1 (where “maximal” is intended with respect to the inclusion order). By
construction, any two elements of Z are incomparable; in particular, no two intervals
in Z can have either of the two endpoints in common. Totally order the elements
of T = {I1,I,...1.} with respect to their smallest elements (notice that we would
obtain the same total order if we do the same with respect to the greatest elements).
Moreover, identify each element ¢; € 7, with its index ¢ € [r]. In this way, we have
that Z < Int([n]) and, for each « < r, I, € Int([n]). Our aim is now to prove

(1) v H \/ €1,

1<a<gr

Before starting to prove this equivalence, it is convenient to observe the following two
facts:

e for all intervals J € I, e7(J) = 1;

o for all intervals J & I, e;(J) = 0.
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Indeed, given an interval J < I, we have e(J) =~~(\/,;€)(J) = 1 if and only if,
for all intervals K < .J, there exists an interval M € K such that

\/EZ(M) =1.

i€l
The last statement is in fact true: for a given K < J, it is enough to choose an
element 7 € K in order to have \/,.; &;({7}) > e-({7}) = 1.
On the other hand, given an interval J & I, we have e7(J) =~~ (\/,c;€:)(J) =0
if and only if there exists an interval K < J such that, for all intervals M € K,

(\/&)(M) =0.

el

Once again, it is not difficult to see that the last equality is true: choosing, for
instance, K = J\I, one immediately realizes that, for every i € I, ;(M) = 0 (since
1 ¢ M, and so M # {i}).

We are now ready to proceed with the announced proof of (1). Given an interval
I, since the only possible truth values are 0 and 1, it will be enough to prove what
follows:

(i) if p(I) =1, then \/_ er,(I) = 1;

(ii) if ¢(I) =0, then \/ e, (I) = 0.

Let us prove the two above statements separately.

(i) Suppose that ¢(I) = 1. Then there exists s such that I, € Z and I € I,.

Therefore \/ er,(I) > er,(I) = 1.
(ii) Suppose that ¢(I) = 0. This means that I & I, for all s < r. Therefore
er,(I) = 0, for all s, hence \/ e, (I) = 0. O

For any given ¢ € ©,, the above lemma provides a canonical form for ¢, which
will be called its closed disjunctive form (briefly, CDF).
The next theorem is the main result of the present paper.

THEOREM 17. The Heyting algebra ©,, of Dyck paths of semilength n is isomor-
phic to the Heyting algebra [0, _1].

Proof. By the previous lemma, we can (and in fact will) identify each equivalence
class of [0,] with the unique proposition in CDF contained in the class. Moreover,
we recall that, in ®,,, the atoms are those paths all of whose factors are hills except
for a single pyramid having exactly 4 steps. If P is an atom of ®©,,, we denote with
xp the abscissa of the unique nontrivial peak of P, and we call zp/2 the order of the
atom P.

Define the function f : [0,-1] — D, as follows: given pairwise incomparable
intervals I1,Io,..., I, € [n—1], set f(er, ver v---ver) equal to the Dyck path
P of semilength n whose decomposition into join-irreducibles P = Py v P, v --- v P,
has cardinality r and is such that, for every j < r, the interval of atoms below P; is
made by the atoms of order ¢, for all ¢ € I;. We claim that f is a Heyting algebra
isomorphism.

We start by showing that f is onto. Indeed, given any Dyck path P in 9, its
decomposition into join-irreducibles uniquely determines an antichain of intervals of
[ — 1], which is given by the intervals I3, ... I, of the orders of the atoms lying below
each join-irreducible. By construction, the proposition (in CDF) €5, v -+ v ¢j, is
mapped by f onto P.

Next we prove that f is order-preserving. To this aim, we first give an alternative
description of the partial order of the Heyting algebra [0©,,_1], based on the CDF
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representatives of equivalence classes. Given ¢, in [0,_1], suppose that ¢ = e, v
---ver and ¢ =gy, v---vey,, for suitable antichains of intervals in [n — 1]. Recall
that ¢ < ¢ if and only if, for all I € [n — 1], ¢(I) < ¢(I). Our assumptions on ¢
and ¢ implies that ¢(I) = 1 if and only if I € I, for some h < r (and analogously
for ¢). Thus we get that ¢ < ¢ if and only if, for every h < r, there exists k < s
such that I, € J,. Now suppose that ¢ < ¢. If r = s = 1, then f(p) = P and
f(@) = @ are join-irreducibles in ®,,, i.e. they consist of a series of hills and a unique
pyramid having at least 4 steps. Saying that ¢ < 1) means in this case that I; € Ji,
hence the interval of atoms dominated by P is contained in the interval of atoms
dominated by @, that is P < Q. In the general case, set f(p) = P =P, v ---v P,
and f(¥) = Q = Q1 v -+ v Qs; if ¢ < 1, then, for every h < r, there exists k < s
such that I, € Jg, which implies that P, < Q. From here it follows that P < @.

All the above arguments can be reversed, thus showing that f is also order-
reflecting, i.e. that f(¢) < f(v) implies that ¢ < .

Therefore we have shown that f is onto, order-preserving and order-reflecting.
It is known that this is enough to conclude that f is an order isomorphism. As a
consequence, f is also a lattice isomorphism. Finally, thanks to Proposition 15, if we
consider the canonical Heyting algebra structure induced by the finite distributive
lattice structure, we have that f is a Heyting algebra isomorphism between ©,, and
[©,-1], as desired. 0

4. Posets of intervals. The results of the previous sections suggest that every
element of a Dyck algebra can be described by means of the underlying Heyting
algebra structure together with a natural linear order structure on the set of the
atoms of the algebra. Below we will try to clarify this statement.

Given a Dyck path P, denote with P its Heyting algebra closure, that is P =~~
P. The set of atoms of a Dyck algebra can be given a total order structure (which has
nothing to do with the partial order of the algebra) by declaring an atom P strictly
less than another atom @ whenever zp < xg (we refer to the notation introduced in
the proof of theorem 17 for the order of an atom). In this case we will write P « @,
to avoid confusion with the partial order on Dyck paths. The (finite) set of atoms
of ©,, will then be denoted {m,ma,...,m,_1}, where m; is the atom of order i. As
we have already noticed, a join-irreducible path is uniquely determined by the set
of atoms lying below it. Such a set of atoms is obviously an interval with respect
to «. More specifically, if P is a join-irreducible and m;, 41, ..., m;4; are the atoms
below P, then P = T, Vi1 V-~ V T;4;. Summing up, every Dyck path can be
expressed (via Birkhoff representation theorem) as the join of the closure of the join
of «-intervals of atoms.

A further step towards abstraction consists of identifying an interval of atoms
of ®,, with the interval of the orders of such atoms (which is a subset of [n — 1]).
Thus a Dyck path of semilength n can be identified with a family of incomparable
intervals (i.e., an antichain of intervals) of [n —1]. This observation leads to a possible
generalization of the approach we have developed so far for Dyck algebras, which we
attempt to sketch in the remainder of this section.

Let P be a poset and denote with Int(P) the poset of bounded intervals of P
ordered by inclusion. The generic element of Int(P) is then [z,y] ={z€e P |z <z <
y}. We are interested in the set O(Int(P)) of all down-sets of Int(P). When ordered
by inclusion, O(Int(P)) is a complete distributive lattice. This kind of lattices is often
relevant from a theoretical point of view. For instance, we recall here that, when P is
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locally finite (i.e. every interval of P is finite), O(Int(P)) is isomorphic to the lattice
of two-sided ideals of the incidence algebra of P. This is a crucial fact in showing that
two locally finite posets are order-isomorphic if and only if their incidence algebras
are isomorphic (see, for instance, [DRS]).

LEMMA 18. The lattice O(Int(P)) is atomic (i.e. every element of O(Int(P))
contains at least one atom), and the set of its atoms is in bijection with P.

Proof. For any x € P, the interval [z, z] is a minimal element of Int(P) (and every
minimal element is of this form). Therefore the set A = {{, [z, z]} S Int(P) | z € P}
is the set of atoms of O(Int(P)). Since every nonempty down-set of Int(P) contains
at least one interval I, if 2 € I, then obviously {&, [z, ]} is contained in the given
down-set, which is enough to conclude. ]

The above lemma asserts that there is a natural partial order on the set of atoms
of O(Int(P)) (inherited from the partial order of P), which has of course nothing
to do with the inclusion order on O(Int(P)). It would be very interesting to deduce
properties of the complete distributive lattice O(Int(P)) from properties of P. Since
lattices of down-sets are completely distributive, they are also Heyting algebras (in
the same canonical way as finite lattices are), thus the same project can be developed
for the Heyting algebra structure of O(Int(P)). To the best of our knowledge, it seems
that this approach to the study of posets of intervals has never been considered before.
To justify it, we now briefly mention some remarkable examples.

Ezxamples.

1. If P is a discrete poset (i.e., an antichain), then clearly Int(P) ~ P, hence
any element of O(Int(P)) can be seen as a subset of P. This means that
O(Int(P)) is a complete and atomic Boolean algebra.

2. If P is totally ordered, then, in the finite case, O(Int(P)) is isomorphic to a
Dyck lattice of suitable order, see also [FM1]. In case P is infinite, we obtain
a natural infinite analog of Dyck lattices which still deserves to be studied.

3. If P is a finite Boolean algebra, then Int(P) is the sup-semilattice of the
nonempty faces of a cube of suitable dimension (see [BO1, BO2|). However,
the distributive lattice O(Int(P)) has never been studied; a better under-
standing of its structure, as well as of its logic-theoretic properties as a Heyt-
ing algebra, is surely desirable. Also, we are not aware of what happens for
infinite Boolean algebras.

5. Combinatorial properties of Dyck paths in terms of atoms of Dyck
lattices. In this final section we will give a glimpse of the potential applications of
the general approach outlined in the previous section in the particular case of Dyck
algebras. More specifically, we will focus on combinatorics, and we will express several
combinatorial properties of Dyck paths in terms of the Heyting algebra structure of
Dyck algebras and the natural linear order « on their atoms.

We recall once again that every path of the Dyck algebra ©,, can be identified with
an antichain of intervals of the totally ordered set [n—1] (namely, the family of pairwise
incomparable intervals each of which represents the indices of the atoms dominated by
a join-irreducible in the decomposition of the path). For instance, the red Dyck path in
Figure 1 corresponds to the antichain of intervals {[2, 4], [4, 5], [6, 6], [8, 8],[9, 9]} of the
set [9]. For any two such antichains {I1,...,I,} and {J1,...,Jn}, it is {I1,..., [,} <
{/1,..., Jm} in ®,, whenever, for every i < n, there exists j < m such that I; < J; (as
we already noticed in the proof of Theorem 17). It is also useful to record an explicit
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expression for join and meet:

{Il,...,In}V{Jl,...,Jm}Z{Il,...,ln,J17...,Jm};
{Il7aln}A{Jl7aJm}:{IlmJ] |Z<na]<m}7

where in both the r.h.s.’s we tacitly assume to discard all intervals that are not
maximal (this is of course needed in order to get an antichain). We can also give a
description of pseudonegation: if a path P is represented by the antichain of intervals
{I1,...,I,}, then ~ P is represented by the (unique) family of maximal intervals
constituting a partition of the set [n—1]\(I1 U- - - U I,;,). Referring to the black path in
Figure 2, its pseudonegation is represented by the antichain of intervals {[4,4],[12, 14]}
of [15].

We now state and prove a series of propositions which express some important
combinatorial parameters on Dyck paths in terms of the above described “interval”
representation of Dyck paths. For a classical reference on the enumerative combina-
torics of Dyck paths, see the survey article [D]. Before starting we need to introduce
a few notations and definitions.

For a given Dyck path P € D,,, we denote with Fp the antichain of intervals of
[n — 1] representing that path. If Fp = {I3,..., I}, then the cardinality of Fp is
|Fp| = m, whereas the weight of Fp is |Fp| = |I1 v --- U I,|. Moreover, we say that
I € Fp is internal when 1,n — 1 ¢ I; the set of internal intervals of Fp is denoted
with F3.

PROPOSITION 19. The number of peaks of a Dyck path P € D,, is given by |Fp|+
|Fepl = 1F2).

Proof. Each peak of P of height > 1 represents the contribution of a join-
irreducible in the (unique) expansion of P as a join of join-irreducibles. Since join-
irreducibles of P correspond to intervals of Fp, the contributions of these peaks is
exactly |Fp|. As far as peaks at height 1 are concerned (i.e., hills), we observe that a
bunch of s consecutive hills of P corresponds to an internal interval of cardinality s+1
of F.p, except when the bunch of hills is at the beginning or at the end of the path,
in which cases it corresponds to a noninternal interval of cardinality s of F.p. This
means that the number of hills of P is |F.p| — |FZp|, which concludes the proof. O

A byproduct of the above proof is the following.

COROLLARY 20. The number of hills of a Dyck path P € D,, is given by |Fp| —
| FZpl-

PROPOSITION 21. The sum of the heights of the peaks of a Dyck path P € D,, is
given by |Fp| + |Fp| + | Fepl = |FZp| = n =1+ |Fp| = |FZp].

Proof. Concerning peaks of height > 1, we observe that the height of each of them
is the cardinality of the interval which correspond to it minus 1. Thus the contribution
to the total heights sum of such peaks is |Fp| + |Fp|. On the other hand, the sum of
the heights of the hills of P equals the number of hills of P, so (from the proof of the
previous proposition), their contribution is given by | F.p| — |F*p|. Summing up the
two quantities we have obtained gives the desired result. 0

PROPOSITION 22. The number of returns of a Dyck path P € D, is given by
| Fpl +1.

Proof. The total number of returns of P is given by the number of its hills plus
the number of its nontrivial factors. As we have already proved, the number of hills
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of P is given by ||F.p| — |F*p|. Moreover we observe that the number of nontrivial
factors of P is “approximately equal” to the number of nontrivial factors of ~ P. They
are indeed equal if and only if P either starts or ends with a hill (but not both); in
this case, P has precisely |F.p| nontrivial factors, and so the total number of returns
of Pis |F.p| — |F*p| + |F-p| = | Fop| + 1 (since in this case ~ P has precisely one
nontrivial factor either at the beginning or at the end, which corresponds to a single
noninternal interval). Otherwise, P has one more (resp., less) nontrivial factor than
~ P if and only if P both starts and ends with a nontrivial factor (resp., with a hill); in
this case P has precisely | F.p|+1 (resp., | F.p|—1) nontrivial factors, and so the total
number of returns of P is | Fp| — |FXp|+|Fp|+1 (vesp., |Fur| —|F¥p|+|Fpr|—1),
which equals || Fp| + 1 (the reader is invited to check all the details). O

All the results illustrated so far concern statistics which can be directly expressed
in terms of global parameters. We give below a few simple examples in which it is
necessary to take into account some local information. The last example is especially
interesting, being an instance of a kind of “pattern occurrence” statistic. Since the
proofs are quite easy, we leave most of them to the reader. Recall that the “inter-
val” representation of a generic Dyck path P is written {I1,...,I,,}, where each I;
is an interval of [n — 1], and the intervals are listed in increasing order of their min-
ima. Moreover, we say that two consecutive intervals I; and I; 1 are distanced when
max I; < min [;; — 1.

PROPOSITION 23. The height of the first peak of a Dyck path P € D, is given by

[L]+1 ,iflely
1 , otherwise

PROPOSITION 24. The number of peaks before the first return of a Dyck path
P e D, is given by

max{k | I;_1 and I; are not distanced, for all i <k} ,if1el;
1 , otherwise

PROPOSITION 25. The number of occurrences of the (consecutive) factor duu in
a Dyck path P € D, is given by

{i <n —1|either I;_; and I; are distanced or |I[;\I;_1| > 1}.

Proof. Each occurrence of duu in P corresponds to the occurrence of a valley not
immediately followed by a peak. For any such valley we have two distinct possibilities.
If the valley is not on the z-axis, then it corresponds to a transition between two
consecutive join-irreducibles such that the rightmost one dominates at least two atoms
which are not dominated by the leftmost one. In terms of the “interval” representation
of the path, this corresponds to a consecutive pair of non-distanced intervals I;_; and
I; such that |I;\I;—1| > 1. On the other hand, if the valley lies on the z-axis, then it
is immediately followed by a nontrivial factor, and the first interval I; corresponding
to such a factor is clearly distanced from the previous one I; ;. ]

6. Conclusions and further work. The main aim of the present paper is to
build a bridge between a certain fragment of the Halpern-Shoham logic (sometimes
called the logic of sub-intervals) and the combinatorics (and algebra) of Dyck paths.
Hopefully this should result in a better and more effective description of the logic
of sub-intervals, which can now benefit from a powerful combinatorial machinery. We
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claim that this link is also relevant from a strictly combinatorial point of view, since it
provides one more example (and a nice one, in our opinion) of how the combinatorics
of lattice paths can play an important role in apparently unrelated fields.

The fact that the results obtained in the present paper are so neat and effective
is certainly due in part to the nice combinatorial structure of Dyck paths and to the
nice logical structure of the logic of sub-intervals. Nevertheless, neither of these two
structures is trivial. In particular, the logic of sub-intervals is especially interesting
since, in a sense, it constitutes a sort of intermediate step between genuine interval
logics and classical temporal logics (of time instants rather than time intervals). In-
deed, with point-based temporal logics it shares the feature that, if a statement is
true over a certain interval, then it is true over all of its sub-intervals (and so, in
particular, over all singleton intervals). This can be expressed by saying that the logic
of sub-intervals has the same behavior of point-based interval logics when “looking
downwards”. On the other hand, it is not true in general that a statement which is
true over two distinct intervals is also true over the union of those intervals. There-
fore, the logic of sub-intervals is sensibly different from classical temporal logics when
“looking upwards”.

The study initiated in the present paper is amenable of extensions and general-
izations in several directions. From a combinatorial point of view, it seems natural to
replace Dyck paths with other families of paths, provided that the resulting posets are
in fact distributive lattices. The first, obvious candidates are Motzkin and Schroder
paths, which have been considered in Section 2.1 for what concerns their Heyting
algebra structure. In both cases, an investigation of the logic-theoretic counterparts
of such algebras is likely to be done along similar lines. From a logic-theoretic point
of view, there are at least two possible directions for further research. First, it is nat-
ural to ask whether it is possible to find analogous results and similar combinatorial
descriptions for other fragments, assuming that the underlying order of time instants
still is a finite total order. To give a more concrete hint, the fragment associated with
the binary relation “begins” between time intervals (the pair of intervals (I, J) is in
this relation whenever I and J have the same starting point and I is contained in J)
is likely to have a nice combinatorial description, though probably expressible using
objects that are not lattice paths, and it is conceivable that algebraic structures sim-
ilar to those studied in the present paper can arise. A second kind of logic-theoretic
generalization concerns the structure of the space of time instants. Instead of consid-
ering a finite total order, one can consider either an infinite (but discrete) total order
or a more general partial order. In the former case, the combinatorial structure that
is involved could be some notion of infinite Dyck path, that is a Dyck path having
infinite length. There are at least two different ways to formalize this suggestion: ei-
ther working in the set of all Dyck paths (of any length), which is naturally partially
ordered, and can be probably interpreted as some kind of infinitary limit object for
the family of Dyck lattices; or introducing Dyck paths having infinite support, i.e.
Dyck paths unbounded on the right which do not have a suffix consisting of the con-
catenation of an infinite number of peaks lying on the z-axis. Both frameworks seem
to have never been considered, at least with respect to their combinatorial structure.
If instead the order structure of time instants is not a total order, the logic involved
becomes considerably more complicated. Some sources suggest to consider (discrete)
partial orders having the so-called linear interval property, which means that every
interval is totally ordered (this is essentially equivalent to have a sort of tree-like
structure). This seems in fact an interesting way to relax the request of having a
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total order without losing too much. In this situation, one should probably look for
a definition of what we could call a fuzzy Dyck path, i.e. a Dyck path some of whose
steps are not univocally determined.

There are also a few more hints for further work that are suggested by our
research, which will be briefly illustrated below as a conclusion of our paper.

As already illustrated in section 4, the case of Dyck algebras investigated here is
just an instance of a more general situation. The study of the complete distributive
lattices (Heyting algebras) of the down-sets of the poset of intervals of a generic poset
is a totally unexplored subject, which seems interesting to be pursued both from
the algebraic and the logic-theoretic point of view. We remark that the relevance of
posets of intervals in certain logical framework has already been noticed, see [CM].
In particular, the case in which the starting poset is a Boolean algebra (example 3 in
section 4) is related to the logic of the n-cube, initiated in [RM] and recently explored
in [Mun]

It would be nice to have a purely algebraic characterization of Dyck lattices and
of Dyck algebras. Even if they are not a variety (in the sense of universal algebra), they
show some interesting features. For instance, Dyck lattices are projective distributive
lattices (this follows from a result of Balbes [B], which asserts that a finite distributive
lattice is projective if and only if the poset of its join-irreducibles is a meet-semilattice).

While in Section 5 we give some instances of how the Heyting algebra structures
of Dyck algebras can be useful to recover combinatorial properties of Dyck paths,
it is conceivable that also the opposite point of view might yield interesting results.
Namely, one can ask whether certain combinatorial statistics on Dyck paths give some
information on how a path sits inside the associated Dyck algebra.
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