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Abstract. We introduce a modal logic, called Cone Logic, whose formulas describe prop-
erties of points in the plane and spatial relationships between them. Points are labelled
by proposition letters and spatial relations are induced by the four cone-shaped cardinal
directions. Cone Logic can be seen as a weakening of Venema’s Compass Logic. We prove
that, unlike Compass Logic and other projection-based spatial logics, its satisfiability prob-
lem is decidable (precisely, PSpace-complete). We also show that it is expressive enough
to capture meaningful interval temporal logics – in particular, the interval temporal logic
of Allen’s relations ‘Begins’, ‘During’, and ‘Later’, and their transposes.

1. Introduction

Spatial reasoning has both a strong theoretical relevance and many applications in various
areas of computer science, including robotics, natural language processing, and geographical
information systems [1, 10, 27]. However, despite the widespread interest in the topic,
few techniques have been developed to automatically (and efficiently) reason about spatial
relations over infinite structures. As a matter of fact, spatial reasoning has been mainly
investigated in quite restricted algebraic settings.

Most logical formalisms for spatial reasoning can be conveniently classified into two
classes, on the basis of the type of relations they make use of. On the one side, there
are logics whose modalities are based on cardinal directions. The most notable example
of a formalism in this class is Venema’s Compass Logic [28], which allows one to express
properties such as: “from every point labelled with a there is a point to the north of it,
that is, above it and vertically aligned to it, that is labelled with b”. On the other side,
there are formalisms based on topological relations, like the Region Connection Calculus
[8, 23], which can express properties such as: “two regions of points, labelled with a and b
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respectively, are externally connected, that is, tangent”. A quite extensive discussion of the
expressiveness of various spatial logics and of their connections can be found in [14].

In this paper, we introduce a novel spatial modal logic, called Cone Logic, which allows
one to reason about directional relations between points in the rational plane. Being based
on cardinal directions, our logic falls inside the first group of formalisms discussed above.
However, unlike most logics based on cardinal directions, the modal operators of Cone
Logic range over cone-shaped regions of the plane – formally, over quadrants – rather than
semi-axes. To stress this difference, we will often talk of cone-shaped cardinal directions,
as opposed to projection-based cardinal directions (see Figure 1). This difference is also
reflected in considerably better algorithmic properties. While the satisfiability problem for
modal logics with projection-based cardinal directions – notably, Compass Logic – turns out
to be highly undecidable [17, 20], we prove that Cone Logic enjoys a decidable satisfiability
problem (in fact, PSpace-complete) by making use of a suitable filtration technique. We
also show that Cone Logic subsumes interesting interval temporal logics such as the temporal
logic of sub-intervals/super-intervals, thus generalizing previous results in the literature [6]
and basically disproving a conjecture by Lodaya [12].

Related work. The paper that is most related in spirit to the present work is that of
Venema [28], who studies Compass Logic. Compass Logic is a two-dimensional modal logic
interpreted over the Cartesian product of two linear orders, which features two pairs of
modalities, each pair ranging over one of the two orders. The first undecidability result for
the satisfiability problem of Compass Logic was shown in [17] and it covers both the case
where the logic is interpreted over the discrete infinite grid N×N and the case where the logic
is interpreted over the Euclidean space R×R. In [24], similar formalisms based on products
of two linear modal logics have been studied and the above-mentioned undecidability results
have been strengthened to cover practically all classes of products of infinite/unbounded
linear orders. These negative results stem from the possibility of encoding halting computa-
tions of Turing machines inside a two-dimensional structure and expressing the correctness
of the encoding in the logic.

Cone Logic can be viewed as the fragment of Venema’s Compass Logic obtained from the
full logic by enforcing the following restriction: quantifications along one axis can be used
only after a similar quantification along the other axis. Such a constrain makes it impossible
to correctly encode computations of Turing machines in the underlying two-dimensional
space, thus leaving room to recover the decidability of the satisfiability problem.

There is also a tight connection between modal logics over two-dimensional spaces and
fragments of Halpern and Shoham’s modal logic of time intervals (HS) [11]. According to
such a correspondence, intervals over a linearly ordered temporal domain are interpreted as
points over a two-dimensional space. In Section 7, we will show how such a correspondence
can be lifted to the logical level, by reducing the satisfiability problem for an expressive
fragment of HS to the satisfiability problem for (a subset of formulas of) Cone Logic.

Other multi-dimensional spatial logics are studied in [3, 4, 25] (with different goals
in mind). Some of them retain good decidability properties, but their expressive power is
often limited. An example is the logic proposed by Bennett in [3], which uses a single modal
operator interpreted as the interior in a given topology. This logic is essentially equivalent
to S4 and its satisfiability problem is PSpace-complete.

Structure of the paper. In Section 2, we define syntax and semantics of Cone Logic and
we discuss its expressiveness and satisfiability problem. In Section 3, we introduce the basic
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Figure 1: Projection-based and cone-shaped cardinal directions.

machinery for attacking the satisfiability problem. In Section 4, we show how to turn a
labelled region of the rational plane into an infinite (decomposition) tree structure. Then,
in Section 5, we prove a tree (pseudo-)model property for Cone Logic, that is, we describe
models of satisfiable Cone Logic formulas by means of suitable labelled tree structures. In
Section 6, we exploit such a tree model property to reduce the satisfiability problem for
Cone Logic to the satisfiability problem for a simple fragment of CTL. In Section 7, we
make use of such a decidability result to prove that a meaningful fragment of Halpern and
Shoham’s interval temporal logic HS, interpreted over dense linear structures, is decidable
in polynomial space. In Section 8, we make some final remarks and we discuss related and
open problems.

2. The logic

In this paper, we generically denote by P either the rational plane Q ×Q or the real (Eu-
clidean) plane R × R. We will define the semantics of formulas of Cone Logic in the same
way over labellings of the rational plane and labellings of the real plane.

We call spatial relation any binary relation d ∈ P × P between points in the plane.
We use the infix notation p d q for saying that two points p, q ∈ P satisfy a given spatial
relation d . We start by defining some basic spatial relations, denoted , , , ,
that correspond to the four projection-based cardinal directions ‘North’, ‘South’, ‘East’ and
‘West’ (see Figure 1 - left):

(x, y) (x′, y′) iff x = x′ ∧ y < y′ (x, y) (x′, y′) iff x = x′ ∧ y > y′

(x, y) (x′, y′) iff x < x′ ∧ y = y′ (x, y) (x′, y′) iff x > x′ ∧ y = y′.
Using the above basic relations and set-theoretic operations, one can construct new spa-
tial relations. We define the composition of two spatial relations d and e by d e =
{(p, r) ∶ ∃ q ∈ P. (p, q) ∈ d ∧ (q, r) ∈ e }. We are interested in the following spatial rela-
tions:

= ∪ = ∪
= ∪ = ∪

Observe that, up to a rotation of the axes, the derived relations = , = ,
= , and = can be viewed as the four cone-shaped cardinal relations ‘North’,

‘East’, ‘West’ and ‘South’ [9] (see Figure 1 - right).
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Figure 2: An a-labelled open rectangle.

We introduce Cone Logic as a modal logic based on specific spatial relations. As such,
it can express properties of single elements (the labels associated with the points in a plane)
and binary relationships between elements (it admits existential quantifications over points
that satisfy a given spatial relation). The modal operators of Cone Logic are induced by
the six spatial relations , , , , , (the reason for such a choice will become
evident in the following). Unless otherwise specified, hereafter the term “spatial relation”
will always refer to one of these six relations.

Given a set Σ of proposition letters, formulas of Cone Logic are built up from Σ using
the Boolean connectives ¬ and ∨ and the existential modalities that correspond to the six
spatial relations:

ϕ ∶= a (∀a ∈ Σ)
∣∣ ¬ϕ′ ∣∣ ϕ′ ∨ϕ′′
∣∣ d ϕ′ (∀ d ∈ { , , , , , })

We evaluate Cone Logic formulas over labellings of the plane or (sub)regions of it, starting
from an initial point. Precisely, our models are structures of the form ⟨P, (Ra)a∈Σ, p⟩, where
P ⊆ P, Ra ⊆ P for all a ∈ Σ, and p ∈ P . The formal semantics is defined as follows:

● for all proposition letters a ∈ Σ, ⟨P, (Ra)a∈Σ, p⟩ ⊧ a iff p ∈ Ra,
● ⟨P, (Ra)a∈Σ, p⟩ ⊧ ¬ϕ′ iff ⟨P, (Ra)Σ, p⟩ /⊧ ϕ′,
● ⟨P, (Ra)a∈Σ, p⟩ ⊧ ϕ′ ∨ϕ′′ iff ⟨P, (Ra)a∈Σ, p⟩ ⊧ ϕ′ or ⟨P, (Ra)a∈Σ, p⟩ ⊧ ϕ′′,
● for all spatial relations d , ⟨P, (Ra)a∈Σ, p⟩ ⊧ d ϕ′ iff ⟨P, (Ra)a∈Σ, q⟩ ⊧ ϕ′ for some point
q ∈ P such that p d q.

We will freely use shorthands like ϕ′ ∧ ϕ′′ = ¬(¬ϕ′ ∨ ¬ϕ′′), � = a ∧ ¬a, ϕ = ϕ,
ϕ = ¬ ¬ϕ, ϕ = ϕ, ϕ = ϕ, and so on.

Cone Logic is well-suited for expressing spatial relationships between points, curves, and
regions over the plane. Below, we give an intuitive account of its expressiveness through a
couple of examples.

Example 2.1. To begin with, we show how to define an a-labelled open rectangular region,
whose edges are aligned with the x- and y-axes (see Figure 2):

ϕ = a ∧ b ∧ c ∧ d ∧ e

∧ (a → a ∧ a) ∧ (¬a↔ b∨c∨d∨e)
∧ (b→ b) ∧ (c→ c) ∧ (d→ d) ∧ (e→ e).
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Figure 3: A labelled rational plane satisfying ϕ≤.

Example 2.2. The second example uses the derived operators and to enforce non-
trivial spatial relationships between labelled regions of the rational plane. Let Σ be an
alphabet containing n+2 proposition letters a, b1, ..., bn, c and let < be the partial order over
Σ such that a < bi < c, for all 1 ≤ i ≤ n, and bi /< bj , for all 1 ≤ i, j ≤ n with i ≠ j. As usual, we
write a ≤ b (resp., a ≥ b) if a = b or a < b (resp., a > b). Consider now the formula ϕ≤ defined
as follows:

ϕ≤ = ⋁
d∈Σ

d ∧ ⋀
d≠e

¬(d ∧ e) ∧ ⋀
d∈Σ

(d → ⋀
e≥d

e ∧ ⋁
e≥d

e ∧⋀
e≤d

e ∧ ⋁
e≤d

e) .

The unique (up to homomorphism) labelling of the rational plane Q×Q that satisfies ϕ≤ is
depicted in Figure 3. Notice that each bi-labelled region is an infinite union of disjoint open
rectangles (the coordinates of their corners are given by pairs of irrational numbers, which,
of course, do not belong to the rational plane). Moreover, the bi-labelled open rectangles
are arranged densely in the rational plane, that is, for all 1 ≤ i, j, k ≤ n, with i ≠ j, all
bi-labelled points (xi, yi), and all bj-labelled points (xj , yj), with xi < xj and yi > yj , there
is a bk-labelled point (xk, yk) such that x1 < xk < x2 and y1 > yk > y2. We also observe
that the formula ϕ≤ cannot be satisfied by any labelling of the real plane R×R. Indeed, ϕ≤
requires that the subregions Ra,Rb1 , ...,Rbn ,Rc are “open” (in the sense that they do not
contain points on their boundaries) and they form a partition of the plane: this is against
the assumption that the plane is compact, as in this case boundaries would be covered by
the subregions.

In the following, we focus our attention on the satisfiability problem for Cone Logic,
which consists of deciding whether a given formula ϕ holds at some point of a labelled region
of the (rational or real) plane. In particular, we are interested in satisfiability of formulas
interpreted over rectangular regions of the form X × Y , where X and Y are open or closed
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intervals1 of Q (resp., R). Before describing our decision procedure for the satisfiability
problem for Cone Logic, we make a few remarks.

Remark 2.3. In Example 2.2, we showed that there exist Cone Logic formulas that can
only be satisfied over dense non-Euclidean (e.g., rational) planes. Here, we prove that the
converse does not hold, namely, that every formula of Cone Logic that is satisfied in some
(rational or real) plane is also satisfiable in the rational plane. First of all, we observe
that Cone Logic can be viewed as a fragment of classical first-order logic that uses pairs
of elements of the underlying domain to denote points, some binary relations to represent
their labels, and a (definable) dense linear order to describe the spatial relations. As an
example, a Cone Logic formula of the form:

ϕ = a

can be translated into the following, equi-satisfiable first-order formula:

ϕ̃(x, y) = “ < is a dense linear order with neither a minimal nor a maximal element”
∧ ∃ x′, y′. x < x′ ∧ (y = y′ ∨ y < y′) ∧ Ra(x′, y′).

According to the above translation, if ϕ̃(x, y) holds in some structure ⟨L, (Ra)a∈Σ,<, i, j⟩,
where Ra and < are binary relations on the domain L and i, j are elements of L, then
(L,<) is a dense linear order with neither a minimal nor a maximal element and ϕ holds
in the labelled plane ⟨L ×L, (Ra)a∈Σ, (i, j)⟩. As ϕ̃(x, y) is a first-order formula, it follows
from Löwenheim-Skolem theorem that, without loss of generality, L can be assumed to be
countable. Finally, since (Q,<) is up to isomorphism the only countable dense linear order
with neither a minimal nor a maximal element, we conclude that ϕ is satisfied by a labelling
of the rational plane.

Remark 2.4. Recall that the rational (resp., real) plane is homomorphic to any open
rectangular subregion of it of the form X × Y , with X = (x0, x1) and Y = (y0, y1) open
intervals. This means that, for the purpose of studying satisfiability of Cone Logic, it does
not matter if we consider labellings of the entire plane or labellings of open rectangular
subregions of it. Similarly, the complexity of the satisfiability problem does not change
if we consider closed rectangles. Indeed, any formula ϕ of Cone Logic, interpreted over a
region of the form X × Y , where X = (x0, x1) is an open interval, can be rewritten into an
equi-satisfiable formula ϕ̄, interpreted over the region X̄ ×Y , where X̄ = [x0, x1] is a closed,
non-singleton interval, and vice versa. As an example, the Cone Logic formula

ϕ = a

interpreted over a labelling of (x0, x1) ×Q can be rewritten as

ϕ̄ = ( � ∨ �→ a�) ∧ a

which is interpreted over a labelling of [x0, x1] ×Q (the idea is that points along left and
right boundaries are labelled with the fresh proposition letter a�).

Thanks to the above two remarks, we can restrict our attention to satisfiability of Cone
Logic formulas over specific regions of the plane, called stripes.

1Here the term “interval” is used as a synonym for convex subset. We accordingly denote intervals by
[x, y], (x, y), [x, y), (x, y], where a bracket is square or round depending on whether the corresponding
endpoint is included or not in the interval.
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Definition 2.5. A stripe is a region of the form X × Q, where X = [x0, x1] is a closed
non-singleton interval.

The relationships between the Cone Logic and other two-dimensional modal logics de-
serve a little discussion. Many logics interpreted over two-dimensional structures make use
of projection-based modalities, that is, modalities induced by the accessibility relations
along the two orthogonal axes. Compass Logic [28] is the most notable example of these
two-dimensional logics, as it comprises the four modalities , , , , allowing one to
move along one of the two coordinates while keeping the other coordinate constant. As we
have already seen, modalities based on cone-shaped cardinal directions can be easily defined
in terms of projection-based modalities, e.g., ϕ = ϕ. Cone Logic can thus be viewed
as a fragment of Compass Logic. However, Cone Logic inherits from Compass Logic only
some desirable features. For instance, suppose that one is interested in constraining a given
proposition letter a to occur along the positive x-axis, and possibly somewhere else. Such a
condition can be easily forced in Compass Logic by means of the formula a. Cone Logic
can enforce a similar constraint by means of the formula

(y0 ∨ y0 ∨ y0) ∧ ¬y0 ∧ ¬y0 ∧ (a ∧ y0),
where y0 is a fresh proposition letter. Similarly, the Compass Logic formula a can be
expressed in Cone Logic as follows:

(y0 ∨ y0 ∨ y0) ∧ ¬y0 ∧ ¬y0 ∧ (y0 → a).
It is worth noticing, however, that the above translations can be performed at the cost of
introducing additional labels – e.g., y0 – that can only appear along specific axes. Hence,
only boundedly many constraints of the above forms can be enforced within a single formula
of Cone Logic. We will see that such a limitation (weakening) can be traded for a positive
decidability result.

3. Basic machinery: types, dependencies, clusters, and shadings

From now on, we refer to a generic formula ϕ of Cone Logic. The basic idea underlying the
decision procedure for the satisfiability of ϕ is to first look at how the spatial constraints
defined by the subformulas of ϕ can be satisfied locally over the points of the plane and
then to propagate these constraints to larger and larger regions of the plane. Below, we
introduce some key concepts that ease such an analysis.

Definition 3.1. Let ϕ be a formula of Cone Logic. The closure of ϕ, denoted by closure(ϕ),
is the set of all subformulas of ϕ and of their negations (we identify any subformula ¬¬α
with α). A ϕ-atom is a non-empty set A ⊆ closure(ϕ) such that:

● for every formula α ∈ closure(ϕ), α ∈ A iff ¬α /∈ A,
● for every formula γ = α ∨ β ∈ closure(ϕ), γ ∈ A iff α ∈ A or β ∈ A.
Note that the cardinality of closure(ϕ) is linear in the size ∣ϕ∣ of ϕ, while the number of
ϕ-atoms is at most exponential in ∣ϕ∣.

Let P = ⟨P, (Ra)a∈Σ⟩ be a labelled region. We associate with each point p in P the set
of all formulas α ∈ closure(ϕ) such that ⟨P, p⟩ ⊧ α. Such a set is called the ϕ-type of p and
it is denoted by typeP(p). It can be easily checked that each ϕ-type is a ϕ-atom, but not
vice versa.
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Given a ϕ-atom A and a spatial relation d , we denote by d −req(A) the set of all
formulas α ∈ closure(ϕ) such that d α ∈ A.These formulas can be thought of as the requests
of A along the direction d . Similarly, we denote by d −obs(A) the set of all formulas
α ∈ A such that d α ∈ closure(ϕ). These formulas can be thought of as the observables of A
along the direction d . Making use of these sets, we can associate with each spatial relation
d a corresponding relation between ϕ-atoms (with a little abuse of notation, we denote it
by d ).

Definition 3.2. Let d ∈ { , , , , , } be a spatial relation and A,B be two
ϕ-atoms. We write A d B if and only if it holds that:

e −req(A) ⊇ e −obs(B) ∪ e −req(B);
e′ −req(B) ⊇ e′ −obs(A) ∪ e′ −req(A),

for all spatial relations e ∈ { , , , , , } such that e ⊇ e d (in particular,
for e = d ), where e′ is the inverse of e .

It is worth looking at some concrete examples of the above definition. For instance, let
d = and observe that e ⊇ e d only if e = . In this case, the definition amounts
at saying that A B iff all requests and observables of B along the direction are also
requests of A along , and, symmetrically, all requests and observables of A along are
also requests of B along . Let us now consider the more interesting case of d = . Here
we have e ⊇ e d iff e ∈ { , , }. In particular, we can write A B only if the
requests and the observables of B along the direction (resp., , ) are also requests
of A along the direction (resp., , ), and symmetrically for the inverses , , and

.

We conclude this short section with a few important remarks. First, we observe that the
above-defined relations on ϕ-atoms are transitive, e.g., A1 A2 A3 implies A1 A3, and
have inverses (e.g., A B iff B A), exactly as the corresponding relations on points. More-
over, they satisfy some natural compositional properties, e.g., A B C implies A C.
The most important property, however, is the following one, which is called view-to-type
dependency : for all points p, q of P and all spatial relations d ,

p d q implies typeP(p) d typeP(q)
(note that the converse implication does not hold).

The above notions can be easily extended to sets of atoms (these sets are meant to
represent sets of types of points in a region of the plane). First, we define a ϕ-cluster as
any non-empty set C of ϕ-atoms. Then, for a cluster C and a spatial relation d , we
denote by d −req(C) and d −obs(C), respectively, the set ⋃A∈C d −req(A) and the set

⋃A∈C d −obs(A). Moreover, given two ϕ-clusters C,D, we write C d D whenever A d B

holds for all A ∈ C and all B ∈ D. Finally, we associate with each non-empty subregion R
of P its ϕ-shading, which is defined as the set typeP(R) = {typeP(p) ∶ p ∈ R} and consists
of all ϕ-types of points of R. Clearly, the formula ϕ is satisfied at some point p of P if and
only if f the shading typeP(P ) contains an atom A such that ϕ ∈ A. Hereafter, we shall
omit the argument ϕ from the terminology and notation so far introduced, thus calling a
ϕ-atom (resp., ϕ-type, ϕ-cluster, etc.) simply an atom (resp., type, cluster, etc.).
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Figure 4: Profiles (a), stripe expressions (b), and decompositions (c).

4. From the plane to the binary tree

In this section, we introduce a suitable notion of decomposition of a labelled region of the
rational plane (more precisely, a labelled stripe) and we iteratively apply it in order to obtain
an infinite decomposition tree structure that faithfully represents the original model. Then,
in the next section, we make use of such a decomposition to establish a tree (pseudo-)model
property for the satisfiable formulas of Cone Logic.

4.1. Profiles and stripe expressions. To start with, we consider the types along vertical
lines of a labelled plane:

Definition 4.1. A profile is a non-empty finite sequence S of atoms and clusters such that,
for every 1 ≤ i ≤ ∣S∣, if S(i) is an atom, then 1 < i < ∣S∣ and both S(i − 1) and S(i + 1) are
clusters.

We will use profiles to represent the arrangement of the types along a certain vertical
line of the labelled plane. The general idea is that one can partition the vertical line into
a finite sequence of contiguous open or singleton segments in such a way that the shading
of each open segment (resp., the type of each singleton segment) coincides with the cluster
(resp., atom) at some specific position of the profile. As an example, Figure 4(a) depicts a
vertical line with an associated profile S = C1 A2 C3 C4: the first cluster C1 represents
the shading of an initial open segment of the vertical line, the atom A2 represents the type
of the upper endpoint of this segment, and the clusters C3 and C4 represent the shadings
of two adjacent open segments.

To represent the types along the two vertical borders of a labelled stripe, we introduce
the notion of stripe expression, which is a pair E = (L,R) of left and right profiles having
equal length and such that, for all 1 ≤ i ≤ ∣E∣ (= ∣L∣ = ∣R∣), L(i) is an atom (resp., a cluster)
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if and only if R(i) is an atom (resp., a cluster). We call any pair of the form (L(i),R(i)),
with 1 ≤ i ≤ ∣E∣, a matched pair.

As an example, Figure 4(b) depicts the left border and the right border of a labelled
stripe, together with the associated stripe expression E = (L,R), where L = C1 A2 C3 A3 C3

and R = C1 A1 C1 A2 C3.
We say that an atom A appears in the left (resp., right) profile of a stripe expression

E = (L,R) if there is a position 1 ≤ i ≤ ∣E∣ such that either A = L(i) or A ∈ L(i) (resp.,
either A = R(i) or A ∈ R(i)) depending on whether L(i) (resp., R(i)) is an atom or a cluster.
By a slight abuse of notation, we denote by ⋃1≤i≤∣E∣L(i) (resp., ⋃1≤i≤∣E∣R(i)) the set of all
atoms that appear in the left (resp., right) profile of the stripe expression E = (L,R).

It is not difficult to see that for every labelled stripe P, there exists a stripe expression
E whose left (resp., right) profile contains all and only the types of the points along the
left (resp., right) border of P. For this, it suffices to consider the atoms that occur exactly
once along each border – we call those atoms pivots for short. The pivots will appear in
the stripe expression E and will be interleaved with the shadings of the segments that are
intercepted at the coordinates of the pivots. This shows how to construct a stripe expression
E that corresponds to a labelled stripe P. Conversely, for some stripe expression E there
might exist no labelled stripe P such that the shading of the left (resp., right) border
of P coincides with the set of all atoms appearing in the left (resp., right) profile of E.
The reason is that the occurrences of atoms and clusters in E might be inconsistent with
the underlying requests and observables. The rest of this section is devoted to overcome
this problem, namely, to find suitable conditions under which a stripe expression admits
a corresponding labelled stripe. As a first step, we enforce suitable constraints on stripe
expressions:

Definition 4.2. We say that a stripe expression E = (L,R) is faithful if it satisfies the
following properties:

(C1) for all positions 1 ≤ i < j ≤ ∣E∣, we have L(i) L(j) and R(i) R(j);
(C2) for all positions 1 ≤ i ≤ ∣E∣, if L(i) and R(i) are clusters, then we have L(i) L(i)

and R(i) R(i);
(C3) for all positions 1 ≤ i ≤ j ≤ ∣E∣, we have L(i) R(j) and L(j) R(i);
(C4) for all positions 1 ≤ i ≤ ∣E∣, if L(i) and R(i) are atoms, then we have

−req(L(i)) ⊆⋃
j>i

−obs(L(j))

−req(R(i)) ⊆ ⋃
j>i

−obs(R(j))
,

,

−req(L(i)) ⊆⋃
j<i

−obs(L(j))

−req(R(i)) ⊆ ⋃
j<i

−obs(R(j)) ;

(C5) for all positions 1 ≤ i ≤ ∣E∣, if L(i) and R(i) are clusters, then we have

−req(L(i)) ⊆⋃
j≥i

−obs(L(j))

−req(R(i)) ⊆ ⋃
j≥i

−obs(R(j))
,

,

−req(L(i)) ⊆⋃
j≤i

−obs(L(j))

−req(R(i)) ⊆ ⋃
j≤i

−obs(R(j)) .

Intuitively, the purpose of the first three conditions is to guarantee some consistency con-
straints on the relationships between the requests and the observables of the atoms that
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appear in the left and right profiles of the given stripe expression, with the idea that the
profiles represent the shadings of the two borders of a concrete labelled stripe. Similarly, the
purpose of the last two conditions is to guarantee the fulfilment of the existential requests
of the left and right profiles along the two vertical directions and . From now on, we
tacitly assume that every stripe expression is faithful (this can be easily checked).

Before enforcing further constraints on stripe expressions, we address a problem related
to their representation. First of all, we observe that a cluster that appears in a stripe
expression may contain exponentially many atoms. Thus, in principle, any explicit repre-
sentation of a stripe expression may require exponential space. We cope with this problem
by restricting to stripe expressions that are maximal with respect to a suitable partial order.
Formally, given two stripe expressions E = (L,R) and E′ = (L′,R′), we write E ⊴ E′ (and
read E is dominated by E′) if and only if

i) ∣E∣ = ∣E′∣;
ii) for all positions 1 ≤ i ≤ ∣E∣, either L(i), R(i), L′(i), and R′(i) are atoms, or L(i), R(i),

L′(i), and R′(i) are clusters;
iii) for all positions 1 ≤ i ≤ ∣E∣, either L(i) = L′(i) and R(i) = R′(i) hold, or L(i) ⊆ L′(i)

and R(i) ⊆ R′(i) hold, depending on whether L(i), R(i), L′(i), and R′(i) are atoms
or clusters.

As ⊴ is a partial order, it makes sense to talk about maximal (faithful) stripe expressions,
that is, stripe expressions which are not strictly dominated by other ones. The benefit of
such a notion is that, given a cluster C of a maximal stripe expression E = (L,R), that is,
C = L(i) or C = R(i) for some 1 ≤ i ≤ ∣E∣, and a generic atom A, one has

A ∈ C if (and only if)

⎧⎪⎪⎨⎪⎪⎩

d −req(A) = d −req(C)
d −obs(A) ⊆ d −obs(C)

for all spatial relations d .

It immediately follows that each cluster of a maximal stripe expression can be succinctly
represented by listing all its requests and observables (recall that the number of requests
and observables is at most linear in ∣ϕ∣).

In addition, one observes the following. If E = (L,R) is a stripe expression and 1 ≤ i <
j ≤ ∣E∣ are the positions of two different matched pairs of clusters, that is, (L(i),R(i)) ≠
(L(j),R(j)), then, due to the constraints of Definition 4.2, at least one of the following

non-containments is satisfied for some spatial relation d ∈ { , , } and its inverse −d :

d −req(L(i)) ⊋ d −req(L(j)) d −req(R(i)) ⊋ d −req(R(j))

−d −req(L(j)) ⊋ −d −req(L(i)) −d −req(R(j)) ⊋ −d −req(R(i)) .
It is worth noticing that d −req(L(i)) ⊆ d −req(L(j)) implies d −req(L(i)) = d −req(L(j)),
and the same for the other conditions. This means that any stripe expression can contain
at most linearly many distinct matched pairs of clusters.

From now on, we restrict ourselves to (faithful) maximal stripe expressions that contain
pairwise distinct matched pairs of clusters. Thanks to this assumption and to the previous
arguments, we can represent each stripe expression using space polynomial in ∣ϕ∣. Since the
matched pairs of clusters in a stripe expression are pairwise distinct, there are indeed at
most linearly many such pairs in a stripe expression. Moreover, each matched pair of atoms
is surrounded by two matched pairs of clusters. This implies that the length of a stripe
expression is at most linear in ∣ϕ∣. Finally, as we argued earlier, each pair of atoms/clusters
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in a maximal stripe expression can be represented by listing all the requests and observables
in it, which are again linear in ∣ϕ∣.

4.2. Recursive decompositions of stripes. Roughly speaking, Conditions C1–C5 of
Definition 4.2 provide us with a guarantee that the natural spatial interpretation of a stripe
expression E is locally consistent with the view-to-type dependency. To enforce the global
consistency and, in particular, to enforce the fulfilment of all existential requests, we need
to introduce a suitable notion of decomposition. We start by dividing a given labelled
stripe into a pair of thinner adjacent labelled sub-stripes; then, we apply the decomposition
recursively to every emerging sub-stripe. This yields an infinite tree-shaped decomposition
of the initial structure, where each vertex of the tree represents a labelled (sub-)stripe and
each edge represents a containment relationship between two labelled (sub-)stripes.

To start with, we introduce a suitable equivalence relation between profiles. Intuitively,
the equivalence relation identifies profiles that can be associated to the same vertical line.

Definition 4.3. Two profiles S and S′ are said to be equivalent if

● the clusters that appear in S and in S′ are the same;
● for each atom S(i) that appears in S, either S(i) also appears in S′ or the two adja-
cent clusters S(i − 1) and S(i + 1) coincide and they both contain the atom S(i), and
symmetrically for each atom S′(i) of S.

As an example, two profiles of the form S = C1 C2 C2 and S′ = C1 A1 C1 C2, with
A1 ∈ C1, are equivalent; on the contrary, the profile S is not equivalent to any profile
S′′ = C1 A1 C2 C2, unless A1 ∈ C1 and C1 = C2.

Decompositions of stripe expressions are defined as follows.

Definition 4.4. Let E = (L,R) be a stripe expression. A decomposition of E is any pair
of stripe expressions (E1,E2), with E1 = (L1,R1) and E2 = (L2,R2), that satisfies the
following matching conditions:

(M1) L1 and L are equivalent,

(M2) R2 and R are equivalent,

(M3) R1 and L2 are equivalent.

We say that a matched pair (L(i),R(i)) of the stripe expression E corresponds to

a matched pair (L1(i1),R1(i1)) of the left stripe expression E1 under the decomposition

(E1,E2) of E if there is a position 1 ≤ i2 ≤ ∣E2∣ such that L(i) ∈= L1(i1), R(i) ∈= R2(i2),
and R1(i1) ∈= L2(i2) hold, where ∈= denotes either the identity relation = between atoms or
between clusters, or the membership relation ∈ between atoms and clusters, or the inverse
membership relation ∋ between clusters and atoms. A symmetric definition can be given
for correspondences with matched pairs of the right stripe expression E2.

As an example, Figure 4(c) depicts a decomposition of the stripe expression E = (L,R),
where L = C1 A2 C3 A3 C3 and R = C1 A1 C1 A2 C3. Note that, under such a
decomposition, the matched pair (C3,C1) of E corresponds to the three matched pairs
(C3,C1), (A3,A

′
2), and (C3,C3) of E1 and to the three matched pairs (C1,C1), (A′2,A1),

and (C3,C1) of E2.

By iteratively applying decompositions, starting from an initial stripe expression, one
obtains an infinite tree-shaped structure, called decomposition tree:
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Definition 4.5. A decomposition tree is an infinite complete binary labelled tree T =
⟨V,E, ↓1, ↓2⟩, where
● V is the set of vertices;
● ↓1 and ↓2 are the left and right successor relations;
● E is a labelling function that associates with each vertex v ∈ V a stripe expression E(v) in
such a way that the pair (E(↓1(v)), E(↓2(v))) is a decomposition of the stripe expression
E(v).

Hereafter, we fix a decomposition tree T = ⟨V,E, ↓1, ↓2⟩. Given a vertex v in T and the
associated stripe expression E(v) = (L,R), we shortly denote by E(v)[L] (resp., E(v)[R])
its left profile L (resp., its right profile R).

We observe that, due to the matching conditions M1–M3, if v and v′ are two vertices
of a decomposition tree T = ⟨V,E, ↓1, ↓2⟩ and v′ is right-adjacent to v (possibly without
being a sibling), then the right profile E(v)[R] of v and the left profile E(v′)[L] of v′
are equivalent. Note that this is also consistent with the spatial interpretation of stripe
expressions that imposes the right profile of v and the left profile of v′ to represent the same
vertical line.

We now enforce suitable conditions on the decomposition tree T in order to guarantee
that every existential request of every atom that appears in a stripe expression E(v) is
eventually fulfilled by an observable of an atom in a (possibly different) stripe expression
E(v′). Recall that, thanks to Conditions C4–C5 of Definition 4.2, all requests along the
directions and are fulfilled within the same stripe expression E(v). It thus remains
to consider the requests along the directions , , , . In the following, we consider
a generic vertex v of T and we look at the right-oriented requests of the atoms/clusters
that appear in the left profile E(v)[L]; symmetrically, we look at the left-oriented requests
for the atoms/clusters that appear in the right profile E(v)[R]. For the sake of brevity,
we only provide the fulfilment conditions for the requests of the left profile E(v)[L] along
the direction (the reader can easily devise the correct definitions for the remaining
directions):

Definition 4.6. Let v be a vertex of the decomposition tree T and let α be a formula in
closure(ϕ). We say that α is locally fulfilled as a -request at vertex v if for all positions
1 ≤ i ≤ ∣E(v)∣, at least one of the following conditions holds:

(F1) α /∈ −req(E(v)[L](i));
(F2) α ∈ −req(E(v)[R](i));
(F3) α ∈ −obs(E(v)[R](j)) for some position i ≤ j ≤ ∣E(v)∣;
(F4) there exist two positions 1 ≤ i1 ≤ j1 ≤ ∣E(↓1(v))∣ such that

i) the matched pair (E(v)[L](i), E(v)[R](i)) corresponds to the matched pair (E(↓1
(v))[L](i1), E(↓1(v))[R](i1)) under the decomposition (E(↓1(v)), E(↓2(v))) of
E(v),

ii) α ∈ −obs(E(↓1(v))[R](j1)).

We are now able to express the conditions that make a fulfilled decomposition tree a valid
representation of some concrete labelled stripe:

Definition 4.7. A decomposition tree T is globally fulfilled if it satisfies the following
conditions:
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(G1) if v0 is the root of T , for all spatial relations d ∈ { , } (resp., d ∈ { , }) and
all positions 1 ≤ i ≤ ∣E(v0)∣, the set d −req(E(v0)[R](i)) (resp., d −req(E(v0)[L](i)))
is empty;

(G2) for every formula α ∈ closure(ϕ), every spatial relation d , and every infinite path
π in T , there exist infinitely many vertices v along π such that α is locally fulfilled as a
d -request at vertex v.

Finally, we say that a globally fulfilled decomposition tree T satisfies ϕ if it contains a
(ϕ-)atom A such that ϕ ∈ A.

5. A tree pseudo-model property

In this section, we establish a tree pseudo-model property for satisfiable formulas of Cone
Logic. We first show that, given any labelled stripe P = ⟨X ×Q, (Ra)a∈Σ⟩ – e.g., a model
of ϕ – there is a globally fulfilled decomposition tree T whose stripe expressions contain

at least the types of the points of P (Theorem 5.1). Then, we prove that, given a globally
fulfilled decomposition tree T , there is a labelled stripe P = ⟨X ×Q, (Ra)a∈Σ⟩ whose shading
coincides with the set of all atoms that appear in the stripe expressions of T (Theorem
5.2). The two results together provide us with a way to represent over-approximations of
shadings of labelled stripes by means of globally fulfilled decompositions trees (formally, an
over-approximation of a stripe is a set of types that contains the shading of that stripe).

In Section 6 we shall see how the correspondence between labelled stripes and globally
fulfilled decompositions trees allows us to reduce the satisfiability problem for a formula ϕ
of Cone Logic to the problem of deciding the existence of a globally fulfilled decomposition
tree that satisfies ϕ.

Theorem 5.1 (completeness). For every labelled stripe P = ⟨X ×Q, (Ra)a∈Σ⟩, there is a
globally fulfilled decomposition tree T = ⟨V,E, ↓1, ↓2⟩ such that

typeP(X ×Q) ⊆ ⋃
v∈V

1≤i≤∣E(v)∣

( E(v)[L](i) ∪ E(v)[R](i) ).

Proof. Let P = ⟨X ×Q, (Ra)a∈Σ⟩ be a labelled stripe, where X is a closed interval of the
rational numbers, and let T = ⟨V, ↓1, ↓2⟩ be the infinite, complete, and unlabelled binary
tree. We need to associate with each vertex v of T a suitable stripe expression E(v). To
do that, we recursively divide the labelled stripe P into substripes, each one corresponding
to some vertex v of T ; then, we collect the types of the points along the borders of the
emerging (sub)stripes and accordingly construct the stripe expressions. There is, however,
a little complication in this construction, due to the fact that the resulting decomposition
tree must be globally fulfilled and it must contain all the types of the points in P. To enforce
these conditions, we need to choose properly the x-coordinates along which we divide the
labelled (sub)stripe associated with each vertex v.

Before turning to the main construction, we give some preliminary definitions. We fix,
once and for all, an enumeration θ ∶ N → X of the rational numbers in the closed interval
X (recall that the set X is countable). Moreover, we define the parity of a vertex v in T
to be the distance from the root modulo 1 + 4 ⋅ ∣closure(ϕ)∣. The parity value 0 will play a
special role, while the parity values from 1 to 4 ⋅ ∣closure(ϕ)∣ are identified with triples of the
form (λ,α, d ), where λ ∈ {L,R}, α ∈ closure(ϕ), and either d ∈ { , } or d ∈ { , }
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depending on whether λ = L or λ = R. By a slight abuse of terminology, we say that a
vertex v has parity 0 or (λ,α, d ).
The construction of the decomposition tree. We start by associating with each vertex
v of T (i) a stripe [xLv , xRv ] × Q, with xLv , x

R
v ∈ X, and (ii) a stripe expression Ev whose

left and right profiles contain, respectively, the types of the points along the left border
PL
v = {xLv } × Q and the right border PR

v = {xRv } × Q. In doing that, we shall guarantee
that if (λ,α, d ) is the parity of the vertex v, then α is locally fulfilled as a d -request
at the vertex v (intuitively, this gives a fair policy for the fulfilment of all requests at all
vertices). We give such definitions by exploiting an induction on the distance of the vertex
v from the root. If v0 is the root of T , then we simply let xLv0 =min(X) and xRv0 =max(X).
Consider now a generic vertex v in T and suppose, by inductive hypothesis, that the two
coordinates xLv and xRv have been defined. We consider the types of the points along the
left border PL

v = {xLv } ×Q and along the right border PR
v = {xRv } ×Q of the corresponding

stripe [xLv , xRv ] ×Q, and we introduce an equivalence relation ∼v over Q such that y ∼v y′ if
and only if, for all spatial relations d ∈ { , , , , , }, we have:

d −req(xLv , y) = d −req(xLv , y′) d −req(xRv , y) = d −req(xRv , y′)

d −obs(xLv , y) = d −obs(xLv , y′) d −obs(xRv , y) = d −obs(xRv , y′)
(for the sake of brevity, we denote by d −req(x, y) and d −obs(x, y), respectively, the set
of d -requests and the set of d -observables of the type of the point p = (x, y)).

It can be easily checked (e.g., by exploiting view-to-type dependency) that the equiv-
alence relation ∼v has finite index and it induces a partition of Q into some subsets
Yv,1 < ... < Yv,kv (here we write Y < Y ′ as a shorthand for y < y′ for all y ∈ Y and all
y′ ∈ Y ′). Then, we refine the partition into a finite sequence of convex sets Y ′v,1 < ... < Y

′
v,hv

,
with hv ≥ kv , that are either singletons or open intervals. Accordingly, we divide the left
border PL

v (resp., the right border PR
v ) into a sequence of (singleton or open) segments

PL
v,i = {(xLv , y) ∶ y ∈ Y ′v,i} (resp., PR

v,i = {(xRv , y) ∶ y ∈ Y ′v,i}), with 1 ≤ i ≤ hv. On the basis of

the partition PL
v,1, ..., P

L
v,hv

of PL
v and the partition PR

v,1, ..., P
R
v,hv

of PR
v , we define a (pos-

sibly non-maximal) stripe expression Ev = (Lv ,Rv) of length ∣Ev ∣ = hv by specifying the
components Lv(i) and Rv(i) of each matched pair. Let 1 ≤ i ≤ hv be a position of Ev. If
both segments PL

v,i and P
R
v,i are singletons of the form {pLv,i} and {pRv,i}, respectively, then

we let Lv(i) be the atom typeP(pLv,i) and Rv(i) be the atom typeP(pRv,i). Otherwise, if PL
v,i

and PR
v,i are open segments, then we let Lv(i) be the cluster typeP(PL

v,i) and Rv(i) be the

cluster typeP(PL
v,i).

We observe that the above-defined stripe expression Ev is not maximal with respect to
the partial order ⊴ introduced in Subsection 4.1. As stripe expressions of decomposition
trees are required to be maximal, we cannot directly label v with Ev in our decomposition
tree. However, if the stripe expression Ev is known to be faithful, then we can label v with
a maximal (faithful) stripe expression E(v) that dominates Ev. Unfortunately, it is not
clear from the above constructions if the stripe expression Ev is faithful. We shall prove
that this is actually the case later. For the moment, the reader can simply assume that the
stripe expression E(v) associated with vertex v is undefined when Ev is not faithful.

It remains to specify the coordinate xMv along which we divide the current stripe
[xLv , xRv ] × Q. We choose such a coordinate xMv by looking at the parity of the vertex v.
Precisely, if v has parity 0, then we define xMv to be the first coordinate, according to the
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order given by the fixed enumeration θ of X, that is strictly between xLv and xRv . Intuitively,
this choice will guarantee that every coordinate x ∈ X is eventually identified with either xLu
or xRu , for some vertex u in T . Otherwise, if v has parity (λ,α, d ), then we let I be the set
of all positions 1 ≤ i ≤ ∣E(v)∣ such that α ∈ d −req(E(v)[λ](i)), α /∈ d −req(E(v)[λ′](i)),
and α /∈ d −obs(E(v)[λ′](i)), where λ′ is either R or L depending on whether λ = L or
λ = R. Depending on whether d is downward-oriented or upward-oriented (i.e., whether
d ∈ { , } or d ∈ { , }), we let i be either the least or the greatest position in I (if

I is empty, then the choice of the coordinate xMv is irrelevant, provided that it is strictly
between xLv and xRv ). We then choose arbitrarily a point p ∈ P λ

v,i and a point q such that

p d q and α ∈ d −obs(typeP(q)) and we force xMv to be the x-coordinate of q. Note that

since α is neither in d −req(E(v)[λ′](i)) nor in d −obs(E(v)[λ′](i)), the coordinate xMv
is strictly between xLv and xRv . Accordingly, if v1 =↓1(v) and v2 =↓2(v) are the left and right
successors of the vertex v in T , then we let xLv1 = xLv , xRv2 = xRv , and xRv1 = xLv2 = xMv . Finally,
we inductively apply the above construction to the successors v1 and v2 of v.

It is worth pointing out that the stripe expression Ev is decomposed into a left stripe
expression Ev1 and a right stripe expression Ev2 in such a way that the matching conditions
M1–M3 of Definition 4.4 are satisfied. Given that v has parity (λ,α, d ), it can be easily
checked that the formula α is locally fulfilled as a d -request at vertex v. Analogous
properties hold also when we replace each stripe expression Ev with the maximal dominating
one E(v). What remains to be shown is that

i) all stripe expressions Ev are faithful (possibly non-maximal),
ii) all types of points of the labelled stripe P appear as atoms in some stripe expression

Ev (hence they also appear in the maximal stripe expression that dominates Ev),
iii) the decomposition tree T = ⟨V,E, ↓1, ↓2⟩, obtained from T by labelling each vertex v

with the maximal stripe expression E(v) that dominates Ev, is globally fulfilled.

All stripe expressions are faithful. We fix a vertex v of T and we prove that the stripe
expression Ev satisfies Conditions C1–C5 of Definition 4.2. We do this by exploiting the
view-to-type dependency and the fact that the atoms (resp., clusters) in the two profiles Lv

and Rv of Ev arise from the types (resp., shadings) of the singleton (resp., open) segments
PL
v,i and P

R
v,i. As for Condition C1, we consider two atoms A and B that appear along the

same profile of Ev at positions i and j, respectively, with 1 ≤ i < j ≤ ∣Ev ∣. Let A = Lv(i) and
B = Lv(j) (the cases where Lv(i) and/or Lv(j) are clusters or A and B lie along the right
profile Rv are similar and thus omitted). By construction, the corresponding segments PL

v,i

and PL
v,j are singletons whose points p ∈ PL

v,i and q ∈ PL
v,j satisfy p q. From the view-to-

type dependency, we conclude that typeP(p) typeP(q), whence Lv(i) Lv(j). Similar
arguments can be used to prove Conditions C2 and C3. As for the last two conditions,
we consider a request α of an atom Lv(i) along the direction (the cases of requests
of atoms/clusters of left/right profiles along directions and are all similar). By
construction, the segment PL

v,i consists of a single point p. Moreover, since α ∈ typeP(p),
there is a point q such that p q and α ∈ typeP(q). Again by construction, there is a
segment PL

v,j , with j > i, that contains the point q. We thus conclude that α is an observable

of Lv(j) along the direction .

All types appear in stripe expressions. Let p = (x, y) be a geitemizeneric point
in the labelled stripe P and let π be the infinite path of the infinite binary tree T such
that x ∈ [xLv , xRv ] for all vertices v along π (note that such an infinite path π exists since
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x belongs to the first interval X = [xLv0 , xRv0] associated with the root v0 and [xLv , xRv ] =
[xL↓1(v), x

R
↓1(v)
] ∪ [xL↓2(v), x

R
↓2(v)
] for all vertices v). Since x ∈ X and θ is an enumeration of X,

there is a natural number n such that θ(n) = x. Moreover, since π contains infinitely many
vertices with parity 0, there must be one such vertex v satisfying x = xLv , x = xRv , or x = xMv
(= xR↓1(v) = x

L
↓2(v)

). Hence, the type of the point p appears as an atom in one of the stripe

expressions Ev, E↓1(v), or E↓2(v) that are associated with the vertex v, its left-successor ↓1(v),
or its right-successor ↓2(v).
The decomposition tree is globally fulfilled. We conclude by showing that the
decomposition tree T , that results from T by labelling each vertex v with the maximal
stripe expression E(v) that dominates Ev, is globally fulfilled. By construction, the root v0
of T satisfies d −req(E(v0)[R](i)) = ∅ (resp., d −req(E(v0)[L](i)) = ∅) for all positions

1 ≤ i ≤ ∣E(v0)∣ and all spatial relations d ∈ { , } (resp., d ∈ { , }). This proves
Condition G1 of Definition 4.7. As for Condition G2, we consider a formula α ∈ closure(ϕ),
a spatial relation d ∈ { , , , }, and an infinite path π in T . We let λ be either L
or R depending on whether d is right-oriented or left-oriented. For every n ∈ N, we can
find a vertex vn along π that is at distance at least n from the root and that has parity
exactly (λ,α, d ). Thus, we know from the previous arguments that there exist infinitely
many vertices v along π where α is locally fulfilled as a d -request. This shows that T is a
globally fulfilled decomposition tree.

Theorem 5.2 (soundness). For every globally fulfilled decomposition tree T = ⟨V,E, ↓1, ↓2⟩,
there is a labelled stripe P = ⟨X ×Q, (Ra)a∈Σ⟩ such that

typeP(X ×Q) = ⋃
v∈V

1≤i≤∣E(v)∣

( E(v)[L](i) ∪ E(v)[R](i) ).

Proof. Let T = ⟨V,E, ↓1, ↓2⟩ be a globally fulfilled decomposition tree. As a first step, we
associate with each vertex v of T two coordinates xLv , x

R
v ∈ Q as follows. If v is the root of

T , then we let xLv = 0 and xRv = 1. If v is a vertex of T and v1 =↓1(v) and v2 =↓2(v) are
its left and right successors, then, assuming that both values xLv and xRv are defined, we let

xLv1 = xLv , xRv2 = xRv , and xRv1 = xLv2 =
xL
v +x

R
v

2
. We collect all these values into a set X ⊆ Q:

X = {xLv ∶ v ∈ V } ∪ {xRv ∶ v ∈ V } = { i
2n

∶ i, n ∈ N, 0 ≤ i ≤ 2n}.
Note that X is strictly included in the interval [0,1] of Q and it has minimum and maximum
elements. However, since all countable dense linear orders with minimal and maximal
elements are isomorphic, we can give X the status of a closed interval of the rational
numbers. By the same abuse of terminology, we call the structure X ×Q a stripe and, for
any x < x′ ∈ X, we denote by [x,x′] the set of all points x′′ ∈ X such that x ≤ x′′ ≤ x′.

The next step consists of dividing the left and right borders of each (sub)stripe [xLv , xRv ]×
Q vertically on the basis of the stripe expression E(v) and the matching relations with the
successor stripe expressions. For technical reasons, we will make use of the subset of dyadic
rationals to mark the endpoints of some vertical segments. A dyadic rational is a rational
number of the form i

2n
, for some i ∈ Z and n ∈ N. It can be easily checked that dyadic

rationals are densely interleaved with non-dyadic ones. We will associate with each vertex
v of T and each position 1 ≤ i ≤ ∣E(v)∣ a convex subset Yv,i of Q in such a way that the
following conditions are satisfied:

(1) Yv,1 < Yv,2 < ... < Yv,∣E(v)∣;
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(2) ⋃1≤i≤∣E(v)∣ Yv,i = Q;
(3) if E(v)[L](i) and E(v)[R](i) are atoms, then Yv,i is a singleton whose unique element

is a dyadic rational;
(4) if E(v)[L](i) and E(v)[R](i) are clusters, then Yv,i is an open interval of rational

numbers;
(5) for all vertices v, all successors v′ of v, and all positions 1 ≤ i ≤ ∣E(v)∣ and 1 ≤ i′ ≤ ∣E(v′)∣,

Yv′,i′ intersects Yv,i if and only if the i-th matched pair of E(v) corresponds to the i′-th
matched pair of E(v′) under the decomposition induced by T .

The above sets Yv,i can be built by exploiting a simple induction based on the breadth-first
traversal of the vertices of T . We omit the formal construction of the sets Yv,i, which
is tedious and not interesting, and we only remark that, in order to enforce the above
properties, one needs to exploit the density of dyadic and non-dyadic rational numbers.
During the inductive steps that define the sets Yv,i, we can enforce an additional invariant,
that will be explained a few paragraphs below and that will only be used towards the end
of the proof.

Let L be the maximal length of a stripe expression. We fix, once and for all, an
enumeration

θ ∶ N→ ({∅} ∪ Q ×Q)L

of all possible L-tuples (Ỹ1, ..., ỸL) of (possibly empty) closed intervals of Q (the reason for
considering closed intervals, instead of generic ones, is that there are uncountably many
open intervals in Q).

Let us focus on the induction step during which the sets Yv,1, ..., Yv,∣E(v)∣ are associated

with a certain vertex v. We say that a tuple θ(m) = (Ỹ1, ..., ỸL) is compatible with the decom-
position at vertex v if, given the choices of the sets Yv′,1, ..., Yv′,∣E(v′)∣ for all vertices v

′ that
precede v in the breadth-first traversal of T , it is possible to choose the sets Yv,1, ..., Yv,∣E(v)∣
without violating the above constraints and in such a way that the containments Yv,i ⊇ Ỹi
are satisfied for all positions 1 ≤ i ≤ ∣E(v)∣. In order to properly choose the sets Yv,i, we
mark the vertex v with the first natural number mv such that (i) θ(mv) is compatible with
the decomposition at vertex v and (ii) mv does not already mark a proper ancestor v′ of v
such that E(v′) = E(v) (note that such a number mv exists and is unique). The number
mv is called the fingerprint of v. The sets Yv,i are chosen in such a way that they satisfy
conditions (1)−(5) above and the following additional invariant:

Additional invariant. If mv is the fingerprint of v and θ(mv) = (Ỹ1, ...ỸL), then Yv,i ⊇ Ỹi
for all 1 ≤ i ≤ ∣E(v)∣.

Now, we associate with every vertex v and position 1 ≤ i ≤ ∣E(v)∣ the two (singleton or
open) vertical segments PL

v,i = {xLv }× Yv,i and PR
v,i = {xRv }× Yv,i. Clearly, the union of these

segments cover the entire stripe X ×Q:

⋃
v∈T

1≤i≤∣E(v)∣

PL
v,i ∪P

R
v,i = X ×Q.

The last step of the construction consists of defining a labelling (Ra)a∈Σ of the stripe X ×Q

whose induced shading coincides with the set of all atoms of the stripe expressions of T .
To this end, for each letter a ∈ Σ and point p ∈ X ×Q, we specify whether or not p belongs
to the subregion Ra. We first consider those points p that belong to one or more singleton

segments P λ
v,i, with λ ∈ {L,R} (we call these points primary). Given a primary point p,
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we choose arbitrarily some vertex v of T , some position 1 ≤ i ≤ ∣E(v)∣, and some direction
λ ∈ {L,R} such that P λ

v,i = {p}. E(v)[λ](i) is necessarily an atom, and we accordingly let

p ∈ Ra if and only if the proposition letter a occurs positively in E(v)[λ](i). This defines the
labelling of primary points. To specify the labelling of those points that are only covered by
open segments (secondary points), a slightly more complex construction is needed, which
is based on the notion of “shuffle”. More precisely, for each non-empty set C ⊆ P(Σ), we
fix a function ηC ∶ Q → C such that for all y, y′ ∈ Q, with y < y′, and all c ∈ C, there is a
non-dyadic rational y′′ ∈ Q satisfying y < y′′ < y′ and η(y′′) = c (we call this function the
shuffle of C). A crucial feature of the notion of shuffle is that if one removes some (possibly
all) dyadic rationals from the labelled linear order ηC , he obtains a labelled linear order
which is isomorphic to ηC itself, and, symmetrically, if one inserts some isolated positions
in ηC labelled by elements of C, he obtains again a labelling isomorphic to ηC . Now, for
each secondary point p = (x, y), we choose arbitrarily some vertex v of T , some position
1 ≤ i ≤ ∣E(v)∣, and some direction λ ∈ {L,R} such that p ∈ P λ

v,i. E(v)[λ](i) is a cluster, and

we accordingly let p ∈ Ra if and only f a ∈ ηC(y), where C = {A ∩Σ ∶ A ∈ E(v)[λ](i)}.
In view of the above definitions, one may think of the set of proposition letters associated

with a certain point p as dependent on the particular choice of the arguments v, i, and λ
such that p ∈ P λ

v,i. This is actually not the case. To prove it, one can exploit the matching
conditions M1–M3 of Definition 4.4 and a simple induction to verify the following claims:

i) if two singleton segments P λ
v,i and P

λ′

v′,i′ cover the same (primary) point p, then we have

E(v)[λ](i) = E(v′)[λ′](i′) and hence p is labelled by a if and only if a ∈ E(v)[λ](i),
if and only if a ∈ E(v′)[λ′](i′);

ii) if a singleton segment P λ
v,i and an open segment P λ′

v′,i′ cover the same (primary) point

p, then E(v)[λ](i) ∈ E(v′)[λ′](i′) and hence there is an atom A ∈ E(v′)[λ′](i′) that
contains exactly the labels of the point p and possibly other more complex subformulas;

iii) if P λ
v,i and P

λ′

v′,i′ are two overlapping open segments, then E(v)[λ](i) = E(v′)[λ′](i′)
and thus the labelling of the secondary points in P λ

v,i ∩ P
λ′

v′,i′ (naturally ordered from

bottom to top) is isomorphic to the shuffle ηC , with C = {A ∩Σ ∶ A ∈ E(v)[λ](i)} or,

equivalently, C = {A ∩Σ ∶ A ∈ E(v′)[λ′](i′)};
iv) if P λ

v,i is an open segment, then the primary points inside P λ
v,i have dyadic y- coordinates

and thus they must be interleaved by secondary points; together with the previous
claim, this implies that the labelling of P λ

v,i is isomorphic to the shuffle ηC , with

C = {A ∩Σ ∶ A ∈ E(v)[λ](i)}.
What remains to do is to show that the shading of the labelled stripe P = ⟨X ×Q, (Ra)a∈Σ⟩
coincides with the set of atoms that appear in the stripe expressions of the decomposition
tree T . We prove this by an induction based on increasing sets of formulas closed under
subformulas, that is, we consider sets F that contain all subformulas β of α whenever α ∈ F .
The rest of the proof is devoted to show the following statement (for F = closure(ϕ), it leads
to the desired conclusion).

Claim 5.3. Let F be a set of formulas closed under subformulas. For all vertices v ∈ V ,
all positions 1 ≤ i ≤ ∣E(v)∣, all directions λ ∈ {L,R}, and all open intervals Y ⊆ Q such that
P λ
v,i ∩ (X × Y ) ≠ ∅,

● if A = E(v)[λ](i) is an atom, then the unique point p ∈ P λ
v,i∩(X×Y ) satisfies typeP(p)∩F =

A ∩ F ;
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● if E(v)[λ](i) is a cluster, then, for every atom A ∈ E(v)[λ](i), there is a point p ∈
P λ
v,i ∩ (X × Y ) (and, vice versa, for every point p ∈ P λ

v,i, there is an atom A ∈ E(v)[λ](i))
such that typeP(p) ∩F = A ∩F .

We fix a set F of formulas closed under subformulas, a vertex v ∈ V , a position 1 ≤ i ≤ ∣E(v)∣,
and a direction λ = L (the case λ = R is symmetric) such that E(v)[λ](i) is a cluster (the
case where E(v)[λ](i) is an atom is similar). We also fix an open interval Y ⊆ Q such that
P λ
v,i ∩ (X × Y ) ≠ ∅. We prove the above claim by exploiting an induction on the size of F .

i) Base case: F = Σ. This case is trivial as, from previous arguments, we know that
the labelling of the open segment P λ

v,i is isomorphic to the shuffle ηC , where C =
{A ∩Σ ∶ A ∈ E(v)[λ](i)}.

ii) Inductive case: F = F ′ ⊎ {¬β ∶ β ∈ F ′} ⊎ {β1 ∨ β2 ∶ β1, β2 ∈ F ′}, where F ′ is a set of
formulas closed under subformulas. As in the previous case, the claim trivially follows
from the inductive hypothesis on F ′ and from the definition of atom.

iii) Inductive case: F = F ′ ⊎ { β ∶ β ∈ F ′}, where F ′ is a set of formulas closed under
subformulas (the case F = F ′ ⊎ { β ∶ β ∈ F ′} is symmetric). We fix an atom A ∈
E(v)[λ](i) and we prove that there is a point p ∈ P λ

v,i∩(X×Y ) satisfying typeP(p)∩F =
A∩F (using similar arguments one can show that, for every point p ∈ P λ

v,i, there is an

atom A ∈ E(v)[λ](i) satisfying typeP(p) ∩ F = A ∩F ).
We start by observing that, thanks to the inductive hypothesis on F ′, there is a

point p ∈ P λ
v,i ∩ (X × Y ) such that typeP(p) ∩ F ′ = A ∩ F ′. It is now sufficient to show

that α ∈ typeP(p) if and only if α ∈ A for all formulas α ∈ F ∖F ′.
Let α = β ∈ F ∖ F ′, with β ∈ F ′, and suppose that α ∈ typeP(p). By definition of

type, there is a point q such that p q and β ∈ typeP(q). Let j (≥ i) be the unique
position of E(v) such that q ∈ P λ

v,j . By the inductive hypothesis, there is an atom B

that either coincides with E(v)[λ](j) or belongs to E(v)[λ](j), depending on whether
E(v)[λ](j) is an atom or a cluster, and that contains the subformula β. Moreover, by
Conditions C1 and C2 of Definition 4.2, A B. Since β ∈ B, we obtain β ∈ −req(A)
and thus α ∈ A.

As for the converse implication, suppose that α = β ∈ A. Clearly, β ∈ −req(A).
Moreover, by Condition C4, there must be a position j ≥ i of E(v) and an atom
B that either coincides with E(v)[L](j) or belongs to E(v)[L](j) and that satisfies
β ∈ −obs(B). Let Y ′ = {y ∈ Q ∶ p (xλv , y)}. We observe that X × Y ′ is an open

vertical segment that intersects P λ
v,j . By applying the inductive hypothesis to the

vertex v, the position j, the atom B, and the open interval Y ′, we derive the existence
of a point q ∈ P λ

v,j ∩ (X ×Y ′) such that β ∈ typeP(q). Finally, since p q, we conclude

that β ∈ −req(p) and thus α ∈ typeP(p).
iv) Inductive case: F = F ′ ⊎ { β ∶ β ∈ F ′}, where F ′ is a set of formulas closed under

subformulas (the cases for the remaining operators , , can be dealt with using
similar arguments). This is the most interesting and complex case, as it puts together
all the pieces of the puzzle that we have introduced so far, e.g., Definitions 3.2, 4.2,
4.6, and 4.7. As in the previous case, we fix an atom A ∈ E(v)[L](i) and we prove
that there is a point p ∈ PL

v,i ∩ (X × Y ) satisfying typeP(p) ∩ F = A ∩ F (the proof

of the converse direction, that fixes a point and obtains an atom, is similar). The
new ingredient here is that we will consider multiple candidate points obtained from
the inductive hypothesis. Precisely, we partition the open interval Yv,i ∩ Y into an
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infinite sequence Y ′1 > Y ′2 > Y ′3 > ... of smaller open intervals (this is possible because
the subordering Yv,i ∩ Y is isomorphic to Q). For each of these intervals Y ′l , we apply

the inductive hypothesis on F ′ and we obtain a point p′l ∈ PL
v,i ∩ (X × Y ′l ) such that,

for all β ∈ F ′, β ∈ typeP(p′l) if and only if β ∈ A. All points p′1, p
′
2, p
′
3, ... lie along

the same open vertical segment Pv,i, they are naturally ordered from top to bottom,
and they get arbitrarily close to the lower endpoint of the segment Pv,i (symmetric
arrangements of points should be considered for the downward-oriented operators
and ). Below, we prove that typeP(p′l) ∩ F ⊆ A ∩ F holds for all points p′1, p

′
2, p
′
3, ....

Later on, we will prove that the converse containment holds for all but finitely many
such points.

Let α = β ∈ F ∖F ′, with β ∈ F ′, and suppose that α ∈ typeP(p′l). By definition of
type, there is a point q such that p′l q and β ∈ typeP(q). Starting from v, we define
an ascending sequence of vertices v0, ..., vn, where v0 = v, vn is the root of T , and vk+1 is
the parent of vk for all 0 ≤ k < n. Given 0 ≤ k ≤ n, we denote by ik the unique position of
E(vk) such that the interval Yvk,ik contains the y-coordinate of the point p′l (note that
i0 = i). Clearly, any two intervals Yvk ,ik and Yvk+1,ik+1 have non-empty intersection.
Therefore, thanks to the constraints enforced at the beginning of the proof, either

E(vk)[L](ik) ∈= E(vk+1)[L](ik+1) or E(vk)[R](ik) ∈= E(vk+1)[R](ik+1), depending
on whether vk is the left successor or the right successor of vk+1. From Condition
C3 of Definition 4.2, we also know that E(vk)[L](ik) E(vk)[R](ik). Putting all
together and exploiting the transitivity of the relation over atoms/clusters, we
obtain E(v)[L](i) E(vn)[R](in).

By using a similar technique, we define an infinite descending sequence of vertices
vn, vn+1, ... in such a way that the point q lies always inside the stripe [xLvk+1 , xRvk+1]×Q,
but never along the left border. As before, we denote by ik the unique position of E(vk)
such that the interval Yvk,ik contains the y-coordinate of the point p′l. This guarantees

that either E(vk)[L](ik) ∈= E(vk+1)[L](ik+1) or E(vk)[R](ik) ∈= E(vk+1)[R](ik+1)
holds, depending on whether vk+1 is the left successor or the right successor of vk. We
know from Condition C3 that E(vk)[L](ik) E(vk)[R](ik) and hence, using again
transitivity, E(v)[L](i) E(vk)[R](ik) for all k ≥ n.

Consider the first vertex vk in the sequence vn, vn+1, ... such that q lies along the right
border of the corresponding stripe expression E(vk), namely, q ∈ PR

vk
(the existence of

such a vertex follows from the definition of the stripe X ×Q). Let j be the (unique)
position of E(vk) such that Yvk,j contains the y-coordinate of q. Clearly, we have j ≥ ik.
Moreover, from the inductive hypothesis, we have β ∈ −obs(E(vk)[R](j)) and hence,
by Conditions C1 and C2, E(vk)[R](ik) E(vk)[R](j). Finally, we exploit Definition
3.2, and in particular the fact that E(v)[L](i) E(vk)[R](ik) E(vk)[R](j) implies
E(v)[L](i) E(vk)[R](j), to conclude that β ∈ −req(E(v)[L](i)). As α = β

and A ∈ E(v)[L](i), this shows that α ∈ A.
We now prove that the converse containment A ∩ F ⊆ typeP(p′l) ∩ F holds for at

least one of the infinitely many points p′1, p
′
2, p
′
3, .... Let α = β ∈ A (∈ E(v)[L](i)).

For the sake of brevity, we denote by Y ′ the set of the y-coordinates of all points
p′1, p

′
2, p
′
3, ... (note that Y ′ ⊆ Yv,i). Moreover, given a vertex v′ in T and a position

1 ≤ i′ ≤ ∣E(v′)∣, we say that i′ is an interesting position of v′ if the interval Yv′,i′
contains infinitely many coordinates from the set Y ′. Note that every vertex v′ has
at least one interesting position (this follows from simple counting arguments, since
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the infinite set Y ′ is partitioned into finitely many sets of the form Yv′,i′ ∩ Y
′, with

1 ≤ i′ ≤ ∣E(v′)∣). It is also easy to see that there is at most one interesting position
i′ for each vertex v′ (this follows from the fact the set Y ′ has a unique accumulation
point in the completion R ∪ {−∞,+∞} of Q).

Now, we consider the ascending sequence of vertices v0, ..., vn that starts from v and
reaches the root of T , where each vk+1 is the parent of vk, for 0 ≤ k < n. Let i0, ..., in be
the interesting positions of the vertices v0, ..., vn, respectively. By exploiting a simple
induction on k, we prove that β ∈ −req(E(vk)[L](ik)) for all 0 ≤ k ≤ n. For k = 0
the claim follows easily since i0 = i is the interesting position of the vertex v0 = v. For
the inductive step, we assume that the claim holds for k and we prove it for k + 1.
We distinguish two cases depending on whether vk is the left successor or the right
successor of vk+1. In this first case, since the two intervals Yvk,ik and Yvk+1,ik+1 overlap,

we know that E(vk)[L](ik) ∈= E(vk+1)[L](ik+1) and hence we immediately obtain
β ∈ −req(E(vk+1)[L](ik+1)). In the second case, we consider the left sibling v′ of vk
and its interesting position i′. As the two intervals Yvk,ik and Yv′,i′ overlap, we have

E(v′)[R](i′) ∈= E(vk)[L](ik), whence β ∈ −req(E(v′)[R](i′)). Moreover, Condition

C3 implies E(v′)[L](i′) E(v′)[R](i′), whence β ∈ −req(E(v′)[L](i′)). Finally, as
the two intervals Yv′,i′ and Yvk+1,ik+1 overlap and v′ is the left-successor of vk+1, we have

E(v′)[L](i′) ∈= E(vk+1)[L](ik+1), whence β ∈ −req(E(vk+1)[L](ik+1)).
Below, we use a similar technique to build an infinite descending sequence of ver-

tices vn, vn+1, . . . such that, for all k ≥ n, the interesting position ik of vk satisfies
both β ∈ −req(E(vk)[L](ik)) and β /∈ −req(E(vk)[R](ik)). As for the base case
(k = n), it suffices to recall that vn is the root of T and that Condition G1 of Defi-
nition 4.7 implies β /∈ −req(E(vn)[R](in)). As for the inductive step, we assume
that vk is defined and that ik is its interesting position, and we define vk+1 as fol-
lows. Let w1 and w2 be, respectively, the left and the right successor of vk, and let
j1 and j2 be the interesting positions of w1 and w2, respectively. Since the inter-

vals Yvk,ik , Yw1,j1 , and Yw2,j2 are pairwise overlapping, it holds that E(vk)[L](ik) ∈=
E(w1)[L](j1), E(vk)[R](ik) ∈= E(w2)[R](j2), and E(w1)[R](j1) ∈= E(w2)[L](j2).
This implies that β ∈ −req(E(w1)[L](j1)), β /∈ −req(E(w2)[R](j2)) and either

β /∈ −req(E(w1)[R](j1)) or β ∈ −req(E(w2)[L](j2)). Depending on the latter
two cases, we define vk+1 to be either w1 or w2; accordingly, the interesting position
ik+1 of vk+1 is either j1 or j2.

Let us consider now the above-defined infinite path π = vn, vn+1, . . . From Condition
G2 of Definition 4.7, we know that π contains infinitely many vertices vk where the
formula β is locally fulfilled as a -request. By construction, all points p′1, p

′
2, p
′
3, ...

lie either strictly to the left of each stripe [xLvk , xRvk] ×Q or along its left border PL
vk
.

Moreover, since β ∈ −req(E(vk)[L](ik)) and β /∈ −req(E(vk)[R](ik)), we know
that, among the 4 cases envisaged by Definition 4.6, only the last two cases (Condition
F3 and F4) can be satisfied by each vertex vk and its interesting position ik. We thus
distinguish between two subcases.

Subcase F3. If π contains a vertex vk that satisfies Condition F3, then we have
β ∈ −obs(E(vk)[R](j)) for some position j that is greater than or equal to the

interesting position ik of vk. By the inductive hypothesis, there exists a point q ∈ PR
vk ,j

such that β ∈ −obs(typeP(q)). Moreover, since j ≥ ik and Yvk,ik contains infinitely
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many elements from Y ′, we have that the elements of Yvk ,j are strictly greater than all
but finitely many elements of Y ′. In particular, we have that p′l q for all but finitely

many points p′l. This allows us to conclude that α = β ∈ typeP(p′l) for all but finitely
many point p′l in P

L
v,i ∩ (X × Y ).

Subcase F4. If π contains infinitely many vertices vk1 , vk2 , ... satisfying Condition F4,
then, for each index kh, with h ≥ 1, the stripe expression E(↓1 (vkh)) contains two

positions i↓
h
≤ j↓

h
such that (i) the i↓

h
-th matched pair of E(↓1(vkh)) corresponds to

the ih-th matched pair of E(vkh), where ih is the interesting position of vkh , and (ii)

β ∈ −obs(E(↓1(vkh))[R](j↓h)). Without loss of generality (e.g., by restricting to a
suitable subsequence of vertices), we can assume that all stripe expressions E(↓1(vk1)),
E(↓1(vk2)), ... coincide, and hence we can denote them simply by E↓. Similarly, we

can assume that all indices i↓1, i
↓
2, ... (resp., j

↓
1, j
↓
2, ...) coincide, and hence we can denote

them simply by i↓ (resp., j↓). Consider now the tuples (Ỹ1, ..., ỸL) of closed intervals

of Q such that Ỹi↓ contains infinitely many y-coordinates from the set Y ′ and Ỹj = ∅
for all other indices j ∈ {1, ...,L} ∖ {i↓}. We call these tuples (Ỹ1, ..., ỸL) interesting
tuples and we letM be the set of indices of all interesting tuples, according to the fixed
enumeration θ that we introduced at the beginning of the proof. We observe that there
are infinitely many interesting tuples that are compatible with the decompositions at
the vertices ↓1(vk1), ↓1(vk2), .... In particular, this means that infinitely many indices
from M appear as fingerprints of vertices along π that might be different from ↓1(vk1),
↓1 (vk2), ..., but whose stripe expressions coincide with E↓. Let v↓ be any of these
vertices. From the construction given at the beginning of this proof, it follows that
Yv↓,i↓ ⊇ Ỹi↓ . In particular, as Ỹi↓ contains infinitely many y-coordinates from the set Y ′,

we have that i↓ is the interesting position of v↓. Since E(v↓) = E↓ = E(↓1(vkh)) for all
h ≥ 1, and β ∈ −obs(E↓[R](j↓)) for some j↓ ≥ i↓, by the inductive hypothesis, there

exists a point q ∈ PR
v↓,j↓

such that β ∈ typeP(q). To conclude, it suffices to observe that

the elements of Yv↓,j↓ are greater than all but finitely many elements of Y ′. This shows

that p′l q, and thus α = β ∈ typeP(p′l) for all but finitely points p′l in P
L
v,i∩(X ×Y ).

This concludes the proof.

6. Reducing Cone Logic to a fragment of CTL

In this section, we make use of the tree pseudo-model property of Cone Logic to devise a
decision procedure for its satisfiability problem. More precisely, thanks to the results shown
in Section 5, the problem of establishing whether a formula ϕ of Cone Logic is satisfiable
over the labelled rational plane is reducible to the problem of checking the existence of a
globally fulfilled decomposition tree T that satisfies ϕ. The effectiveness of such an approach
stems from the fact that the properties that characterize a globally fulfilled decomposition
tree can be expressed in (a proper fragment of) CTL. This allows us to immediately reduce
the satisfiability problem for Cone Logic to that for CTL, which is known to be in Exp

[7, 18]. From a practical point of view, this is already an interesting result, since there
exist a number of efficient decision procedures for CTL. However, we will improve it by
showing that the satisfiability problem for Cone Logic is in PSpace. This is done by
further reducing the satisfiability problem for the fragment of CTL that captures Cone
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Logic to the universality problem for symbolic representations of non-deterministic Büchi
automata. In the next section, we will see that the PSpace upper bound is actually tight.

Theorem 6.1. The satisfiability problem for Cone Logic, over the class of all labelled ra-
tional planes as well as over the class of all labelled (rational or real) planes, is in PSpace.

Proof. To start with, we recall that in Section 2 (Remark 2.3 and Remark 2.4) we show
that the satisfiability problem for Cone Logic, interpreted over the class of labelled rational
planes (and, similarly, over the class of labelled, rational or real, planes) is reducible to
the same problem over the class of labelled rational stripes. In the following, we first show
how to reduce this latter problem to the satisfiability problem for a suitable fragment of
CTL (this theorem), and then to the universality problem for symbolically represented
non-deterministic Büchi automata (next section).

The first step of the proof consists of translating, in polynomial time, a given formula
ϕ of Cone Logic into an equi-satisfiable conjunction ϕ̃ of CTL formulas of the forms:

λ, AGλ, AG EXλ, AG δ, or AG AF δ,

where λ and δ respectively denote a plain propositional formula and a CTL formula that
uses the modality AX (only in a positive way) and no other modality. Let us call the above
conjuncts basic CTL formulas.

In the following, we show how to encode a decomposition tree T by means of an infinite
binary tree T̃ with labels only on vertices. Such an encoding is needed because CTL
formulas are not able to distinguish the two successor relations of a binary tree. First, we
introduce three fresh proposition letters 0, 1, 2 and we encode the two successor relations
↓1 and ↓2 of T by giving each vertex v either label 0, 1, or 2, depending on whether v is the
root, v =↓1(u), or v =↓2(u), where u is the parent of v. The resulting tree can be logically
defined (up to bisimulation) using a suitable conjunction of basic CTL formulas over the
signature {0,1,2}:

ϕ̃tree = (0 ∧ ¬1 ∧ ¬2) ∧ AG AX (¬0 ∧ ¬(1 ∧ 2)) ∧ AG EX1 ∧ AG EX2

The next step consists of the encoding of the stripe expressions of T by means of an
additional labelling which is defined on top of the previous one. Since the number of
atoms/clusters can be exponential in ∣ϕ∣, we need to encode one by one the subformu-
las of each atom/cluster that occur in each position of a given profile. To do this, we
denote by N the maximal length of a stripe expression (recall that N is linear in ∣ϕ∣
under the assumption that stripe expressions contain pairwise distinct matched pairs of
clusters). For each index 1 ≤ i ≤ N , each formula α ∈ closure(ϕ), and each spatial relation
d ∈ { , , , , , }, we introduce eight fresh proposition letters:

Latom
i , Lcluster

i , L d −obs
i,α , L

d −req
i,α ,

Ratom
i , Rcluster

i , R d −obs
i,α , R

d −req
i,α .

Intuitively, Latom
i (resp., Lcluster

i ) holds at a vertex v of T̃ if and only if the position i of the

left profile E(v)[L] of v in T contains an atom (resp., a cluster). Similarly, L d −obs
i,α (resp.,

L
d −req
i,α ) holds at a vertex v of T̃ if and only if the subformula α belongs to the set of observ-

ables d −obs(E(v)[L](i)) (resp., to the set of requests d −req(E(v)[L](i))). Analogous
rules are used to encode the right profiles E(v)[R]. Note that, since we restrict ourselves
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to maximal stripe expressions, the above encoding uniquely determines the matched pairs
of the stripe expressions in T .

We now show how to enforce the various sanity conditions on the encoding of T . Con-
ditions C1–C5 of Definition 4.2 can be easily encoded by means of a basic CTL formula
AGλC1–C5 that holds over the encoding of T , where λC1–C5 is a propositional formula of
size polynomial in ∣ϕ∣. Enforcing the matching conditions M1–M3 of Definition 4.4 requires
some additional work. For this, it is convenient to explicitly write down the correspon-
dence relationships between the matched pairs of a vertex v and the matched pairs of its
successors ↓1 (v) and ↓2 (v). For each triple of indices i, i1, i2, with 1 ≤ i, i1, i2 ≤ N , we
introduce a fresh proposition letter Mi,i1,i2 such that Mi,i1,i2 holds at a vertex v of the

encoding of T if and only if E(v)[L](i) ∈= E(↓1(v))[L](i1), E(v)[R](i) ∈= E(↓2(v))[R](i2),
and E(↓1(v))[R](i1) ∈= E(↓2(v))[L](i2) hold over the decomposition tree T . Using a basic
CTL formula AG δ, where δ contains only positive occurrences of modality AX and no
occurrence of other modalities, and it has size polynomial in ∣ϕ∣, one can check the consis-
tency of proposition letters Mi,i1,i2 at each vertex v with the labellings that define the stripe
expressions E(v), E(↓1(v)), and E(↓2(v)). Moreover, enforcing the matching conditions
M1–M3 amounts to checking the following three simple properties on each vertex v of T :

i) for all 1 ≤ i ≤ ∣E(v)∣, Mi,i1,i2 holds at v for some 1 ≤ i1 ≤ ∣E(↓1(v))∣ and some 1 ≤ i2 ≤
∣E(↓2(v))∣,

ii) for all 1 ≤ i1 ≤ ∣E(↓1(v))∣, Mi,i1,i2 holds at v for some 1 ≤ i ≤ ∣E(v)∣ and some 1 ≤ i2 ≤
∣E(↓2(v))∣,

iii) for all 1 ≤ i2 ≤ ∣E(↓2(v))∣, Mi,i1,i2 holds at v for some 1 ≤ i ≤ ∣E(v)∣ and some 1 ≤ i1 ≤
∣E(↓1(v))∣.

The above properties are clearly expressible by a propositional formula λM1–M3 of small size.
As for the property of global fulfilment (see Definition 4.7), we can enforce Condition G1 by
a simple propositional formula λG1 evaluated at the root of the tree, and Condition G2 by

a conjunction of basic formulas of the form AG AF δ d

i,α , where δ
d

i,α contains only positive

occurrences of modality AX and no occurrence of other modalities, i ranges over {1, ...,N},
α ranges over closure(ϕ), and d ranges over { , , , , , }. It remains to check
the existence of an atom A in T such that ϕ ∈ A. Without loss of generality, we can assume
that the formula ϕ starts with a modality among , , , and . This guarantees
that ϕ appears at some vertex v of T if and only if it appears at its root. Under such an
assumption, a simple propositional formula λϕ evaluated at the root of the tree can enforce
the existence of an atom/cluster of a stripe expression of T that contains ϕ. Let ϕ̃path be
the conjunction of the above-defined basic CTL formulas:

ϕ̃path = AGλC1–C5 ∧ AG δ ∧ AGλM1–M3 ∧ λG1 ∧ ⋀
i,α, d

AG AF δ d

i,α ∧ λϕ

We can conclude that any formula ϕ of Cone Logic can be translated into a CTL formula
ϕ̃ = ϕ̃tree ∧ ϕ̃path, where both ϕ̃tree and ϕ̃path are conjunctions of basic CTL formulas.
Moreover, ϕ occurs in some globally fulfilled decomposition tree T , that witnesses ϕ at its
root, if and only if ϕ̃ is satisfiable.

In order to complete the proof, we show how to obtain a PSpace decision procedure
to check the satisfiability of the CTL formula ϕ̃. The first conjunct ϕ̃tree defines a {0,1,2}-
labelled tree, where each vertex has at least two successors, distinguished by means of
the labels 1 and 2. We denote such a tree by T (up to bisimulation there is only one
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such structure). The second conjunct ϕ̃path states that the labelling of T can be turned

(completed) into a correct encoding T̃ of a globally fulfilled decomposition tree T that

witnesses ϕ (we call T̃ an expansion of T ).
We observe that ϕ̃path contains only positive occurrences of modalities AG , AF , and

AX . Hence, by replacing all occurrences of AG (resp., AF , AX ) in ϕ̃path by G (resp., F,
X) and by using standard techniques in automata theory, one can construct a deterministic

Büchi automaton over ω-words Apath equivalent to ϕ̃path, that is, such that ϕ̃path holds over

any expansion T̃ if and only if Apath accepts all paths π of T̃ . Apath can be assumed to be
deterministic because modalities G and F never occur under a negation and no occurrence
of G is nested in an occurrence of F in the LTL formula corresponding to ϕ̃path. To avoid
any exponential blowup in the construction of Apath, one can use symbolic representations
of states and transitions (or, equivalently, linear weak alternation [13]). More precisely,
states and transitions of Apath can respectively be represented by tuples of bits, each one
corresponding to a subformula of ϕ̃path that has to be evaluated, and by propositional
formulas over the bits of the source and target states and the input letters. Using techniques
similar to those in [21], a symbolic representation of Apath can be computed directly from
ϕ̃path in polynomial time.

Now, if we project (the symbolic representation of) the deterministic Büchi automaton
Apath onto the three proposition letters 0,1,2, by discarding all other letters from the

expansion T̃ of T , we obtain (a symbolic representation of) a non-deterministic Büchi
automaton A∃path that accepts all ω-words from {0} ⋅ {1,2}ω if and only if Apath accepts all

paths of some expansion T̃ of T . Finally, the acceptance problem for A∃path can be reduced to

the universality problem for (symbolically represented) non-deterministic Büchi automata

as follows. Let {0} ⋅ {1,2}ω(= {1,2} ⋅{0,1,2}ω ) be the complement of the ω-regular language
{0} ⋅ {1,2}ω . It holds that:

L (A∃path) ∪ ({1,2} ⋅ {0,1,2}ω) = {0,1,2}ω iff L (A∃path) ⊇ {0} ⋅ {1,2}ω

iff ∃ T̃ . T̃ ⊧ ϕ̃tree ∧ ∀ π. T̃ ∣π ∈ L (Apath)
iff ∃ T̃ . T̃ ⊧ ϕ̃tree ∧ T̃ ⊧ ϕ̃path

iff ∃ T̃ . T̃ ⊧ ϕ̃.

It is not difficult to see that the universality problem for (symbolically represented) non-
deterministic Büchi automata is in PSpace (one can use a variant of Savitch’s theorem
[22]). This provides a procedure to decide, in polynomial space, whether the Cone Logic
formula ϕ appears at the root of some globally fulfilled decomposition tree, and thus, thanks
to Propositions 5.1 and 5.2, whether ϕ is satisfied by some labelled rational stripe.

7. Cone Logic and modal logics of time intervals

In this section, we prove that Cone Logic subsumes an interesting and expressive temporal
logic based on intervals and relations over them (a subset of the so-called Allen’s relations).
Interval temporal logics of Allen’s relations (the full logic HS and its fragments) have been
originally introduced by Halpern and Shoham [11]. The basic elements of these logics are
the intervals over a fixed, underlying temporal domain, e.g., (Q,<). Proposition letters
are associated with intervals, and existential quantifications are guarded by some of the 12
possible non-trivial ordering relations between pairs of intervals [2], that is, the “During”
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or “sub-interval” relation D, the “Beginning” relation B, the “Ending” relation E, the
“Overlapping” relation O, and so on.

A number of results about the satisfiability problem for HS fragments have been given
in the last years that mark the boundary between decidability and undecidability. The rule
of thumb is that most interval temporal logics are undecidable. An up-to-date account of
undecidability results for HS fragments can be found in [5]. Among the known results, we
recall the undecidability of the logics D (quantifying over sub-intervals) and O (quantifying
over overlapping intervals) – as well as of their transposes – interpreted over infinite discrete
temporal domains [5, 16], and the undecidability of the logic BE (quantifying over beginning
and ending intervals) interpreted over both dense and infinite discrete temporal domains
[12, 15].

Here we consider the fragment of HS that features the six modalities ⟨D⟩, ⟨D̄⟩, ⟨B⟩,
⟨B̄⟩, ⟨L⟩, and ⟨L̄⟩, allowing one to quantify existentially over sub-intervals, super-intervals,
beginning intervals, begun-by intervals, later intervals, and earlier intervals, respectively.
We present a reduction from the satisfiability problem for BB̄DD̄LL̄ to that for Cone
Logic, thus proving that the former logic is decidable in polynomial space when interpreted
over the class of dense linear orders. As a matter of fact, this result partially disproves a
conjecture by Lodaya [12] concerning the undecidability of the satisfiability problem for the
fragment DD̄ – strictly speaking, Lodaya did not specify whether the fragment DD̄ was
interpreted over discrete or dense temporal domains. In this respect, it is worth remarking
that the decidability of the HS fragments BB̄DD̄LL̄, DD̄, and D depends on the class of
temporal domains where these logics are interpreted.

As a preliminary step, we briefly introduce the syntax and the semantics of the logic
BB̄DD̄LL̄. From now on, we assume the underlying temporal domain to be (isomorphic to)
the linear ordering (Q,<) of the rational numbers and that intervals are non-singleton, closed
convex subsets of such an ordering, namely, sets of the form [x, y] = {z ∈ Q ∶ x ≤ z ≤ y}, with
x, y ∈ Q and x < y. We shortly denote by I the set of all intervals over (Q,<). Given I = [x, y]
and I ′ = [x′, y′] in I, if x < x′ < y′ < y, then we say that I ′ is a (strict) sub-interval of I or,
equivalently, that I is a (strict) super-interval of I ′; similarly, if x′ = x and y′ < y, then we
say that I ′ begins I or, equivalently, that I is begun by I ′; finally, if x′ > y, then we say that
I ′ is later than I or, equivalently, that I is earlier than I ′.

Formulas of the logic BB̄DD̄LL̄ are built up from proposition letters in a signature Σ
using the standard Boolean connectives and the modalities ⟨D⟩, ⟨D̄⟩, ⟨B⟩, ⟨B̄⟩, ⟨L⟩, and ⟨L̄⟩,
with the obvious semantics. For instance, given a labelled interval structure ⟨I, (Ra)a∈Σ⟩,
where Ra ⊆ I for all a ∈ Σ, and given an initial interval I, we write ⟨I, (Ra)a∈Σ, I⟩ ⊧ ⟨D⟩a if
and only if there is a sub-interval I ′ of I such that I ′ ∈ Ra.

In the following, we prove that the logic BB̄DD̄LL̄ has a decidable satisfiability problem
by translating its formulas into equi-satisfiable formulas of Cone Logic. Such a translation
exploits the existence a natural bijection between the intervals I = [x, y] in I and the points
p = (x, y) in the rational plane such that x < y (hereafter, we call these points interval-
points).

The first step it to show that the region of all interval-points can be somehow described
by a formula of Cone Logic. Let pos, neg, sing be three fresh proposition letters and let ψ0
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Figure 5: A pos-labelled region delimiting (pseudo-)interval-points.

be the following formula of Cone Logic in the signature Σ′ = Σ ∪ {pos,neg, sing}:
ψ0 = (pos ∨ neg ∨ sing)

∧ (¬pos ∨ ¬neg) ∧ (¬pos ∨ ¬sing) ∧ (¬neg ∨ ¬sing)
∧ sing ∧ (sing → pos ∧ pos ∧ neg ∧ neg).

Consider now a labelled rational plane P = ⟨P, (Ra)a∈Σ′⟩ that satisfies ψ0 (see Figure 5).
Clearly, the three regions Rpos, Rneg, and Rsing form a partition of the entire plane P (this is
enforced by the first two lines of ψ0). Moreover, the region Rsing has the form of a trajectory
y = f(x) that is “almost a diagonal”, in the sense that for every x ∈ Q there is exactly one
y ∈ Q such that (x, y) ∈ Rsing and all other points of Rsing are contained in the lower-left
quadrant and in the upper-right quadrant centred at (x, y). In general, the region Rsing

might not coincide with the diagonal {(x,x) ∶ x ∈ Q} – note that if this happens, we would
immediately have that Rpos contains all and only the interval-points, that is, the points
(x, y) ∈ P, with x < y. Nonetheless, we can prove the following lemma.

Lemma 7.1. Given a formula ϕ of Cone Logic, if P = ⟨P, (Ra)a∈Σ′⟩ is a labelled rational
plane that satisfies ϕ∧ψ0, then there is a labelled rational plane P ′ = ⟨P, (R′a)a∈Σ′⟩ that still
satisfies ϕ ∧ ψ0 and such that R′sing = {(x,x) ∶ x ∈ Q}.

As a preliminary step, we prove that we can “stretch” the y-coordinates of a labelled
plane P with respect to any strictly increasing function f , without affecting the satisfaction
of any of the subformulas:

Claim 7.2. For every strictly increasing function f ∶ Q → Q, the labelled plane P =
⟨P, (Ra)a∈Σ′⟩ has the same shading as the labelled rational plane f(P) = ⟨f(P), (f(Ra))a∈Σ′⟩,
where f(R) = {(x, f(y)) ∶ (x, y) ∈ R} for all R ⊆ P.

Proof of the claim. To start with, we observe that f(Q), equipped with the natural ordering
of the rational numbers, is a countable dense linear order with no minimum nor maximum
elements. Hence f(P) can be given the status of labelled rational plane.

To conclude the proof, it suffices to observe that for all points (x, y), (x′, y′) ∈ P and all
spatial relations d ,

(x, y) d (x′, y′) iff (x, f(y)) d (x′, f(y′)).
Using to the view-to-type dependency, we derive typeP(x, y) = typef(P)(x, f(y)) for all

points (x, y) ∈ P, which shows that typeP(P) = typef(P)(f(P)).
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Figure 6: Spatial relationship between an interval-point and its future.

Proof of Lemma 7.1. Let P = ⟨P, (Ra)a∈Σ′⟩ be a model for the formula ϕ ∧ ψ0. By the
definition of ψ0, there is a function f ∶ Q → Q such that for all x ∈ Q, (x, y) ∈ Rsing if and
only if y = f(x) (this is enforced by the third line of the definition of ψ0). By the definition
of ψ0, it holds that f is strictly increasing: if x < x′, then (x, f(x)) and (x′, f(x′)) are two
points in Rsing such that (x, f(x)) (x′, f(x′)), and thus f(x) < f(x′).

Now, let us denote by f−1 the inverse of the function f , which is also strictly increasing.
By the previous claim, we know that the “stretched” labelled plane P ′ = f−1(P), which is
obtained by mapping each point (x, y) of P to the point (x, f−1(y)), has the same shading
as P, and hence it also satisfies the formula ϕ ∧ ψ0. Moreover, by construction, the region
of all sing-labelled points in P ′ coincides with the diagonal of P ′:

f−1(Rsing) = {(x, f−1(y)) ∶ (x, y) ∈ Rsing} = {(x, f−1(f(x)) ∶ x ∈ Q}.
This shows that the pos-labelled points of P ′ are exactly the interval-points.

Making use of Lemma 7.1, we can translate any formula ϕ of the logic BB̄DD̄LL̄ into an
equi-satisfiable formula ϕ̃ of Cone Logic, which is obtained by first replacing each occurrence
of a subformula ⟨D⟩α (resp., ⟨D̄⟩α, ⟨B⟩α, ⟨B̄⟩α, ⟨L⟩α, ⟨L̄⟩α) in ϕ by the formula (pos∧α)
(resp., (pos∧α), (pos∧α), (pos∧α), (pos→ (pos∧α)), (pos → (pos∧α)))
and then adding the conjunct ψ0.

We can easily check the correctness of the translation for modalities ⟨D⟩, ⟨D̄⟩, ⟨B⟩,
and ⟨B̄⟩. Proving that the translation of modalities ⟨L⟩ and ⟨L̄⟩ is correct as well is less
straightforward. Let us consider an interval I = [x, y] and a later interval I ′ = [x′, y′] of I,
with x′ > y. Figure 6 depicts the spatial relationships between the corresponding interval-
points p = (x, y) and p′ = (x′, y′) and the intermediate point q = (y, y). Clearly, for every
interval-point q′ such that p q′, we have q′ q and q p′, and hence q′ p′. Conversely,
if p = (x, y) and p′ = (x′, y′) are two interval-points such that p q′ implies q′ p′ for all
interval-points q′, then we necessarily have x′ > y and hence I ′ = [x′, y′] is a later interval
of I = [x, y]. This shows that the translation that replaces each occurrence of a subformula
⟨L⟩α by the formula (pos → (pos ∧ α)) is correct. Similar arguments can be used to
prove the correctness of the translation for ⟨L̄⟩.

Now, the translation of BB̄DD̄LL̄ formulas into equi-satisfiable Cone Logic formulas,
together with the decidability result given in Section 6, yields a PSpace procedure to decide
the satisfiability problem for the logic BB̄DD̄LL̄ when the underlying domain is assumed
to be dense. This subsumes previous results from [6]. Moreover, we know from [26] that the
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satisfiability problem for the interval logic that only uses the subinterval operator ⟨D⟩ is
already PSpace-hard over dense domains. We can thus sum up with the following theorem.

Theorem 7.3. The satisfiability problem of Cone Logic over the rational plane and that of
the interval temporal logic BB̄DD̄LL̄ over Q are PSpace-complete.

Thanks to the above theorem and Remark 2.3, we know that the satisfiability problem
for Cone Logic interpreted over the class of all labelled planes (including the rational and
the real labelled planes) and that of the interval temporal logic BB̄DD̄LL̄ interpreted over
the class of all dense temporal domains are PSpace-complete. Finally, we point out that
similar decidability results hold for the logic EĒDD̄LL̄, by simply changing the orientation
of the x- and y-axes.

8. Conclusions

In this paper, we investigated the satisfiability problem for a suitable weakening of Venema’s
Compass Logic, called Cone Logic, and we proved that, unlike the cases of Compass Logic
and other projection-based spatial logics, it is decidable (PSpace-complete) over the ratio-
nal plane Q ×Q. Moreover, we showed that such a decidability result can be exploited to
prove the decidability of the interval temporal logic BB̄DD̄LL̄ of Allen’s relations ‘Begins’,
‘During’, and ‘Later’, and their transposes, over the class of dense linear orders (equivalently,
the rational numbers), thus disproving a conjecture by Lodaya [12].

One may consider possible extensions of Cone Logic in various directions. For in-
stance, one may consider multi-dimensional spaces and introduce a corresponding logic
to describe spatial relationships over points in these spaces (in general, 2n distinct cone-
shaped directions exist in a space with n dimensions). Alternatively, one may partition
the two-dimensional space into more than four cone-shaped directions. In all such cases,
we believe it possible to generalize the achieved results, e.g., the tree pseudo-model prop-
erty, in a rather natural way (the complexity of the satisfiability problem, however, may
increase significantly). Other generalizations of Cone Logic envisage the use of region-based
relationships. As an example, the correspondence between intervals over the rational line
and points over the rational plane can be lifted to higher-dimensional objects, proving, for
instance, that a suitable spatial logic based on rectangular regions, that is, two-dimensional
intervals, is subsumed by a four-dimensional point-based modal logic very similar to Cone
Logic. This would establish a first interesting bridge between Cone Logic and relativistic
temporal logics based on Minkowski’s space-time structure [26].

The most interesting open problem is that of determining whether or not Cone Logic
remains decidable when interpreted over the real plane R×R. In Remark 2.3, we have seen
that, if a Cone Logic formula holds over R×R, then it also holds over Q×Q. The converse
does not hold in general, as there exist formulas of Cone Logic, e.g., that of Example 2.2,
that hold over Q ×Q, but not over R × R. The satisfiability problem for Cone Logic over
R × R is not known to be decidable, and the same applies to the interval temporal logic
BB̄DD̄LL̄ interpreted over R. We plan to study these decidability problems in the future.
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