1,269 research outputs found

    Group-decision making with induced ordered weighted logarithmic aggregation operators

    Get PDF
    This paper presents the induced generalized ordered weighted logarithmic aggregation (IGOWLA) operator, this operator is an extension of the generalized ordered weighted logarithmic aggregation (GOWLA) operator. It uses order-induced variables that modify the reordering process of the arguments included in the aggregation. The principal advantage of the introduced induced mechanism is the consideration of highly complex attitude from the decision makers. We study some families of the IGOWLA operator as measures for the characterization of the weighting vector (...

    Induced and logarithmic distances with multi-region aggregation operators

    Get PDF
    Copyright © 2019 The Author(s). Published by VGTU Press. This paper introduces the induced ordered weighted logarithmic averaging IOWLAD and multiregion induced ordered weighted logarithmic averaging MR-IOWLAD operators. The distinctive characteristic of these operators lies in the notion of distance measures combined with the complex reordering mechanism of inducing variables and the properties of the logarithmic averaging operators. The main advantage of MR-IOWLAD operators is their design, which is specifically thought to aid in decision-making when a set of diverse regions with different properties must be considered. Moreover, the induced weighting vector and the distance measure mechanisms of the operator allow for the wider modeling of problems, including heterogeneous information and the complex attitudinal character of experts, when aiming for an ideal scenario. Along with analyzing the main properties of the IOWLAD operators, their families and specific cases, we also introduce some extensions, such as the induced generalized ordered weighted averaging IGOWLAD operator and Choquet integrals. We present the induced Choquet logarithmic distance averaging ICLD operator and the generalized induced Choquet logarithmic distance averaging IGCLD operator. Finally, an illustrative example is proposed, including real-world information retrieved from the United Nations World Statistics for global regions

    Logarithmic aggregation operators and distance measures

    Get PDF
    The Hamming distance is a well‐known measure that is designed to provide insights into the similarity between two strings of information. In this study, we use the Hamming distance, the optimal deviation model, and the generalized ordered weighted logarithmic averaging (GOWLA) operator to develop the ordered weighted logarithmic averaging distance (OWLAD) operator and the generalized ordered weighted logarithmic averaging distance (GOWLAD) operator. The main advantage of these operators is the possibility of modeling a wider range of complex representations of problems under the assumption of an ideal possibility. We study the main properties, alternative formulations, and families of the proposed operators. We analyze multiple classical measures to characterize the weighting vector and propose alternatives to deal with the logarithmic properties of the operators. Furthermore, we present generalizations of the operators, which are obtained by studying their weighting vectors and the lambda parameter. Finally, an illustrative example regarding innovation project management measurement is proposed, in which a multi‐expert analysis and several of the newly introduced operators are utilized

    OWA operators in the calculation of the average green-house gases emissions

    Get PDF
    This study proposes, through weighted averages and ordered weighted averaging operators, a new aggregation system for the investigation of average gases emissions. We present the ordered weighted averaging operators gases emissions, the induced ordered weighted averaging operators gases emissions, the weighted ordered weighted averaging operators gases emissions and the induced probabilistic weighted ordered weighted averaging operators gases emissions. These operators represent a new way of analyzing the average gases emissions of different variables like countries or regions. The work presents further generalizations by using generalized and quasi-arithmetic means. The article also presents an illustrative example with respect to the calculations of the average gases emissions in the European region

    Using Ordered Weighted Average for Weighted Averages Inflation

    Get PDF
    This paper presents the ordered weighted average weighted average inflation (OWAWAI) and some extensions using induced and heavy aggregation operators and presents the generalized operators and some of their families. The main advantage of these new formulations is that they can use two different sets of weighting vectors and generate new scenarios based on the reordering of the arguments with the weights. With this idea, it is possible to generate new approaches that under- or overestimate the results according to the knowledge and expertise of the decision-maker. The work presents an application of these new approaches in the analysis of the inflation in Chile, Colombia, and Argentina during 2017

    Aggregation functions: Means

    Get PDF
    The two-parts state-of-art overview of aggregation theory summarizes the essential information concerning aggregation issues. Overview of aggregation properties is given, including the basic classification of aggregation functions. In this first part, the stress is put on means, i.e., averaging aggregation functions, both with fixed arity (n-ary means) and with open arity (extended means).

    Fairness in maximal covering location problems

    Get PDF
    Acknowledgments The authors thank the anonymous reviewers and the guest editors of this issue for their detailed comments on this paper, which provided significant insights for improving the previous versions of this manuscript. This research has been partially supported by Spanish Ministerio de Ciencia e Innovación, AEI/FEDER grant number PID2020-114594GB C21, AEI grant number RED2022-134149-T (Thematic Network: Location Science and Related Problems), Junta de Andalucía projects P18- FR-1422/2369 and projects FEDERUS-1256951, B-FQM-322-UGR20, CEI-3-FQM331 and NetmeetData (Fundación BBVA 2019). The first author was also partially supported by the IMAG-Maria de Maeztu grant CEX2020-001105-M /AEI /10.13039/501100011033 and UENextGenerationEU (ayudas de movilidad para la recualificación del profesorado universitario. The second author was also partially supported by the Research Program for Young Talented Researchers of the University of Málaga under Project B1-2022_37, Spanish Ministry of Education and Science grant number PEJ2018-002962-A, and the PhD Program in Mathematics at the Universidad de Granada.This paper provides a mathematical optimization framework to incorporate fairness measures from the facilities’ perspective to discrete and continuous maximal covering location problems. The main ingredients to construct a function measuring fairness in this problem are the use of (1) ordered weighted averaging operators, a popular family of aggregation criteria for solving multiobjective combinatorial optimization problems; and (2) -fairness operators which allow generalizing most of the equity measures. A general mathematical optimization model is derived which captures the notion of fairness in maximal covering location problems. The models are first formulated as mixed integer non-linear optimization problems for both the discrete and the continuous location spaces. Suitable mixed integer second order cone optimization reformulations are derived using geometric properties of the problem. Finally, the paper concludes with the results obtained from an extensive battery of computational experiments on real datasets. The obtained results support the convenience of the proposed approach.Spanish Ministerio de Ciencia e InnovaciónAEI/FEDER grant number PID2020-114594GB C21AEI grant number RED2022-134149-T (Thematic Network: Location Science and Related Problems)Junta de Andalucía projects P18- FR-1422/2369FEDERUS-1256951B-FQM-322-UGR20CEI-3-FQM331NetmeetData (Fundación BBVA 2019)IMAG-Maria de Maeztu grant CEX2020-001105-M /AEI /10.13039/501100011033UE NextGenerationEUResearch Program for Young Talented Researchers of the University of Málaga under Project B1-2022_37Spanish Ministry of Education and Science grant number PEJ2018-002962-

    New Challenges in Neutrosophic Theory and Applications

    Get PDF
    Neutrosophic theory has representatives on all continents and, therefore, it can be said to be a universal theory. On the other hand, according to the three volumes of “The Encyclopedia of Neutrosophic Researchers” (2016, 2018, 2019), plus numerous others not yet included in Encyclopedia book series, about 1200 researchers from 73 countries have applied both the neutrosophic theory and method. Neutrosophic theory was founded by Professor Florentin Smarandache in 1998; it constitutes further generalization of fuzzy and intuitionistic fuzzy theories. The key distinction between the neutrosophic set/logic and other types of sets/logics lies in the introduction of the degree of indeterminacy/neutrality (I) as an independent component in the neutrosophic set. Thus, neutrosophic theory involves the degree of membership-truth (T), the degree of indeterminacy (I), and the degree of non-membership-falsehood (F). In recent years, the field of neutrosophic set, logic, measure, probability and statistics, precalculus and calculus, etc., and their applications in multiple fields have been extended and applied in various fields, such as communication, management, and information technology. We believe that this book serves as useful guidance for learning about the current progress in neutrosophic theories. In total, 22 studies have been presented and reflect the call of the thematic vision. The contents of each study included in the volume are briefly described as follows. The first contribution, authored by Wadei Al-Omeri and Saeid Jafari, addresses the concept of generalized neutrosophic pre-closed sets and generalized neutrosophic pre-open sets in neutrosophic topological spaces. In the article “Design of Fuzzy Sampling Plan Using the Birnbaum-Saunders Distribution”, the authors Muhammad Zahir Khan, Muhammad Farid Khan, Muhammad Aslam, and Abdur Razzaque Mughal discuss the use of probability distribution function of Birnbaum–Saunders distribution as a proportion of defective items and the acceptance probability in a fuzzy environment. Further, the authors Derya Bakbak, Vakkas Uluc¸ay, and Memet S¸ahin present the “Neutrosophic Soft Expert Multiset and Their Application to Multiple Criteria Decision Making” together with several operations defined for them and their important algebraic properties. In “Neutrosophic Multigroups and Applications”, Vakkas Uluc¸ay and Memet S¸ahin propose an algebraic structure on neutrosophic multisets called neutrosophic multigroups, deriving their basic properties and giving some applications to group theory. Changxing Fan, Jun Ye, Sheng Feng, En Fan, and Keli Hu introduce the “Multi-Criteria Decision-Making Method Using Heronian Mean Operators under a Bipolar Neutrosophic Environment” and test the effectiveness of their new methods. Another decision-making study upon an everyday life issue which empowered us to organize the key objective of the industry developing is given in “Neutrosophic Cubic Einstein Hybrid Geometric Aggregation Operators with Application in Prioritization Using Multiple Attribute Decision-Making Method” written by Khaleed Alhazaymeh, Muhammad Gulistan, Majid Khan, and Seifedine Kadry

    Forecast combinations: an over 50-year review

    Full text link
    Forecast combinations have flourished remarkably in the forecasting community and, in recent years, have become part of the mainstream of forecasting research and activities. Combining multiple forecasts produced from single (target) series is now widely used to improve accuracy through the integration of information gleaned from different sources, thereby mitigating the risk of identifying a single "best" forecast. Combination schemes have evolved from simple combination methods without estimation, to sophisticated methods involving time-varying weights, nonlinear combinations, correlations among components, and cross-learning. They include combining point forecasts and combining probabilistic forecasts. This paper provides an up-to-date review of the extensive literature on forecast combinations, together with reference to available open-source software implementations. We discuss the potential and limitations of various methods and highlight how these ideas have developed over time. Some important issues concerning the utility of forecast combinations are also surveyed. Finally, we conclude with current research gaps and potential insights for future research
    corecore