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Preface to “New Challenges in Neutrosophic Theory
and Applications”

Neutrosophic theory has representatives on all continents and, therefore, it can be said to be
a universal theory. On the other hand, according to the three volumes of “The Encyclopedia of
Neutrosophic Researchers” (2016, 2018, 2019), plus numerous others not yet included in Encyclopedia
book series, about 1200 researchers from 73 countries have applied both the neutrosophic theory and
method.

Neutrosophic theory was founded by Professor Florentin Smarandache in 1998; it constitutes
further generalization of fuzzy and intuitionistic fuzzy theories. The key distinction between
the neutrosophic set/logic and other types of sets/logics lies in the introduction of the degree
of indeterminacy/neutrality (I) as an independent component in the neutrosophic set. Thus,
neutrosophic theory involves the degree of membership-truth (T), the degree of indeterminacy (I),
and the degree of non-membership-falsehood (F). In recent years, the field of neutrosophic set, logic,
measure, probability and statistics, precalculus and calculus, etc., and their applications in multiple
fields have been extended and applied in various fields, such as communication, management, and
information technology.

We believe that this book serves as useful guidance for learning about the current progress in
neutrosophic theories. In total, 22 studies have been presented and reflect the call of the thematic
vision. The contents of each study included in the volume are briefly described as follows.

The first contribution, authored by Wadei Al-Omeri and Saeid Jafari, addresses the concept
of generalized neutrosophic pre-closed sets and generalized neutrosophic pre-open sets in
neutrosophic topological spaces. In the article “Design of Fuzzy Sampling Plan Using the
Birnbaum-Saunders Distribution”, the authors Muhammad Zahir Khan, Muhammad Farid Khan,
Muhammad Aslam, and Abdur Razzaque Mughal discuss the use of probability distribution function
of Birnbaum-Saunders distribution as a proportion of defective items and the acceptance probability
in a fuzzy environment.

Further, the authors Derya Bakbak, Vakkas Ulugay, and Memet Sahin present the “Neutrosophic
Soft Expert Multiset and Their Application to Multiple Criteria Decision Making” together with
several operations defined for them and their important algebraic properties.

In “Neutrosophic Multigroups and Applications”, Vakkas Ulugay and Memet Sahin propose an
algebraic structure on neutrosophic multisets called neutrosophic multigroups, deriving their basic
properties and giving some applications to group theory.

Changxing Fan, Jun Ye, Sheng Feng, En Fan, and Keli Hu introduce the “Multi-Criteria
Decision-Making Method Using Heronian Mean Operators under a Bipolar Neutrosophic
Environment” and test the effectiveness of their new methods.

Another decision-making study upon an everyday life issue which empowered us to organize
the key objective of the industry developing is given in “Neutrosophic Cubic Einstein Hybrid
Geometric Aggregation Operators with Application in Prioritization Using Multiple Attribute
Decision-Making Method” written by Khaleed Alhazaymeh, Muhammad Gulistan, Majid Khan, and
Seifedine Kadry.

In “Refined Neutrosophy and Lattices vs. Pair Structures and YinYang Bipolar Fuzzy
Set”, Florentin Smarandache presents the lattice structures of neutrosophic theories, classifies
Zhang-Zhang’s YinYang bipolar fuzzy sets, and shows that the number of types of neutralities



(sub-indeterminacies) may be any finite or infinite number.

The linguistic neutrosophic environment is treated in the study of Changxing Fan, Sheng Feng,
and Keli Hu entitled “Linguistic Neutrosophic Numbers Einstein Operator and Its Application in
Decision Making”.

Vasantha Kandasamy W.B., Ilanthenral Kandasamy, and Florentin Smarandache propose several
properties of “Semi-Idempotents in Neutrosophic Rings” and also suggest some open problems.

This continuation of this study is presented in the next article entitled “Neutrosophic Triplets in
Neutrosophic Rings” by the same authors.

An article about neutrosophic statistics applied in a variable sampling plan is proposed by
Muhammad Aslam and Mohammed Albassam in “Inspection Plan Based on the Process Capability
Index Using the Neutrosophic Statistical Method”.

“Measures of Probabilistic Neutrosophic Hesitant Fuzzy Sets and the Application in Reducing
Unnecessary Evaluation Processes” are investigated by Songtao Shao and Xiaohong Zhang in their
applicability as concerns investment problems.

In the article “Neutrosophic Quadruple Vector Spaces and Their Properties”, Vasantha
Kandasamy W.B., Ilanthenral Kandasamy, and Florentin Smarandache introduce, for the first time in
the literature, the concept of neutrosophic quadruple (NQ) vector spaces and neutrosophic quadruple
linear algebras.

In the next study, Muhammad Aslam and Osama Hasan Arif propose the use of “Classification
of the State of Manufacturing Process under Indeterminacy” in an uncertainty environment in order
to eliminate the non-conforming items and increase the profit of the company.

The neutrosophic statistics under the assumption that the product lifetime follows a Weibull
distribution is studied by Muhammad Aslam, P. Jeyadurga, Saminathan Balamurali, and Ali Hussein
AL-Marshadi in their article “Time-Truncated Group Plan under a Weibull Distribution based on
Neutrosophic Statistics”.

Muhammad Aslam, Ali Hussein AL-Marshadi, and Nasrullah Khan propose “A New X-Bar
Control Chart for Using Neutrosophic Exponentially Weighted Moving Average” for monitoring data
under an uncertainty environment. The modern portfolio theory is addressed by Marcel-loan Bolos,
Ioana-Alexandra Bradea, and Camelia Delcea in their paper “Neutrosophic Portfolios of Financial
Assets. Minimizing the Risk of Neutrosophic Portfolios” using an innovative approach determined
by the use of the neutrosophic triangular fuzzy numbers.

Next, Xiaogang An, Xiaohong Zhang, and Yingcang Ma propose the notion of “Generalized
Abel-Grassmann’s Neutrosophic Extended Triplet Loop” together with its properties.

Based on the theories of AG-groupoid, neutrosophic extended triplet and semigroup, Wangtao
Yuan and Xiaohong Zhang present some important results in “Regular CA-Groupoids and Cyclic
Associative Neutrosophic Extended Triplet Groupoids (CA-NET-Groupoids) with Green Relations”.

In “Multi-Attribute Group Decision Making Based on Multigranulation Probabilistic Models
with Interval-Valued Neutrosophic Information”, the authors Chao Zhang, Deyu Li, Xiangping Kang,
Yudong Liang, Said Broumi, and Arun Kumar Sangaiah present an approach intended to handle
MAGDM issues with interval-valued neutrosophic information.

Nguyen Tho Thong, Luong Thi Hong Lan, Shuo-Yan Chou, Le Hoang Son, Do Duc Dong,
and Tran Thi Ngan propose “An Extended TOPSIS Method with Unknown Weight Information in
Dynamic Neutrosophic Environment” together with a practical example intended to illustrate the
feasibility and effectiveness of the proposed method.



The last article included in this volume is dedicated to a popular fuzzy tool used to describe
the deviation information in uncertain complex situations. The study “Single-Valued Neutrosophic
Linguistic Logarithmic Weighted Distance Measures and Their Application to Supplier Selection of
Fresh Aquatic Products”, written by Jiefeng Wang, Shouzhen Zeng, and Chonghui Zhang, is based
on SVNLS and also presents a case study for testing the performance of the proposed framework.

This book would not have been possible without the skills and efforts of many people: first, the
advisory board who guided the editors through the editorial process; second, the contributors who
have provided perspectives of their neutrosophic works; and third, the reviewers for their service in

critically reviewing book chapters.

Stefan Vladutescu, Mihaela Colhon
Editors
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Abstract: In this paper, the concept of generalized neutrosophic pre-closed sets and generalized
neutrosophic pre-open sets are introduced. We also study relations and various properties between
the other existing neutrosophic open and closed sets. In addition, we discuss some applications of
generalized neutrosophic pre-closed sets, namely neutrosophic pT% space and neutrosophic ng%
space. The concepts of generalized neutrosophic connected spaces, generalized neutrosophic compact
spaces and generalized neutrosophic extremally disconnected spaces are established. Some interesting
properties are investigated in addition to giving some examples.

Keywords: neutrosophic topology; neutrosophic generalized topology; neutrosophic generalized
pre-closed sets; neutrosophic generalized pre-open sets; neutrosophic pT% space; neutrosophic ng%
space; generalized neutrosophic compact and generalized neutrosophic compact

1. Introduction

Zadeh [1] introduced the notion of fuzzy sets. After that, there have been a number of
generalizations of this fundamental concept. The study of fuzzy topological spaces was first initiated
by Chang [2,3] in 1968. Atanassov [4] introduced the notion of intuitionistic fuzzy sets (IFs). This notion
was extended to intuitionistic L-fuzzy setting by Atanassov and Stoeva [5], which currently has the
name “intuitionistic L-topological spaces”. Coker [6] introduced the notion of intuitionistic fuzzy
topological space by using the notion of (IFs). The concept of generalized fuzzy closed set was
introduced by Balasubramanian and Sundaram [7]. In various recent papers, Smarandache generalizes
intuitionistic fuzzy sets and different types of sets to neutrosophic sets (NSs). On the non-standard
interval, Smarandache, Peide and Lupianez defined the notion of neutrosophic topology [8-10].
In addition, Zhang et al. [11] introduced the notion of an interval neutrosophic set, which is a sample
of a neutrosophic set and studied various properties.

Recently, Al-Omeri and Smarandache [12,13] introduced and studied a number of the
definitions of neutrosophic closed sets, neutrosophic mapping, and obtained several preservation
properties and some characterizations about neutrosophic of connectedness and neutrosophic
connectedness continuity.

This paper is arranged as follows. In Section 2, we will recall some notions that will be used
throughout this paper. In Section 3, we mention some notions in order to present neutrosophic
generalized pre-closed sets and investigate its basic properties. In Sections 4 and 5, we study the
neutrosophic generalized pre-open sets and present some of their properties. In addition, we provide an
application of neutrosophic generalized pre-open sets. Finally, the concepts of generalized neutrosophic
connected space, generalized neutrosophic compact space and generalized neutrosophic extremally

Mathematics 2018, 7, 1; doi:10.3390 / math7010001 1 www.mdpi.com/journal /mathematics
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disconnected spaces are introduced and established in Section 6 and some of their properties in
neutrosophic topological spaces are studied.

This class of sets belongs to the important class of neutrosophic generalized open sets which is
very useful not only in the deepening of our understanding of some special features of the already
well-known notions of neutrosophic topology but also proves useful in neutrosophic multifunction
theory in neutrosophic economy and also in neutrosophic control theory. The applications are vast and
the researchers in the field are exploring these realms of research.

2. Preliminaries

Definition 1. Let 2 be a non-empty set. A neutrosophic set (NS for short) S is an object having the form
S = {{k,ug(k),o5(k),vs(k)) : k € 2}, where v4(k), os(k), ps(k), and the degree of non-membership
(namely v (k) ), the degree of indeterminacy (namely og(k)), and the degree of membership function (namely
pg(k)), of each element k € Z to the set S, see [14].

A neutrosophicset S = {(k, us(k),05(k),vs(k)) : k € 2} canbe identified as (5(k), o5(k), v5(k))
in |]07,17| on Z.

Definition 2. Let S = (ug(k),05(k),vs(k)) be an NS on Z. [15] The complement of the set
S(C(S), for short) may be defined as follows:

(D) C(8) = {(k,1 = ps(k),1 = 5(k)) : k € 27},
(ii) C($) = {(k,1s5(k), 0, ()#s()):keff},
(iii) C(S) = {{k,v5(k), 1 —0o5(k), ug(k)) - k € Z}.

Neutrosophic sets (NSs) On and 1y [14] in £ are introduced as follows:
1 — Oy can be defined as four types:
(i) On ={(k,0,0,1): k€ Z},
@) Oy ={(k0,1,1): ke 2},
(i) Oy = {(k,0,1,0): ke Z},
(iv) Oy = {(k,0,0,0) : ke Z°}.
2 — 1y can be defined as four types:

() 1y = {(k1,0,0): ke 2},
(i) 1y ={(k1,0,1):ke 2},

)
(i) 1y = {(k1,1,0): ke 2},
(iv) 1y ={(k1,1,1) : ke Z}.

Definition 3. Let k be a non-empty set, and generalized neutrosophic sets GNSs S and R be in the form
S ={k ug(k),o5(k),v5(k)}, B = {k, ug(k),op(k), vz (k)}. Then, we may consider two possible definitions
for subsets (S C R) [14]

(i) S C B & pg(k) < pp(k),o5(k) >
>

> (k),and y5(k) < yg(k),
(ii) S C B < pg(k) < up(k),o5(k) >

p(k),and y5(k) > vp(k).

Definition 4. Let {S; : j € J} be an arbitrary family of NSs in 2. Then,
(i) ﬁ§j can defined as two types:
08 =k, A (k) Aoy (k) ¥ 5 (K),
ﬂs:j = ks Mpsi(k), v 05;(k), s (K)).
(i) US; can defined as two types:
US; = (kv i (), o5y (K), A5 (k).
US; = (k,]_\€/]y5-,-(k),jé\}as-j(k),]_/e\]'ys-j(k)), see [14].



Mathematics 2018, 7, 1

Definition 5. A neutrosophic topology (NT for short) [16] and a non empty set % is a family T of neutrosophic
subsets of 2 satisfying the following axioms:

(i) On, 1y €T,
(i) 5 ﬂSzel“foranysl,Szel“
(iii) US; €T, ¥{S|jeJ} CT.

In this case, the pair (2, T) is called a neutrosophic topological space (NTS for short) and any neutrosophic
set in T is known as neutrosophic open set NOS € Z. The elements of ' are called neutrosophic open sets.
A closed neutrosophic set R if and only if its C(R) is neutrosophic open.

Note that, for any NTS S in (Z,T), we have NCI(5°) = [NInt(S)]° and NInt(5¢) = [NCI(S)].

Definition 6. Let 5 = {ys(k),05(k),v5(k)} be a neutrosophic open set and B = {ug(k), op(k), vg(k)} a
neutrosophic set on a neutrosophic topologzcal space (Z,T). Then,

(i) S is called neutrosophic reqular open [14] iff S = NInt(NCI(S)).
(i) IfB € NCS(Z), then B is called neutrosophic regular closed [14] iff S = NCI(NInt(S)).

Definition 7. Let (k,I') be NT and S = {k, uz(k), 05(k), v5(k)} an NS in Z. Then,

(i) NCL(S) =n{U:Uisan NCSin 2,5 C U},
(i) NInt(S)=U{V:Visan NOSin %,V C S}, sece [14].

It can be also shown that NCI(S) is an NCS and NInt(S) is an NOS in 2. We have

(i) Sisin Z iff NCI(S).
(i) Sisan NCSin & iff NInt(S) = §.

Definition 8. Let S bean NS and (2,T) an NT. Then,

(i) Neutrosophic semiopen set (NSOS) [12] if § C NCI(N1Int(S)),

(i) Neutrosophic preopen set (NPOS) [12] if 5 € NInt(NNCI(S)),
(iif) Neutrosophic a-open set (NaOS) [12] lfS C NInt(NNCI(N Int(g))),
(iv) Neutrosophic B-open set (NBOS) [12] if S C NNCI(NInt(NCI(S))).

The complement of S is an NSOS, NaOS, NPOS, and NROS, which is called NSCS, NaCS, NPCS,
and NRCS, resp.

Definition 9. Let S = {S1,5,,53} be an NS and (2,T) an NT. Then, the -neutrosophic closure of S
(x — NCI(S) for short [12]) and *-neutrosophic interior (x — NInt(S) for short [12]) of S are defined by

(i) aNCI(S) =n{V:VisanNRCin%, SCV},
(ii) aNInt(S)=U{U:Uisan NROin %, U C S},
(iii) pNCI(S) =n{V:VisanNPCin %, S C V},
(i) pNInt(S) =U{U:Uisan NPOin %, U C S},
() sNCI(S§) =n{V:VisanNSCin Z, S C V},
(vi) sNInt(S)=u{U:Uisan NSOin %, U C S},
(i) BNCI(S) =N{V :Visan NCBCin %, S C V},

(viii) BNInt( U{U: UisaNBOin %, U C S},
(ix) *NCI(S) =n{V:VisanNRCin%, S C V},
(x) rNInt(S) =U{U:Uisan NROin %, U C S}.

5)
S)
)=

Definition 10. An (NS) S of an NT (Z,T) is called a generalized neutrosophic closed set [17] (GNC in
short) if NCI(S) C B wherever S C B and B is a neutrosophic closed set in % .

Definition 11. An NS Sinan NT Z is said to be a neutrosophic a generalized closed set (NagCS [18]) if
NaNCI(S) C B whensoever S C B and B is an NOS in %. The complement C(S) of an NagCS S is an
NagOS in Z.
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3. Neutrosophic Generalized Connected Spaces, Neutrosophic Generalized Compact Spaces and
Generalized Neutrosophic Extremally Disconnected Spaces

Definition 12. Let (2, T) and (¢, T1) be any two neutrosophic topological spaces.

(i) A function g: (%,T) — (X ,T1) is called generalized neutrosophic continuous( GN-continuous) g~

of every closed set in (2,T1) is GN-closed in (Z,T).
Equivalently, if the inverse image of every open set in (2°,T1) is GN-open in (Z,T):

(ii) A function g : (2,T) — (#,T1) is called generalized neutrosophic irresolute g~ of every GN-closed
set in (2°,T1) is GN-closed in (Z,T).
Equivalently ¢~ of every GN-open set in (2,T1) is GN-open in (Z,T)

(iii) A function g : (2,T) — (#,T1) is said to be strongly neutrosophic continuous if g~1(S) is both
neutrosophic open and neutrosophic closed in (% ,T) for each neutrosophic set S in (2,T1).

(iv) A function g : (2,T) — (A, T1) is said to be strongly GN-continuous if the inverse image of every
GN-open set in (2,11 is neutrosophic open in (Z,T), see ([17] for more details).

Definition 13. An NTS (Z,T) is said to be neutrosophic—T% (NT% in short) space if every GNC in 2 is an
NCin Z.

Definition 14. Let (2, T) be any neutrosophic topological space. (2, T) is said to be generalized neutrosophic
disconnected (in shortly GN-disconnected) if there exists a generalized neutrosophic open and generalized
neutrosophic closed set R such that R # Oy and R # 1N.(Z,T) is said to be generalized neutrosophic
connected if it is not generalized neutrosophic disconnected.

Proposition 1. Every GN-connected space is neutrosophic connected. However, the converse is not trie.

Proof. For a GN-connected (Z,T) space and let (£, T) not be neutrosophic connected. Hence, there
exists a proper neutrosophic set, S = (ug(x),05(x),v5(x)) S # Oy, S # 1y, such that S is both
neutrosophic open and neutrosophic closed in (Ef I'). Since every neutrosophic open set is GN-open
and neutrosophic closed set is GN-closed, 2 is not GN-connected. Therefore, (2, T') is neutrosophic
connected. [

Example 1. Let 2 = {u,v,w}. Define the neutrosophic sets S, R and % in % as follows:
$ = (x(dz o5 ;

5D e s ). (s s ), R = (5 (s ) el s ), (s )

705 0.4705705/7\057 05705 07706705 07706705 03704705

Then, the family T = {On,1n,S,R} is neutrosophic topology on 2. It is obvious that (Z,T)

is NTS. Now, (Z,T) is neutrosophic connected. ~However, it is not a GN-connected for Z =
b

(x, (%,OL 05) (05 06/ 05) (05 0% 05)) 8 GN open and GN closed in (Z,T).

Theorem 1. Let (Z,T) be a neutrosophic Ty space; then, (Z,T) is neutrosophic connected iff (Z,T) is
2
GN-connected.

Proof. Suppose that (2, T) is not GN-connected, and there exists a neutrosophic set S which is both
GN-open and GN-closed. Since (£, T) is neutrosophic T% , 5 is both neutrosophic open and neutrosophic
closed. Hence, (Z,T) is GN-connected. Conversely, let (2, T) is GN-connected. Suppose that (Z,T) is
not neutrosophic connected, and there exists a neutrosophic set S such that S isboth NCs and NOs € (Z,1).
Since the neutrosophic open set is GN-open and the neutrosophic closed set is GN-closed, (Z,T) is not
GN-connected. Hence, (Z,T) is neutrosophic connected. [

Proposition 2. Suppose (2,T) and (%, T) are any two NTSs. If g : (2,T) — (¢, T1) is GN-continuous
surjection and (Z,T) is GN-connected, then (', T1) is neutrosophic connected.

Proof. Suppose that (.#,T1) is not neutrosophic connected, such that the neutrosophic set S is both
neutrosophic open and neutrosophic closed in (.#,T1). Since g is GN-continuous, g~!(5) is GN-open
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and GN-closed in ((#,T). Thus, (2#,T) is not GN connected. Hence, (.#/,T7) is neutrosophic
connected. O

Definition 15. Let (¢, T) be an NT. If a family {(k, pg, (k), 0¢,(k), v, (k) : i € ])} of GN open sets in
(1) satisfies the condition U{ (k, uc, (k), oc,(k), v¢,(k) i € ])} = 1y, then it is called a GN open cover
of (,T). A finite subfamily of a GN open cover {(k, ug, (k), oG, (k), vg,(k) : i € J)} of (2,T), which is also
a GN open cover of (¢, T) is called a finite subcover of

{(k, e, (), o, (k) v, (k) =i € )}
Definition 16. An NT (¢, T) is called GN compact iff every GN open cover of (¢, T') has a finite subcover.

Theorem 2. Let (%, T) and (2¢,T7) be any two NTs, and g : (2,T) — (2¢,T1) be GN continuous
surjection. If (¢, T') is GN-compact, hence so is (£, ).

Proof. Let G; = {(y, i, (x),0¢,(x),v¢,(x) : i € ])} be a neutrosophic open cover in (£, 'y ) with

U{yrﬂG oG, (x),76,(x) ;i e )} = JGi = 1n.
ic]
Since g is GN continuous, ¢ '(G;) = G; = {{y, g-1(6,) (¥), Tg-1(G,) (*), Yg-1(c(*) 11 € ])} is
GN open cover of (%, T). Now,
Us'(G) =g (UG)=1n
i€] ie]
Since (,T) is GN compact, there exists a finite subcover Jy C ], such that
Usg™
i€o

Hence,

That is,

i€y

Therefore, (.#,T7) is neutrosophic compact. [

Definition 17. Let (#,T) be an NT and K be a mneutrosophic set in (2,T). If a family
{(k ug,(k),0¢,(k), vc,(k) : i € J)} of GN open sets in (,T) satisfies the condition K C
U{(k, pg, (k), 06,(k), vg, (k) - i € ])} = 1y, then it is called a GN open cover of K. A finite subfamily
of a GN open cover {(k, pig,(k),0c,(k),vc, (k) : i € ])} of K, which is also a GN open cover of K is called a
finite subcover of {(k, u, (k), o (k) vG,(k) i€ )}

Definition 18. An NT (.#,T) is called GN compact iff every GN open cover of K has a finite subcover.

Theorem 3. Let (¢, T) and (%, T1) be any two NTs, and g : (2,T) — (#,T1) be an GN continuous
function. If K is GN-compact, then so is g(K) in (', T1).
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Proof. Let G; = {{y, g, (x),0c,(x),vc,(x) : i € ])} be a neutrosophicopen cover of g(K) in (.#,T}).
That is,
8(K) € JGi.
ie]

Since g is GN continuous, g~ (G;) = {(x, Vg*l(G,‘)(x)/agfl(ci)(x)/'Yg*l(G,-)(x) 1i € J)}is GN open

cover of Kin (Z,T). Now, - -
Kcg(Ue) cUs (G,

ie] ic]

Since K is (Z,T) is GN compact, there exists a finite subcover Jy C J, such that

Kc |Jg'(G) =1
i€y

Hence, - -
$(K) € g( U g*(Gi)) UG).
i€y i€y

Therefore, g(K) is neutrosophic compact. [

Proposition 3. Let (2, T') be a neutrosophic compact space and suppose that K is a GN-closed set of (27, T).
Then, K is a neutrosophic compact set.

Proof. Let K; == {(y, ug,(x),06,(x),vg,(x) : i € J)} be a family of neutrosophic open set in (2,T)
such that .
KC K.
i€]
Since K is GN-closed, NCI(K) C O,-e, K;. Since (Z,T) is a neutrosophic compact space,
there exists a finite subcover Jy C J. Now, NCI(K) C OfE/o K;. Hence, K C NCI(K) C OiEIo K;.
Therefore, K is a neutrosophic compact set. [J

Definition 19. Let (2,T) be any neutrosophic topological space. (2,T) is said to be GN extremally
disconnected if NCI(K) neutrosophic open and K is GN open.

Proposition 4. For any neutrosophic topological space (Z,T), the following are equivalent:

(i) (Z,T)is GN extremally disconnected.
(i) For each GN closed set K, NGNInt(S) is a GN closed set.
(iii) For each GN open set K, we have NGNCI(K) + NGNCI(1 — NGNCI(S)) = 1.
(iv) For each pair of GN open sets K and M in (2,T), NGNCI(K) + M = 1, we have NGNCI(K) +
NGNCI(B) = 1.

4. Generalized Neutrosophic Pre-Closed Set

Definition 20. An NS § is said to be a neutrosophic generalized pre-closed set (GNPCS in short) in (2,T)
if pNCI(S) C B whensoever S C B and B is an NO in . The family of all GNPCSs of an NT (Z,T) is
defined by GNPC(Z).

Example 2. Let 2 = {a,b} and T = {On,1n,T} be a neutrosophic topology on 2, where T =
((0.2,0.3,0.5),(0.8,0.7,0.7)). Then, the NS § = ((0.2,0.2,0.2), (0.8,0.7,0.7)) is GNPCs € Z.

Theorem 4. Every NC isa GNPC, but the converse is not true.
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Proof. Let Sbean NCin %, S
S

i Band Bis NOS in (Z,T). Since pNCI(S) C NCI(S) and S is NCS
in &, pNCI(S) C NCI(S) = B.

<
C B. Therefore, §is GNPCs € . O

Example 3. Let & = {u,v} and T = {0y, 1N, H} be a neutrosophic topology on %, where H =
((0.2,0.3,0.5), (0.8,0.7,0.7)). Then, the NS S = {(0.2,0.2,0.2),(0.8,0.7,0.7)) is a GNPC in & but not an
NCS € Z.

Theorem 5. Every NaCS is GNPC, but the converse is not true.

Proof. LetSbean NaCSin 2 and let S C Band B isan NOS in (2,T). Now, NCI(NInt(NCI(S)))
S. Since S C NCI(S), NCI(NInt(S)) € NCI(NInt(NCI(S))) C S. Hence, pNCI(S) C S C
Therefore, Sis GNPCs € 2. [

S N

Example 4. Let 2 = {u,v} and let T = {On,1n, H} is a neutrosophic topology on 2, where H =
((0.4,0.2,0.5), (0.6,0.7,0.6)). Then, the NS § = ((0.3,0.1,0.4), (0.7,0.8,0.7)) is a GNPC in % but not
NaCs in & since NCI(NInt(NCI(S))) = ((0.5,0.6,0.5), (0.5,0.3,0.6)) ¢ S.

Theorem 6. Every GNaC is a GNPC, but the converse is not true.

Proof. LetSbe GNaCs € 2,5 C B, Bbean NOsin (Z,T). By Definition 6, 5U NCI(NInt(NCI(5)))

This implies NCI(NInt(NCI(S))) € B and NCI(NInt(S)) C B. Therefore, pNCI(S) =
NCI(NInt(S)) C B. Hence, Sis GNPCs € 2. [

C B.
Su

Example 5. Let & = {u,v} and T = {0y, 1N, H} be a neutrosophic topology on %, where H =
((0.5,0.6,0.6), (0.5,0.4,0.4)). Then, the NS § = ((0.4,0.5,0.5), (0.6,0.5,0.5)) is GNPC in % but not
GNaC in & since xNCI(S) = 1y ¢ H.

Definition 21. An NS § is said to be a neutrosophic generalized pre-closed set (GNSCS ) in (2,T) if
SNCI(S) C B whensoever S C B and B is an NO in &. The family of all GNSCSs of an NT (Z,T) is
defined by GNSC(Z).

Proposition 5. Let S, B be a two GNPCs ofan NT (2,T). NGSC and NGPC are independent.

Example 6. Let 2 = {uw,v}, I = {On,1n,H} be a neutrosophic topology on %, where H =
((0.5,0.4,0.4),(0.5,0.6,0.5)). Then, the NS S = H is GNSC but not GNPC in & since S C H but
pNCI(§) = ((0.5,0.6,0.4),(0.5,04,05)) ¢ H

Example 7. Let & = {uw,v}, T = {On,1n,H} be a neutrosophic topology on %, where H =
((0.7,0.9,0.7),(0.3,0.1,0.1)). Then, the NS § = ((0.6,0.7,0.6), (0.4,0.3,0.4)) is GNPC but not GNsC
in & since sSNCI(S) = 1y C H.

Proposition 6. NSC and GNPC are independent.

Example 8. Let 2 = {a,b}, T = {On,1n,T} be a neutrosophic topology on 2%, where T =
((0.5,0.2,0.3),(0.5,0.6,0.5)). Then, the NS S = T is an NSC but not GNPC in % since S C T but
pNCI(S) = 1{(0.5,0.6,0.5),(0.5,0.2,0.3)) ¢ T.

Example 9. Let 2 = {u,v}, T = {On,1n,H} be a neutrosophic topology on 2, where
H = ((0.8,0.8,0.8),(0.2,0.2,0.2)). Then, the NS § = {(0.8,0.8,0.8), (0.2,0.2,0.2)) is GNPC but not an
NSC in Z since NInt(NCL(S)) ¢ S.
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The following Figure 1 shows the implication relations between GNPC set and the other
existed ones.

INPCs)

[NaCs]

INGCs]

NaGCs]

[NRCs]

[NCs]

Figure 1. Relation between GNPC and others exists set.

Remark 1. Let S, B be a two GNPCs ofan NT (Z,T). Then, the union of any two GNPCs is not a GNPC
in general—see the following example.

Example 10. Let (2,T) be a neutrosophic topology set on %, where 2 = {u,v},
T = ((0.6,0.8,0.6),(0.4,0.2,0.2)). Then, T = {On,1n, T} is neutrosophic topology on 2 and the
NS § = ((02,09,0.3),(0.8,0.2,0.6)), B = ((0.6,0.7,0.6), (0.4,0.3,0.4)) are GNPCSs but 5 U B is not a GNPC
inZ.

5. Generalized Neutrosophic Pre-Open Sets

In this section, we present generalized neutrosophic pre-open sets and investigate some of
their properties.

Definition 22. An NS S is said to be a generalized neutrosophic pre-open set (GNPOS ) in (2,T) if the
complement 5S¢ is a GNPCS in %. The family of all GNPOSs of NTS (2,T) is denoted by GNPO(%).

Example 11. Let 2 = {u,0} and T = {On,1n,H} be a neutrosophic topology on 2, where
H = ((0.8,0.7,0.8), (0.3,0.4,0.3)). Then, the NS § = {(0.9,0.8,0.8), (0.3,0.3,0.3)) is GNPO € %.
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Theorem 7. Let (2,T) bean NT. Then, for every S € GNPO(Z’) and for every R € NS(Z), pNInt(S) C
R C Simplies R € GNPO(Z).

Proof. By Theorem §¢ C Re C (pNInt(S )) Let R° C R and R be NOs. Since ¢ C B¢, 5¢ C R.
However, 5¢is a GNPCs, pNCI(5¢) C R. In addition, R C (pNInt(S))° = pNCI(5°) (by theorem).
Therefore, pNCI(R¢) C pNCI(5°) C R. Hence, B is GNPC. This implies that R isa GNPO of 2. [

Remark 2. Let S, R be two GNPOs ofan NT (2,T). The intersection of any two GNPOSs is not a GNPO
in general.

Example 12. Let & = {u,v} and T = {On,1n,H} be a neutrosophic topology on %, where
H = ((0.6,08,06),(04,02,04)). Then, the NSs, $ = ((0.9,0.2,0.1),(0.1,0.8,0.2)) and R =
((0.4,0.3,0.4), (0.6,0.7,0.6)) is GNPO, but 5N R is not GNPO € Z.

Theorem 8. For any an NTS (Z,T), the following hold:

(i) Every NO is GNPO,
(ii) Every NSO is GNPO,
(iii) Every NaO is GNPO,
(iv) Every NPO is GNPO.

Proof. The proof is clear, so it has been omitted. [

The converses are not true in general.

Example 13. Let 2 = {u,v} and H = ((0.2,0.3,0.2),(0.8,0.7,0.7)). Then, T = {On,1n,H} isa
neutrosophic topology on %, an NS § = ((0.8,0.7,0.7),(0.2,0.2,0.2)) is an NSO in (Z,T) but not an
NO e 7.

Example 14. Let & = {u,v} and T = {On,1n,H} be neutrosophic topology on %, where
H = ((0.6,04,0.7),(0.7,0.4,0.6)). Then, an NS § = ((0.2,0.7,0.7), (0.8,0.3,0.8)) is GNPO but not an
NSO € Z.

Example 15. Let & = {u,0} and T = {On,1n,H} be a neutrosophic topology on 2, where
H = ((0.4,0.2,0.4),(0.6,0.7,0.6)). Then, an NS § = ((0.8,0.9,0.8), (0.4,0.2,0.3)) is GNPO but not an
NaO € Z.

Example 16. Let 2 = {u,v} and T = {On,1n,H} be a neutrosophic topology on 2, where
H = ((0.6,0.5,0.6), (0.5,0.6,0.5)). Then, an NS § = ((0.8,0.7,0.8), (0.4,0.5,0.3)) is GNPO but not an
NPO € Z.

Theorem 9. Let (2,T) bean NT. IfS € GNPO(Z), then R C NInt(NCI(S)) whensoever R C S and R
isan NC in Z.

Proof. Let S € GNPO(Z). Then, 5¢ is GnPCS in . Therefore, pNCI(5¢) C B whensoever 5¢ C B
and B is an NO in 2. That is, NCI(NInt(5¢)) C B. This implies B C NInt(NCI(S)) whensoever
B° C Sand B is NCs in Z. Replacing B¢, by R, we get R C NInt(NCI(S)) whensoever R C S and R
isan NCin 2. O

Theorem 10. For NS S, S is an NO and GNPC in % ifand only if S is an NRO in Z.

Proof. = Let S be an NO and a GNPCS in 2. Then, pNCI(S) C S. This implies NCI(NInt(S)) C S.
Since S is an NO, it is an NPO. Hence, S C NInt(NCI(S)). Therefore, S = NInt(NCI(S)). Hence, S is
an NRO in Z.
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<= Let S be an NRO in Z. Therefore, 5 = NInt(NCI(S)). Let S C B and B be an NO in .
This implies pNCI(S) C S. Hence, S is GNPCin 2. 0

Theorem 11. An NS Sofan NT (2,T) isa GNPOiff H C pNInt(S), whensoever H isan NC and H C S.

Proof. = Let S be GNPO in %. Let H be an NCs and H C S. Then, H¢ is an NOS in % such
that §¢ C HC. Since $¢ is GNPC, we have pNCI(5°) C H¢. Hence, (pNInt(S))¢ C HE. Therefore,
H C pNInt(S).

<= Suppose S is an NS of 2 and let H C pNInt(S) whensoever H is an NC and H C §.
Then, 5¢ C H® and H® is an NO. By assumption, (pNInt(S))¢ C H¢, which implies pNCI(5°) C H°.
Therefore, S¢ is GNPCs of %. Hence, S isa GNPOS of . [

Corollary 1. An NS Sofan NTS (Z,T) is GNPO iff H C NInt(NCI(S)), whensoever H is an NC and
HCS.

Proof. — Let § is a GNPOS in . Let H be an NCS and H C §. Then, H¢ is an NOS in %
such that $¢ C H°. Since S¢ is GNPC, we have pNCI(S¢) C H¢. Therefore, NCI(NInt(5¢)) C H°.
Hence, (NInt(NCI(S)))¢ C H¢. This implies H C NInt(NCI(S)).

<= Suppose S be an NS of 2 and H C NInt(NCI(S)), whensoever H is an NC and H C §.
Then, 5¢ C H® and H® is an NO. By assumption, (NInt(NCI(5)))¢ C H. Hence, NCI(NInt(5¢)) C HC.
This implies pNCI(5¢) C HE. Hence, S isa GNPOS of 2. [

6. Applications of Generalized Neutrosophic Pre-Closed Sets

Definition 23. An NTS (Z,T) is said to be neutrosophic—pT% (NpT% in short) space if every GNPC in &
isan NCs € Z.

Definition 24. An NTS (Z,T) is said to be neutrosophic—ng% (N, ng% in short) space if every GNPC in
Z isan NPCs € Z.

Theorem 12. Every NpT% space is an ngT% space.

Proof. Let 2’ be an NpT% space and S be GNPC € Z. By assumption, S is NCs in 2. Since every NC
isan NPC, Sis an NPC in 2. Hence, & is an ngT% space. [

The converse is not true.

Example 17. Let & = {u,v}, H = ((0.9,0.9,0.9),(0.1,0.1,0.1)) and T = {On, 1n, H}. Then, (2,T) is
an ng%i space, but it is not NpT% since an NS H = ((0.2,0.3,0.3),(0.8,0.7,0.7)) is GNPC but not an
NCS € Z.

Theorem 13. Let (2,T) bean NT and & is an NpT% space; then,

(i) the union of GNPCs is GNPC,
(ii) the intersection of GNPOs is GNPO.

Proof. (i) Let {S;}c) be a collection of GNPCs in an NpT% space (Z,T). Thus, every GNPCs is an
NCS. However, the union of an NC is an NCS. Therefore, the Union of GNPCs is GNPCs in Z.
(ii) Proved by taking complement in (i). [

Theorem 14. An NT £ is an NgpT: space iff GNPO(Z') = NPO(Z).
2

10
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Proof. = Let S be a GNPOs in Z; then, 5¢ is GNPCs in Z. By assumption, 5¢ is an NPCs in .
Thus, S is NPOs in 2. Hence, GNPO(Z') = NPO(Z).

<= Let Sbe GNPC € Z. Then, 5¢ is GNPO in Z. By assumption, $¢ is an NPO in Z. Thus, S is
an NPC € Z. Therefore, 2 is an ngT% space. [

Theorem 15. Foran NTS (Z,T), the following are equivalent:

(i) (Z,T) is a neutrosophic pre—T% space.
(ii) Every non-empty set of % is either an NPCS or NPOS.

Proof. (i) = (ii). Suppose that (Z,T) is a neutrosophic pre—T% space. Suppose that {x} is not an
NPCS for some x € 2. Then, 2 — {x} is not an NPOS and hence # is the only an NPOS containing
%2 —{x}. Hence, Z — {x} is an NPGCS in (Z,T). Since (Z,T) is a neutrosophic pre—T% space,
then 2 — {x} is an NPCS or equivalently {x} is an NPOS. (ii) = (i). Let every singleton set of
Z be either NPCS or NPOS. Let S be an NPGCS of (Z,T). Let x € 2. We show that x € Z in
two cases.

Case (i): Suppose that {x} is NPCS. If x ¢ S, then x € pNCI(S) — S. Now, pNCI(S) — S contains
anon—empty NPCS. Since S is NPGCS, by Theorem 7, we arrived to a contradiction. Hence, x € .

Case (ii): Let {x} be NPOS. Since x € pNCI(S), then {x} NS # ¢. Thus, x € 2. Thus, in any
case x € Z. Thus, PNCI(S) C S. Hence, S = pNCI(S) or equivalently S is an NPCS. Thus, every
NPGCS is an NCS. Therefore, (Z,T) is neutrosophic pre-Ty space. [

7. Conclusions

We have introduced generalized neutrosophic pre-closed sets and generalized neutrosophic
pre-open sets over neutrosophic topology space. Many results have been established to show how
far topological structures are preserved by these neutrosophic pre-closed. We also have provided
examples where such properties fail to be preserved. In this paper, we have studied a few ideas
only; it will be necessary to carry out more theoretical research to establish a general framework for
decision-making and to define patterns for complex network conceiving and practical application.
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Abstract: Acceptance sampling is one of the essential areas of quality control. In a conventional
environment, probability theory is used to study acceptance sampling plans. In some situations,
it is not possible to apply conventional techniques due to vagueness in the values emerging from
the complexities of processor measurement methods. There are two types of acceptance sampling
plans: attribute and variable. One of the important elements in attribute acceptance sampling is
the proportion of defective items. In some situations, this proportion is not a precise value, but
vague. In this case, it is suitable to apply flexible techniques to study the fuzzy proportion. Fuzzy
set theory is used to investigate such concepts. It is observed there is no research available to apply
Birnbaum-Saunders distribution in fuzzy acceptance sampling. In this article, it is assumed that the
proportion of defective items is fuzzy and follows the Birnbaum-Saunders distribution. A single
acceptance sampling plan, based on binomial distribution, is used to design the fuzzy operating
characteristic (FOC) curve. Results are illustrated with examples. One real-life example is also
presented in the article. The results show the behavior of curves with different combinations of
parameters of Birnbaum-Saunders distribution. The novelty of this study is to use the probability
distribution function of Birnbaum-Saunders distribution as a proportion of defective items and find
the acceptance probability in a fuzzy environment. This is an application of Birnbaum-Saunders
distribution in fuzzy acceptance sampling.

Keywords: fuzzy operating characteristic curve; fuzzy OC band; Birnbaum-Sunders distribution;
single acceptance sampling plan

1. Introduction

An acceptance sampling plan is used to determine how many units can be selected from a lot, or
consignment, and how many defective units are allowed in that sample. If the number of defective
units is above the preset number of defective items, the lot is excluded. According to the rule of
acceptance sampling, quality can be monitored by checking a few units from the whole lot. The plan
that mentions guidelines for sampling and the associated criteria for accepting or rejecting a lot is
called the acceptance sampling plan. This acceptance sampling plan can be implemented to check raw
material, the material in a process or finished goods. An acceptance sampling plan can be classified
as an attribute acceptance sampling plan and a variable acceptance sampling plan. An acceptance
sampling plan can be classified with further attributes as a single sampling plan, double sampling
plan, multiple sampling plans, and sequential sampling plan. An elementary acceptance sampling
plan is a single sampling plan. In a single sampling plan, we select (n) units from the entire lot. This
consists of (N) units. After selection of n units they are examined; if the number of damaged units

Mathematics 2019, 7, 9; doi:10.3390 /math7010009 13 www.mdpi.com/journal /mathematics
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(d) is more than the specified number of defective items (c), the lot will be disallowed. Otherwise,
it will be passed. The performance of any acceptance sampling plan can be judged by its operating
characteristic (OC) curve. It determines how well an acceptance sampling plan distinguishes between
good and bad lots. This OC curve has two parameters (n, c), where n is sample size and c is acceptance
number. In an acceptance sampling plan, two groups are involved: the supplier and buyer. The
supplier desires to avoid rejection of a good lot (producer’s risk) and the buyer tries to avert acceptance
of a bad lot (consumer’s risk). In case a bad lot is accepted, it is the responsibility of the consumer.
The producer’s risk is denoted by «. This is the probability of rejection of the lot having an average
quality level (AQL). Similarly, the consumer’s risk is denoted with 3. This shows the probability of
acceptance of the lot, having low quality (LQL) [1]. The proportion of defective items is denoted by
p and treated as a precise number. However, in some situations, it is not possible to get the precise
numerical value of p. Mostly this value is determined by the expert, based on his judgment. It is
used to calculate fuzzy acceptance probability. Further, this fuzzy p value and fuzzy acceptance
probability are used to design a fuzzy OC curve [1]. In the study presented in Reference [2], the authors
suggested a double acceptance sampling plan, based on assumption that lifetime of the product
follows a generalized logistic distribution with known shape parameters, and analyzed the operating
characteristic curve to several ratios of the true median life to the specified life. In the study presented
in Reference [3], the authors proposed the double sampling plan and specified the design parameters
fulfilling both the producer’s and consumer’s risks at the same time for a stated reliability, in the
form of the mean ratio to the specific life. Moreover, double sampling and group sampling plans
are constructed using the two-point technique, with the assumption that the lifetime of the product
follows the Birnbaum-Saunders distribution. In the study presented in Reference [4], the pioneer of
fuzzy set theory gave scientific structure to study imprecise and ambiguous concepts that are based
on human judgment; comprising verbal expressions, contentment degree and significance degree,
that are often fuzzy. A linguistic variable consists of expressions in a natural language, but not the
number. In Reference [5] the authors applied fuzzy set theory to help explain complex and not easy
to express linguistic terms, in traditional measurable terms. In Reference [6] the authors proposed a
single acceptance sampling plan with a fuzzy parameter and explained the single acceptance sampling
plan with fuzzy probability theory. In Reference [7] the authors used the expression for the OC curve
and various values to help accept or reject a lot for a particular number of defective items. Proficiency
of different acceptance sampling plans can be assessed by using the OC curve. These OC curves
are used to determine the producer’s risk, as well as the consumer’s risk [8]. In Reference [9] the
authors suggested using acceptance sampling in the fuzzy environment using Poisson distribution. In
Reference [10] the authors explored if N is large, then the defective items will have a fuzzy binomial
distribution. In Reference [11] the authors applied parameters of the acceptance sampling plan, sample
size n, and acceptance number ¢, in a fuzzy environment. Acceptance probabilities of two major
discrete distributions were also derived. The multiple deferred sampling plans and characteristic
curves were proposed—where (p) proportion of defective items was treated as a fuzzy number—and
also proposed fuzzy OC curves with different combinations of parameters [12]. Multiple deferred
acceptance sampling plans with inspection errors were proposed by the authors of Reference [13].
In the study presented in Reference [14], the authors investigated the inspection errors and their
impact on a single acceptance sampling plan, when the proportion of defective items was not known
exactly. In Reference [15] the authors proposed an acceptance sampling plan for geospatial data with
uncertainty in the proportion of defective items. In Reference [16] the authors investigated a double
acceptance sampling plan with the fuzzy parameter. Average outgoing quality (AOQ) and average total
inspection (ATI) in a double acceptance sampling plan with the imprecise proportion of defective items
were presented [17]. In Reference [18] the authors suggested the fuzzy parameter for quality interval
acceptance sampling plan, applying Poisson distribution. The fuzzy double acceptance sampling
plan for Poisson distribution was proposed by the authors in Reference [19]. In Reference [20] the
authors proposed an application of Weibull distribution in an acceptance sampling plan in the fuzzy
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environment and calculated fuzzy acceptance probabilities for different sample sizes using real-life
data. In Reference [21] the authors proposed truncated life time, based on the Birnbaum-Saunders (BS)
distribution. This distribution is used to define the number of stress cycles until failure of the material.
In Reference [22] the authors applied the concept of the failure process of materials due to weariness,
to design the BS distribution. Estimation of parameters based on crack length data was proposed in
Reference [23]. In Reference [24] the authors presented a literature review of the BS distribution and
discussed in detail the importance of this distribution and its application in different fields. In this
study [25], they developed an acceptance sampling plan using the BS distribution to get the minimum
sample size, n.

The aim of this article was to apply a single acceptance sampling plan when data were fuzzy and
the proportion of defective items followed the BS distribution. According to the best of our knowledge,
there is no work on the fuzzy plan using the BS distribution in the literature. In this paper, we will
develop the fuzzy sampling plan using this distribution. The application of the proposed sampling
will be given with the aid of a real example.

2. Materials and Methods

Design of Proposed Plan

Probability distribution function (Pdf) of BS distribution

1 t
PT(t,a,/\):CD(;g(X)>,O< t <oo,A>0 (1)

where « is the shape parameter and A is the scale parameter, ®(.) is the standard normal cumulative

function and &(t/A) = \/; - ﬂ . It can be shown that the median of the BS distribution is equal to

the scale parameter and the mean of the BS distribution is
w=2(1+a2/2) )

Here we write the assumptions for the BS distribution.
Let ty = apg; a be called the termination ratio. The cumulative distribution function (Cdf) given
in Equation (5) can be rewritten as

FT(tOI‘x/)‘) _¢<1C<M>>/ 3)

o 1/ po

The acceptance probability

According to [26], the acceptance probability of sampling plans can be obtained by using the
binomial distribution. The lot acceptance probability of a lot in a single acceptance sampling plan
(SASP) case is given as

n n . s

L(p) = {Z( ; >p’(1—17)” } @
i=0

The proportion of defective items in the fuzzy form.

According to the equation proposed by the authors of Reference [27].

PK = (K, by + K, b3 + K, by + K).px € pK[a], qx € GK[a], px +qx =1 ®)
b,':ﬂ,'—llz,i=2,3,4andl<: [0,1—174].

a-cut of pK
ﬁK(D{) = (K+ (b2+K—K)DC,h3+K+ (b3 —h4)0{) (6)
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a-cut of pK at x =0
PK(0) = (K, by + K)

where p is the Fr(t, a, A) in Equation (4).
Fuzzy acceptance probability
According to Reference [11], the fuzzy acceptance probability can be calculated as

~ n _
pw{( L )pkq” ¢

Pr o = [pra, Prr]

. n _
Pkux:mM{( L >P"q” ‘
pkra—mux{< . >p"q”k

The fuzzy acceptance probability when the number of defective items, c =0, and « =0

pEpa,qeqa},Ogagl (7)

pepa,qeqa} (8)

PGP“rqeq“} )

- - n - n
pr(0)[0] = (1= pxt'[a) ", (1 - pi*[a]) (10)
pr" =Kp! =bs + K
The fuzzy acceptance probability based when the number of defective items,c=1and « =0

n—1

0] = (1= pia)) " + (1 - )" (1= k) (1 - )T an

Here pxF[a], pxY[a] are calculated using CDF of the BS distribution
The design for a single acceptance sampling plan (ASP) to generate a fuzzy operating
characteristic curve (FOC)

Step 1. The sample size for a lot is n.

Step 2. Specify the acceptance number (or action limit) ¢ for a sample and the experiment time t.

Step 3. Perform the experiment for the sample size n and record the number of failures for a sample.

Step4. Accept the lot if at most ¢ failures are observed in the sample. Truncate the experiment and
reject the lot if more than ¢ failures are observed in the sample.

Step 5. Calculation of fuzzy p (proportion of defective items) using Equation (6).

Step 6. Calculation of fuzzy acceptance probability using Equations (10) and (11).

Step 7. Design of fuzzy OC curve (FOC) includes k and the acceptance probability, where k is the
transformation of the fuzzy proportion of defective items.

The advantage of the fuzzy OC curve is that it is flexible and can be applied when the proportion
of defective items is fuzzy. Secondly, the width of the fuzzy OC curve indicates the quality. Where
the wider the width, the lesser the quality, and vice versa. In this study, the width of the fuzzy OC
curve is influenced by the mean ratio. When the mean ratio is higher, the width of the band decreases.
When the mean ratio is lower, the width increases. The advantage of this approach is that it can be
applied to study any fuzzy data, which follows the BS distribution. This approach is more flexible
than conventional p because it considers intermediate values of the fuzzy curve.

The fuzzy proportion of defective item k at « = 0 is denoted by px|[0] and the fuzzy acceptance
probability as Py (0)[0]. Values for sample size n = 5 and acceptance number ¢ = 0, will therefore be
(0.00, 0.001), and (0.95, 0.96), respectively at k = 0.01. Similarly, values of proportion and acceptance
probability for sample size n = 5 and acceptance number ¢ = 0, will be (0.052, 0.054) and (0.77, 0.78),
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respectively at k = 0.01. Furthermore, the fuzzy proportion of defective item k at « = 0 is denoted
by px[0] and the fuzzy acceptance probability as Px(1)[0]. These values for sample size n = 5 and
acceptance number ¢ = 1, will be the proportion of defective items (0.01, 0.029), and the acceptance
probability (0.99, 0.995) at K = 0.01.

3. Real Life Example

In this section, we will discuss the application of the proposed sampling plan using real data
selected from [28] and [29]. As mentioned above, the BS distribution is also known as the fatigue life
distribution. It is used extensively in reliability applications to model failure times. The BS distribution
is used in circumstances where occurring of events is independent of each other, from one cycle
to another cycle, with same random distribution [29]. In this study, the failure life data given in
Reference [28] is used. The authors of Reference [28] found that the data follow the BS distribution.
The fatigue life data of aluminum coupons having n = 101 observations are shown in Table 1.

Table 1. Fatigue data of aluminum in hours.

70 90 96 97 99 100 103 104 104 105 107 | 108 108 108 109

109 112 112 113 114 114 114 116 119 120 120 120 121 121 123

124 124 124 124 124 128 128 129 129 130 130 130 131 131 131

131 131 132 132 132 133 134 134 134 134 134 136 136 137 | 138

138 138 139 139 141 141 142 142 142 142 142 142 144 144 145

146 148 148 149 151 151 152 155 156 157 157 | 157 | 157 158 159

162 163 163 164 166 166 168 170 174 196 | 212.

We assume that data follows the BS distribution, the proportion of defective items p is fuzzy and
the shape parameter is taken as the trapezoidal fuzzy number, & = (0.15, 0.16, 0.17, 0.18). When the
actual mean is yip = 134, the termination ratio a = 0.5 is then truncated, time will be t = 67 for ¢ =0,
and at ;f—g = 1, the proportion of defective items is p = 0.0211673. The acceptance probabilities are
calculated by using Equations (9) and (10), for different sample sizes n = (5,25,75,100) and K = (0.0,
0.01,0.02, 0.03, 0.04, 0.05). The fuzzy OC curve is designed using fuzzy p values and fuzzy acceptance
probabilities for ¢ = 0. Similarly, when py = 134, termination ratio a = 0.67 is then truncated, time will
be t = 89.7 for ¢ = 1. In this case, acceptance number c = 1, and % =1, p = 0.01923. The acceptance
probabilities are calculated using Equation (11) for different sample sizes n = (5,25,75,100) and K =
(0.0, 0.01, 0.02, 0.03, 0.04, 0.05). The fuzzy OC curve is developed using p values and acceptance
probabilities for ¢ = 1. Fuzzy acceptance probability for Birnbaum-Saunders distribution is presented
in Tables 2 and 3 using real life data and their respective fuzzy OC curves are shown in Figures 1-3.
Entire calculations and graphs were completed using R software and codes were given in Appendix A.
Acceptance probability is influenced by mean ratio, when mean ratio increases it reduces Uuncertainty
and bandwidth of fuzzy OC curve become narrow while decreasing mean ration increases the width
of fuzzy OC curve. The fuzzy OC curves show more convexity when sample size n increases. Fuzzy
OC curve with ¢ = 0 shows less uncertainty than ¢ = 1. We presented acceptance probabilities and
fuzzy OC curves with ¢ = 0, it is almost equal to conventional OC curve. The fuzzy OC curve for c =0
and c = 1 is more convex at large sample size as compared to small sample size.

Table 2. Fatigue life data of aluminum coupons.

Pg)I0], n=5,¢=0, Pg(I0], n=25,c=0, Pg()I0], n=75,c=0, Pg(1I0], n =100,
Bo_q I -1

K P01 2 P z =0, =1
0.00 [0.00, 0.001] [0.98, 1.00] [0.99, 1.00] 0.9, 1.00] [0.996, 1.00]
0.01 [0.01,0.011] 0.95, 0.96] 081, 0.82] 073, 0.76] [0.604, 0.620]
0.02 [0.02, 0.022] [0.93,0.94] [0.65, 0.66] [0.53, 0.54] [0.3640, 0372]
0.03 [0.03, 0.041] 085, 0.86] 053, 0.54] [0.40, 0.43] [0.213,0.219]
0.04 [0.04, 0.051] [0.81, 0.83] [0.41, 0.43] [0.29,0.31] [0.125, 0.129]
0.05 [0.052, 0.054] 0.7, 0.78] 035, 0.36] [0.21,0.23] [0.076, 0.077]
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Table 3. The fuzzy acceptance probability of Birnbaum-Saunders distribution for ¢ = 0.

~ Px[0,n=5¢c=1, Pg([0l,n=25c=1, Px(0l,n=75c=1, Pg()[0],n=100,c=1,
K pklO] 1 L 1 2 _q
Ho Ho Ho Ho
0.00 [0.00, 0.019] [1.000, 1.00] [1.0000, 1.00] [1.00, 1.00] [0.99, 1.00]
0.01 [0.01, 0.029] [0.99, 0.995] [0.979, 0.97] [0.827, 0.82] [0.82,0.82]
0.02 [0.02, 0.039] [0.94, 0.96] [0.99, 0.949] [0.55, 0.556] [0.65, 0.660]
0.03 [0.03, 0.077] [0.93, 0.95] [0.82, 0.826] [0.338, 0.338] [0.63, 0.54]
0.04 [0.04, 0.050] [0.91,0.92] [0.73,0.730] [0.190, 0.190] 0.4, 0.42]
0.05 [0.05, 0.067] [0.89, 0.900] [0.720, 0.7202] [0.160, 0.160] [0.35, 0.37]
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Figure 1. The fuzzy operating characteristic (OC) Curve of the Birnbaum-Saunders distribution at c =0
(a)n =20, (b) n =40, (c) n =70, and (d) n = 100.
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Figure 2. The fuzzy operating characteristic (OC) curve of Birnbaum-Saunders distribution at c = 1,
mean ratio = 0.5, (a) n = 20, (b) n = 40, (c) n = 70, and (d) n = 100.
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Figure 3. The fuzzy operating characteristic (OC) curve of Birnbaum-Saunders distribution atc =1,
mean ratio = 0.5, (a) n =5, (b) n = 15, (c) n = 30, and (d) n = 50.

4. Conclusions

Acceptance sampling is one of the important aspects of statistical quality control. When the data
follow the Birnbaum-Saunders distribution and the proportion of defective items is fuzzy, acceptance
probability and the OC curve can be presented in a fuzzy form. In this article, the fuzzy OC curve of the
Birnbaum-Saunders distribution is presented in a single acceptance sampling plan, using the binomial
distribution. The fuzzy OC curve has a band with two bounds, lower and upper. The width of the
band depends upon the uncertainty in the proportion of defective items in the fuzzy environment. Less
uncertainty will give a narrow width. The fuzzy OC curves also show more convexity at a large sample
size. The mean ratio in the Birnbaum-Saunders distribution is another important factor in quality.
Here, a lower value of the mean ratio causes the width of the band of the fuzzy OC curve to increase.
This indicates more uncertainty. The advantage of this approach is that it can be used to calculate the
proportion of defective items when fuzzy data follows a Birnbaum-Saunders distribution, because
mostly we assume the value of the proportion of defective items without using any distribution.
Secondly, the fuzzy acceptance probability based on the Birnbaum-Saunders distribution is calculated.
The fuzzy OC curve of the Birnbaum-Saunders distribution is constructed based on fuzzy p and the
acceptance probability. The OC curve is more convex at large sample sizes, as compared to small
sample sizes. It was concluded that when data followed the Birnbaum-Saunders distribution, this
proposed approach was suitable to calculate the proportion (p), the acceptance probability, and the OC
curve in both conventional and fuzzy form. In the future, we will apply the same concept to group
acceptance sampling and chain acceptance sampling in a fuzzy environment.
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Abbreviations

oC operating characteristic

OC curve operating characteristic curve
(FOC) curve  fuzzy operating characteristic curve
AQL average quality level

LQL low quality level

pdf probability density function.

cdf Cumulative distribution function
SASP single acceptance sampling plan
BS Birnbaum-Saunders

Appendix A

R codes

#Whenn =5,20,30,30,c=0

rm(list=ls ())

windows ()

par(mfrow=c(2,2))

a=05#Forc=0att=67

alpha = ¢(0.15, 0.16, 0.17, 0.18)

K = seq(0, 0.05, 0.01)

x =a*((1 + alpha"2)/2) #Here b is teated as Alpha

y=05#1,2,3,4,5, 6 values of ratio of

X = ¢((1/alpha)*(sqrt(x/y) —sqrt(y/x)))

FX = pnorm(X, mean =0, sd = 1, lower.tail = TRUE, log.p = FALSE)

EX

p=FX

p = 2.470246e-16

K = seq(0,0.05,0.01)

W=p+K

p = 0.226627400

W=p+K

#p = 0.226627400

p=0.019

W=p+K

K =seq(0,0.05,0.01)

c=0,a=0.5)and (c =1 when a = 0.67) for a = 0.5, p = 2.470246e-16, for a = 0.67 p = 0.01923
B = dbinom(0,10,K) # B = (1-K)"5 Whenn =5,c=0 (1)

A = dbinom(0,10, W)# A = (1—(K+p))"5#Whenn =5, c = 0 (2)

data.frame(A,B)

data.frame(K,W,A,B)

#B = (1-K)"5 # THIS WILL GIVE US UPPER BAND HIGHER PROBABILITY

#A = (1-(K+p))"5#THIS WILL GIVE US LOWER BAND LOWER PROBABILITY
plot(K,A type = “1”, col = “red”, xlab = “K”, ylab = “Pa “, main = “fuzzy OC curve”)
par(new = TRUE)

plot(W,B,type = “1”, col = “blue”, xlab = “k”, ylab = “ “, main = “”)
legend(“topright”,c(expression(paste(alpha==0.15,",”,a==0.67)),expression(paste(alpha==0.16,",” ,a==
0.67)),expression(paste(alpha==0.17,",”,a==0.1)),expression(paste(alpha==0.18,”,” ,a==0.67)) ,expression
(paste(n==5,",",c==0))))
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Abstract: In this paper, we have investigated neutrosophic soft expert multisets (NSEMs) in detail.
The concept of NSEMs is introduced. Several operations have been defined for them and their
important algebraic properties are studied. Finally, we define a NSEMs aggregation operator
to construct an algorithm for a NSEM decision-making method that allows for a more efficient
decision-making process.

Keywords: aggregation operator; decision making; neutrosophic soft expert sets; neutrosophic soft
expert multiset

1. Introduction

Multiple criteria decision making (MCDM) is an important part of modern decision science and
relates to many complex factors, such as economics, psychological behavior, ideology, military and so
on. For a proper description of objects in an uncertain and ambiguous environment, indeterminate
and incomplete information has to be properly handled. Intuitionistic fuzzy sets were introduced
by Atanassov [1], followed by Molodtsov [2] on soft set and neutrosophy logic [3] and neutrosophic
sets [4] by Smarandache. The term neutrosophy means knowledge of neutral thought and this neutral
represents the main distinction between fuzzy and intuitionistic fuzzy logic and set. Presently, work on
soft set theory is progressing rapidly. Various operations and applications of soft sets were developed
rapidly, including multi-adjoint t-concept lattices [5], signatures, definitions, operators and applications
to fuzzy modelling [6], fuzzy inference system optimized by genetic algorithm for robust face and
pose detection [7], fuzzy multi-objective modeling of effectiveness and user experience in online
advertising [8], possibility fuzzy soft set [9], soft multiset theory [10], multiparameterized soft set [11],
soft intuitionistic fuzzy sets [12], Q-fuzzy soft sets [13-15], and multi Q-fuzzy sets [16-18], thereby
opening avenues to many applications [19,20]. Later, Maji [21] introduced a more generalized concept,
which is a combination of neutrosophic sets and soft sets and studied its properties. Alkhazaleh and
Salleh [22] defined the concept of fuzzy soft expert sets, which were later extended to vague soft
expert set theory [23], generalized vague soft expert set [24], and multi Q-fuzzy soft expert set [25].
Sahin et al. [26] introduced neutrosophic soft expert sets, while Hassan et al. [27] extended it further to
Q-neutrosophic soft expert sets. Broumi et al. [28] defined neutrosophic parametrized soft set theory
and its decision making. Deli [29] introduced refined neutrosophic sets and refined neutrosophic
soft sets.

Since membership values are inadequate for providing complete information in some real
problems which has different membership values for each element, different generalizations of
fuzzy sets, intuitionistic fuzzy sets and neutrosophic sets have been introduced called the multi
fuzzy set [30], intuitionistic fuzzy multiset [31] and neutrosophic multiset [32,33], respectively. In the
multisets, an element of a universe can be constructed more than once with possibly the same or
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different membership values. Some work on the multi fuzzy set [34,35], on the intuitionistic fuzzy
multiset [36-39] and on the neutrosophic multiset [40-43] have been studied. The above set theories
have been applied to many different areas including real decision-making problems [44—47]. The aim of
this paper is allow the neutrosophic set to handle problems involving incomplete, indeterminacy and
awareness of inconsistency knowledge, and this is further developed to neutrosohic soft expert sets.

The initial contributions of this paper involve the introduction of various new set-theoretic
operators on neutrosophic soft expert multisets (NSEMs) and their properties. Later, we intend to
extend the discussion further by proposing the concept of NSEMs and its basic operations, namely
complement, union, intersection AND and OR, along with a definition of a NSEMs-aggregation
operator to construct an algorithm of a NSEMs decision method. Finally we provide an application of
the constructed algorithm to solve a decision-making problem.

2. Preliminaries

In this section we review the basic definitions of a neutrosophic set, neutrosophic soft set, soft
expert sets, neutrosophic soft expert sets, and NP-aggregation operator required as preliminaries.

Definition 1 ([4]). A neutrosophic set A on the universe of discourse U is defined as A =
{(u, (pa(u), va(u), wa(u))): uel, ua(u), va(u), wa(u) € [0,1]}. There is no restriction on the sum
of ua(uw); va(u) and wp(u), s0 0~ < pg(u) +o4(u) +wa(u) <3+

Definition 2 ([21]). Let U be an initial universe set and E be a set of parameters. Consider A C E. Let NS(U)
denotes the set of all neutrosophic sets of U. The collection (F, A) is termed to be the neutrosophic soft set over
U, where F is a mapping given by F : A — NS(U).

Definition 3 ([22]). U is an initial universe, E is a set of parameters X is a set of experts (agents), and
O = {agree = 1,disagree = 0} a set of opinions. Let Z = E x X x O and A C Z. A pair (F, A) is called a
soft expert set over U, where F is mapping given by F : A — P(U) where P(U) denote the power set of U.

Definition 4 ([26]). A pair (F, A) is called a neutrosophic soft expert set over U, where F is mapping given by
F:A—PU) 1)
where P(U) denotes the power neutrosophic set of U.

Definition 5 ([26]). The complement of a neutrosophic soft expert set (F, A) denoted by (F, A)° and is defined as
(F, A)° = (F, A) where F¢ = —A — P(U) is mapping given by F¢(x) = neutrosophic soft expert complement
with HEe(x) = WE(x)s UFe(x) = UF(x)r WFe(x) = HF(x):

Definition 6 ([26]). The agree-neutrosophic soft expert set (F, A), over U is a neutrosophic soft expert subset
of (F, A) is defined as
(F,A); ={F(m):me ExXx{1}}. )

Definition 7 ([26]). The disagree-neutrosophic soft expert set (F, A), over U is a neutrosophic soft expert
subset of (F, A) is defined as
(F,A)y={Fo(m):m e Ex X x{0}}. 3)

Definition 8 ([26]). Let (H, A) and (G, B) be two NSESs over the common universe U. Then the union
of (H, A) and (G, B) is denoted by “(H, A) U (G, B)” and is defined by (H, A) U (G,B) = (K,C), where
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C = AU B and the truth-membership, indeterminacy-membership and falsity-membership of (K,C) are
as follows:

HH(e) (m), ifec A—B,

HK(e)(m) = te(e)(m), ifeeB—A,

maX(VH(e)(m)fﬂG(e)(m)>/ ifee AB.
V() (M), ifec A—B,
vk (m) =4 V(e (m), ifee B— A, @
w ifec AB.

W) (m), ifec A—B,

Wy ey (m) = We (e (m), ifee B—A,

(
min(wH(e)(m),wG(e)(m)>, if ec AB.

Definition 9 ([26]). Let (H, A) and (G, B) be two NSESs over the common universe U. Then the intersection
of (H,A) and (G, B) is denoted by “(H, A) N (G, B)” and is defined by (H, A) N (G,B) = (K,C), where
C = AN B and the truth-membership, indeterminacy-membership and falsity-membership of (K,C) are
as follows:

Cpg(e) (m) = min(ﬂH(e)(m)rﬂc(e)(m))/
Vp(e) (M) + Vg0 (M
vz<<e>(m):—H()( )2 o ), ®)
i o) (1) = max (wyy(e) (m), wg () (m)),

if ec AB.

Definition 10 ([29]). Let U be a universe. A neutrosophic multiset set (Nms) A on U can be defined as follows:

A= {—< u, (y}q(u),y%‘(u),. . .,yi(u)), (v%(u),vi(u),...,vi(u)), (w}q(u),wi(u),...,wi(u)) iU Z/l}

where,

el (), 1 (), ooy () £ U > [0,1],

v%(u),vi(u),...,vﬁ(u) ‘U —[0,1],
and

wh (u), wd (u), ..., wh(u): U —[0,1],
such that

0 < supply (1) + supoly () + supwy (1) < 3

This is the truth-membership sequence, indeterminacy-membership sequence and
falsity-membership sequence of the element u, respectively. Also, P is called the dimension
(cardinality) of Nms A, denoted d(A). We arrange the truth-membership sequence in decreasing order
but the corresponding indeterminacy-membership and falsity-membership sequence may not be in
decreasing or increasing order.

The set of all neutrosophic multisets on I/ is denoted by NMS(!A).
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Definition 11 ([28]). Let Yx € NP-soft set. Then an NP-aggregation operator of Y, denoted by ‘I’?fg is
defined by
i = (G T 0 ) ) e ),

which is a neutrosophic set over U,

T U= 0,1 TEwW =1 L Tr()Afge W),

EU—01) Bw=g T k)Mo,
ecE ©)

FE:Uu—0,1 F&=

g~
!
s
=
=
=
=
=
S

and where,

AfK(x)(u) — { 1, xe fK(x)(M), o

0, otherwise.

|U| is the cardinality of U.

3. Neutrosophic Soft Expert Multiset (NSEM) Sets

This section introduces neutrosophic soft expert multiset as a generalization of neutrosophic soft
expert set. Throughout this paper, V is an initial universe, E is a set of parameters X is a set of experts
(agents), and O = {agree = 1, disagree = 0} a set of opinions. Let Z =E x X x Oand G C Z and u is
a membership function of G; thatis, Q: G —=[0,1].

Definition 12. A pair (F, G) is called a neutrosophic soft expert multiset over V, where F is mapping
given by

F2:G = N(V)x, ®)
where N (V') be the set of all neutrosophic soft expert subsets of U. For any parameter e € G, F(e) is referred as
the neutrosophic value set of parameter e, i.e.,

F(e) = § ( ’ >},
e { (D @) D)o (b (@ ) (Vi (01 ¥ )

where D'}, Y': U — [0,1] are the membership sequence of truth, indeterminacy and falsity respectively of the
elementv € V. Foranyv e V,e € Gandi=1,2,...,n.

©)

0< Dip(g)(v) +i F(e)(v) + YiF(e)(v) <3

In fact F is a parameterized family of neutrosophic soft expert multisets on V, which has the degree of
possibility of the approximate value set which is prepresented by Q) (e) for each parameter e. So we can write it

as follows:
F“(e):{( 2 & O >0<e)} (10)
F(e)(v1)" F(e)(v2)" F(e)(v3)" " F(e)(vn) )’ '
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Example 1. Suppose that V = {v1} is a set of computers and E = {eq, e} is a set of decision parameters. Let
X = {p, r} be set of experts. Suppose that

—

1
e 1) = 4
cF(erp 1) {((0.4,0.3,...,0.2),(0.5,0.7,.. 0.2), (0.6,0.1,. )’0

U1
(0.3,0.2,...,0.5),(0.8,0.1,...,0.4),(0.5,0.6,...

81,7‘, ,0.8

01
(0.7,03,...,0.6),(0.3,0.2,...,0.6),(0.8,0.2,...

o
&1

62, p1

’

01
(0.8,03,...,04),(0.3,0.1,...,0.5),(0.2,0.3,...

=l )

-l o)

-{( )"

(er,p,0 {((0.5, 01,...,02), (056, 0.;1. ~,04),(07,02,... )
-l o)

-{( o)

)

(=]
'S

ez,r 1)

’

01
(0.4,02,...,0.1),(0.6,0.1,...,0.3),(0.7,0.2,...

01
(0.8,0.1,...,0.5),(0.2,0.1,...,0.4),(0.6,0.3,...

=]
'S

elr 7,0

’

o
o)

=]
—

62, p.0)

’

U1

=8 _ 2
(e2,7,0) { ( (07,02,...,0.3),(04,01,...,06), (0.3,0.2,.. /0.

The neutrosophic soft expert multiset (F,Z) is a parameterized family {F(e;), i =1,2,...} of all
neutrosophic multisets of V and describes a collection of approximation of an object.

Definition 13. For two neutrosophic soft expert multisets (NSEMs) (F©, G) and (H", R) over U, (F®,G) is
called a neutrosophic soft expert subset of (H", R) if

i RCG,
ii.  foralle € H,H'(e) is neutrosophic soft expert subset F2(e).

Example 2. Consider Example 1. Suppose that G and R are as follows.

¢G = {(er, p,1), (e2, P, 1), (e2,p,0), (e2,7,1)}
R= {(elr P, 1)/ (62,1’,1)}

Since R is a neutrosophic soft expert subset of G, clearly R C G. Let (H,R) and (F?, G) be defined
as follows:

Q U1
4f,
o(F26) = Hel’p’ ’((0,4,0,3,...,0.2),(0.5,0.7,...,0.2),(0.6,0.1,,..,0,3))’O}

(e2,p,1 o1 0.5
P 1) (0.7,03,...,0.6),(0.3,02,...,0.6),(0.8,02,...,0.1) )" |’

U1
(e2,p:0), ( 08,01,...,05),(02,01,...,0.4),(0.6,03,...,0.1) >’0'6} ’

{(Ez’r b <(08 03,...,04), (0.3,0.1%1...,0.5), (0.2,0.3,...,0.4)>’0‘4} }
(H',R) = { {(El’p’l)’ ((0.4,0.3,. ,02), (05, 0.7?1. ~,02),(06,01,.. .,0.3))’0'4} '

U1

{(Ez'r’l)'<(08 03,...,04),(0.3,0.1,. 5),(0.2,0.3,...,o.4)>'0'4}}'
Therefore (H,R) C (FQ, G).

27



Mathematics 2019, 7, 50

Definition 14. Two NSEMs (F?, G) and (G', B) over V are said to be equal if (F?, G) is a NSEM subset of
(H",R) and (H",R) is a NSEM subset of (F?, G).

Definition 15. Agree-NSEMs (F,G), over V is a NSEM subset of (F?, G) defined as follows.

(FQ,G>1:{F1(A):AeExXx{l}}. (11)

Example 3. Consider Example 1. The agree- neutrosophic soft expert multisets (F, Z), over V is

FQ,7), = 1 1 4
e(F ) H(El’p’ )’((0.4,0.3,...,0.2),(0.5,0.7,...,0.2),(0.6,0.1,.,.,0.3)>’0 }

U1
1 .
[(El’r’ ). < (03,02,...,05),(0.8,0.1,...,04), (05,06,...,02) >’0 8] ’

U1
{(32’ P ( (07,03,...,0.6),(0.3,0.2,...,0.6),(0.8,02,...,0.1) )’0’5} '

01
1 04\,
{(62’ r1), < (0.8,03,...,04),(03,01,...,05),(0.2,03,...,04) ) }

Definition 16. A disagree-NSEMs (F?, G) , over V is a NSES subset of (F, G) is defined as follows:

(F A)y = {Fo(A): A€ Ex X x {0}}. (12)

Example 4. Consider Example 1. The disagree- neutrosophic soft expert multisets (F?, Z), over V are

Q _ (%1
(F2) = H("l’p’o)’ <(0.5,0.1,...,0.2), 06,03,...,04), (O.7,O.2,...,O.6)>’0'1]’

U1
0 0.4
(e1,7,0), < (04,02,...,0.1),(0.6,0.1,...,0.3),(0.7,0.2,...,0.4) >' } !

— —

1
(e2,p:0), ( (0.8,0.1,...,0.5),(02,0.1,...,04), (0.6,0.3, .. .,0.1))’0'6} ’

—

|

4. Basic Operations on NSEMs

U1
2L
e1,0), < (07,02,...,03),(04,0.1,...,0.6),(0.3,02,...,0.1) >’O }

Definition 17. The complement of a neutrosophic soft expert multiset (F®, G) is denoted by (F®, G)" and is
defined by (F,G)" = (ch), ﬁG> where F) : G — N (V)% is mapping given by

FO(8) = {DiF(A)(“) =Yk IiF(A)‘f) =1-T'py), YiF(A)“) = D'y and O°(4) =T~ Q(A)} (13)

foreach A € E.
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Example 5. Consider Example 1. The complement of the neutrosophic soft expert multiset F® denoted by F¢)
is given by as follows:

Q(c) - 4 v1
«(F7.2) H( el””l)’((0.2,0.7,...,0.4),(0.2,0.3,.‘.,0.5),(0.3,0.9,...,0.6))’0'6}’

(eun1), o
(05,08,...,0.3),(04,09,...,0.8),(0.2,04,...,05)

’

)
(—e2, p,1 ( o >,0,5_ ,
| 0.6,0.7,...,0.7),(0.6,08,...,03),(0.1,08,...,08) )~
_ (mezr1), < (04,0.7,...,08), (0.5,0.9?1...,0.3), (0.4,0.7,...,0.2))’0'6__’
(w1 p,0 ( 02,09,...,05), (0.4,0.;1. ..,06),(06,08,...,07 >’0‘9_ '
(e, 0 < (0.1,08,...,04), (0,3,0,9?1...,0.6),(0.4,0.8,...,07 )’0'6_’
(mez p,0 ( 05,0.9,...,0.8),(0.4,0.9?1...,0.2), (0.1,07,...,06 )’0'4_’

U1
{( ¢2:7,0), < (0.3,08,...,0.7),(0:6,09,...,04),(0.1,08,...,03) )’0‘8 }

Proposition 1. If (F?, G) is a neutrosophic soft expert multiset over V, then
1 ((F%,G)) = (F%,G)

2. ((FQrG)l)C = (FQrG)o

3. ((FQrG)o)C = (FQIG)I

Proof. (1) From Definition 17, we have (F®,G)" = ( ,ﬂG) where FA) (A) = D!

i _ 1 _ i i

Lo = T= Ty Yio = Dhwy
c

((PQ@) ,G) where

Fa)© YL(A)’
and Q°(A) = 1—Q(A) for each A € E. Now (F2,G)%"

c . . . — . . — .
(FQ(E)> @) =0 =Yeay Tgo  =17ay  Yeao = Pray (Q‘)E(A) =1- 0@
=D = Yppor  Tra) =TI Lo Yeay =Dpyer Q) =1-(2)(4)
=T- (1~ Iy =1-(I-0Qia))
=1 =0i(A)

Thus ((F, G)C)C - ((FQ(E)>C,G> = (F?,G), forall A € E.
The Proofs (2) and (3) can proved similarly. [

Definition 18. The union of two NSEMs (F, G) and (KP, L) over V, denoted by (F©,G) U (KP,L)isa
NSEMs (H,C) where C=GULandVe € C,

mux(Di(FQ(e>(m),Di(K,y(E)(m)> lfA eGNL
(H®,C) = { min Ii(FQ(e>(m),1i(Kp(B)(m)> ifAeGNL (14)
min (Y gy (m ,Yi(,(p(e)(m)) ifAeGNL

where o (m) = max (Q@ (m),p(e)(m)>.
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Example 6. Suppose that (F®, G) and (K?, L) are two NSEMs over V, such that

Q _ 01
c(F.G) = { {(31’ P ((0.7, 03,...,06),(05,02,...,04),(07,06,...,0.3) )’0’3} '
U1
{(EZ’ 4:1), <(0.4,0.3,. ,06),(08,02,...,04),(05,01,...,07) )’0'6 ’

{(83” b, <(0 8,02,...,03), (0.6,0.;1. —,07),(04, o.z,...,o.s))’O‘S} }
(K7, 1) = { {(El’ P <(o.4,o.3,. ,0.1),(07, o.zzjl. ~,03),(05,04,...,07) )’0'6} '
{(63” 1, <(0 8,03,...,02), (0.6, 0.1?1. ..,02),(03,05,...,03) )’0'7} }
Then (F®,G) U (KP, L) = (HY, C) where
¢(H®,C) = { {(el’ P, ((0.7,0.3,...,0.1), (0.7,0.271, ..,03),(0.7,04, .. .,o.3)>’0‘6} ’
) (o008 @802 0w, 050107 6]

U1

1 7L
{(63’ r1), <(0.8,0.2,. ..,02),(06,01,...,02),(04,02,...,03) )’0 } }

Proposition 2. If (FQ, G), (K?,L) and (HQ, C) are three NSEMs over V, then
1. ((F%6)U(ke, 1)) U(H",C) = (F2,G) U (K, 1) U (H°,C))
2. (F%,G)(F2,G) C (F,G).

Proof. (1) We want to prove that

((PQ, G)U (Kf’,L)) J(H®,C) = (F%,G)U <(K",L) 0 (H",C))
by using Definition 18, we consider the case when if e € G N L as other cases are trivial. We will have

(F%,G) U (K, L)
= {(v/max(D’Fn( )(m),Dicp<8)(m)),min(IiFQ(e)(m),IiGp(e)(m)),min (YiFQ(E)(m),YiGp(E)(m))> ,

max (Q(e)(m),p<g) (m)),v € V}

Also consider the case when e € H as the other cases are trivial. We will have

((F“,A) 0 (GW,B)) U (H?,C)

= {(v/mux(DiFn( )( ), D! Gp( y(m )),mm([ Fﬂ( Icp (m) ,mm( ), Y e(ey(m )>>,
(v/DiHn<e)(m),IiHo( y(m ),m ( )1 ,O(m)),v € }
_ | (v/DZFnL (m), o (m)),

(v/mux(D’Gu(E)( ), D* Hy,@( )),m”’l([1cu ), mzn( G(e )))

max <Q(8) (m), pey(m), G(m)),v € V}
= (F2,G)U <(KP,L) 0 (H“,C)).
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(2) The proof is straightforward. [J

Definition 19. The intersection of two NSEMs (F?, G) and (K, L) over V, denoted by (F®, G) N (Ke, L) =
(P5,C) where C = GNLandVe € C,

min (Di(Fn(S)(m),Di(Kp(e>(m)) ifecGNL
(pf’,c) - maxEIi(F:1<e)(m),Ii(Kp(E)(m)> ifeeGNL (15)

max Yi(Fn(e)(m),Yi(Kp(g)(m)> ifee GNL

where 6(m) = min (Q(E>(m),p<e) (m))
Example 7. Suppose that (F®, G) and (K?, L) are two NSEMs over V, such that

U1
2 G) = 1 4
<(F7.G) H(ew’ )'<(0.8,0.3,...,0.2),(0,6,0.1,...,0.2),(0.3,0.5,...,0.3)>’O}
U1
{(61"7’ b, <(0.8,0.2,. ..,02),(0.7,03,...,02),(04,02,...,03) )'0'7}’

U1
{(63’ 9:0), <(0.4,0.3,. ..,06),(0.8,02,...,04),(05,0.1,...,0.7) )’0'6} }

U1
Ke,L .
(K, L) = H(El”” )’<(0.7,0.3,...,0.1),(0.7,0.2,...,0.3),(0.7,0.4,...,0.3))’03}’
41
{ e 11 ( 04,0.7,...,08),(05,09,...,03), (04,07, ...,0.2) )’0'8} }
G)N

Then (F®,G) N (KP,L) = (P°,C) where

(Pé’ C) - { {(33’ r1), ((0.4,0.3,. ,02), (0,6,0,9?1. ..,03),(04,07,...,03) >’0'4} }

Proposition 3. If (F®, G), (K®, L) and (H?, C) are three NSEMs over V, then
1. ((F%G) A (Ke, L)) A (HC,C) = (F,G) 1 ((Ke, L) 1 (HC,C))
2. (F2,G)N(FY,G) C (F2,G).
Proof. (1) We want to prove that
Q A (rP N(ygo _(rQ ~ 0 N (o
(F*%,G)N(KP, L)) N(H®,C) = (F*G)N((K°,LYNn(H®,C)
by using Definition 19, we consider the case when if e € G N L as other cases are trivial. We will have

(F?,G) N (K, L)
= {(v/mm(D’Fo@(m),Dic,;(e)(m)),mux(lipg(g)(m),Iicp(e)(m)),max(YiFg(g)(m),YiG,;(e)(m))),

min (Q(e)(m),p(e>(m)>,v € V}
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Also consider the case when A € H as the other cases are trivial. We will have

((F*,4) 71 (G7,B)) A (H?,C)
= {(z;/max( (o) (m), D’Gp< ) (m )),mzn(I’Fn (m),I’G (m > min(YiFn( )(m),YiGp(e)(m))),
( v/ D' o) ( IlHo() ),ml (u(g (m),n (m), (m)) ve V}
(v/Dlpae (m), I'pay (m ) Fae(m)),
U/mm D Gue) (M), D' gy ),ma <11Gu ),max(Y Gi(e ),Y‘(m)))
mzn (m),p(e)(m), ( )),v S V}

= (FO, )N <(KP,L) A (HG,C)).
(2) The proof is straightforward. (]
Proposition 4. If (F®, G), (K°,L) and (H?, C) are three NSEMs over V. Then
1. ((PQ G)U (K, L)) A (H®,C) = ((PQ,G)H(HG,C)) 0 ((KP,L)E(HU,C)),
2. ((FQ,G)m(KP,L))O(H ,C) = ((FQ,G)G(HU,C))5<(KP,L)G(HG,C)>.

Proof. The proofs can be easily obtained from Definitions 18 and 19. [J

5. AND and OR Operations

Definition 20. Let (F®,G) and (KP, L) be any two NSEMs over V, then (F®,G)AND(K®,L)” denoted
(F2,G) A (KP, L) is defined by
(F2,G) A (KP,L) = (H®,G x L) (16)

where (H”,G x L) = H(w, B) such that H’ (x, ) = F(a) N K (B) for all (x,B) € G x L where N
represent the basic intersection.

Example 8. Suppose that (F®, G) and (K?, L) are two NSEMs over V, such that

«(F%,G) = H(el’p’l)’<(o.2,o.3,... 0.6),(02, 0101 0.8), (03,02, 06)>’0'1}’

U1
{(62’ r.0), < (05,03,...,04),(0.6,05,...,04), (02,04, ...,03) >’0'5}

}
(K, L) = { {(El’ P <(o.3,o.z,. ,01),(05, o.zzjl. ~.,0.3),(0.8,03,...,04) )’0‘2} '
}

U1
{(EZ’ 9.0), ((0.6,0.4,. ..,0.7),(0.3,04,...,02),(0.6,01,...,05) )’0'6}

Then (F2,G) A (K¢, L) = (H?,G x L) where

o _ U1
c(H%,Gx L) = { {(el’p’l)’ (el””’l)<(o.2,o.2,. .,01),(05,02,...,08), (O.8,O.3,...,O.6)>’0'1} ’
4
{(61’ p:1).(e2,4,0), ( (02,03,...,06),(0.3,04,...,08),(0.6,02,...,0.6) >’0‘1} '

U1
1 2
{(ez’r’o)’(‘zl’p’ )’((0.3,0.2,...,0.1),(0.6,0.5,...,0.4),(0.8,0.4,...,0.4))’0 }

U1
{(82’ .0), (e2,9.0), < (05,03,...,04),(0.6,05,...,04),(0.6,04,...,0.5) )’0‘5 }
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Definition 21. Let (F?,G) and (K°,L) be any two NSEMs over V, then (F,G)OR(K?,L)” denoted
(F2,G) V (KP, L) is defined by
(F,G) v (K, L) = (H®,G x L) 17)

where (H”,G x L) = HY(a, B) such that H (x, ) = F2(a) UKP(B) for all (a,B) € G x L where U
represent the basic union.

Example 9. Suppose that (F, G) and (K?, L) are two NSEMs over V, such that

Q _ 1
c(F.G) = { {(el’ P ((0.2, 03,...,0.6),(0.2,0.1,...,08), (03,02, . .,0.6))’0'1] '

4
{(82’ r.0), < (05,03,...,04),(0.6,05,...,04),(0.2,04,...,0.3) >’0'5}

}
(K, L) = { {(El’ P <(0.3,0.z,. ,01), (05, 0.2?]. -.,0.3),(08,03,...,04) )’0'2} ’
}

U1
{(62’ 9.0, <(O.6,0.4,. ..,07),(0.3,04,...,02),(0.6,0.1,...,0.5) )’0'6}

Then (F2,G) V (K¢, L) = (H?, G x L) where

c(H?,Gx1L) = { [(el’p’l)’ (e1,p:1) < (03,03,...,06), (0.2, 0.1?1. ~.,03),(03,02,...,04) )’0'2} ’
{(el’ P 1) (2,.0), ( (0.6,04,...,07), (0.2,0.1%1. ~,02),(03,01,...,05) >’0‘6 '
{(ez,r,o), (e1,p/1), ( (05,03,...,04), (0.5,0.2%1. ~.,03),(02,03,.. .,0.3))’0'2 '
{(32’ r,0). (e2.4,0), ( (06,04,...,0.7),(0.3,0. 4U1 102),(02,0.1,...,03) )’0'6} }

Proposition 5. Let (F?,G) and (KP, L) be NSEMs over V. Then

1. ((FG)A (K, L)) = (FY, A)° Vv (G1,B)"
2. ((F%G)V (K, L)) = (F*, A A (G,B)"

Proof. (1) Suppose that (F?, G) and (K¥, L) be NSEMs over V defined as:

c

(F%G) A (KAL) = (Fa) AKO(B))
= (F @) NK#(B))°
(F%(@) NKP (B))
©) () (©)
(@)

FQ V@) UKO(p)
) VKO (p)
(F“,A V (G, B)¢

(2) The proofs can be easily obtained from Definitions 20 and 21. [
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6. NSEMs-Aggregation Operator

In this section, we define a NSEMs-aggregation operator of NSEMs to construct a decision method
by which approximate functions of a soft expert set are combined to produce a neutrosophic set that

can be used to evaluate each alternative.

Definition 22. Let I'c € NSEMs. Then NSEMs-aggregation operator of T, denoted by Fggg , is defined by

r2 = (o ()00 (1) 0 () ) o v

G G G

which are NSEMs over V,

|~

Y Dig(v) |.0,
ec€E
veV

(D")Zgg SV [0,1] (Di>2gg(v) -

|-

(Y)EE v =101 (Y)SE (@) = Y Yo |0
ecE

veV

=

IiG (ZJ) .Q

=
ngl

(If):fg SV [0,1] (If)’;gg(v) =1
eckE
veV

where |V| is the cardinality of V and QO is defined below

n
Y Q(e). (e,i=1,23,...,n)

(18)

(19)

Definition 23. Let I'c € NSEMs, F[(';gg be NSEMs. Then a reduced fuzzy set of T’ ?;gg is a fuzzy set over is

denoted by s
AT
s = {Gv ©) (v € V},

where ATES (v) 1 V — [0,1] and v; = ‘(Di)gg - (Yi)gg - (Ii)gg‘.
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7. An Application of NSEMs

In this section, we present an application of NSEMs theory in a decision-making problem. Based
on Definitions 22 and 23, we construct an algorithm for the NSEMs decision-making method as follows:

Step 1-Choose a feasible subset of the set of parameters.
Step 2-Construct the NSEMs for each opinion (agree, disagree) of expert.
Step 3-Compute the aggregation NSEMS l"acgg of Tg and the reduced fuzzy set
i\ 788 i\ 288 i\ 788 a
(D])G,- ! <Y1>G, ! (Il> of res
Step 4-Score (vj) = (max — agree( i)) — (min — disagree(v;))
Step 5-Choose the element of v; that has maximum membership. This will be the optimal solution.

Example 10. In the architectural design process, let us assume that the design outputs used in the design of
moving structures are taken by a few experts at certain time intervals. So, let us take the samples at three different
timings in a day (in 08:30, 14:30 and 20:30) The design of moving structures consists of the architectural design,
the design of the mechanism and the design of the surface covering membrane. Architectural design will be
evaluated from these designs., V.= {v1,v2, v3}. Suppose there are three parameters E = {ey, ey, e3} where the

parameters e; (i = 1,2,3) stand for “time”, “temperature” and “spatial needs” respectively. Let X = {p,q} be
a set of experts. After a serious discussion, the experts construct the following NSEMs.

Step 1-Choose a feasible subset of the set of parameters:

(F2,2) =

{ [(el,p,l) ( (03,0.1,04), (020105) (050206))’ ( (04,02,03), (070106) (030206))’ ( (05,03,04), (020108) (040203)) 0. 7} 4
81,11, )’ ( (0.4,0.2,05 ,(0,3,[).1,0,2 ,(0.6,0.3,0,4 ) ( (0.5,0.3,0.2 ,(0,8,0.2,0,4 ,(0.5,0.3,0,2 ) ( (0.6,0.3,0.8 ,(0,3,0.2,0,1 ,(0.5,0.4,0,3 )

(62’ P, )’ ( 0.6,0.4,0.2),( 03,(].1,0‘4 ),(0.8,0.2,0.5) ) ( 0.8,0.3,0.4),( 02,(].1,05 ),(0.4,0.3,0.5) ) ( 0.8,0.3,0.2),( 03,0.1,0‘4 ),(0.2,0.1,0.4) )
(e2,9,1), ( 0.5,0.2,0.4),( 0.3,0,2,0.5 ),(0.6,0.1,0.3) ) ( 0.6,0.4,0.7),( 0.5,0,3,0.2 ),(0.6,0.2,0.4) ) ( 0.6,0.5,0.4),( 0.1,0,3,0.2 ),(0.6,02,0.3) )

(e3r p, )’ ( 0.8,0.1,0.5 , 0.2,0.3,0.4 , 05,0.2,0.3 ) ( 0.7,0.2,0.5 , 0.1,0.2,0.3 , 0A3,0.2,0.1 ) ( 0.4,0.3,0.7 , 0.3,0.1,0.4 , 05,0.3,0.2 )
(63"7’ )’2070204 030105 (060201; 2090405 020405 010203; 2060809 020106 030104;
(61,!], )’ (0.7,0.1,0.4), 0,3,0.2,0,1 ,(0,4,0.2,0,5 (0.6,0.5,0.4), 0,4,0.2,0,1 ,(0,8,0.2,0,6 (0.9,04,05), 0,2,0.1,0,3 ,(0,6,0.2,0,3

(ez, P, )’ ( 0.6,0.5,0.7),( 0A3,0.5,0A4 ),(0.6,0.3,0.4) ) ( 0.5,0.2,0.3),( 02,0.1,0,3 ),(0.4,0.3,0.5) ) ( 0.6,0.3,0.4),( 01,0.2,0,4 ),(0.5,0.3,0.2) )
(ez’q' )’(030102 04010% 050206) (070204 040306 050106) (070305 02040% 050203)

(g3’ P, )’ 0.8,0.5,0.4),(0,2,0.4,0.3),(0,6,0.3,0,4) 4 (0.5,0.2,0.3),(0.4,0.1,0.2),(0,2,0.1,0.4) 4 (0.4,0.3,0.2),(0.2,0.1,0.6),(0,7,0.3,0.2) 4 05 4

[(63' 9.0), 0,6,(]‘1,0,4),(02,(;).11/0,5),(04,0.2,0‘3) ’ (0,7,02,0,5),(04,(71).%’,,0,2),(01,0.2,03) 4 (0,5,(13,0,4),(0A3,0v.32,o,4),(04,0.2/0‘3) /01 }

Step 2-Construct the neutrosophic soft expert tables for each opinion (agree, disagree) of expert.
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Step 3-Now calculate the score of agree (v;) by using the data in Table 1 to obtain values in Table 2.

1 1 1
DL\ _ Dg, +D6, D6, \ [ 01+0y+04
6 3 : 3
_ (0<3+0,6+0.8) (0.7+0.8+0.3)
= 3 . 3
=0.34
2 2 2
D) _ bg, +bg, +Dg, O+ +0;
¢ 3 : 3
1
= (01404401 (07:08+03)
= 3 : 3
=0.12
3 3 3
D3\ _ Dg, +Dg, +Dg, Q1 +0,+0;
e 3 : 3
1
= (04£02+05) (07:08+03)
- 3 . 3
=022
agg _ 03440124022 _
D)g (pwm) = TR 0.2267
I g8 (g g, g, O+ 0+
6 3 : 3
— (02+03+02) (07+08+03)
= 3 : 3
= 0.1404
2 2 2
2\ _ 16, +15, 15, Q1 +0,+0;
6 3 : 3
= (01£01+03) (07:08+03)
- 3 . 3
= 0.1002
3 3 3
BY*s _ I, +1g,+15, Q1 +0,+0;
& 3 : 3
_ (0.54+0.4+404 ( 0.740.8+0.3 )
= 3 : 3
= 0.2604
agg _ 0.1404+0.1002+0.2604 _

(I)Gl (pv1) = 1 13 1 =0.167
)8 Y6, Y6, +Ye, Q1 +0,+0;
& 3 : 3

— (U5+08+05) (07+08+03)
= 3 . 3
=0.36
2 2 2
Y? 788 (YG Y6, 1YG, D+ +03
& 3 . 3
= (b2+02+02) (07+08+03)
- 3 . 3
=0.12
3 . v3 1y3
Y3 88 (Yg Y6, tYG, D+ +03
& 3 . 3

( 0A6+035+0A3 ) . ( O.7+038+0A3 )

0.2802
ags _ 0.364+0.12+0.2802 __
)EE (p,01) = OOHIHDZ02 = 0.2534

v = ‘(D)‘éﬁg ~ (E — (V& ‘ = [0.2267 — 0.167 — 0.2534| = 0.1937

Table 1. Agree-neutrosophic soft expert multiset.

vl vy v3 Q
(e1,p) ((0.3,0.1,0.4),(0.2,0.1,05),(0.5,0.2,0.6))  ((0.4,0.2,0.3),(0.7,0.1,0.6), (0.3,0.2,0.6)) ~ ((0.5,0.3,0.4),(0.2,0.1,0.8), (0.4,0.2,0.3)) 0.7
(e2,p) ((0.6,0.4,0.2),(0.3,0.1,0.4),(0.8,0.2,0.5))  ((0.8,0.3,0.4),(0.2,0.1,0.5),(0.4,0.3,0.5))  ((0.8,0.3,0.2),(0.3,0.1,0.4), (0.2,0.1,0.4)) 08
(e3,p) ((0.8,0.1,05),(0.2,0.3,0.4),(0.5,0.2,0.3))  ((0.7,0.2,0.5),(0.1,0.2,0.3),(0.3,0.2,0.1)) ~ ((0.4,0.3,0.7),(0.3,0.1,0.4), (0.5,0.3,0.2)) 03
(e1,9) ((0.4,0.2,05),(0.3,0.1,0.2),(0.6,0.3,0.4)) ~ ((0.5,0.3,0.2),(0.8,0.2,0.4),(0.5,0.3,0.2))  ((0.6,0.3,0.8),(0.3,0.2,0.1), (0.5,0.4,0.3)) 0.6
(e2,9) ((0.5,0.2,0.4),(0.3,0.2,0.5),(0.6,0.1,0.3))  ((0.6,0.4,0.7),(0.5,0.3,0.2), (0.6,0.2,0.4)) ~ ((0.6,0.5,0.4),(0.1,0.3,0.2), (0.6,0.2,0.3)) 0.4
(e3,9)  ((0.7,02,04),(0.3,0.1,0.5),(0.6,02,0.1))  ((0.9,0.4,0.5),(0.2,04,0.5),(0.1,0.2,0.3))  ((0.6,0.8,0.9),(0.2,0.1,0.6), (0.3,0.1,0.4)) 04
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Table 2. Degree table of agree- neutrosophic soft expert multiset.

U1 2 U3
p 0.1136 0.1267 0.093
q 0.1142 0.0933 0.015

Now calculate the score of disagree (v;) by using the data in Table 3 to obtain values in Table 4.

Table 3. Disagree-neutrosophic soft expert multiset.

vl vy 3 Q
(e, p) ((0.5,0.1,0.7),(0.4,0.2,0.3), (0.5,0.4,0.1)) ~ ((0.8,0.2,0.3),(0.2,0.1,0.4),(0.3,0.4,0.5)) ~ ((0.5,0.2,0.6),(0.3,0.4,0.1), (0.2,0.3,0.1)) 09
(e2,p) ((0.6,0.5,0.7),(0.3,0.5,0.4), (0.6,0.3,0.4)) ~ ((0.5,0.2,0.3),(0.2,0.1,0.3),(0.4,0.3,0.5)) ~ ((0.6,0.3,0.4),(0.1,0.2,0.4), (0.5,0.3,0.2)) 08
(e3,p) ((0.8,0.5,0.4),(0.2,0.4,0.3), (0.6,0.3,0.4)) ~ ((0.5,0.2,0.3),(0.4,0.1,0.2),(0.2,0.1,04)) ~ ((0.4,0.3,0.2),(0.2,0.1,0.6), (0.7,0.3,0.2)) 0.5
(e1,9) ((0.7,0.1,0.4),(0.3,0.2,0.1),(0.4,0.2,0.5))  ((0.6,0.5,0.4),(0.4,0.2,0.1), (0.8,0.2,0.6)) ~ ((0.9,04,0.5),(0.2,0.1,0.3), (0.6,0.2,0.3)) 0.7
(e2,q) ((0.3,0.1,0.2),(0.4,0.1,0.3), (0.5,0.2,0.6))  ((0.7,0.2,0.4), (0.4,0.3,0.6), (0.5,0.1,0.6)) ~ ((0.7,0.3,0.5),(0.2,0.4,0.3), (0.5,0.2,0.3)) 04
(e3,9)  ((0.6,0.1,04),(02,0.1,05),(0.4,02,03))  ((0.7,0.2,0.5),(0.4,03,0.2),(0.1,0.2,03))  ((0.5,03,0.4),(0.3,0.2,0.4), (0.4,0.2,0.3)) 0.1

Table 4. Degree table of disagree-neutrosophic soft expert multiset.

1 vy U3
p 0.1631 0.1468 0.1386
q 0.1155 0.0933 0.04

Step 4-The final score of v; is computed as follows:

Score(vy) = 0.1142 — 0.1155 = —0.0013,
Score(vy) = 0.1267 — 0.0933 = 0.0334,
Score(vs) = 0.093 — 0.04 = 0.053.

Step 5-Clearly, the maximum score is the score 0.053, shown in the above for the v3. Hence the best
decision for the experts is to select worker v; as the company’s employee.

8. Comparison Analysis

The NSEMs model give more precision, flexibility and compatibility compared to the classical,
fuzzy and/or neutrosophic models.

In order to verify the feasibility and effectiveness of the proposed decision-making approach, a
comparison analysis using neutrosophic soft expert decision method, with those methods used by
Alkhazaleh and Salleh [18], Maji [17], Sahin et al. [22], Hassan et al. [23] and Ulucay et al. [40] are given
in Table 5, based on the same illustrative example as in An Application of NSEMs. Clearly, the ranking
order results are consistent with those in [17,18,22,23,40].

Table 5. Comparison of fuzzy soft set and its extensive set theory.

. . . Generalized
Fuzzy Soft Expert |\ Caupoobii¢  Neutrosophic  Q-Neutrosop Neutrosophi NSEMs
oft Sel 0| xper oft Expert Soft Expert
Methods All;la\?li;le[gza]nd Maiji [21] Sahin et al. [26] Hass{;r;]et al. Ulucay et al. [48] Pr(;ﬁ(:}s‘?;i;\;[st:;od
. Universe of Universe of Universe of Universe of Universe of Universe of
Domain . . . . . .
discourse discourse discourse discourse discourse discourse
True Yes Yes Yes Yes Yes Yes
Falsity No Yes Yes Yes No No
Indeterminacy No Yes Yes Yes No No
Expert Yes No Yes Yes Yes No
Q No No No Yes Yes Yes
Ranking [ ) V1 > 03 >0 U1 >0 > 03 v > 03 >0y v > U3 >0 U3 > Uy > Up
Membershipvalued Membership-valued  Single-valued single-valued Single-valued Single-valued Multi-valued
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9. Conclusions

In this paper, we reviewed the basic concepts of neutrosophic set, neutrosophic soft set, soft

expert sets, neutrosophic soft expert sets and NP-aggregation operator before establishing the concept
of neutrosophic soft expert multiset (NSEM). The basic operations of NSEMs, namely complement,
union, intersection AND and OR were defined. Subsequently a definition of NSEM-aggregation
operator is proposed to construct an algorithm of a NSEM decision method. Finally an application
of the constructed algorithm to solve a decision-making problem is provided. This new extension
will provide a significant addition to existing theories for handling indeterminacy, and spurs more
developments of further research and pertinent applications.
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Abstract: In recent years, fuzzy multisets and neutrosophic sets have become a subject of great interest
for researchers and have been widely applied to algebraic structures include groups, rings, fields and
lattices. Neutrosophic multiset is a generalization of multisets and neutrosophic sets. In this paper,
we proposed a algebraic structure on neutrosophic multisets is called neutrosophic multigroups
which allow the truth-membership, indeterminacy-membership and falsity-membership sequence
have a set of real values between zero and one. This new notation of group as a bridge among
neutrosophic multiset theory, set theory and group theory and also shows the effect of neutrosophic
multisets on a group structure. We finally derive the basic properties of neutrosophic multigroups
and give its applications to group theory.

Keywords: neutrosophic sets; neutrosophic multisets; neutrosophic multigroups; neutrosophic
multisubgroups

1. Introduction

In the real world, there are much uncertainty information which cannot be handled by crisp
values. The fuzzy set theory [1] has been an age old and effective tool to tackle uncertainty information
by introduced Zadeh but it can be applied only on random process. Therefore, on the basis of fuzzy
set theory, Sebastian and Ramakrishnan [2] introduced Multi-Fuzzy Sets, Atanassov [3] proposed
intuitionistic fuzzy set theory, Shinoj and John [4] initiated intuitionistic fuzzy multisets. Recently,
the above theories have developed in many directions and found its applications in a wide variety
of fields including algebraic structures. For example, on fuzzy sets [5-7], on fuzzy multi sets [8-10],
on intuitionistic fuzzy sets [11-19], on intuitionistic fuzzy multi sets [20] are some of the selected works.

But these theories cannot manage the all types of uncertainties, such as indeterminate and
inconsistent information some decision-making problems. For instance, “when we ask the opinion
of an expert about certain statement, he or she may that the possibility that the statement is true is
0.5 and the statement is false is 0.6 and the degree that he or she is not sure is 0.2” [21]. In order to
overcome this shortage, Smarandache [22] introduced neutrosophic set theory to makes the theory
of Atanassov [3] very convenient and easily applicable in practice. Then, Wang et al. [21] gave
the some operations and results of single valued neutrosophic set theory. In order to establish the
algebraic structures of neutrosophic sets, some authors gave definition of neutrosophic groups [23-26]
that is actually a example of a group. To develop the neutrosophic set theory, the concept of
neutrosophic multi sets was initiated by Deli et al. [27] and Ye [28,29] for modeling vagueness
and uncertainty. Using their definitions, in this paper, we define a new type of neutrosophic group on
a neutrosophic multi set, which we call neutrosophic multi set group. Since this new concept a brings
the neutrosophic multi set theory, set theory and the group theory together, it is very functional in the
sense of improving the neutrosophic multi set theory with respect to group structure. Rosenfeld [30]
extended the classical group theory to fuzzy set. By using the definitions and results on fuzzy
sets in [6,30] and on intuitionistic fuzzy multiset in [20], we applied the definitions and results to
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neutrosophic multi set theory.The above set theories have been applied to many different areas
including neutrosophic environments have been studied by many researchers in [31-39]. In this paper
the notion of neutrosophic multigroup along with some related properties have been introduced by
follow the results of intuitionistic fuzzy group theory. This concept will bring a new opportunity in
research and development of neutrosophic sets theory.

The paper is organized as follows. In Section 2, we briefly review some preliminary concepts
that will be used in the paper. In Section 3, we introduce the concept of neutrosophic multi group and
give several basic properties and operations. In Section 4, we give some applications to the group
theory with respect to neutrosophic multi groups. In Section 5, we make some concluding remarks
and suggest.

2. Preliminary

In this section, we present basic definitions of fuzzy set theory, multi fuzzy set theory, intuitionistic
fuzzy set theory, intuitionistic fuzzy multi set theory, neutrosophic set theory and neutrosophic
multi set theory. For more detailed explanations related to this section, we refer to the earlier
studies [1,2,4,6,20,22,27,30].

Definition 1 ([1]). Let E be a universe.
Then, a fuzzy set X over E is defined by

X ={(ux(x)/x):x € E}, 1)

where px is called membership function of X and defined by px : E — [0,1]. For each x € E, the value px(x)
represents the degree of x belonging to the fuzzy set X.

Definition 2 ([2]). Let X be a non-empty set. A multi-fuzzy set A on X is defined as:

A={<xp(x) pa(x), p3(x), s piv - x €E, 2
where y; : X — [0,1] foralli € {1,2,...,p} and x € E.

Definition 3 ([4]). Let X be a nonempty set. An Intuitionistic Fuzzy Multi-set A denoted by IFMS drawn
from X is characterized by two functions: ‘count membership’ of A(CM,) and ‘count non membership” of
A(CNy) given respectively by A(CM4) : X — Qand A(CN,) : X — Q where Q is the set of all crisp
multi-sets drawn from the unit interval [0, 1] such that, for each x € X, the membership sequence is defined
as a decreasingly ordered sequence of elements in CM 4 (x), which is denoted by (u (x), p3 (x), ..., iy (x))
where yuly (x) > p%(x) > ... > pli(x) and the corresponding non membership sequence will be denoted by
(W} (x), V4 (x), ., vE (x)) suuch that 0 < py (x) + iy (x) < 1forevery x € Xandi = (1,2,3,... p). An IFMS
A is denoted by

A= {(x: Gy (0 10, 1 (0)), (R (), VA (R), sV () 3 € X ). ®

Definition 4 ([4]). Length of an element x in an IFMS. A defined as the Cardinality of CMy(x) or CNo(x)
for which 0 < yi‘(x) + qu(x) < 1and it is denoted by L(x : A). That is,

L(x: A) = |CMa(x)| = [CNa(x)]- )

Proposition 1 ([20]). Let A, B, A; € IFMS(X); then, the following results hold:

1. [A]l=A
2. ACB=A1CBL
3. (UL Al = U A

i
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4Nk A] b= LA
5 (AoB) 1=BloA™ L
6.

CMAog(x) :Vyex{CMA(y)/\CMB( )} VxeX
= \/yex{CMA(x )/\CMB(]/)} VxeX.

CNyop(x) =/\ygx{CNA(y)\/CNB( )} VxeX
= /\ygx{CNA(Xy ) \% CNB(]/)} VxeX.

Definition 5 ([20]). Let X be a group. An intuitionistic fuzzy multiset G over X is an intuitionistic fuzzy
multi group (IFMG) over X if the counts(count membership and non membership) of G satisfies the following
four conditions:

1.  CMg(xy) > CMg(x) NA\CMg(y) Vx,y € X.
2. CMg(x 1)>CTG()Vx€X.

3. CNg(xy) < CNg(x) AClg(y) ¥ x,y € X.
4. CNg(x 1) <CNg(x)Vxe€X.

Definition 6 ([22]). Let X be a space of points (objects), with a generic element in X denoted by x. A neutrosophic
set(N-set) A in X is characterized by a truth-membership function T4, a indeterminacy-membership function 14
and a falsity-membership function Fy. Ta(x), I4(x) and Fa(x) are real standard or nonstandard subsets of
[70,11].

It can be written as

A= {< X, (TA(x)/IA(x)/FA(x)) >xeX, TA(X)/IA(x)/FA(x) € [01 1}} ®)

There is no restriction on the sum of Ta(x); Ia(x) and Fx(x), so ~0 < supTa(x) + supla(x) +
supFa(x) <37,

Here, 17 = 1+¢, where 1 is its standard part and ¢ its non-standard part. Similarly, —0 = 1+¢, where 0 is
its standard part and e its non-standard part.

Definition 7 ([27]). Let E be a universe. A neutrosophic multiset set(Nms) A on E can be defined as follows:

A = {<x(Th(x), T5(x), ..., T4 (x)), (I} (X) Iﬁ( x), ., 15 (%)), ©)
(F(x), F4(x), ..., F§ (x)) >: er}

where

Th (%), T3 (%), ..., TH(x) : E — [0,1]

Iy (x), I3 (x), .., T4 (x) : E = [0,1]
and

FL(x),F3(x), .., Fi(x) : E = [0,1]
such that

0 < supT'y(x) + supl’y (x) + supFiy(x) <3
(i=1,2,..,P)and

forany x € E.

(T4 (x), T3 (x), .., T (x)),  (I4(x), 3(x),..., I5(x)) and (Fi(x),Fi(x),..F5(x)) is the
truth-membership sequence, indeterminacy-membership sequence and falsity-membership sequence of
the element x, respectively. In addition, P is called the dimension(cardinality) of Nms A, denoted d(A).
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We arrange the truth-membership sequence in decreasing order, but the corresponding indeterminacy-membership
and falsity-membership sequence may not be in decreasing or increasing order.

Definition 8 ([27,28]). Let A, B be two Nms. Then,

1. Adissaid to be Nm-subset of B is denoted by ACB if Ty (x) < Th(x), I (x) > I5(x), Fi(x) > Fi(x),
Vx € Eandi=1,2,...,P.

2. Ais said to be neutrosophic equal of B is denoted by A = B if T (x) = Th(x), I(x) = Ii(x),
F,(x) = Fy(x),Vx € Eandi=1,2,..., P.

3. The union of A and B is denoted by AUB = C and is defined by

C ={< x,(Té(x),Té(x),..., Tg(x)), ([é(x),l%(x),..., Ig(x)), (Fé(x),l%(x),..., Fg(x)) >: x € E},

where T = Tiy (x) V Th(x), IL = I, (x) A I (x), F- = Fiy (x) ANFi(x),Vx € Eand i = 1,2, ..., P.
4. The intersection of A and B is denoted by ANB = D and is defined by

D = {<x,(Th(x), T3(x), .., TH(x)), (Ip (%), B (x), ., I5(x)), (Fpy (%), Fp (%), ... F (x)) >: x € E},
where Th = T, (x) A Th(x), IL, = I, (x) V I§(x), Fi = Fi(x) VFj(x),Vx € Eandi = 1,2, .., P.

3. Neutrosophic Multigroups

In this section, we introduce neutrosophic multigroups and investigate their basic properties.
Throughout this section,
1.  Let X be a group with a binary operation and the identity element is e.
2. NMS(X) denotes the set of all neutrosophic multisets over the X.
3. NMG(X) denotes the set of all neutrosophic multi groups NMG over the group X.

Definition 9. Let X be a group A € NMS(X). Then, A\ is defined as

AT = < (T, TR (), TR L W0 BT () 1 (),

(FY ' (x), 27 (%), FP ' (x)) >: x € E}, @)

where Tigl(x) =T (x7D), I‘;l(x) =T A(x71) and Figl(x) =Fi (x V) foralli=1,2,..,P.

Definition 10. Let X be a classical group A € NMS(X). Then, A is called a neutrosophic multi groupoid over
Xif
L Tglxy) 2 T'e(x) AT (y),
2. I'g(xy) < TI'g(x) VIG(y),
3. Felwy) < Fgx)VFely),
forallx,y € Xandi=1,2,...,P.
A is called a neutrosophic multi group(NM-group) over X if the neutrosophic multi groupoid satisfies
L Te(x™) 2 Te(x),
2. TI'g(x™) < I'g(x),
3. Fo(x™!) < Folx),
forallx € Xandi=1,2,..,P.

Example 1. Assume that (Z3, +) is a classical group. Then,

A= {(0;(0.8,0.7,0.6,0.4),(0.1,0.1,0.2,0.3), (0.2,0.3,0.4,0.5)), (1; (0.7,0.6,0.4,0.3),
(0.2,0.3,0.2,0.3), (0.3,0.4,0.5,0.6)), (2; (0.8,0.6,0.6,0.4), (0.1,0.2,0.2,0.3), (0.2,0.4,0.4,0.5)) }
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is a NM-group. However,

B= {(0;(0.8,0.7,0.6,0.4),(0.1,0.1,02,0.3), (0.2,0.3,0.4,0.5)), (1; (0.9,0.5,0.4,0.3), (0.2,0.1,0.2,0.3),
(0.3,0.3,0.5,0.4)), (2;(0.8,0.7,0.6,0.4), (0.1,0.3,0.2,0.3), (0.2,0.4,0.4,0.6)) }

is not a NM-group because T'g(171) is not greater than or equal to T'g(1).

From the Definition 10 and Example 1, it is clear that a NM-group is a generalized case of fuzzy
group and intuitionistic fuzzy multi group.

Proposition 2. Let X be a classical group and A € NMS(X). If A € NMG(X); then,

1. Tiae)>Tis(x)VxeX,
2. Tale) T (x)VxeX,
3. Fiyle) <Fiua(x)VxeX,

forallx € Xandi=1,2,...,P.

Proof. Since A an NM — group over X, then
1.

=]
>

=
=

[IAVARAVART|

forallx ¢ Xandi=1,2,...,P.

3.
S
—
Q
=
I IAIA
— ===
> x>
—
=
=
<
=
S
—
=
-
—

forallx ¢ Xandi=1,2,...,P.

.
S
—
N

[ IAIA

forallx ¢ Xandi=1,2,..., P.
|

Proposition 3. Let X be a classical group and A € NMS(X). If A € NMG(X), then

1. Tia(x™) >Ta(x)VxeEX,
2. TA(x™M) < TA(x)VxeX,
Fia(x") < Figa(x)VxeX,

forallx € Xandi=1,2,..., P.

Proof. Since A an NM — group over X, then
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1.
TA(¥) >TaA)AT (1)
> T’,A(x) A T’A(x) JANRAN T’A(x)
— TIA X
forallx ¢ Xandi=1,2,...,P.
2.
FA(<") < Fp(x)VIa(1)
< ITA(x) \Y% IIA(X) V..V I’A(x)
=TI's(x
forallx ¢ Xandi=1,2,...,P.
3.
Fia(e") <Fa(x)VF, ()
< FA(x)VF A(x) V.. VF 4(x)
_I:l (x)
forallx € Xandi=1,2,...,P.
O

Definition 11. Let Y be a subgroup of X, B € NMG(Y), BCA and A € NMG(X). If B € NMG(Y),
then B is called a neutrosophic multi subgroup of A over X and denoted by B A.

Example 2. Assume that (Z3,+) is a classical group. We define A and B neutrosophic multi group over
(Z3,+) by

(0.6,0.5,0.3,0.2), (0.2,0.4,0.2,0.3), (0.3,0.2,0.5,0.6)),

A ={(0;(04,03,03,0.2),(0.1,0.1,0.2,0.3),(0.2,0.3,0.4,0.6)),
(L )
2;(0.8,0.7,0.5,0.4),(0.1,0.3,0.2,0.3), (0.2,0.1,0.4,0.5)) }.

)

}

(
B = {(0;(0.4,03,0.3,0.2),(0.1,0.1,0.2,0.3), (0.2,0.3,0.4,0.6)),
(1;

1;(0.6,0.5,0.3,0.2),(0.2,0.4,0.2,0.3), (0.3,0.2,0.5,0.6)) }.
Then, B is a neutrosophic multi subgroup of A over (Z3,+) and denoted by B A.

Theorem 1. Let X be a group A € NMS(X). Then, A is an NM — group if and only if T 4 (xy~1) >
TA() AT a(y), Falxy™!) < TA(x) VI a(y) and Fla(xy™) < Fla(x) V Fa(y) forall x,y € X.

Proof. Assume that A is an NM — group over X. Then,

Tia(xy™!) > TI:A(X) A T’:A(y_l)

forallx,y € Xandi=1,2,..,P.

Falxy™) < Ta(x)VIaly™?)
<

forallx,y € Xandi=1,2,..,P.

Fiu(xy™) < F’:A(x) \ F’:A(yfl)

forallx,y € Xandi=1,2,..,P.
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Conversely, the given condition be satisfied. Firstly,

Tia(xl) =Tialex)
> Ta(e) AT a(x)
= TiA(x)

Tia(xy) =T A(x) AT 4y~ h)
> T a(x) AT A(Y)-

Secondly,
Fa(x™) =T4(ext)
< Ta(e) V I'a(%)
=TI'4(x)
Falxy) < TGV Iay™)
S Ta(x) VI a(y).
Thirdly,
Fia(x™) =Falex™)
< Fla(e) VFa(x)
=Fi,(x)
Fla(xy) <Fa(x)VFuy ")
< Fa(x) vV Fa(y)

so the proof is complete. [
Definition 12. Let A, B € NMS(X). Then, their “AND” operation is denoted by AAB and is defined by
ARB = {(x,y), T'ar(x,¥), T'ans(x,y), Fanp(x,y) : (x,y) € X x X}, ®)
where T' yxp(x,y) = T'a(x) AT'5(y), Fagp(x,y) = Iax) V Ip(y), Farp(x,y) = Fa(x) V F'p(y).
Theorem 2. Let A, B € NMG(X). Then, AAB is a neutrosophic multi group over X.
Proof. Let (x1,y1), (x2,12) € X x X. Then,
Tars((x1, 1), (x2,92)7Y) =T A/\B(xlxz )
= (x1x2 )ATB(y1y; " ) _
(T'a(x1) AT a(x2)) A (T'B(y1) A T'5(y2))

(T'4(x1) AT'p(y1)) A (T a(x2) A T'p(12))
T arp(¥1,y1) A T arp(¥2, y2)

v

I axp((x1,51), (x2,52) 1) IA/\B(xlxz 1Y)

= (xlxz )\/Il (ylyz ) )
(I'a(x1) VI a(x2)) V (I'p(y1) V I'p(v2))
(F'a(x1) V(1)) V (I a(x2) V I'p(y2))
I anp(x1,y1) V I arp(x2,12)

A

and
Farp((x1,1), (x2,52)7") *FA/\B(xlxz vy ')
=Fla(nixy ) VFp(yiy; ') 4
< (Fla(x1) VF a(x2)) V (F's(11) V F'g(y2))
= (F'a(x1) V F'p(y1)) V (F'a(x2) V F's(y2))
= Fanp(x1,v1) V F arp(x2,42)
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forall (x1,y1), (x2,¥2) € Xand i = 1,2,..., P. Therefore, AAB is a neutrosophic multi group over X,
hence the proof.
O

Example 3. Let us take into consideration the classical group (Zs, +). Define the neutrosophic multiset A, B
on (Zs, +) as follows:

A ={(0;(0.5,0.3,0.2,0.1),(0.1,0.1,0.2,0.3), (0.2,0.3,0.4,0.5)),
(1;(0.6,0.4,0.3,0.2),(0.1,0.3,0.3,0.4),(0.1,0.2,0.4,0.6)),
(2;(0.7,05,0.3,0.2),(0.2,0.2,0.3,0.4), (0.3,0.3,0.4,0.6)),

B ={(0;(0.6,05,0.4,0.2),(0.2,0.2,0.3,0.4), (0.3,0.3,0.4,0.6)),
(1;(0.8,0.6,0.4,0.3),(0.1,0.1,0.2,0.3),(0.2,0.2,0.3,0.4)) }
are NM — groups.

AAB = {((0,0);(0.5,0.3,0.2,0.1), (0.2,0.2,0.2,0.4), (0.2,0.3,0.4,0.6)),
((0,1);(0.5,0.3,0.2,0.1), (0.1,0.1,0.2,0.3), (0.2,0.2,0.3,0.5)),
((1,0);(0.6,0.4,0.3,0.2), (0.2,0.2,0.3,0.4), (0.3,0.3,0.4,0.6)),
((1,1); (0.6,0.4,0.3,0.2), (0.1,0.3,0.3,0.4), (0.2,0.2,0.4,0.6)),
((2,0);(0.6,0.5,0.3,0.2), (0.2,0.2,0.3,0.4),(0.3,0.3,0.4,0.6)),
((2,1);(0.7,0.5,0.3,0.2), (0.2,0.2,0.3,0.4), (0.3,0.3,0.4,0.6)) }.
Then, AAB € NMG(X).

Definition 13. Let X be a classical group and A, B € NMS(X). Then, their “OR” operation is denoted by
AVB and is defined by

AVB = {(x,y), T' avp(x,y), I avp(%,y), F agp(x,y) : (x,y) € X x X} ©)
where T' g5 (x,y) = T'A(x) V T'p(y), I avp(x,y) = I'a(x) AI'p(y), F avp(x,y) = Fla(x) AFip(y).

Proposition 4. Let A,B € NMG(X). Then, Tipop(x) < Tiagp(x™1), Iagp(x) > Tagp(x),
Figgp(x) > Fiygp(xh).

Proof. Let (x1,y1), (x2,2) € X x X. Then,

T agp((x1, 1), (x2,52) 1) TA\/B(xlxz 1y Y

=T (xlxz )V T (1, ! ) ‘
(T'a(x1) VT a(x2)) V (T's(y1) vV T'5(y2))
(T'a(x1) V T'g(y1)) V (T'a(x2) V T'5(y2))
T pop(x1,51) V T avp(x2,v2)

[N

I po5((x1,51), (x2,92) 1) IA\/B(xlxz vz )

= (x1x2 ) ALg(yiy; ") '

> (Fa(x1) AL 4(x2)) A (‘ (1) A I'B(y2))
= (I'a(x1) AT'p(y1)) A (I'a(x2) A T'B(12))

= I' g (x1,y1) AT agp(x2,2)

\%

and
Flagp((x1, 1), (x2,52)71) —FAvB(xlxz B
_Fl‘(xlxz )AFip(yiy; ') )
> (F'a(x1) AF a(x2)) A (F'p(y1) A Fp(12)
= (F'a(x1) NF'g(y1)) A (F'a(x2) AF'p(y2))
= F'ayp(x1,y1) A F avp(x2,42)
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forall (x1,y1), (x2,2) € X and i = 1,2,..., P—hence the proof.
From this, it is clear that, if A,B € NMG(X), then AVB € NMG(X) iff T! yo5(x,y) > T 495(x) A
T avs(Y), I avp(x,y) < T'a98(x) VI 498(y), F'ave(x,y) < Flagp(x) V F agp(y). O

Corollary 1. Let A,B € NMG(X). Then, AVB need not be an element of NMG(X).

Example 4. Let us take into consideration the classical group (Zy, +). Define the neutrosophic multiset A, B
on (Zy,+) as follows:

A =1{(0;(05,0.3,0.2,0.1),(0.1,0.1,0.2,0.3), (0.2,0.3,0.4,0.5)),
(1;(0.6,0.4,0.3,0.2),(0.1,0.3,0.3,0.4),(0.1,0.2,0.4,0.6)),
(2;(0.7,0.5,0.3,0.2),(0.2,0.2,0.3,0.4), (0.3,0.3,0.4,0.6)),
(3;(0.7,0.6,0.4,0.3),(0.2,0.1,0.2,0.3),(0.3,0.2,0.1,0.3)) }

B = {(0;(0.6,0.5,0.4,0.2),(0.2,0.2,0.3,0.4),(0.2,0.3,0.4,0.6)),
(1;(0.8,0.6,0.4,0.3),(0.1,0.1,0.2,0.3),(0.2,0.2,0.3,0.4)) }
are NM — groups.

AVB = {((0,0);(0.6,0.5,0.4,0.2),(0.1,0.1,0.2,0.3), (0.2,0.3,0.4,0.5)),
0.8,0.6,0.4,0.3),(0.1,0.1,0.2,0.3),(0.2,0.2,0.3,0.4)),

r L)

((0,1);( ( (

((1,0); (0.6,0.5,0.4,0.2), (0.1,0.2,0.3,0.4), (0.1,0.2,0.4,0.6))
((1,1);(0.8,0.6,0.4,0.3),(0.1,0.1,0.2,0.3), (0.1,0.2,0.3,0.4))
((2,0);(0.7,05,0.4,0.2), (0.1,0.2,0.3,0.4), (0.2,0.3,0.4,0.6)),
((2,1);(0.8,0.6,0.4,0.3),(0.1,0.1,0.2,0.3), (0.2,0.2,0.3,0.4)),
((3,0);( ) ( )i ( )
(3, 1) ( A A )

7 ’

’ ’

7L )r

7

0.7,0.6,0.4,0.3),(0.2,0.1,0.2,0.3),(0.2,0.2,0.1,0.3
0.8,0.6,0.4,0.3),(0.1,0.1,0.2,0.3), (0.2,0.2,0.1,0.3

’

)

L)

However, T! 455(3,0) > T' 495(1,0). Then, AVB ¢ NMG(X).
Theorem 3. Let X be a classical group and A € NMG(X). Then, the followings are equivalent:
ij‘(xyx*1 = Ti\(y), I}, (xyx~1) = I, (y) and Fi, (xyx~1) = Fi,(y) forall x,y € X.
(
(

(
g(y),lg(xyx’l) < Ié\(y) and F/’;‘(xyxfl) < F/’;‘(y)for all x,y € X.
Ty (y), Ly (xyx™1) > Ly (y) and Fy (xyx™') > Fjy(y) forall x,y € X.

oW =
23

Proof. 1. (1) = (2): Letx,y € X. Then,

T, (xyx™!) = Ty (x 'xy) = T4 (y),
Ly (xyx ™) = Ly (xlay) = Ly (y),
F,(xyx™") = F, (x"'xy) = Fy(y).

2. (2) = (3): Immediate.
3. (3)=4
Ti(xyx 1) < Th(x Lxy(x ) 1) = T4 1),
By > 1y (r ey )Y = 1 (),
Fy(xyx™) = Fy(xlay(x ™) ™) = F (y).

4. (4)= (1):Letx,y € X. Then,
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L(xy) = Iy(xyxx?)
< I(yx)
= L(yxyy ™)
< Ty(xy),
Fi(xy) = Fj(xyxx™)
< Fj(yx)
=Fy(yxyy )
< Fy(xy)

Hence, T (yx) = T} (xy), I} (yx) = Ly (xy), Fj (yx) = Fj (xy).
O

Definition 14. Let X be a group, A € NMS(X) and B is a nonempty neutrosophic multi subset of A
over X. Then, B is called an abelian neutrosophic multi subset of A if T (yx) = T (xy), I} (yx) =
I, (xy) and Fi, (yx) = Fi, (xy) forall x,y € X.

Example 5. 1x and 1, are normal neutrosophic multi subgroup of X. If X is a commutative group,
every neutrosophic multi subgroup of X is normal.

Definition 15. Let X be a group, A € NMG(X) and B is a neutrosophic multi subgroup of A over X. Then,
B is called an a normal neutrosophic multi subgroup of A, denoted by B A if it is an abelian neutrosophic multi
subset of A over X.

Example 6. Assume that (Z3,+) is a classiccal group. Define the neutrosophic multisets A and B on (Z3,+)
as follows:
A =1{(0;(0.6,05,04,0.2),(0.1,0.1,0.2,0.3), (0.2,0.3,0.4,0.6)),
(1;(0.5,0.4,0.4,0.3), (0.2,0.1,0.2,0.3), (0.3,0.4,0.5,0.6)),
(2;(0.9,0.7,0.6,0.5),(0.1,0.1,0.2,0.3), (0.2,0.2,0.3,0.5)) }

is a NM-group. If

B = {(0;(0.6,05,0.4,0.2),(0.1,0.1,0.2,0.3), (0.2,0.3,0.4,0.6)),
(1;(0.5,0.4,0.4,0.3), (0.2,0.1,0.2,0.3), (0.3,0.3,0.5,0.4)) },

then B is a neutrosophic multi subgroup of A over (Zz,+) and denoted by B A. Therefore, B/ A.

Corollary 2. Let A € NMG(X) and B be a neutrosophic multi subgroup of A over X. If X is an abelian group,
then B is a normal neutrosophic multi subgroup of A over X.

4. Applications of Neutrosophic Multi Groups

In this section, we give some applications to the group theory with respect to neutrosophic
multi groups.

Definition 16. Let A be a neutrosophic multiset on X and a € [0, 1]. Define the a-level sets of A as follows:
(Tha)e = {x € X: Tig(x) > al,

(F'a)* ={x e X:I'x(x) <a},
(Fi)*={xeX:F,(x)<a}.
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It is easy to verify that

(1) IfACB and «a € (0,1], then
(T'A)a C (T'B)a, (I'a)* 2 (I'p)* and (F'a)* 2 (F'p)*. _
(2) a < B implies (T'p)u 2 (T'a)p, (I'a)* € (I'a)P and (Fi4)* C (Fiy)P.

Proposition 5. A is a neutrosophic multi group of a classical group X if and only if for all « € [0,1], a-level
sets of A, (T' p)u, (I' o) and (F' 4)® are classical subgroups of X.

Proof. Let A be a neutrosophic multi subgroup of X, « € [0,1] and xy € (T'4), (similarly
x. y € (I' )4, (F'4)%). By the assumption, T/ 4 (xy™1) > T4 (x) AT A(y) > a Aa = & (and similarly,

Ta(xy™) < wand Fiy(xy~") < a). Hence, xy~! € (T 4)q (and similarly xy~—' € (I'4)%, (Fi4)%) for
each « € [0,1]. This means that (T' 4), (and similarly (I )%, (F'4)*) is a classical subgroup of X for
each o € [0,1].

Conversely, let (T! 4 )4 be a classical subgroup of X, for each & € [0,1]. Let x,y € X, & = T! 4 (x) A
Tia(y) and B = Ti4(x). Since (T?4), and (TiA)ﬁ are classical subgroups of X, x.y € (T'4), and
x7 b e (T'y)p. Thus, Ti4(xy™1) > a = Tiy(x) AT 4(y) and T4 (x"1) > B = T',(x). Similarly,
Falxy™) S Ta(x) VIa(y)and Fla(xy ™) < Fa(x) VFa(y). O

Theorem 4. Let Xq, X, be the classical groups and g : X1 — Xj be a group homomorphism. If A is a
neutrosophic multi subgroup of Xy, then the image of A, g(A) is a neutrosophic multi subgroup of X.

Proof. Let A € NMS(X;) and y1,y2 € Xo. If 7' (y1) = @ or g7 (y2) = @, then it is clear that
g(A) € NMS(X;). Let us assume that there exists x1, xp € Xj such that g(x1) = y1 and g(x2) = ya.
Since g is a group homomorphism,

ST 1Yy ") = V1 g Ta®) = Ta(rixy ),
ST W1y2") = Nyt g IA( ) < Ta(axy '),

SF A 1Y) = Ayt Fa(x) < Flalmny ).

By using the above inequalities, let us prove that g(A) (y1y; ') > g(A)(y1) A g(A) (1) :

Ay ") =g(Ta) vy '), g(Ia) 1y ! ), ( )y ) ,
= Vyps =gty T4 (), /\yw =g A Ayt Falx)
> (Tha(axy ), Fa(xixy '), Fia (xlx D) ,
> (T4 (x1) AT a(x2), I'a(x1) V I 4 (3x2), F' A (x1) V F a(x2)
= (T'a(x1), I'a(x1), F a(x1)) A (T alx2), I' a(x2), F 4 (x2)).

This is satisfied for each x1, x, € Xy with g(x1) = y1 and g(x2) = y», then it is obvious that

gAY = (Vy, gxl)TA(xl) Ay gxl)IA(xl) Ayi—g(x1) Fra(x1))
AVy,= ng)TA(xZ) Nyo= gxz)IA(xz) Nyo= =s(2) ) Fla(x2))
= (8(T'2)(y1), 8(I'a) (y1), 8 (F a) (y1)) A (8(T 4) (y2), 8(I' a) (y2), 8 (F' 4) (v2))
= g(A)(y1) Ag(A) (y2).

Hence, the image of a neutrosophic multi subgroup is also a neutrosophic multi subgroup. [

Theorem 5. Let Xy, Xy be the classical groups and g : X1 — Xy be a group homomorphism. If B is a
neutrosophic multi subgroup of Xy, then the preimage ¢~ (B) is a neutrosophic multi subgroup of X;.
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Proof. Let B € NMS(X;) and x1, xp € Xj. Since g is a group homomorphism, the following inequality
is obtained:

g (B)(xixy ") (T'a(g(x1x, 1), I's(g (xlxz ), F'p(g(x12; )))
= (T'p(8(x1)8(x2) "), I'p (g (x) (x2)~ ) ‘B(g(x)g(x2)7h)
> (T'p(g(x1)) A T'p(g(x )) 5(8(x1)) V I's(8(x2)), F'5(8(x1)) V F'p(8(x2)))
= (T's(3(x1)), I’B(g( 1)), F'p(g(x1))) A (T'5(8(x2)), I's(8(x2)), F'p(8(x2)))
=g '(B)(x1) Ag~'(B)(x2).

Therefore, g~'(B) € NMS(Xy). O

Definition 17. Let X be a classical group. A € NMG(X); then, the compound function of A and A is
defined as _ _ _
ABA(z) = {2, T' asa(2), ' a54(2), F psa(z) : Vz € X}, (10)

where TiAaA(z) = (ny:ZTiA(y) A T"A(zyfl)), IiAaA(z) = (/\xy:ZIiA(y) Vv IiA(zy*I)) and Fi 454 (z) =
(Axy=:F'a(y) vV Fa(zy™)).

Theorem 6. Let A € NMS(X). Then, A € NMG(X) iff ASACA and ACA~1.

Proof. Let A € NMS(X) and x,y,z € X.

= T'a(xy) > T a(x) AT 4(y)
= T'a(2) 2 VAT a(x) AT a(y); xy = 2}
= T'as4(2)

= Ia(xy) < Ta(x) VIa(y)
= I'a(z) S MI'a(x) vV I'aly); xy = 2}

= Fa(xy) < Fa(x)VTa(y)
= Fa(z) < MFa(x) VF4(y)xy =2}

= ABACA.
Now, by Proposition 2, we get the conditions. Conversely, suppose ASACA and ACA~!

= T, (x) > T a(x) but TV, ( x)=TA(x 1) = Tia(x™1) > Tiy(x)
= I (x) S Tia(x) but Iy (x) = Iia(x~1) = Tia(x~1) < Ia(x)
= Fi'(x) < Fia(x)but Fi' (x) = Fia(x~1) = Fig(x~1) < Fig(x)

since A € NMS(X); then, to prove A € NMG(X), it enough to prove that T/ 4 (xy™1) > T4 (x) A
T a(y), Falxy™!) < Ta(x) VIa(y) and Fip(xy™) < Fla(x) VFa(y) Vx,y € X.
Now,
Tia(xy™) > Tigsa(xy™t)
— Veex{TLA() A Tia(z 1y 1))
> {TA(x) AT 4y ™)z = x}
> Tia(x) AT 4(y)

Falxy™) <Tasalxy™)
= Neex{l'a(@) vV I'a(z"" 2y~ 1)}
S{IA() VA ")z =2}
S Ta(x)VIa(y)
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Falxy™) <Fasalxy™')
~ Nex{Fa(z) V LAz 1y 1)}
< {Fa(x) v Fialy 1)z = 1)
S FA(x)VFay),

hence the proof. [
Corollary 3. Let A € NMS(X). Then, A € NMG(X) iff ASA = Aand ACA™L.
Proof. Let A € NMG(X). Then,

TiAéA(x) = \/{TiA(y) AT A(2);y,2z € X and yz = x}
> {Tia(e) AT ale'x)}
=T'a(x)

Tasa(x) = ATA(y)VIia(z);y,z € X and yz = x}
<{Ia() VIale ')}
=T'a(x)
Fiasa(x) = NFA(y)VFa(z);y,z € Xand yz = x}
< {Fla(e) VFa(e1x)}
= FiA(x).
Therefore, ACABA.
Hence, by the above theorem, the proof is complete. [

Theorem 7. Let X be a classical group and A,B € NMS(X).If A,B € NMG(X), then ANB € NMG(X).

Proof. Let x,y € X be arbitrary:
= Taly™) 2 Ta() AT 4™, Te(xy ™) > T'p(x) AT'5(y ")

Ip(xy™) ST a(x) VI4(y™h), Ip(xy™) < I'p(x) V Ty )
Fiu(xy™) S Fa(x) VF 4(y™ "), Fip(xy™) < Fip(x) vV F'p(y ™).

Now,

T pnp(xy™D) = T/ pmp(x) A T? pp(y 1) by definition intersection
> [T'a(x) AT a(y DA [T'p(x) AT'p(y )]
[Tia(x) ATig(X)] A [T A(y™) A Tig(y~1)] by commutative property of minimum
[T'A(x) AT'p(x)] A [T'a(y) A T'(y)] since A, B € NMG(X)
=T AﬁB( x) A T! o5 (y) by definition intersection
= T anp(xy™) > T anp(x) A T anp(y) (1)

Vol

(x) V I' g5 (y~1) by definition intersection
)V 4l )]V o) v I
X)VIg(x)]V[Iay™") Vv Ig(y~ )] by commutative property of maximum
X) V Ip(x)] V [I'4(y) V I'g(y)] since A, B € NMG(X)
A8 (x) V I 445 (y) by definition intersection
(xy ") < Tanp(x) Alamp(y) (2)

I pnp(xy™)

d:.
]

U A A

~D D =
:> ‘»“ =
55 };i?;m
[S~)
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5(X) V Fi np (y D by definition intersection

() VF Ay D]V [Fig(x) v Fip(y~)]

(x) Vv Fig(x )V [F’ (v v Fig(y~1)] by commutative property of maximum
(x) VFp(x)] V[Faly) V Fp(y)] since A, B € NMG(X)

Fi AmB( x)V F 4rp (y) by definition intersection

= Flarp(xy ") < Flanp(x) AF 4mp(y) (3)

From (1), (2) and (3), ANB € NMG(X), hence the proof. [

Fipnp(xy ™) Fign
[F ’A
[F'a
[F'a(x

AT IA

Remark 1. Let X be a classical group and { A;;i € I} be neutrosophic multiset on X. If { Aj;i € I} is a family
of NMG(X) over X, then their intersection (\;c; A; is alsoa NMG(X) over X.

Proposition 6. Let A,B € NMG(X). Then, Tizop(x) < Tiaop(x™1),Iaop(x) >
I agp(x™1), Fiagp(x) > Fipgp(x?).

Proof. Let x,y € X. Now,

Tagp(x™!) = V{T'a(x1), T'p(x"")}
> V{T 4(x), T'g(x)} since A, B € NMG(X)
=T a0(x)

Faop(x7h) = AI'a(x™), I'p(x71)}
< A{I'4(x), I'g(x)} since A, B€ NMG(X)
= I'gop(x)

Flagp(x™!) = AMFa(x™),Fp(x")}
< A{F'4(x),F'p(x)} since A, B€ NMG(X)
= F a0p(x),

poiniy

hence the proof.
From this, it is clear that, if A, B € NMG(X), then AUB € NMG(X) iff T! y55(xy) > T 405(x) A
T a0 (W), I' aop(xy) < T'acp(x) V I acp(¥), F aos(xy) < Fagp(x) V Flagp(y). O

Corollary 4. Let A,B € NMG(X). Then, AUB need not be an element of NMG(X).
Example 7. Assume that X = {1, —1,i, —i} is a classical group. Then,

A {(1;(05,0.3,0.2,0.1), (0.1,0.1,0.2,0.3),(0.2,0.3,0.4,0.5)),
1;(0.7,0.6,0.4,0.3),(0.1,0.2,0.2,0.4), (0.2,0.5,0.4,0.3)) },
(0.6,0.4,0.3,0.2),(0.1,0.3,0.3,0.4),(0.1,0.2,0.4,0.6)),
i;(0.6,04,0.3,0.2),(0.1,0.3,0.3,0.4),(0.1,0.2,0.4,0.6)) },
{(1;(0.5,0.6,0.6,0.4), (0.1,0.2,0.2,0.3),(0.2,0.4,0.4,0.5)),
1;(0.7,0.6,0.4,0.3),(0.2,0.1,0.2,0.3), (0.3,0.4,0.5,0.3)) }
are NM — groups.

= {(1;(05,0.6,0.6,04),(0.1,0.1,0.2,0.3), (0.2,0.3,0.4,0.5)),
(—1;(0.7,0.6,0.4,0.3),(0.1,0.2,0.2,0.3), (0.2,0.4,0.4,0.3)),
(i; (06 04,0.3,0.2),(0.1,0.3,0.3,0.4),(0.1,0.2,0.4,0.6)),
(—1,(0.6,0.4,0.3,0.2),(0.1,0.3,0.3,0.4), (0.1,0.2,0.4,0.6)) }.

=
i
=
=

AUB

However, T! 405(1) > T 405 (i) A T! gcg(—i) as i.(—i) = 1. Then, AUB ¢ NMG(X).

Proposition 7. If A € NMG(X) and Xy is a subgroup of X, then A‘X1 (ie., Arestricted to X1) € NM —
group(Xy) and is a neutrosophic multi subgroup of A.
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Proof. Let x,y € Xj. Then, xy’l € Xi. Now,

i

A () =Ty ™) 2 TA@ AT Al = T'a, () ATA (1),
1 1 1

Fa (g )y =Talxy™) STa(x)VIaly) =Ta_ (x)VIa (y),
Ix, Ix, Ix,

Fla, (™) = Faly™) S Fa() V) = Fa (0)VFa ().

X1

The second part is trivial. [

Definition 18. Let A € NMG(X) and B € NMG(Y') be two neutrosophic multi groups over the groups X
and Y, respectively. Then, the Cartesian product of A and B is defined as (AXB)(x,y) = A(x)XB(y) where

ASB ={(x,y), T azp(x,y), I'azp(x,9), F azp(x,y) : (x,y) € X x Y}, (11)
where T' 55 (x,y) = T'A(x) V T'3(y), I azp(x,y) = Ia(x) A'p(y), Fazp(x,y) = Fa(x) A F'p(y).

Example 8. Assume that (Z;,+) and (Z3,+) are classiccal groups. Define the neutrosophic multi group A
on (Zp,+) and B on (Z3,+) as follows:

A = {(0;(0.6,0.5,0.4,0.2),(0.2,0.2,0.3,0.4), (0.2,0.3,0.4,0.6)),
(1;(0.6,0.5,0.4,0.3),(0.2,0.1,0.2,0.3),(0.1,0.2,0.3,0.4)) }

B = {(0;(0.7,0.6,0.5,0.4),(0.2,0.2,0.3,0.4), (0.3,0.4,0.5,0.5)),
(1;(0.7,0.6,0.5,0.3), (0.3,0.4,0.3,0.4), (0.3,0.2,0.5,0.5)),
(2;(0.8,0.7,0.5,0.4), (0.1,0.3,0.2,0.3), (0.2,0.1,0.3,0.5)) }.

>
X
o+
I
—~

(0,0); (0.6,0.5,0.4,0.2), (0.2,0.2,0.3,0.4), (0.2,0.3,0.4,0.6)),
1);(0.6,0.5,0.4,0.2), (0.3,0.4,0.3,0.4), (0.3,0.3,0.5,0.6)),
2);(0.6,0.5,0.4,0.2),(0.2,0.3,0.3,0.4),(0.2,0.3,0.4,0.6)),
,0); (0.6,0.5,0.4,0.3), (0.2,0.2,0.3,0.4), (0.3,0.4,0.5,0.5)),
1); (0.6,0.5,0.4,0.3),(0.3,0.4,0.3,0.4), (0.3,0.2,0.5,0.5)),
(1,2);(0.6,0.5,0.4,0.3),(0.2,0.3,0.2,0.3), (0.2,0.2,0.3,0.5)) }.

Then, AX B is a neutrosophic multi group.
Theorem 8. Let A, B € NMG(X). The cartesian product of A and B is denoted by AXB € NMG(X).
Proof. From the Theorem 1, it is clear that a NMG(X) is a neutrosophic multi group:

T azp((x1, 1), (x2,92) 1) TAXB(xlxz vy Y

= (Xlxz ) AT (1w, " ) _

(T A(x1) AT p(22)) A (T ‘ 8(y1) AT'(y2))
(T'A(x1) AT'B(y1)) A (T'a(x2) A T'B(y2))
T asp(x1,91) AT 4z (x2,42)

v

I ysp((x 1), (x2,92) ™) IAXB(xlxz Ly )

= (Xlxz )\/[’ (ylyzl)
(Fa(x1) VIA(x2) V (I'p(y1) V I's(y2))
(I'a(x1) V I'p(y 1))V (I'a(x2) V I'p(y2))
I (

2
as(¥1,y1) VI azp(x2,y2)

A
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and
Flasp((x,m1), (x2,92)7Y) = Flasplax, vy, )
=Fa(axy ) VFp(y; ') ‘
< (Fa(x1) VFa(x2)) V (F'g(y1) vV F'p(y2))
= (Fla(x1) VF'g(y1)) V (F'a(x2) V F'p(y2))
= Fazp(x1,y1) V F' 4xp(x2,42)
forall x,y € X and i = 1,2, ..., P—hence the proof. [

5. Conclusions

The concept of a group is of fundamental importance in the study of algebra. In this
paper, the algebraic structure of neutrosophic multiset is introduced as a neutrosophic multigroup.
The neutrosophic multigroup is a generalized case of intuitionistic fuzzy multigroup and fuzzy
multigroup. The various basic operations, definitions and theorems related to neutrosophic multigroup
have been discussed. The foundations which we made through this paper can be used to get an insight
into the higher order structures of group theory.
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Abstract: In real applications, most decisions are fuzzy decisions, and the decision results
mainly depend on the choice of aggregation operators. In order to aggregate information more
scientifically and reasonably, the Heronian mean operator was studied in this paper. Considering
the advantages and limitations of the Heronian mean (HM) operator, four Heronian mean operators
for bipolar neutrosophic number (BNN) are proposed: the BNN generalized weighted HM
(BNNGWHM) operator, the BNN improved generalized weighted HM (BNNIGWHM) operator,
the BNN generalized weighted geometry HM (BNNGWGHM) operator, and the BNN improved
generalized weighted geometry HM (BNNIGWGHM) operator. Then, their propositions were
examined. Furthermore, two multi-criteria decision methods based on the proposed BNNIGWHM
and BNNIGWGHM operator are introduced under a BNN environment. Lastly, the effectiveness of
the new methods was verified with an example.

Keywords: bipolar neutrosophic number (BNN); BNN improved generalized weighted HM
(BNNIGWHM) operator; BNN improved generalized weighted geometry HM (BNNIGWGHM)
operator; decision-making

1. Introduction

In the real world, there is lots of uncertain information in science, technology, daily life, and so
on. Particularly under the background of big data, the uncertainty of information is more complex
and diverse. Now, how to make use of mathematical tools to deal with the uncertain information
is an urgent problem for researchers. In order to describe uncertain information, Zadeh [1] put
forward the concept of fuzzy sets. Considering the complexities and changes of uncertainty in the
real environment, there was a certain limit on fuzzy sets to describe complex uncertainty; then,
some extension theories [2—4] were put forward. Afterword, the neutrosophic set (NS) containing three
neutrosophic components and the single-valued neutrosophic set were proposed by Smarandache [5],
and the single-valued neutrosophic set was also mentioned by Wang and Smarandache [6]. Wang and
Zhang [7] put forward an interval neutrosophic set (INS) theory. Furthermore, an n-value neutrosophic
set [8] theory was proposed by Smarandache. The fuzzy set theory changed the binary view of
people, but ignored the bipolarity of things. Under the background of big data, the confliction
between data became more and more obvious. Traditional fuzzy sets could not do well in analyzing
and handing uncertain information with incompatible bipolarity; this phenomenon was identified
in 1994. For the first time, Zhang [9] introduced incompatible bipolarity into the fuzzy set theory,
and put forward the bipolar fuzzy set (BFS). The founder of the fuzzy set theory, Zadeh, also affirmed
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that the bipolar fuzzy set theory was a breakthrough in traditional fuzzy set theory [10]. Then,
Zemankova et al. [11] discussed a more generalized multipolar fuzzy problem, and pointed out that
the multipolar fuzzy problem can be divided into multiple bipolar fuzzy problems. Chen et al. [12]
studied m-polar fuzzy sets. Bosc and Pivert [13] introduced a study on fuzzy bipolar relational algebra.
Manemaran and Chellappa [14] gave some applications of bipolar fuzzy groups. Zhou and Li [15]
introduced some applications of bipolar fuzzy sets in semiring. Deli et al. [16] put forward a bipolar
neutrosophic set (BNS), which can describe bipolar information. Later, some studies about BNS were
put forward [17-20]. In this paper, we propose four Heronian mean operators for bipolar neutrosophic
number (BNN). Compared with the literature [17-19], the HM operator can embody the interaction
between attributes to avoid unreasonable situations in information aggregation. Compared with
the literature [20], the Bonferroni mean (BM) aggregation operator not only neglects the relationship
between each attribute and itself, but also considers the relationship between each attribute and other
attributes repeatedly. However, the BM aggregation operator has large computational complexity,
but the Heronian mean (HM) can overcome these two shortcomings.

The remaining sections are organized as follows: some related concepts are reviewed in Section 2.
The four operators are defined and their properties are investigated in Section 3; these four operators
are BNN generalized weighted HM (BNNGWHM), BNN improved generalized weighted HM
(BNNIGWHM), BNN generalized weighted geometry HM (BNNGWGHM), and BNN improved
generalized weighted geometry HM (BNNIGWGHM). Multi-criteria decision-making (MCDM)
methods based on the BNNIGWHM and BNNIGWGHM operators are established in Section 4.
A numerical example is provided and the effects of parameters p and q are analyzed in Section 5.
The conclusion of this paper is given in Section 6.

2. Some Basic Concepts

2.1. BNN and Its Operational Laws

Definition 1 [16]. Let U = {uy, uy, ..., uy} be a universe; a BNS T in U is defined as follows:

T = {{u,af (u), B (u), v (), a (), Br (w), 7p (w))|u € U},

in which ot (u): U —[0,1] means a truth-membership function, i (u):U — [0,1] means a

falsity-membership function and B (u):U — [0,1] means an indeterminacy-membership function,
corresponding to a BNS T and w«f (u), vy (u), By (u) : U — [~1,0] mean, respectively, the truth
membership, false membership, and indeterminate membership to some implicit counter-property
corresponding to a BNST.

Definition 2 [16]. Let U be a universe, and T'y and T'p be two BNSs.
1 = {(u,af (), B, (w), L, (u), op, (), Br, (u), vr, () |u € U},

T = {{u,af, (u), B, (w), i, (), e, (), B, (), 7, () Ju € U}
Then, the operations of T'y and T are defined as follows [16]:
® Ty C Ty, if and only ifuc;r1 (n) < a;rz(u), ,B;rl(u) > ﬂ;rz(u),'ya(u) > 'y;rz(u), and ap (1) =
a, (u), Br, (1) < Br, (1), rr, () < r, (),
@Ty = Ty ifand only if aff (u) = af (), Bf (u) = Bf, (), () = 7, (u), and ap (u) =
a, (), Br, () = Br, (), vp, () = rr, (u);
u,max(zx;rl(u),a;rz(u)),

Br, () +6p, (1)
Pry )by ()

\%

Bf, (W) +BE, (w)
Ty , T —,m1n<'y;r1(u),’)/1f2(u)>,

®T1U I = {{
s max (17, (), 75, (1)

)u e ul;
min(zxi(u),ar_z(u)), !

60



Mathematics 2019, 7, 97

) B, () +67, (0
By PR

u,min(vcﬁ(u),zxﬁz(u) , ,max('y;rl(u),’yrt(u)),
), Tt
LR

max (ag, (1), 7, (1)), smin (7, (1), 77, (1))
For convenience, we denote a bipolar neutrosophic number (BNN) by T = (af, B, v, a7, Bz, vz )-

@Iy N = {( Mueul;

Definition 3 [16]. Let 7 and T be two BNNs, my = (af,Bi, 75, ag,Be, 7)) and ©(=
ad, B, v, a5, B, o), and 6 > 0; then, the operations for BNNs are defined as follows [16]:

& © = (a7 + o, —adad, Br B, 1V —anan, — (=B — Bn — Bubn). — (—1n — 1 —1a1n)) (D)
u® 1w = (adad, B+ BL — BB v v — v, —(Cag —ag, —agag), =B Br, —1n 1) (2)
or = (1—(1-az)" (B3), (v3) ,—(—wa)éf—(l— (1- (—/351))5),—(1— (1- (—%’1))5)>; ®)

ul = (@) 1- (1-B7) /1*(1*%*1)5/*(1*(1*(*wi))‘s)r*(*ﬂi){*(*vi){s% )

Definition 4 [16]. Let T = (af, BT, 7L, a5, Bz, 77 ) be a BNN; then, we define s(t), a(t), and c(t) as the
score, accuracy, and certain functions, respectively; they are as follows:

S(0) = (@ +1-BE+1-7F +1+a5 —f7 —77); ©
u(T) = /X'r 'Y'r R (6)
o(t) = ag — 7. )

Definition 5 [16]. Let 7 and 7, be two BNNs, w(= «f,Bi, v, oz, B vy) and & =
(a%,ﬁg,'y;;,agz,ﬁ;z,'y;z); then, we can get Figure 1.

r

Compare 1, and 1,

s e s

i e
v v
v Y
( won > — \a(w ::;»N-yz\w:>
2 v
(w>n ) <L@>c(%\/—w<@:r®
( G ow)
i i
E— S
(w>n ) ((u=u )

Figure 1. The relationship between 7; and .
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2.2. Generalized Weighted HM (GWHM), Improved Generalized Weighted HM (IGWHM), Generalized
Weighted Geometry HM (GWGHM), and Improved Generalized Weighted Geometry HM
(IGWGHM) Operators

Definition 6 [21]. Let e = (e, ¢€p,- - -, &) be the weight vector of a collection of non-negative real numbers
(1, -0, ), Z}‘Zl ej=1ande; € 0,1],andt, s > 0. Then,

1
GWHM "*(t1, 7., %) = ( iy Dia Ty (67 (e)* )™, ®
which is called a GWHM operator.

Definition 7 [22]. Let e = (e, ¢€p,- - -, &) be the weight vector of a collection of non-negative real numbers
(t1, v, ™), Z;-‘Zl ei=1ande; € [0,1],and t, s > 0. Then,

1

s

¢ 1 Kok !
GWHM" (1, ,..., &)= ( 10 ®(gle’ ' @) > , )

where A = Z;‘ 1 2 ® is called an IGWHM operator.

Definition 8 [21]. Let e = (e, ¢€p,- - - , &) be the weight vector of a collection of non-negative real numbers
(t1, -0, ), Z}‘Zl ej=Tlande; € [0,1],and t, s > 0. Then,

k k 2
GWGHM"*(t1, Ty,..., T) = —— ® @ ((t7)) & (s7;)) K&, (10)

which is called a GWGHM operator.

Definition 9 [22]. Let e = (g1, €2, - - - , &) be the weight vector of a collection of non-negative real numbers
(11, ©,--e, ), Z;-‘Zl gj=1lande; € [0,1],and t, s > 0. Then,

(k+1-j) &

1 k k(k+1) yk

IGWGHM"S(11, To,..., 1) = H_S(@l@(tr]@sn) e ) 1)
j=li=j

which is called an IGWGHM operator.

3. Some BNN Aggregation Operators

3.1. GWHM Operators for BNNs

Definition 10. Let t, s > 0, and t +s # 0, a collection 7; = (aij,ﬁ%,’y#j,a;],ﬁ;j,’y;},) (Gj=12-,k) of
BNN; then, we define the BNNGWHM operator as follows:

BNNGWHM"*(1y, 1,..., ) =

Kk
)2 2 (¢77) Heim)® , (12)

j=1

wherez _1¢j=Tlande; € [0,1].

According to Definitions 3 and 10, the following theorem can be attained:
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Theorem 1. Set a collection 7; = (ai,ﬁi}_,'y?j,a;],[&;j,'y;j) (j=1,2,---,k) of BNNs, using the
BNNGWHM operator; then, the aggregation result is still a BNN, which is given by the following form:

BNNGWHM"*(t1, 13, ) = (ﬁé zé/ (ﬂm)t(zzr’)ﬁ)i :
(1= Fif (- 0 (o)) 0 ,a;,y’)’v)%)f] (- At (- ) - 0‘*)“)’)%)(%{ a3)

e Vo)) (A ca)) )
(Al - 0= )Y (- 0= o)) ) (1= (- 0 - ()Y (- 0- () ))

where + = ﬁ, Z;(:l ej=1land ¢; € [0,1].
Proof.
Mo = (= (1) (81)", ()" ~(=a5)". = (1= (1= (=87)) ") = (1= (1= (=)
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This proves Theorem 1. [

Theorem 2. (Monotomczty). Set T] = <a+ /3+ fyT] T B 'yT]) (j=12--,k) and o; =
(oc+ ﬁ* o B o 'yg> (j=1,2,--- k) as two collectzons of BNNs; zfuc+ < Dc+ ,BJr > ﬁ* ’)/T >
'y,,anda >/x ﬁr</3¢7 Yo < Voo the

BNNGWHM"5(1y, 1,..., &) < BNNGWHM"%(cy, 0,..., 01).

Proof. For (x%', < a*l;j,ﬁ}*; > ,B*l;j,'yj]', > 'y*[;/ and fg > a}j,lB;j < /S_U/,'y;i <7 it is obvious that

(1= ()" (- (=) ) < (1= (1-0) ) (1= (-w) )’
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Similarly

and
1\
(et (- 0- - ()Y (- (- () )) )
1\ 5
ittt (- 0= (- () - - o)) )
Thus, BNNGWHM" *(11, 13, ..., %) < BNNGWHM" *(01,03,...,04); this proves Theorem 2.
O

3.2. Improved Generalized Weighted HM Operators for BNNs

Definition 11. Let t, s > 0, and t +s # 0, a collection Tj(= uc;*]f,ﬁ;*;,'y;*]',a;j,ﬁ;j,'y;j (j=1,2,-,k) of
BNN; then, we define the BNNIGWHM operator as follows:

k Kk +s
BNNIGWHM "*(t1, 1,..., ) = < W O D (e @T°) ) , (14)
j=1 &=

it =1 i)

where 2}‘:1 ej=1lande; € [0,1].
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According to Definitions 3 and 11, the following theorem can be attained:

Theorem 3. Set a collection Tj(= aij,ﬁij,'y;;,a;j,ﬁ;j,'y;j (j=1,2,---,k)) of BNNs, using BNNIGWHM
operator; then, the aggregation result is still a BNN, which is given by the following form:

1

k k s
BNNIGWHM" *(1y, T3,..., T() = ( W o D (et ® 1) ) =
=1 Lai=j &j

(- (hl-)e)") )

P

(15)

k
where A = Z}‘:l Zi-‘:j €jei, '21 ej=1and ¢ € [0,1].
i=

The proof of Theorem 3 can be achieved according to the proof of Theorem 1; thus, we omit
it here.

Theorem 4. (Idempotency). Set a collection T; = (pcij,ﬁij,'y;;,a;j,ﬁ;j,'y;j} (j=1,2,---,k) of BNNs;
if tj = T, then

BNNIGWHM "*(ty,1,..., 1) = BNNIGWHM " *(1,7,...7) = 1.
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Proof. For 7j = 7(j = 1, 2, ..., k), the following result can be easily attained:

BNNIGWHM"*(t;, 1,..., ) = BNNIGWHM"5(t,71,...7T) =

1

k k ; 5\ &€ l\ o
‘(“(ﬂﬂ»(l‘(“” (@f)") ) )

1<1k11'°1(1<15+>< ﬂif)”")A) ,

{ = ).
g€
<1<H (-0 (-6:7)" ) ) ,
j=1i=j
1
k k €je A
(1 (H I1(1- (=79) (=77)°)” ) )
J=1li=]
1 1
((Uli)t+s>t+5,lf ((17 :'[,)tJrS)HS,
= a5
== (A=) (1= (A= (ar)™) " ),>: (@t  BE,vE 0, Br ) = T
.. _l
_((_ﬁ;)ﬂrs)t+s,_<(_,)/;)f+s>t+>
This proves Theorem 4. [
Theorem 5. (Monotonicity).  Set 7, = (zxij, ij,'yj.]f,a;l_,ﬁ;j,'y;l_) (=12 ,k) and oj

(at ﬁ@,yf, 0B V) (j=1,2,--+ k) as two collections of BNNs; iflef < oc* ,BT ﬁ@},,'ﬁj

'y+ and a > 0, By < Boy vy < ¥, then,
BNNIGWHM "5(1,1,...,7) < BNNIGWHM "*(cy, oo,..., o}).

The proof of Theorem 5 is similar to Theorem 2; thus, we omit it.

Y

Theorem 6. (Boundedness). Set a collection Tj = <u¢§;,ﬁij,'ﬁ],o¢;j,ﬁ;],'y;j> (j=1,2,--- k) of BNNs, and

min max max max |« ), min min
- () max(p) max(3 _ o) min (B ) minte),
B ()i (T]) min(rz) "= o max (B max )
~ < BNNIGWHM"%(t, ©,..., ©) <t".
Based on Theorems 4 and 5, the following can be obtained:

T~ = BNNIGWHM"*® (t7,77,..., 7" )and T% = BNNIGWHM"* (z*,t%,...,t").

BNNIGWHM?"$(t~,7~,...,7") < BNNIGWHM'* (11, ©,..., T)
< BNNIGWHM"* (t+,7+,...,7%).
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Then, 7~ < BNNIGWHM"® (71, 1,..., %) <t

This proves Theorem 6.

3.3. GWGHM Operators of BNNs

Definition 12. Let t, s > 0, t + 5 # 0, a collection T; = <a§;,ﬁij,’y$j,a;j,ﬁ;j,’y;j> (j=1,2,---,k) of BNNs;
then, we define the BNNGWGHM operator as follows:

Q>

k 2
BNNGWGHM"$(ty, 1,..., ) = H’LS ((t7)" & (sy)") Fm, (16)
j=1i=j

Il
R

where 2}‘:1 ej=1and ¢ € [0,1].
According to Definitions 3 and 12, the following theorem can be attained:

Theorem 7. Set a collection 7; = (a;,ﬁij,'ﬁj,a;ﬂﬁ;jﬁ%) (j=1,2,---,k) of BNNs, using the
BNNGWGHM operator; then, the aggregation result is still a BNN, which is given by the following form:

k k 2
BNNGWGHM" (11, Ta,..., T¢) = s ® @ ((t17)% @ (s73)") FET) =

l_(1_H'k'(l_<l‘(l‘(l‘(“%) ) (1—(1_(1_(@,))35,))1)#»’

j=1i=j

< j=1i=j ’1 : 17)
_<1_]ﬁ“ﬁ](1_(1_<1_(_%)‘)”) (1-(1- (o) )))
(= (-l (- (6 G ) ) (-0 ) ) ) )
—|1- (1_jﬁ1ﬁ,<l_ (1— (1— (1— (—7;/))[)8]> <1— (1_ (1_ (_WTT))S)%)) 1) s
where } = ﬁ, }(:18/' =1 and ¢ €[0,1].
Theorem 8.  (Monotonicity).  Set 7; = <a§;,ﬁ§;,’y;,a;j,ﬁ5,y;j> (j=1,2,---,k) and o =

Vv

(@ By Vo o B V) (j=1,2,- -+ k) as two collections of BNNs; if af, < a'y, Bt > By, 7t =

'yT,j and o = nc}/_,ﬁ;j < ‘B}l_,'y;j <o then,
BNNGWGHM"*(t, 1,..., %) < BNNGWGHM"*(cy, oo,..., 0}).

The proofs of theorems about BNNGWGHM are similar to those about BNNGWHM,; thus, we omit them.
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3.4. IGWGHM Operators of BNNs

Definition 13. Let t, s > 0, and t +s # 0, a collection 7; = (a;,ﬁij,'yij,a;/_,ﬁ;j,"y;/) (j=1,2,-,k)of
BNNs; then, we define the BNNIGWGHM operator as follows:

(k1) g
1 k k kD) gk o
BNNIGWGHM" (1, T, ..., T) = t+s(®1 ® (ty@sy) " D ) (18)
j=1i=]

where Z;;l ej=1ande; €0,1].
According to Definitions 3 and 13, the following theorem can be attained:

Theorem 9. Set a collection T; = (a%,ﬁ%,y%,a%,ﬁ%,w;j_) (j=1,2,---,k) of BNNs, using the
BNNIGWGHM operator; then, the aggregation result is still a BNN, which is given by the following form:

BNNIGWGHM"® (11, Tp,..., T) = tig(é & (m@st) z{;l,.gm> _
j=li=j

k . NN

(A0 - ) - @) )
1\
(-fn0-e0E))
Kk k o\ & s

(-BAC-C ) )

Kk k t s\
(e 6 ) 6 ()
j=1i=j

. k

where + = 25:;211_)]) T E’_E , 21 ej=1ande; € [0,1].
m=j <m j:

Theorem 10.  (Monotonicity). ~ Set Tj = <aij,ﬁ;;,'y;,u¢;j,,3;j,'y;j) (j=12---,k) and 0; =
a‘*t;j,/%*(;j,'y‘;j,a}j,ﬁ;j,'y;] (j=1,2,--- k) as two collections of BNNs; if a%’, < (x‘ﬁ;j,ﬁ‘g > ﬁ‘*(;j,'yj]f >

74{,], and a > ac}/,,ﬁ;j < ﬁ}/_,y;j_ < Vo then,

BNNIGWGHM"® (1, 1,..., ) < BNNIGWGHM"*(oq, 03,..., 0%).
Theorem 11. (Idempotency). Set a collection T; = (a;,ﬁ;,'y;,a;j,ﬁ;j,wa (j=1,2,---,k) of BNNs; if
T=T1, then,

BNNIGWGHM"® (1, 1,..., ©) = BNNIGWGHM"*(t,7,...7) = T.
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Theorem 12. (Boundedness). Set a collection 7j = <a§;, ;;,'y;,a;j,ﬁ;],'y;) (j=1,2,,k) of
BNN, and let T~ = (min(aij_),max(ﬁ%),max(’yi},),max(oc;j_),min (,B%),min(’y?j_)) ,and T4 =

(max (ucﬁ.]_) ,min (ﬁ{) , min('y;;), min (zx;j_) ,max (ﬁ;j), max <'y;/) ); then,

T~ < BNNIGWHM"3(1;, 1,..., ©) < 71"

The proofs of theorems about BNNIGWGHM are similar to those about BNNIGWHM; thus,
we omit them.

4. MCDM Methods Based on the BNNIGWHM and BNNIGWGHM Operator

We applied the BNNIGWHM and BNNIGWGHM operator to manage MCDM problems within
BNN information in this section.

Suppose that a set I' = {I'y,Iy,...,I;} of alternatives and a set ® = {®1,Dy,..., Py} of
attributes, with the weight vector ¢ = (g1, ...,€y) of <I>j(j =1,2,...,m), in which 2;7:1 g =1
and ¢; € [0,1]. Decision-makers use BNNs to evaluate the alternatives. The evaluation values
7; for I'; associated with the attribute ®; are represented by the form of BNNs. Assume that
(.ﬁj)nxm = ((ai‘,j, /3{_/_, 'yrf_/_, Xz 5;‘,],, 7;,/,)) o is the BNN decision matrix.

Now, based on the BNNIGWHM and BNNIGWGHM operator, we can develop some
decision algorithms:

Step 1: Construct the decision matrix:

(-qf)nxrn = (<“gj’ﬁ€j’7€j’aTi,"ﬁTij"yTi]))nxm'
Step 2: According to Definition 11 or Definition 13, calculate T;.
Step 3: According to the Equation (5), calculate the score value of s(7;) for 7;(i = 1,2,...,n).
Step 4: According to Definition 5, rank all the alternatives corresponding to the values of s(T;).

5. Illustrative Example

In this section, we used a numerical example adapted from the literature [16]. A woman wants
to buy a car. Now, four kinds of cars I';,I';, '3, and I’y are taken into account according to gasoline
consumption (P1), aerodynamics (P;), comfort (®3), and safety performances (®4). The importance
of these four attributes is given as € = (0.5,0.25,0.125, O.125)T. Then, she evaluates four alternatives
under the above four attributes in the form of BNNs.

5.1. The Decision-Making Process Based on the BNNIGWHM Operator or BNNIGWGHM Operator

Step 1: Establish the BNN decision matrix (7;), , provided by customer, as shown in Table 1.

Table 1. The decision matrix (7;),, ,-

L2} D> D3 Dy
I; (05,07,02,—07,—03,—0.6) (0.4,04,0.5,—07,—0.8,—04) (0.7,07.0.5,—08,—0.7,—06) (0.1,0.5,0.7,—0.5,—02, —0.8)
I, (09,07,05-07,—07,—01) (07,06,08,—0.7,~0.5,-0.1) (0.9,0.4,0.6,—0.1,—0.7,—05) (05,02,0.7,—0.5,—0.1,—0.9)
I3 (0.3,04,02,—06,—03,—07) (02,02,02,—04,~07,-04) (0.9,0.5,0.5,—-0.6,-05,—02) (0.7,05,03, 0.4, —0.2,—0.2)
Iy (09,07,02,—08,—06,—01) (03,0502, ~05~05-02) (0.5,04,0.5,—-0.1,-07,—02) (0.4,02,08,—05,—0.5,—0.6)

Step 2: According to Definition 11 (suppose p = q = 1) and ¢ of attributes, calculate 7;(i = 1,2,3,4):
71 = (0.4656,0.5984, 0.3248, —0.6874, —0.4906, —0.5832),

T = (0.8362,0.5751,0.5918, —0.5868, —0.6108, —0.2872),

70



Mathematics 2019, 7, 97

73 = (0.4212,0.3684,0.2341, —0.5268, —0.4254, —0.5540),
14 = (0.7456,0.5504, 0.2669, —0.5838, —0.5793, —0.2006).

Step 3: According to Equation (5), calculate thscore value of s(7;) for 7;(i = 1, 2, 3, 4):
s(7y) = 0.4881;s(12) = 0.4968; s(13) = 0.5458; s(14) = 0.5207.

Step 4: According to Definition 5, rank I's > I'y = I'; > I'1 corresponding to s(T;); thus, '3 is the
best choice among all the alternatives.
Now, we use the BNNIGWGHM operator (set p =1, q = 1) to deal with this problem.
Step 1”: Just as described in step 1.
Step 2@ According to Definition 13 (suppose p = g = 1) and e of attributes, calculate
T(i=1,2 3 4):
0.3834,0.5909, 0.4846, —0.6881, —0.4467, —0.5722),

173 = (0.4112,0.3994, 0.2991, —0.5106, —0.3982, —0.3551),

Ty =

= )
T = (0.7371,0.5369, 0.6627, —0.5747, —0.4484, —0.2381),
( )
(0.4922,0.5086,0.4579, —0.5674, —0.5684, —0.2139).

Step 3”: According to Equation (5), calculate the score value of s(7;). for 7;(i =1, 2, 3, 4):
s(11) = 0.4398; 5(1) = 0.4416; s(13) = 0.4926; s(14) = 0.4568.

Step 4": According to Definition 5, rank I'; > T'y > I'; > T'j corresponding to s(7;); thus, '3 is the
best choice among all the alternatives.

5.2. Analyzing the Effects of the Parameters p and q

In this section, we took different parameters p and g for calculating 7;(i =1, 2, 3, 4) for the
alternative I';, and then we analyzed the influence of the parameters p and g for the ranking result.
Tables 2 and 3 show the values of s(77) to s(74) and the ranking results.

Table 2. Ranking results with different values of p and g based on bipolar neutrosophic number
improved generalized weighted Heronian mean (BNNIGWHM) operator.

No. p.q BNNIGWHM Ranking
1 p=19=0 s(r)=04915s(1) = 04782, 5(13) =0.5471,s(14) =0.5116 T3 =Ty >=T71 =T,
2 p=1,4=05 s(1)=0.4823, S(Tz) 0.4809, s(13) = 0.5392, s(74) =0.5083 T3 =Ty =T =1,
3 p=19=2 s(r)=0.5059,s(ry) =0.5316, s(13) = 0.5658, s(14) =0.5495 T3 =Ty =TT
4 p=0,g=1 s(r)=0.5021,s(1p) = 0.5433, s(13) = 0.5659, s(14) =0.5517 T3 =Ty >=Tp =T}
5 p=054g=1 s(17)=04871,5(1) = 0.4966, s(13) = 0.5445,5(14) =0.5215 T3 =Ty >=Tp =T
6 p=2,q=1 s(ty)=0.4981,s(1) =0.5161,s(13) = 0.5589, s(174) =0.5346 I3 =Ty > T =Ty
7 p=2,9=2 s(r)=0.5105s(1) = 0.5425, s(13) = 0.5730, s(14) =0.5567 T3 =Ty =T =T

Table 3. The ranking with different p and g based on BNN improved generalized weighted geometry
HM (BNNIGWGHM) operator.

No. . q BNNIGWGHM Ranking
1 p=1,0=0  s(t)=05228,5(1) = 0.5768, 5(13) = 0.5967, 5(73) = 0.5955 T3 > [y = [p = Iy
2 p=1,4=05 s(17)=04831,5(1) = 0.4893, 5(13) = 0.5358, 5(14) = 0.5039 T3 = [y = T = Iy
3 p=1,0=2  s(1;)=0.3834,5(1) = 0.3990, 5(73) = 04504, 5(73) = 04160 T3> [y = Tp = T4
4 p=0,9=1 s(r)=04190,s(m) = 0.4376,s(13) = 04841, s(14) =0.4584 T3 =Ty =TT
5  p=05g=1 s(r)=04411,5(1y) = 04492, 5(13) = 04957, 5(14) = 04664 T3> Ty =T, =T}
6 p=2,g=1 s(1)=04275,5(1,) = 04211, 5(13) = 04791, 5(13) =04341 T3> T4 > T = Iy
7 p=2,g=2  s(t)=0.3873,5(1) = 0.3913, 5(73) = 0.4496, 5(13) = 04057 T3> T4 > Tp > I
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From the decision results based on BNNIGWHM in Table 2, we can see that all the ranking orders
areI'; > I'y = I'; > I'p in No. 1-2 and all the ranking orders are I'; > I'y > I'; > I'; in No. 3-7; thus,
the best choice is I'3. From the decision results based on BNNIGWGHM in Table 3, we can see that
the ranking order is I'; > I'y > I'; > I'; in No. 6 and the others are I's > I'y > I'; > I'y; thus, the best
choice is also I's.

IGWHM and IGWGHM aggregation operators can take into account the correlation between
attribute values and can better reflect the preferences of decision-makers and make the decision results
more reasonable and reliable. A BNS has two fully independent parts, one part has three independent
positive membership functions and the other has three independent negative membership functions,
which can deal with uncertain information containing incompatible polarity. Here, we used the
BNNIGWHM and BNNIGWGHM operators to solve real problems and analyze the influences of
parameters p and q on the results of decisions, using different parameter values for sorting and
comparing the corresponding results. Then, it could be found that the influences of parameters p
and g on the results of decisions were small in these both methods. Comparing the results of the two
methods, it can be found that their results were consistent; therefore, the proposed methods in this
paper have feasibility and generality.

5.3. Comparison with Related Methods

In this section, we compared the methods proposed in this paper with other related methods
proposed in the literature [16,19]. Table 4 lists the ranking results.

Table 4. Decision results based on four aggregation operators.

Aggregation Operator Score Value Ranking

The bipolar neutrosophic weighted average operator
(Aw) and bipolar neutrosophic weighted geometric
operator (Gw) proposed in Reference [16]

(1) =0.50, 0(12) = 0.52,

o(t3) = 0.56, 0(15) = 0.54 T3 -Ty-Ta-Th

The Similarity measures of bipolar neutrosophic sets
proposed in Reference [19] with the following variables:

(IS0 o,

In Table 4, we can see that the ranking results were different; I'; was obtained as the optimal
alternative except the method in Reference [19] with A = 0.9. Compared with these related methods,
the BNNIGWHM and BNNIGWGHM operators considered the correlation between attribute
values and could better reflect the preferences of decision-makers and make the decision results
more reasonable and reliable while dealing with uncertain information containing incompatible
polarity. Thus, we think the proposed methods in this paper are more suitable to handle these
decision-making problems.

6. Conclusions

This paper firstly proposed the BNNGWHM, BNNIGWHM, BNNGWGHM, and BNNIGWGHM
operators for BNNs and discussed the related properties of these four operators. Furthermore,
we developed two methods of MCDM in a BNN environment based on the BNNIGWHM and
BNNIGWGHM operators. Finally, these two methods were used for a numerical example to establish
their effectiveness and application. Dealing with the calculation, we took different values for p and
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g to observe the sorting results and found that both parameters had little influence on the decision
results. Furthermore, we compared the proposed methods with related methods and discovered that
the selection result using the proposed methods was the same as the majority of existing methods.
In the future, we will make further research bipolar neutrosophic sets, using, e.g., the technique
for order preference by similarity to an ideal solution (TOPSIS) and VIKOR (VIseKriterijumska
Optimizacija I Kompromisno Resenje, that means: multicriteria optimization and compromise solution,
with pronunciation: vikor) methods with BNS [23], the weighted aggregated sum product assessment
(WASPAS) method with BNS [24], the Multi-Attribute Market Value Assessment (MAMVA) method
with BNS [25], and so on [26-28].
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Abstract: Viable collection is one of the imperative instruments of decision-making hypothesis.
Collection operators are not simply the operators that normalize the value; they represent progressively
broad values that can underline the entire information. Geometric weighted operators weight the
values only, and the ordered weighted geometric operators weight the ordering position only. Both
of these operators tend to the value that relates to the biggest weight segment. Hybrid collection
operators beat these impediments of weighted total and request total operators. Hybrid collection
operators weight the incentive as well as the requesting position. Neutrosophic cubic sets (NCs) are a
classification of interim neutrosophic set and neutrosophic set. This distinguishing of neutrosophic
cubic set empowers the decision-maker to manage ambiguous and conflicting data even more
productively. In this paper, we characterized neutrosophic cubic hybrid geometric accumulation
operator (NCHG) and neutrosophic cubic Einstein hybrid geometric collection operator (NCEHG). At
that point, we outfitted these operators upon an everyday life issue which empoweredus to organize
the key objective to develop the industry.

Keywords: neutrosophic cubic set; neutrosophic cubic hybrid geometric operator; neutrosophic cubic
Einstein hybrid geometric operator; multiattributedecision-making (MADM)

1. Introduction

Life is loaded with indeterminacy and vagueness, which makes it hard to get adequate and exact
information. This uncertain and obscure information can be tended to by fuzzy set [1], interim-valued
fuzzy set (IVFS) [2,3], intuitionistic fuzzy set (IFS) [4], interim-valued intuitionistic fuzzy set (IVIFS) [5],
cubic sets [6], neutrosophic set (Ns) [7], single-valued neutrosophic set (SVNs) [8], interim neutrosophic
set (INs) [9], and neutrosophic cubic set [10]. Smarandache first investigated the hypothesis of
neutrosophic sets [7].

Not long after thisinvestigation, it became a vital tool to manage obscure and conflicting
information. The neutrosophic set comprises of three segments: truth enrollment, indeterminant
participation, and deception enrollment. These segments can, likewise, be alluded to as participation,
aversion, andnon-membership, and these segments range from ]0~, 1" [. For science and designing
issues, Wang et al. [8] proposed the idea of a single-valued neutrosophic set, which is a class of
neutrosophic set, where the parts of single-valued neutrosophic set are in [0,1]. Wang et al. stretched it
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outto the interim neutrosophic set [9]. Jun et al. [10] consolidated both of these structures to frame
the neutrosophic cubic set, which is the speculation of single-valued neutrosophic set and interim
neutrosophic set. These structures drew scientistsinto apply it to various fields of sciences, building
day-by-day life issues.

Decision-making is a basic instrument of everyday life issues. Analysts connected distinctive
collection operators to neutrosophic sets and its augmentations. Zhan et. al. [11] took a shot at
multicriteria decision-making on neutrosophic cubic sets. Banerjee et al. [12] utilized GRA(Grey
Rational Analysis) for multicriteria decision-making on neutrosophic cubic sets. Lu and Ye [13]
characterized cosine measure inneutrosophic cubic sets. Pramanik et al. [14] utilized a likeness measure
to neutrosophic cubic sets. Shi and Ye [15] characterized Dombi total operators on neutrosophic cubic
sets. Baolin et al. [16] connected Einstein accumulations to neutrosophic sets. Majid et al. [17] proposed
neutrosophic cubic geometric and Einstein geometric collection operators. Different applied aspects of
different types of fuzzy sets can be seen in [18-27].

A compelling accumulation is one of the imperative instruments of decision-making. Collection
operators are not simply the operators that normalize the value, theyrepresent progressively broad
values that can underline the entire data. The geometric weighted operator weights the values just
where the requested weighted geometric collection operators weight the requesting position of values.
In any case, the issue emerges when the load segments of weight vectors are so that one segment is a
lot bigger than the other in parts of the weight vector. Motivated by such a circumstance, the thought
of neutrosophic cubic crossbreed geometric and neutrosophic cubic Einstein hybrid geometric total
operators are proposed. That is the reason we present the idea of neutrosophic cubic hybrid geometric
and neutrosophic cubic Einstein hybrid geometric (NCEHG) collection operators. More often than
not, the decision-making strategies are produced to pick one fitting option among the given. Be that
as it may, frequently, in certain circumstances, we instead organize the option to pick a suitable one.
Roused by such a circumstance, a technique is being created toprioritize the options. A numerical
model is outfitted upon these operators to organize the vital objective to develop the industry.

2. Preliminaries
This section consists of some predefined definitions and results. We recommend the reader to

see [1-3,6-10,16].

Definition 1. [1] Mapping : U — [0,1] is called fuzzy set, Y(u) is called membership function. Simply
denoted by 1.

Definition 2. [2,3] Mapping ¥ : U — D[0,1], D[0, 1] has interval value of [0, 1], and is called interval-valued
fuzzy set(IVF). For all u € U ¥(u) = {[wL(u),4)”(M)]|1/)L(u),gb“(u) € [0,1]and Y& (u) < ¢u(u)} is
membership degree of u in Y. Simply denoted by Y= [‘I’L, ‘I’u].

Definition 3. [6] A structure C = {(u,‘?(u),‘l’(u))‘u € l,[} is cubic set in U, in which ¥ (u) is IVE in U, i.e.,
Y= [‘I’L,‘YU], and ¥ is fuzzy set in U. Simply denoted by C = (‘T’, ‘Y) CY denotes collection of cubic sets
in U.

Definition 4. [7] A structure N = {(TN(u),IN(u),FN(u))|u € U} is neutrosophic set (Ns), where
{Tn(u), In(u), Fn(u) €]07,17 [} and T (1), In (1), Fn (1) are truth, indeterminacy, andfalsity function.

Definition 5. [8] A structure N = {(TN(u),IN(u),FN(u))|u € U} is single value neutrosophic set (SVNs),

where {Tn (u), In (1), En (1) € [0, 1]} are called truth, indeterminacy, and falsity functions respectively. Simply
denoted by N = (Tn, In, FN)-
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Definition 6. [9] An interval neutrosophic set (INs) in U is a structure N = {(TN(u),TN(u),FN(u))|u € U}
where {TN(u),TN(u),fN(u) € D[O,l]} respectively called truth, indeterminacy, and falsity function in
U. Simply denoted by N = (TN,TN,I?N). For convenience, we denote N = (TN,TN,I?N) by N =
(T = [T T I = [ 1] B = [P )

Definition 7. [10] A structure N = {(u, TN(u),TN(u),fN(u), TN(u),IN(u),FN(u))'u € LI} is neutrosophic
cubic set in U, in which (TN = [TL , T%],TN = [IIL\],I%],I?N = [FL ,F%]) is an interval neutrosophic set and
(TN, In, FN) is neutrosophic set in U. Simply denoted by N = (TN,TN,fN, TN, IN,FN), [0,0] < Ty + Iy +
Fy < [3,3], and 0 < Ty + Iy + Fn < 3. NY denotes the collection of neutrosophic cubic sets in U. Simply
denoted by N = (TN,TN,I?N, N, IN,FN)-

Definition 8. [16] The t-operators are basically Union and Intersection operators in the theory of fuzzy sets
which are denoted by t-conorm (I*) and t-norm (T), respectively. The role of t-operators is very important in
fuzzy theory and its applications.

Definition 9. [16] I : [0,1] x [0,1] — [0, 1] is called t-conorm if it satisfies the following axioms.
Axiom 1T*(1,u) = 1and T*(0,u) =0
Axiom 2T (u,v) = T" (v, u) for all a and b.
Axiom 3T (1, " (v, w)) = I*(T*(u,v),w) forall a, b, and c.
Axiom 4 If u <’ andv <v', then T*(u,v) < T*(uw',v")

Definition 10. [16] T : [0,1] x [0,1] — [0,1] is called t-norm if it satisfies the following axioms.
Axiom 1T(1,u) = uand T(0,u) =0
Axiom 2T (u,v) =T'(v,u) forall a and b.
Axiom 3T (u,T'(v,w)) = T'(I'(u,0),w) forall a, b, and c.
Axiom4If u < andv <v', then T'(u,v) <T(u/,v")

The t-conorms and t-norms families have a vast range, which correspond to unions and
intersections, among these, Einstein sum and Einstein product are good choices since they give
smooth approximations, like algebraic sum and algebraic product, respectively. Einstein sums & and
Einstein products ® are respectively the examples of t-conorm and t-norm:

. _u+v
T(u,0) = 1+uv’
Te(u,0) = o

1+(1-u)(1-0)

Definition 11. [17] The sum of two neutrosophic cubic sets, A = (TA,E,fA,TA,IA,FA), where TA =

L rul7, — [jL jul®, — [pL ru _ (T T. T T [tL Ul T, —
[TA,TALIA = 15, 14) Fa = [F},FY], and B = (Ts,Is,Fs, Ts, I, Fg), where Tg = [T5, T{|Is =
|15, 14], Fy = [FL, FY] is defined as

L L LL U u Uru
[TA+TB—TATB,TA +TU —TATB],
L L LL U u uru
[IA+IB—I€I?,IAU+JB —IAIB],
[FAFB,FAFB],
TaTg,Ialg, Fa + Fp—FaFp

A®B =
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Definition 12. [17] The product between two neutrosophic cubic sets, A = (TA,TA,I?A, Ta,la, F A), where
TA = [T,T%],IA = [Iﬁ,l{lj]/FA = [FZ,F%], and B = (TB/IB/FB/TB/IBrFB)/ where TB = [TérTg]/IB =
[I[L;,IIL;],FB = [FL,F'éI] is defined as

Alp
Lol jUsu
A®B = L L EAIE,I@IB ,u Upl
[FL + F, - FLPL, FY + FY - FUFY],
Tph+Tp—TaTg, Ia + Ip —Ialg,FoFp

rirs o],

Definition 13. [17] The scalar multiplication on a neutrosophic cubic set A = (TA,a,fA, TA,IA,FA), where
Ty = [Tg, T};"],TA = [Iﬁ,lﬁ],fA = [FIE\,F%], and a scalar k is defined.

The exponential multiplication is followed by the following result.

Theorem 1. [17] Let A = (FTA,T/;,FFVA,TA,IA,FA), where FT:A = [Tﬁ, Tg],?A = [Iﬁ,lg],FA = [F{%,Fg], isa
neutrosophic cubic value, then, the exponential operation defined by

k

|7

2o (I5)", ()

[1 -(1- Fg)k, 1-(1- Ff{)k],
1-(1-Ta) 1= (1 -1 (F)

(14

7
’

where AF = A® A®, ... ®A(k — times), moreover, A¥ is a neutrosophic cubic value for every positive value of k.

Definition 14. [17] The Einstein sum between two neutrosophic cubic sets A = (TA,TA, fA, Ta, Iy, F A), where
T, = [TL,TAlfI]/ZQ - [Ig,lg],FA = [FQ,FX], and B = (Tp, I, Fp, Tp, I, Fp), where Tg = [Tg,Tg],TB -
[15, 1], Fp = [FL, FY] is defined as

L L u u

Th4+7t T4 Tl
14T TS 1+ 1T |
L L u_ ju
L4k 1+
1L 1+ 15T |

A®B =
L pL upl
FAFB FAFB
1+(1-FL) (1-F) " 1+(1-FY) (1-FY)
T4Tp Inlp Fa+Fp

1+ (1-Tp)(1-Tg)” 1+ (1-14)(1-Ip)" T+FAFs
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Definition 15. [17] The Einstein product between two neutrosophic cubic sets, A = (TA,TA, fA, Ta,lu, F A)

where TA

[rh 14Ty = [110)F

A®pB=

i) Fa

3 13 [FL,FU], and B
[Té,Tg],IB = [Ig,l'é[],FB = [ B,F]LBI] is defined as

= (TB/E/FB/TB,IB,FB), where Tg =

To+Tg

[

Ip+Ip

L L uru
TATB TATB
/ /
1+(1-T5) (1-15) " 14+ (1-1Y) (1-1Y)
L L upu
Lk 17
’ u u ’
1+(1-15) (1-15) " 1+ (1-1Y) (1-1§)
L L u_ pu
FL+F,  FU4Fy

LpL 7 Upl
1+F;Fp” 14+F  F

]

aFp

1+TaTp” 1+1alg” 1+(1-F4)(1-Fp)

Definition 16. [17] The scalar multiplication on a neutrosophic cubic set, A = (TA,E,fA, Ta,la,F A) where
Ty = [T/LV T};"],TA = [12,[%],1?/4 = [FILL‘,FX], and a scalar k is defined

k

k

a+1h) -4 (141 (-1
[(1+TL)k+(1 " (1) Tg)k]’
1+ -(-1L)* (1+1u> (1-14)*
kpA — [(1+1}a)k+(14§)"’ 1+ ) 15{)"]’
2(F))"
[(”ﬁ)u(Fﬁ)k' (2-FY k]’
2(T0)" 2(1y) ) F-(1-rp)*
@-Ta) +(Ta)" (2-14)"+(12)" ( *+<1 —Fa)*

The Einstein exponential multiplication is followed by the following result.

Theorem 2. [17] Let A = (Ty, In, Fa, Ta, 1, Fa), where Ty = [T4, TY] Ty = [14,1{], F4 = [F}, F{], is a
neutrosophic cubic value, then, the exponential operation defined by

2(TL )k 2(TH
@=L + (1) 2= (1) |
2(1% ) 201
AFF @) )" -1+ [
a4+ —(1-F)" (R (-
AP+ (-FL)Y (R (=R |
A+T) --T0)f i) -a-L)* 2t
(+TA) +(1-Ta)*" (1) +(1-14)" @2=Fa) +(Fa)*

where AE = A®p Ao

of k.

... ®F A(k — times), moreover, AEX is a neutrosophic cubic value for every positive value

To compare two neutrosophic cubic values the score function is defined.

Definition 17. [17] Let N = (Ty, Iy, Fn, T, In, ), where Ty = [T,’;,, Tg],TN = [IIL\],IIL\II],fN = [FL ,FU]
is a neutrosophic cubic value, and the score function is defined as

S(N)

79
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If the score function of two values are equal, the accuracy function is used.

Definition 18. [17] Let N = (T, Iy, Fx, T, In, Fy ), where Ty = [TIL\], Tg],TN = [IIE],I%],E\] = [Fﬁ,, Fg]
is a neutrosophic cubic value, and theaccuracy function is defined as

_1

Hu) = 5

{Th + I + F5 + T + I + FY + Ty + Iy + ).

The following definition describes the comparison relation between two neutrosophic cubic values.

Definition 19. [17] Let Ny, N2 be two neutrosophic cubic values, with core functions Sy, Sn,, and accuracy
function Hy,, Hn,. Then,

(1) Sn, >SN, = N1 >No

(2) If Sy, = Sn,

(i) I‘IN1 > HN2 = N1 >Np
(i1) HNl = HN2 = N1 =N,

Definition 20. [17] The neutrosophic cubic weighted geometric operator (NCWG) is defined as

NCWG : R™ — R defined by NCWG,(N1,Na, ..., Ny) = _glN;”f ,
P

m
where the weight W = (wy,wy, ..., wy)T of N;(j=1,2,3,..,m), such that w; € [0,1] and }, = 1.
j=1

Definition 21. [17] The neutrosophic cubic ordered weighted geometric operator(NCOWG) is defined as

NCOWG : R™ = R defined by NCOWGy,(N1, Ny, ..., Nyy) = glNg;) ,
= i

where N(V)j is the descending ordered neutrosophic cubic values, W = (wy, wo, ..., wm)T of N]-(j =1,2,3,..,m),

m
such that w; € [0,1] and ¥, = 1.
j=1
Definition 22. [17] The neutrosophic cubic Einstein weighted geometric operator(NCEWG) is defined as

E"J
NCEWG : R™ — R defined by NCEWGy(N1,Na, ..., Ny) = .gl(Nj) ,
i

m
where W = (wy, Wy, ..., wy )T is weight of N;(j =1,2,3,..,m),such that w; € [0,1] and Y, = 1.
j=1
Definition 23. [17] Order neutrosophic cubic Einstein weighted geometric operator(NCEOWG) is defined as

w

ET
NCEOWG : R™ — R by NCEOWGq (N1, Ny, ..., Nyy) = gl(Bj) ,
=
where B} is the jth largest neutrosophic cubic value, and W = (w1, wy, ..., W) T is weight of N;(j=1,2,3,..,m),

m
such that w; € [0,1] and ¥, = 1.
=1
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The neutrosophic cubic geometric aggregation operators weight only the neutrosophic cubic
values, whereas neutrosophic cubic order geometric aggregation operators weight the orders of the
values first then weight them. In the two cases, the amassed values that focused on the value relate to the
biggest weight. The accompanying precedents represent the impediments of the NCWG and NCEWG.

Let W = (0.7,0.2,0.1) be the weight corresponding to the neutrosophic cubic values

Ni = ([0.2,0.7],[0.2,0.4],[0.2,0.5],0.8,0.5,0.8)
N, = ([0.4,0.6],[0.4,0.7],[0.1,0.3],0.2,0.6,0.5) ,
N3 = ([0.5,0.8], [0.3,0.6], [0.4,0.9],0.5,0.8,0.9)

Then S(N;) = 0.2, S(N;) = 0.3, and S(N3) = —0.4.

Therefore, NCWG = ([0.251,0.688],[0.239,0.465], [0.204,0.524],0.711,0.563,0.737) and
NCOWG = ([0.356,0.636], [0.338,0.616], [0.155, 0.544],0.421, 0.609, 0.737).

We observe that the higher the weight component, the aggregated value will tend to the
corresponding neutrosophic cubic value of that vector. In NCWG, the value tendsto Ny, as the weight
that corresponds to Nj is highest, and in NCOWG, the highest component of weight corresponds to
Nj. This situation often arises in aggregation problems. Motivated by such a situation, the idea of
neutrosophic cubic hybrid geometric and neutrosophic cubic Einstein hybrid geometric operators
are proposed.

3. Neutrosophic Cubic Hybrid Geometric and Neutrosophic Cubic Einstein Geometric Operators

This segment comprises of the following subsections. In Section 3.1 neutrosophic cubic crossbreed,
the geometric operator is characterized. In Section 3.2 neutrosophic cubic Einstein crossbreed, the
geometric operator is characterized. In Section 3.3, a calculation is characterized to organize the
neutrosophic cubic values utilizing these tasks. In Section 3.4, a numerical model is outfitted upon
Section 3.3.

3.1. Neutrosophic Cubic Hybrid Geometric Operator

NCWG operator weights only the neutrosophic cubic values, where NCOWG weights only
the ordering positions. The idea of neutrosophic cubic hybrid geometric aggregation operators is
developed to overcome these limitations. NCHG weights both the neutrosophic cubic values and its
order positioning as well.

Definition 24. NCHG : O™ — Q) is a mapping from m-dimenion, which has associated weight W =
m

(wy, Wy, ..., wy,) T such that w; € [0,1] and Y, w; = 1, such that
=1

£

NCEOWG: R" — R by NCEOWGW(NI,NZ,...,NM)=Q)](Bj) ,
J=

where N],N jth largest of the weighted neutrosophic cubic values
mw/-

m
{N(ND(N(“],) :Nj ),j: 1,2,3,,,m),W = (wl,wz,...,wm)T}, such that w; € [0,1]and Y, wj = 1,
=1

and m is the balancing coefficient.
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(T T T - _ L u| 7. _ L u| T _
Theorem 3. Let N; = (TNj,INj,FN/.,TN],,IN],,FN].), where Ty, = [TNj,TNj],INj = [IN],INj],FNj =

[FL ] (j =1,2,...,,m) be collection of neutrosophic cubic values, then the aggregated value NCHWG) is

&)™ B H B ) )}
NCHG(N;) = [1—%(1—#? )w/,l—;(1 Fﬁbl.)) ’], R

m ~ \Wj m -~ \Y m = \Wj
1- ®(1—T ) ,1—@(1—1 ) ,®(F )
1 a(j) =1 a(j) j a(j)

also a cublc value and

m
the weight W = (wy, Wy, ..., wy,)T, such that w;j € [0,1] and Y, = 1.
=1

Proof. By mathematical induction for m = 2, using

® N Nw1 ®N,2.

=1
[T 3, [ e
= [(I’L\’u(/ ) (Iu Na(j) >w1:| ® [(ITL\’”(/) i:’ (Ik][n(/) )1"2 ’ w
[ R I T
1- (1 (TNau )) ’ 1 (INJ(/))) (FNn n) 1- (l - (TNnm)) A= (l - (INom)) '(FNom)

2 w 2 w2 w2 w,
® (TL e (T )9\ | ® (& ie (14 ),
L—1( 0(/’)) 3 (/’)) H] () (Nom)

j=1 =1 a(j) j=1
2 w;
= [1 8(1-r ) 1—,@(1—% ) ]
s j=1 a(j j=1 a(j)
Zl)]
= 8 (1=(Ty,)" 1 ® (1= () 8 ()
Let the results hold for m
m . m
® TL UJ,, u ZU] : ® IL ZU]’ Iu w, ,
[]:1( Nm) 1( Nam) ];1(N<>) j:l(Nv(J))
. U w
B N = 1-8(1-r J'1- 8 (1-FY )’]
=1 =1 a(j) j=1 a(j)
m ZU]‘ w/ m ZU]
1_j§1(1_T <>) '1_]§1(1_IN0<]>) ']Qfl(FNam)

We prove the result for m + 1,

|k, )y )W] [( L e,

Nj+1 ]+1 j+1

Wjt+1
VP N R
1 _ (1 _ TN/_Jrl )wﬁll 1 1 IN/+1 )w]url, (FN/_+1 )wjﬂ

m

[ (T U(]) i, & ( T )‘W],[@ [(T;\l Al)“’/‘ﬂ (T“ )ru,Al]l

CHRR XCIRN)

j= 1 No(j) j=1""a(j) j=1" "a(j) w
%N i Nw’“ [1 (1 FL )w] ) m (1 o )wj] o [(IILV,—l) j+1 ([Ll )rt/+1 i
= - = - , , g
i S\ N A N ) [1-(1—55, )”1,1—(1—#\5 )u’”],
1- %(1 )1 @(1 I )u/ é'z}(F, X ol wli!
2 Ng(j) No(j) )7 2\ Na() 1- 1—TN]+I)/ 17(1 INM)/ L (Ey. )i
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u m

5, 36
=1 No(j) Nin+1 '/-:1 Ny

ZU/ u
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() ) ( N1
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L
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1
! Y;éi (FN i )WI

m+1 w »
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(/,71< N‘I(/))( Nmn)
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which completes the proof. O

Theorem 4. The NCWG is a special case of NCHG operator.

Proof. Let W = (%, e I)T. Then,

1 ’ "l wy wy
w o ~ ~
NCHG(N1,Ny, ..., Ny)" = (Na(l)) ®(N (2)) ®, ...
1 1

g

:(N&l)) ®(N5<z>) ®""'®(N§<m>)
= (N1,Na, ..., Ny )

= (Nl)wll (NZ)wz/ ey (Nm)wm

= NCWG(Ny,Na, .., Ny). O

m

Theorem 5. The NCOWG is a special case of NCHG.

Proof. Let W = (%, %, e %)T Then,

w
NCHG(N1,N2/~~~er)’U = (N;(l)) 1
1

1 1

- (Ngu)) ®(N;<3>)
= (I\]lrI\IZ/"'rI\]m)m

~ 2
()

66N
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= (N1)™, (N2)™2, ..., (Np)™™
= NCOWG(N1,Na, ..., Ny). O

3.2. Neutrosophic Cubic Einstein Hybrid Geometric Operator

NCEWG operator weights only the neutrosophic cubic values, where NCEOWGA weights only
the ordering positions. The idea of neutrosophic cubic Einstein hybrid aggregation operators (NCEHG)
is developed to overcome these limitations, which weights both the given neutrosophic cubic value
and its order position as well.

Definition 25. NCEHG : Q" — Q) is a map from m-dimension which has an associated vector W =

m
(wq, w2, ..., wy )T, where wj €[0,1] and Y, =1, such that
j=1

wy Wy Wiy
NCEHGw(N1, Nz, Nu) = (N3 ) @5 (N3 ) @, 02(N3, )
where NT is the  jth  largest of  the  weighted  neutrosophic ~ cubic  values

m
{N(“D(N() —wa])]— 1,2,3,,,m),W= (wl,wz,...,wm)T}, with w; € 0,1 and Y, = 1, and m
=1

is the balancing coefficient.

(T T T ™ _ L u |7 _ L u| T _
Theorem 6. Let N; = (T, In, Fn,, T, In, Fy;), where Ty, = [TNj,TNj],IN]. = [1 ]_,IN/],FN]. =

L pU| N = (Tv Iv. F T, L U | T, = |[L [U|Fv = |FL FU
[FN/,FN/], N = (Tn, In;, Fn;, T, I, Fy;, ), where Ty, = [TN/_,TNj],INj = [IN/,INZ],FNI = [FN/_,FN/]
(j =1,2,...,m) is acollection of neutrosophic cubic values, then, their aggregated value by NCEWG operator is
also a cubic value and

2%(# )w’ 2§(TU )w]
=1\ No(j) =1\ No(j)
m w/- n wf 4 wl m ©j 4
Blri ) ) EE,) 8
le( Notp) =i\ Notn) =1\ o) =i N
m ] m 7
2@ (1L ) (IU )
=1\ No(j) =1\ No(j)
%(Z—IL )wj+§(1 )ww %’:(2—1“ )w7+1§(1” )wj ’
L= No(j) L No(j) i1 Nop) i No(j)
® (1+Fk  )i-® (1-rk ) & (1+F )i-® (1-F{ )Y
NCEHG(N;) = S BN )T B ) B 0 ) ,
® (14F,, ) J+®<1—FL )i’ &’»mP“ i ® (1= )
/m1 a(j) a(j) a(j) ]ml No(j)
wj j—
8, (14T, )= 8, (1-Tug )" 8 ()" 8 (1=l )7
m ’ m w; ’
J - Ui j
2 (1+TN o )) +/_Q?1(1 TN"(/)) i (1+IN ()) + ® (1-In o) ))
2%(5\, )wi
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m
where W = (wl,wz,...,wm)T is weight of Nj(j =1,2,3,..,m), with w; € [0,1]and ), =1.
j=1
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Proof. We use mathematical induction to prove this result
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We prove the result holds for m + 1.
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so the result holds for all values of m. O

Theorem 7. The NCEWG is special case of the NCEHG operator.
Proof. Followed by Theorem 4. O

Theorem 8. The NCOWG is a special case of NCEHG.

Proof. Followed by Theorem 5. O

3.3. An Application of Neutrosophic Cubic Hybrid Geometric and Einstein Hybrid Geometric Aggregation
Operator to Group Decision-Making Problems

In this section, we develop an algorithm for group decision-making problems using the
neutrosophic cubichybrid geometric and Einstein hybrid geometric aggregation (NCHWG and
NCEHWG).

Algorithm 1. Let F = {Fy,Fy, ..., Fy

subject to their corresponding weight W =

} be the set of n alternatives, H = {Hy, H», ..., H;;,} be the m attributes

m
} , such that w; € [0,1] and Y, = 1. The
j=1

(w1, w2, ..., Wy
method has the following steps.

Step 1: First of all, we construct neutrosophic cubic decision matrix D = [Nl- 7];1><m'

Step 2: The attributes H = {Hy,Hy, ..., Hy} are weighted to their corresponding weight W =
{wy, wy, ..., Wy}, and these values multipliedby the balancing coefficient .

Step 3: The new weights are calculated using [18] so that we get new weights V = {vy, vy, ..., Uy}
Step 4: By using aggregation operators like (NCHG, NCEHG), the decision matrix is aggregated by
the new weightsassigned to the m attributes.

Step 5: The n alternatives are ranked according to their scores and arranged in descending order to
select the alternative with highest score.

3.4. Numerical Application

A steering committee is interested in prioritizingthe set of information for improvement of
the project using a multiple attribute decision-making method. The committee must prioritize
the development and implementation of a set of six information technology improvement projects
Aj (j = 1,2,...,6). The three factors, By productivity, to increase the effectiveness and efficiency,
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B, differentiation, from products and services of competitors, and B3 management, to assist the
management in improving their planning, are considered to assess the potential contribution of each
project. The list of proposed information systems are Ay Quality Assurance, (2) A> Budget Analysis, (3)
Az Itemization, (4) A4 Employee Skills Tracking, (5) A5 Customer Returns and Complaints, and (6)
Ag Materials Acquisition. Suppose the weight W = (0.5,0.3,0.2) corresponds to the B is (j=1,2,3,)
factors and characteristics of projects 4; (i = 1,2, ...,10) by the neutrosophic cubic value Nj;.

Step 1: Construction of neutrosophic cubic decision matrix D = [N ij]6><3

0.5,0.6], [02 0.5,
0.4,0.8],0.7,0.8,0.4

[0.3,0.7], [01 0.6],
0.3,0.7],0.4,0.7,0.2

[0.4,0.8], [03 0.6,
0.5,0.7],0.4,02,0.6

Ay

As

Ay

As

Ag

Step 2: The attributes are weighted W =

0.2,0.5],[0.7,0.9],
( 0.3,0.7],0.8,0.5,0.3
(0.4,0.7],[0.2,0.5],
( 0.5,0.7],0.3,0.6,0.2
0.3,0.6],[0.4,0.7],
(020ﬂ060407
0.2,0.5],[0.3,0.7],
(020Q050308
0.1,0.6],[0.3,0.6],
(m4o&060904

0.1,0.6],[0.4,0.7],
(020&060407
0.3,0.8],[0.1,0.4],
( 0.6,0.7],0.6,0.2,0.6
[0.5,0.8],[0.1,0.5),
(030&040806
[0.4,0.8],[0.3,0.7),
(010Q040607
[0.2,0.7],[0.6,09],
(O3OQO40803

[0.3,0.7],0.6,0.4,0.8
[0.2,0.7],0.7,0.5,0.6
[0.4,0.7],0.5,0.6,0.8
[0.4,0.9],0.6,0.8,0.3

[0.1,0.6],0.4,0.6,0.7

[0.2,0.6],[0.1,0.7],

[0.1,0.7],[0.2,0.6],

[0.6,0.8],0.5,0.9],

)
)
[0.3,0.5],[0.5,0.9], )
)
)

[0.4,0.7],[0.3,0.5), )

(0.5,0.3,0.2) and multiplied by balancing coefficient 3.

By By Bs
[0.3535,0.4647], [0.3383,0.7254], 0.5770,0.8746],
) [0.0894,0.3535], [0.1258,0.6314], [0.4855,0.7360],
! 0.5352,0.9105], [0.27453,0.6616], 0.4229,0.5144],
0.8356,0.9105,0.2529 0.3685, 0.6616,0.2349 0.2639,0.1253,0.7360
[0.0894,0.3535], [0.1258,0.6314], 0.3807,0.7360],
4 [0.5856,0.8538], [0.4383,0.7254], 0.2511,0.8073],
[0.4143,0.8356], [0.1819,0.4641], 0.1926,0.5144],
0.9105, 0.6464,0.1643 0.5616,0.3685, 0.7254 0.4229,0.2639,0.8073
0.2529,0.5856], 0.3383,0.8180], [0.4855,0.6597],
) [0.0894,0.3535], [0.1258,0.4383], 0.6597,0.9387],
3 [0.6464,0.8356], [0.5616,0.6616], 0.1253,0.5144],
D= 0.4143,0.7470,0.0894 0.5616,0.1819,0.6314 0.5144, 0.3402, 0.7360
[0.1643,0.4647], [0.5358,0.8180], [0.2511,0.8073],
) [0.2529,0.5856], [0.1258,0.5358], 0.3807,0.7360],
4 [0.2844,0.6464], [0.2745,0.7650], 0.2639,0.5144],
0.7470,0.5352, 0.5856 0.3685,0.7650,0.6314 0.6402, 0.4229,0.8073
[0.0894,0.5353], [0.4383,0.8180], 0.7360,0.8073],
s [0.1643,0.5856], [0.3383,0.7254], 0.6597,0.9387],
[0.2844,0.7470], [0.0904, 0.5616], 0.2639,0.7488],
0.6464,0.4143,0.7155 0.3685,0.5616,0.7254 0.4229,0.6192, 0.4855
0.0316,0.4647], [0.2349,0.7254], [0.5770,0.8073],
) [0.1643,0.4647], [0.6314,0.9035], [0.4855,0.6597],
6 0.5352,0.9105], [0.2745,0.5616], 0.0612,0.4229],
0.7470,0.9683,0.2529 0.3685, 0.7650,0.3383 0.2639,0.4229,0.8073
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Step 3: The new weights are calculated using the normal distribution method. Let W =
(0.2429,0.5142,0.2429) be its weighting vector derived by the normal distribution-based method [18].
Step 4: By neutrosophic cubic weighted geometric aggregation operator (NCWG), the decision matrix
is aggregated by the new weights assigned to the m attributes.

M [0.3892,0.6812], [0.1606, 0.5692],
1\ [0.3840,0.7325],0.5273,0.6914,0.3270
) [0.1852,0.5692], [0.4107, 0.7745],
2| [0.2480,0.4946],0.6813, 0.4306, 0.5190
[0.3441,0.7158], [0.1731, 0.5005],
[0.7078,0.6899],0.5178, 0.4161,0.4076
[0.3344,0.7107], [0.1950,0.5913],
[0.2743,0.6904], 0.7010, 0.6550, 0.6580
[0.3378,0.7375], [0.3338,0.7331],
[0.1848,0.6649], 0.4633, 0.5454, 0.6557
[0.1795,0.6681], [0.4271,0.7122],
0.3068,0.6813],0.4751,0.8937, 0.3893

Step 5: The scores are
S(A1) = 0.1542,5(A;) = 0.1741,S(A3) = —0.2276,S(A4) = 0.1297,S(As) = 0.0332,S(Ag) = —0.0547,

S(Az) > S(A1) > S(As) > S(As) > S(Ag) > S(A3).

List of priorities are as follows.
Ay > A1 > Ay > A5 > Ag > Az

Hence, the project A; has the highest potential contribution to the firm’s strategic goal of gaining
competitive advantage in the industry.

4. Conclusions

This paper was influenced by the impediment of neutrosophic cubic geometric and Einstein
geometric collection operators as preliminarily discussed, that is, we observed that the higher the
weight component, the aggregated value tended to the corresponding neutrosophic cubic value of
that vector. Consequent upon such circumstances, we characterized neutrosophic cubic hybrid and
neutrosophic cubic Einstein hybrid aggregation operators. At that point, these operators are outfitted
upon a day-by-day life precedent structure industry to organize the potential contributions that serve
to achieve the strategic objective of getting favorable circumstances in industry.
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Abstract: In this paper, we present the lattice structures of neutrosophic theories. We prove that
Zhang-Zhang's YinYang bipolar fuzzy set is a subclass of the Single-Valued bipolar neutrosophic set.
Then we show that the pair structure is a particular case of refined neutrosophy, and the number of
types of neutralities (sub-indeterminacies) may be any finite or infinite number.

Keywords: neutrosophic set; Zhang-Zhang’s YinYang bipolar fuzzy set; single-valued bipolar
neutrosophic set; bipolar fuzzy set; YinYang bipolar fuzzy set

1. Introduction

First, we prove that Klement Dand Mesiar’s lattices [1] do not fit the general definition of
neutrosophic set, and we construct the appropriate nonstandard neutrosophic lattices of the first type
(as neutrosophically ordered set) [2], and of the second type (as neutrosophic algebraic structure,
endowed with two binary neutrosophic laws, infy and supy) [2].

We also present the novelties that neutrosophy, neutrosophic logic, set, and probability and
statistics, with respect to the previous classical and multi-valued logics and sets, and with the classical
and imprecise probability and statistics, respectively.

Second, we prove that Zhang-Zhang’s YinYang bipolar fuzzy set [3,4] is not equivalent with but a
subclass of the Single-Valued bipolar neutrosophic set.

Third, we show that Montero, Bustince, Franco, Rodriguez, Gémez, Pagola, Fernandez, and
Barrenechea’s paired structure of the knowledge representation model [5] is a particular case of Refined
Neutrosophy (a branch of philosophy that generalized dialectics) and of the Refined Neutrosophic
Set [6]. We disprove again the claim that the bipolar fuzzy set (renamed as YinYang bipolar fuzzy set)
is the same of neutrosophic set as asserted by Montero et al [5].

About the three types of neutralities presented by Montero et al., we show, by examples and
formally, that there may be any finite number or an infinite number of types of neutralities 1, or
that indeterminacy (I), as neutrosophic component, can be refined (split) into 1 < n < co number of
sub-indeterminacies (not only 3 as Montero et al. said) as needed to each application to solve.

Also, we show, besides numerous neutrosophic applications, many innovatory contributions to
science were brought on by the neutrosophic theories, such as: generalization of Yin Yang Chinese
philosophy and dialectics to neutrosophy [7], a new branch of philosophy that is based on the dynamics
of opposites and their neutralities, the sum of the neutrosophic components T, I, F up to 3, the degrees
of dependence/independence between the neutrosophic components [8,9]; the distinction between
absolute truth and relative truth in the neutrosophic logic [10], the introduction of nonstandard
neutrosophic logic, set, and probability after we have extended the nonstandard analysis [11,12], the
refinement of neutrosophic components into subcomponents [6]; the ability to express incomplete
information, complete information, paraconsistent (conflicting) information [13,14]; and the extension
of the middle principle to the multiple-included middle principle [15], introduction of neutrosophic
crisp set and topology [16], and so on.

Mathematics 2019, 7, 353; doi:10.3390/math7040353 91 www.mdpi.com/journal/mathematics
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2. Answers to Erich Peter Klement and Radko Mesiar

2.1. Owversimplification of the Neutrosophic Set
At [1], page 10 (Section 3.3) in their paper, related to neutrosophic sets, they wrote:
“As a straightforward generalization of the product lattice (]I x 1, <mmp) for each n € N, the n-dimensional

unit cube (]I” wmp) i.e., the n-dimensional product of the lattice (I, <comp), can be defined by means of (1)
and (2).

The so-called “neutrosophic” sets introduced by F. Smarandache [93] (see also [94-97], which are based on
the bounded lattices (]I3, §H3) and (]I3, <t ) where the orders <3 and <ps on the unit cube I° are defined by the
Equations below.

(x1,x2,%3) <p (y1,Y2,y3) ©x1 <y1 AND xp <y AND x3 > i3 (-13)

3
(x1,2x2,%3) <! (y1,¥2,¥3) © x1 <y1 AND x > yo AND x3 > y3 (-14)

The authors have defined Equations (1) and (2) as follows:

n
[H L;, swm,,J, where (L,‘, SL,-) are fuzzy lattices, foralll1 <i<n (1)
i=1

(x1,22, ., %n) Scomp (Y1, Y2,--+,Yn) © x1 Sy1 AND x <yp AND ... AND x, < yy 2)
The authors did not specify what type of lattices they employ: of the first type (lattice, as a partially
ordered set), or the second type (lattice, as an algebraic structure). Since their lattices are endowed

with some inequality (referring to the neutrosophic case), we assume it is as the first type.
The authors have used the notations:

I=1o, 1],
=10, 1%,
B =0, 1.

The order relationship <comp on % can be defined as:

(1,%2, X3) <comp (Y1,Y2,¥3) © X1 <y and xp < yp and x3 < y3

The three lattices they constructed are denoted by KL;, KL, KL3, respectively.

KLy = (P, <comp), KLy = (I, <), KL3 = (I, <)

Contain only the very particular case of standard single-valued neutrosophic set, i.e.,
when the neutrosophic components T (truth-membership), I (indeterminacy-membership), and
F (false-membership) of the generic element x(T, I, F), of a neutrosophic set N are single-valued (crisp)
numbers from the unit interval [0, 1].

The authors have oversimplified the neutrosophic set. Neutrosophic is much more complex. Their
lattices do not characterize the initial definition of the neutrosophic set ([10], 1998): a set whose elements
have the degrees of appurtenance T, I, F, where T, I, F are standard or nonstandard subsets of the
nonstandard unit interval: |70, 1|, where |70, 17| overpasses the classical real unit interval [0, 1] to
the left and to the right.

2.2. Neutrosophic Cube vs. Unit Cube

Clearly, their I3 = [0,1]3 ¢ ]70, 17[? that is our neutrosophic cube (Figure 1), where |0 = u(~0)
is the left nonstandard monad of number 0, and 1T = u(17") is the right nonstandard monad of
number 1.
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2(0,0,1)

G’

I

(1,0,0) |

c D’(0,17,0)
Figure 1. Neutrosophic cube.
The unit cube I? used by the authors does not equal the above neutrosophic cube. The neutrosophic
cube A’B’C’'D’E’F'G’H’ was introduced by Dezert [17] in 2002.
2.3. The Most General Neutrosophic Lattices

The authors’ lattices are far from catching the most general definition of the neutrosophic set.

Let U be a universe of discourse, and M C U be a set. Then an element x(T(x),I(x), F(x)) € M,
where T(x),(x), F(x) are standard or nonstandard subsets of nonstandard interval: |~Q, ¥ [, where
0 <0<1<Y, withQ, ¥ €R, whose values Q) and ¥ depend on each application, and

7Q, ¥ [=n {s,u,a’,a’o, at, at0 4%, u’oﬂ eaelQ, Y], cis infinitesimal},

where @, m € {‘,‘0 b0 -+ -0+ } are monads or binads [12].
It follows that the nonstandard neutrosophic mobinad real offsets lattices ( 7Q, Y7, S"N""S ) and

( 17Q, Y1, infy, supy,” Q, ‘I"*) of the first type and, respectively, of the second type are the most
general (non-refined) neutrosophic lattices.

While the most general refined neutrosophic lattices of the first type is: ( 170, ¥, SZ%S), where

SZ;’\?S is the n-tuple nonstandard neutrosophic inequality dealing with nonstandard subsets, defined as:

(T1(@), Ta(x), ., Ty(x); (), ), .., B(x); Fi(x), Fa(), oo, Fulx)) <1905 (Ta(y),
Toy), - Tp(y); h(y), L), - L(y); Fa(y), Fa(y), ..., Fs(y)) iff
Ti(x) <i%° Ta(y), Ta(x) <35 Ta(y), -0 Tp(x) <I0° Ty ()
1(x) 2530 (), k() 2335 L(y), -, I(60) 2335 1 (y)
Fi(x) 20 Fi(y), Fa2(x) 2i%° Fa(y), -, Fs(x) 23%° Fo(y)
2.4. Distinction between Absolute Truth and Relative Truth

The authors’ lattices are incapable of making distinctions between absolute truth (when T =
1+ >5 1) and relative truth (when T = 1) in the sense of Leibniz, which is the essence of nonstandard
neutrosophic logic.
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2.5. Neutrosophic Standard Subset Lattices

Their three lattices are not even able to deal with standard subsets [including intervals [8], and
hesitant (discrete finite) subsets] T, I, F C [0, 1], since they have defined the 3D-inequalities with
respect to single-valued (crisp) numbers: x1, x2, x3 € [0, 1] and y1, y2, y3 € [0, 1].

In order to deal with standard subsets, they should use infsup, i.e.,

(T1, 1, F1) < (T2, b, F2) &

infTy < infT) and supT; < supTh,
infl; > infl, and supl; > suply,

and infF; > infF, and supF; > supF;

[I have displayed the most used 3D-inequality by the neutrosophic community.]

2.6. Nonstandard and Standard Refined Neutrosophic Lattices

The Nonstandard Refined Neutrosophic Set [2,6,12], defined on |70, 1*[”, strictly includes their
n-dimensional unit cube (I"), and we use a nonstandard neutrosophic inequality, not the classical
inequalities, to deal with inequalities of monads and binads, such as SZ%'S and Sl’i}’”s.

Not even the Standard Refined Single-Valued Neutrosophic Set [6] (2013) may be characterized
with KLq, KL,, and KL3 nor with (]I”, Scomp), since the n-D neutrosophic inequality is different from
1-D <comp, and from n-D extensions of <y, or < respectively, as follows:

Let T be refined into Ty, To, ..., Tp;

Iberefinedinto Iy, Ip, ..., I;;

and F be refined into Fy, F», ... , Fs;

with p, r, s > 1 are integers, and p+r+s = n > 4, produced the following n-D
neutrosophic inequality.

Letx(T}, T3,..., T3 5B, 15 FLFS, . FY) and (T2, 7Y, .., T0; B, 1), .. 1, FYFY, .. FY).

Then:

Ty<T|,T3<T),... Ty<Ty
xsyye| LBzEBxD,.. I
F>F/,Fy>F,.. F>F.
2.7. Neutrosophic Standard Overset/Underset/Offset Lattice

Their three lattices KL, KL, and KL3 are no match for neutrosophic overset (when the neutrosophic
components T, I, F > 1), nor for neutrosophic underset (when the neutrosophic components T, I, F < 0),
and, in general, no match for the neutrosophic offset (when the neutrosophic components T, I, F
take values outside the unit interval [0, 1] as needed in real life applications [13,14,18-20] (2006-2018):
[Q ¥]withQ<0<1<Y)

Therefore, a lattice may similarly be built on the non-unitary neutrosophic cube [, 1,[}]3.

2.8. Sum of Neutrosophic Components up to 3

The authors do not mention the novelty of neutrosophic theories regarding the sum of single-valued
neutrosophic components T + I 4 F < 3, extended up to 3, and, similarly, the corresponding inequality
when T, I, F are subsets of [0, 1]: supT + supl + supF < 3, for neutrosophic set, neutrosophic logic, and
neutrosophic probability never done before in the previous classic logic and multiple-valued logics
and set theories, nor in the classical or imprecise probabilities.

This makes a big difference, since, for a single-valued neutrosophic set S, all unit cubes [0, 1]3 are
fulfilled with points, each point P(a, b, c) into the unit cube may represent the neutrosophic coordinates
(a, b, c) of an element x(a, b, c) € S, which was not the case for previous logics, sets, and probabilities.
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This is not the case for the Picture Fuzzy Set (Cuong [21], 2013) whose domain is % of the unit
cube (a cube corner):
D = {(x]rx2,x3) e Pl +x2+1x3 < 1}

For Intuitionistic Fuzzy Set (Atanassov [22], 1986), the following is true.
Dy = {(xllxz,xa) € ]I3|x1 +xp +x3 = 1}

where x; = membership degree, x, = hesitant degree, and x3 = nonmembership degree, whose domain
is the main cubic diagonal triangle that connects the vertices: (1, 0, 0), (0, 1, 0), and (0, 0,1), i.e.,
triangle BDE (its sides and its interior) in Figure 1.

2.9. Etymology of Neutrosophy and Neutrosophic

The authors [1] write ironically twice, in between quotations, “neutrosophic” because they did
not read the etymology [10] of the word published into my first book (1998), etymology, which also
appears into Denis Howe’s 1999 The Free Online Dictionary of Computing [23], and, afterwards, repeated
by many researchers from the neutrosophic community in their published papers:

Neutrosophy [23]: <philosophy> (From Latin “neuter”—neutral, Greek “sophia”—skillfwisdom).
A branch of philosophy, introduced by Florentin Smarandache in 1980, which studies the origin, nature, and
scope of neutralities, as well as their interactions with different ideational spectra. Neutrosophy considers a
proposition, theory, event, concept, or entity, “A”in relation to its opposite, “Anti-A" and that which is not
A, "Non-A", and that which is neither “A” nor “Anti-A”, denoted by “Neut-A”. Neutrosophy is the basis of
neutrosophic logic, neutrosophic probability, neutrosophic set, and neutrosophic statistics.

While neutrosophic means what is derived/resulted from neutrosophy.

Unlike the “intuitionistic|” and “picture fuzzy” notions, the notion of neutrosophic was carefully
and meaningfully chosen, coming from neutral (or indeterminate, denoted by <neutA>) between two
opposites, (A) and (antiA), which made the main distinction between neutrosophic logic/set/probability,
and the previous fuzzy, intuitionistic fuzzy logics and sets, i.e.,

- For neutrosophic logic neither true nor false, but neutral (or indeterminate) in between them;

- Similarly for neutrosophic set: neither membership nor non-membership, but in between (neutral,
or indeterminate);

- And analogously for neutrosophic probability: chance that an event E occurs, chance that the event
E does not occur, and indeterminate (neutral) chance of the event E of occurring or not occuring.

Their irony is malicious and ungrounded.

2.10. Neutrosophy as Extension of Dialectics

Let (A) be a concept, notion, idea, or theory.

Then (antiA) is the opposite of (A), while (neutA) is the neutral (or indeterminate) part
between them.

While in philosophy, Dialectics is the dynamics of opposites ((A) and (antiA)), Neutrosophy is an
extension of dialectics. In other words, neutrosophy is the dynamics of opposites and their neutrals
((A), (antiA), (neutA)), because the neutrals play an important role in our world, interfering in one
side or the other of the opposites.

Refined Neutrosophy is an extension of Neutrosophy, and it is the dynamics of the refined-items
<A1>, <Ay>, ..., <A;>, their refined-opposites <antiA;>, <antiA>, ..., <antiA,>, and their
refined-neutrals <neutA;>, <neutA,>, ..., <neutA,>.

As an extension of Refined Neutrosophy one has the Plithogeny [24-27].
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2.11. Refined Neutrosophic Set and Lattice

At page 11, Klement and Mesiar ([1], 2018) assert that: Considering, for n > 3, lattices which are
isomorphic to (Ln (1), Scomp), further generalizations of “neutrosophic” sets can be introduced.

The authors are uninformed so that a generalization was done in 2013 when we have published a
paper [6] that introduced, for the first time, the refined neutrosophic set/logic/probability, where T, I, F
were refined into 7 neutrosophic subcomponents:

Tl,Tz,.., ,Tp;ll,lz,... ,Iy;F],Fz,... ,FS,

Withp, r, s > 1 areintegersand p +r+s=n > 4.

But in our lattice (I", <,n), the neutrosophic inequality is adjusted to the categories of sub-truths,
sub-indeterminacies, and sub-falsehood, respectively.

(T1(x), T2(x), .., Tp(x); L1(x), La(x), ..., L(x); F1(x), F2(x), ..., Fs(x)) <an (T1(y), T2(y),
o Tp(y); L(y), (y), ..., L(y); F1(y), F2(y), ..., Fs(y)) if and only if
T1(x) < T1(y), T2(x) < T2(y), ..., Tp(x) < Tp(y)
L(x) > L(y), L(x) > 1L(y), ..., L(x) > L(y)
Fi(x) 2 Fy(y), Fa(x) 2 E2(y), ..., Es(x) > Fs(y)
Therefore, <, is different from the n-D inequalities <comp, and from <p» and < (extending from
authors inequalities <3 and <r, respectively).
2.12. Nonstandard Refined Neutrosophic Set and Lattice

Even more, Nonstandard Refined Neutrosophic Set/Logic/Probability (which include infinitesimals,
monads, and closed monads, binads and closed binads) has no connection and no isomorphism
whatsoever with any of the authors’ lattices or extensions of their lattices for 2D and 3D to nD.

2.13. Nonstandard Neutrosophic Mobinad Real Lattice

We have built ([2], 2018) a more complex Nonstandard Neutrosophic Mobinad Real Lattice, on
the nonstandard mobinad unit interval |70, 17| defined as:

170, 1*[: {g,a,a",a_o, at,at®, at, u_0+| with0<a<1,a€R, and ¢ > 0, ¢ infinitesimal, ¢ € R*}

which is both nonstandard neutrosophic lattice of the first type (as partially ordered set, under
neutrosophic inequality <x7) and lattice of the second type (as algebraic structure, endowed with two
binary nonstandard neutrosophic laws: infy and supy).

Now, |70, 1+ [3 is a nonstandard unit cube, with much higher density than [0, 1}3 and which
comprise not only real numbers a € [0, 1] but also infinitesimals ¢ > 0 and monads and binads
neutrosophically included in |70, 17 1.

2.14. New Ideas Brought by the Neutrosophic Theories and Never Done Before

—  The sum of the neutrosophic components is up to 3 (previously the sum was up to 1);
— Degree of independence and dependence between the neutrosophic components T, I, F, making
their sum T + I + F vary between 0 and 3.

For example, when T, I, and F are totally dependent with each other, then T + I + F < 1. Therefore,
we obtain the particular cases of intuitionistic fuzzy set (when T + I + F = 1) and picture set when
T+I+F<1.

—  Nonstandard analysis used in order to distinguish between absolute and relative (truth,
membership, chance).
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—  Refinement of the components into sub-components:
(T, Tay) Ty I Iy, o, Iy Fy, Fay o, )

with the newly introduced Refined Neutrosophic Logic/Set/Probability.

—  Ability to express incomplete information (T + 1+ F < 1) and paraconsistent (conflicting) and
subjective information (T 4+ 1+ F > 1).

—  Law of Included Middle explicitly/independently expressed as (neutA) (indeterminacy, neutral).

—  Law of Included Middle expanded to the Law of Included Multiple-Middles within the refined
neutrosophic set as well as logic and probability.

—  Alargearray of applications [28-30] in a variety of fields, after two decades from their foundation
([10], 1998), such as: Artificial Intelligence, Information Systems, Computer Science, Cybernetics,
Theory Methods, Mathematical Algebraic Structures, Applied Mathematics, Automation, Control
Systems, Communication, Big Data, Engineering, Electrical, Electronic, Philosophy, Social Science,
Psychology, Biology, Biomedical, Engineering, Medical Informatics, Operational Research,
Management Science, Imaging Science, Photographic Technology, Instruments, Instrumentation,
Physics, Optics, Economics, Mechanics, Neurosciences, Radiology Nuclear, Medicine, Medical
Imaging, Interdisciplinary Applications, Multidisciplinary Sciences, and more [30].

Klement’s and Mesiar’s claim that the neutrosophic set (I do not talk herein about intuitionistic
fuzzy set, picture fuzzy set, and Pythagorean fuzzy set that they criticized) is not a new result is far
from the truth.

3. Neutrosophy vs. Yin Yang Philosophy

Ying Han, Zhengu Lu, Zhenguang Du, Gi Luo, and Sheng Chen [3] have defined the “YinYang
bipolar fuzzy set” (2018).

However, the “YinYang bipolar” is already a pleonasm, because, in Taoist Chinese philosophy,
from the 6th century BC, Yin and Yang was already a bipolarity, between negative (Yin)/positive (Yang),
or feminine (Yin)/masculine (Yang).

Dialectics was derived, much later in time, from Yin Yang.

Neutrosophy, as the dynamicity and harmony between opposites (Yin <A> and Yang (antiA>)
together with their neutralities (things which are neither Yin nor Yang, or things which are blends of
both: <neutA>) is an extension of Yin Yang Chinese philosophy. Neutrosophy came naturally since,
into the dynamicity, conflict, cooperation, and even ignorance between opposites, the neutrals are
attracted and play an important role.

3.1. YinYang Bipolar Fuzzy Set Is the Bipolar Fuzzy Set

The authors sincerely recognize that: “In the existing papers, YinYang bipolar fuzzy set also was called
bipolar fuzzy set [5] and bipolar-valued fuzzy set [13,16].”

These papers are cited as References [31-33].

We prove that the YinYang bipolar fuzzy set is not equivalent with the neutrosophic set, but a
particular case of the bipolar neutrosophic set.

The authors [3] say that: “Denote I =10, 1] and N = [-1, 0], and L =

~  ~P ~N|~P ~N ~

{a =(a ,a )‘a ella elN }, then « is called the YinYang bipolar fuzzy number. (YinYang bipolar
fuzzy set) X = {x1, -+, x,;} represents the finite discourse. YinYang bipolar fuzzy set in X is defined by

the mapping below.
~ ~P <N
A:X->Lx— (A (x), A (x)),Vx €X.
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~P ~P ~N ~N
where the functions A :X—>1',x > A (x)el’ and A :X—>IN,x—> A (x)eIN define the
satisfaction degree of the element x € X to the property, and the implicit counter-property to the

YinYang bipolar fuzzy set A in X, respectively (see [3], page 2).

With simpler notations, the above set L is equivalent to:

L ={(a, b), with a € [0, 1], b € [-1, 0]}, and the authors denote (4, b) as the YinYang bipolar
fuzzy number.

Further on, again with simpler notations, the so-called YinYang bipolar fuzzy set in

X ={xq,...,x,} is equivalent to:

X ={x1(a1, b1), ..., xn(an, by)}, where all ay, ... ,a, €[0,1],and all by, ... , b, € [-1, 0]}. Clearly, this
is the bipolar fuzzy set and there is no need to call it the “YinYang bipolar fuzzy set.” The authors
added that: “Montero et al. pointed out that the neutrosophic set is equivalent to the YinYang bipolar
fuzzy set in syntax.” However, the bipolar fuzzy set is not equivalent to the neutrosophic set at all.
The bipolar fuzzy set is actually a particular case of the bipolar neutrosophic set, defined as (keeping
the previous notations):

X ={x1( (a1, ), (c1, dv), (el/f1) ) - xXu((an, by), (cu, dn), (enrfn) )

where

allay, ... an,c1,...,cne1, ... en€[0,1],and all by, ..., by, dy, ..., dn, f1, ..., fu €[-1,0]};

for a generic x;((aj, b)),(cj, d)), (ej, f;)) € X, 1 <j<n,

a; = positive membership degree of x;, and b; = negative membership degree of x;;

¢; = positive indeterminate-membership degree of x;, and d; = negative indeterminate membership
degree of x;;

e; = positive non-membership degree of x;, and f; = negative non-membership degree of x;.

Using notations adequate to the neutrosophic environment, one found the following.

Let U be a universe of discourse, and M C U be a set. M is a single-valued bipolar fuzzy set
(that authors call YinYang bipolar fuzzy set) if, for any element, x(T(t(),T(’x)) €M, T&) € [0, 1], and
is the negative membership of

T<‘x> € [-1, 0], where TZ;) is the positive membership of x, and T
x. (BFS).

The authors write that: “Montero et al. pointed that the neutrosophic set [22] is equivalent to the YinYang
bipolar fuzzy set in syntax [17]".

Montero et al.’s paper is cited below as Reference [5].

If somebody says something, it does not mean it is true. They have to verify. Actually, it is untrue,
since the neutrosophic set is totally different from the so-called YinYang bipolar fuzzy set.

Let U be a universe of discourse, and M C U be a set, if for any element.

()

x(T(x),I(x),F(x)) e M

T(x),I(x),F(x) are standard or nonstandard real subsets of the nonstandard real subsets of the
nonstandard real unit interval |70, 17[. (NS).

Clearly, the definitions (BFS) and (NS) are totally different. In the so-called YinYang bipolar
fuzzy set, there is no indeterminacy I(x), no nonstandard analysis involved, and the neutrosophic
components may be subsets as well.

3.2. Single-Valued Bipolar Fuzzy Set as a Particular Case of the Single-Valued Bipolar Neutrosophic Set

The Single-Valued bipolar fuzzy set (alias YinYang bipolar fuzzy set) is a particular case of
the Single-Valued bipolar neutrosophic set, employed by the neutrosophic community, and defined
as follows:
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Let U be a universe of discourse, and M C U be a set. M is a single-valued bipolar neutrosophic
set, if for any element:
ATy Ty T Pl Fig) €M
T:;), I(*;), Fa) €0, 1]
T(;)’ IEY)’ F(;) e[-1, 0]
3.3. Dependent Indeterminacy vs. Independent Indeterminacy

The authors say: “Attanassov’s intuitionistic fuzzy set [4] perfectly reflects indeterminacy but
not bipolarity.”

We disagree, since Atanassov’s intuitionistic fuzzy set [22] perfectly reflects hesitancy between
membership and non-membership not indeterminacy, since hesitancy is dependent on membership
and non-membership: H = 1~ T — F, where H = hesitancy, T = membership, and F = non-membership.

It is the single-valued neutrosophic set that “perfectly reflects indeterminacy” since indeterminacy
(I) in the neutrosophic set is independent from membership (T) and from nonmembership (F).

On the other hand, the neutrosophic set perfectly reflects the bipolarity
membership/non-membership as well, since the membership (T) and nonmembership (F) are
independent of each other.

3.4. Dependent Bipolarity vs. Independent Bipolarity

The bipolarity in the single-valued fuzzy set and intuitionistic fuzzy set is dependent (restrictive)
in the sense that, if the truth-membership is T, then it involves the falsehood-nonmembership
F <1 - T while the bipolarity in a single-valued neutrosophic set is independent (nonrestrictive): if the
truth-membership T € [0, 1], the falsehood-nonmebership is not influenced at all, then F € [0, 1].

3.5. Equilibriums and Neutralities

Again: “While, in semantics, the YinYang bipolar fuzzy set suggests equilibrium, and neutrosophic
set suggests a general neutrality. While the neutrosophic set has been successfully applied to a medical
diagnosis [9,27], from the above analysis and the conclusion in [31], we see that the YinYang bipolar
fuzzy set is clearly the suitable model to a bipolar disorder diagnosis and will be adopted in this paper.”

I'd like to add that the single-valued bipolar neutrosophic set suggests:

— three types of equilibrium, between: T(t) and T(‘x), I (+X) and I(‘X), and F (+x) and F(‘x> ;

— and two types of neutralities (indeterminacies) between T(+x) and F a), and between T(‘x) and F "

Therefore, the single-valued bipolar neutrosophic set is 3 x 2 = 6 times more complex and more
flexible than the YinYang bipolar fuzzy set. Due to higher complexity, flexibility, and capability of
catching more details (such as falsehood-nonmembership, and indeterminacy), the single-valued
bipolar neutrosophic set is more suitable than the YinYang bipolar fuzzy set to be used in a bipolar
disorder diagnosis.

3.6. Zhang-Zhang's Bipolar Model is not Equivalent with the Neutrosophic Set

Montero et al. [5] wrote: “Zhang-Zhang’s bipolar model is, therefore, equivalent to the neutrosophic sets
proposed by Smarandache [70]” (p. 56).

This sentence is false and we proved previously that what Zhang & Zhang proposed in 2004 is a
subclass of the single-valued bipolar neutrosophic set.
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3.7. Tripolar and Multipolar Neutrosophic Sets

Not talking about the fact that, in 2016, we have extended our bipolar neutrosophic set to tripolar
and even multipolar neutrosophic sets [18], the sets have become more general than the bipolar
fuzzy model.

3.8. Neutrosophic Overset/Underset/Offset

Not talking that the unit interval [0, 1] was extended in 2006 below 0 and above 1 into the
neutrosophic overset/underset/offset: [(), ¥] with Q) <0 <1 < ¥ (as explained above).

3.9. Neutrosophic Algebraic Structures

The Montero et al. [5] continue: “Notice that none of these two equivalent models include any formal
structure, as claimed in [48]”.

First, we have proved that these two models (Zhang-Zhang’s bipolar fuzzy set, and neutrosophic
logic) are not equivalent at all. Zhang-Zhang’s bipolar fuzzy set is a subclass of a particular type of
neutrosophic set, called the single-valued bipolar neutrosophic set.

Second, since 2013, Kandasamy and Smarandache have developed various algebraic structures
(such as neutrosophic semigroup, neutrosophic group, neutrosophic ring, neutrosophic field,
neutrosophic vector space, etc.) [28] on the set of neutrosophic numbers:

Sk = {a + bl|, wherea, b € R, and I = indeterminacy, =1 }, where R is the set of real numbers.

And extended on:

Sc = {a + bl|, wherea, b € C, and I = indeterminacy, 2= I}, where C is the set of
complex numbers.

However, until 2016 [year of Montero et al.’s published paper], I did not develop a formal structure
on the neutrosophic set. Montero et al. are right.

Yet, in 2018, and, consequently at the beginning of 2019, we [2] developed, then generalized, and
proved that the neutrosophic set has a structure of the lattice of the first type (as the neutrosophically
partially ordered set): (]70, 17[,<y), where |0, 17| is the nonstandard neutrosophic mobinad
(monads and binads) real unit interval, and <y is the nonstandard neutrosophic inequality. Moreover,
( 170, 17, infy, supy,” 0, 1*) has the structure of the bound lattice of the second type (as algebraic
structure), under two binary laws infy (nonstandard neutrosophic infimum) and sup,; (nontandard
neutrosophic supremum).

3.10. Neutrality (<neutA>)

Montero et al. [5] continue: “ ... the selected denominations within each model might suggest different
underlying structures: while the model proposed by Zhang and Zhang suggests conflict between categories
(a specific type of neutrality different from Atanassov’s indeterminacy), Smarandache suggests a general neutrality
that should, perhaps jointly, cover some of the specific types of neutrality considered in our paired approach.”

In neutrosophy and neutrosophic set/logic/probability, the neutrality <neutA> means everything
in between <A> and <antiA>, everything which is neither <A> nor <antiA>, or everything which is a
blending of <A> and <antiA>.

Further on, in Refined Neutrosophy and Refined Neutrosophic Set/Logic/Probability [9], the
neutrality <neutA> was split (refined) in 2013 into sub-neutralities (or sub-indeterminacies), such as:
<neutA;>, <neutA,;>, ..., <neutA,> whose number could be finite or infinite depending on each
application that needs to be solved.

Thus, the paired structure becomes a particular case of refined neutrosophy (see next).

4. The Pair Structure as a Particular Case of Refined Neutrosophy

Montero et al. [5] in 2016 have defined a paired structure: “composed by a pair of opposite concepts and
three types of neutrality as primary valuations: L = {concept, opposite, indeterminacy, ambivalence, conflict].”
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Therefore, each element x € X, where X is a universe of discourse, is characterized by a degree
function, with respect to each attribute value from L:

y:X—)[O,l}5

p(x) = (p1(x), pa(x), pa(x), pa(x), us(x))

where 1 (x) represents the degree of x with respect to the concept;
2 (x) represents the degree of x with respect to the opposite (of the concept);
u3(x) represents the degree of x with respect to ‘indeterminacy’;
,u4 (x) represents the degree of x with respect to ‘ambivalence’;
us(x) represents the degree of x with respect to ‘conflict’.
However, this paired structure is a particular case of Refined Neutrosophy.

4.1. Antonym vs. Negation

First, Dialectics is the dynamics of opposites. Denote them by (A) and (antiA), where (A) may be
an item, a concept, attribute, idea, theory, and so on while (antiA) is the opposite of (A).

Secondly, Neutrosophy ([10], 1998), as a generalization of Dialectics, and a new branch of
philosophy, is the dynamics of opposites and their neutralities (denoted by (neutA)). Therefore,
Neutrosophy is the dynamics of (A), (antiA), and (neutA).

(neutA) means everything, which is neither (A) nor (antiA), or which is a mixture of them, or
which is indeterminate, vague, or unknown.

The antonym of (A) is (antiA).

The negation of (A) (which we denote by (nonA)) is what is not (A), therefore:

N(A) = (nonA) =N (neutAyuU y{antiA)

We preferred to use the lower index y (neutrosophic) because we deal with items, concepts,
attributes, ideas, and theories such as (A) and, in consequence, its derivates (antid), (neutA),
and (nonA), whose borders are ambiguous, vague, and not clearly delimited.

4.2. Refined Neutrosophy as an Extension of Neutrosophy

Thirdly, Refined Neutrosophy ([6], 2013), as an extension of Neutrosophy, and a refined branch
of philosophy, is the dynamics of refined opposites: (A1), (A2), ..., (Ap) with (antiA1), (antiAy), ...,
(antiA;), and their refined neutralities: (neutA;), (neutA,), ..., (neutA,), for integers p, 1,s > 1, and
p+7+s=n > 4. Therefore, the item (A) has been split into sub-items (A;), 1 < j < p, the (antiA) into
sub-(anti-items) (antiAy), 1 < I < s, and the (neutA) into sub-(neutral-items) (neutA;), 1 <k <r.

4.3. Qualitative Scale as a Particular Case of Refined Neutrosophy
Montero et al.’s qualitative scale [5] is a particular case of Refined Neutrosophy where the
neutralities are split into three parts.

= {concept, opposite, indeterminacy, ambivalence, conflict} = {<A>, <antiA>, <neutA;>, <neutA;>, <neutAs>}

where: <A> = concept, <antiA> = opposite, <neutAl> = indeterminacy, <neutA2> = ambivalence,
<neutA3> = conflict.

Yin Yang, Dialectics, Neutrosophy, and Refined Neutrosophy (the last one having only (neutA) as
refined component), are bipolar: (A) and (antiA) are the poles.

Montero et al.’s qualitative scale is bipolar (‘concept’, and its ‘opposite’).
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4.4. Multi-Subpolar Refined Neutrosophy

However, the Refined Neutrosophy, whose at least one of (A) or (antiA) is refined, is multi-subpolar.

4.5. Multidimensional Fuzzy Set as a Particular Case of the Refined Neutrosophic Set

Montero et al. [5] defined the Multidimensional Fuzzy Set Ay as: Ay = {< % (s (X)) sep, >|x € X},
where X is the universe of discourse, L = the previous qualitative scale, and us(x) € S, where Sis a
valuation scale (in most cases S = [0, 1]), ys(x) is the degree of x with respect to s € L.

A Single-Valued Neutrosophic Set is defined as follows. Let U be a universe of discourse, and
M c U a set. For each element x(T(x),I(x),F(x)) € M, T(x) € [0, 1] is the degree of truth-membership
of element x with respect to the set M, I(x ) [0, 1] is the degree of indeterminacy-membership of
element x with respect to the set M, and F(x) € [0, 1] is the degree of falsehood-nonmembership of
element x with respect to the set M.

Let's refine I(x) as I; (x), I>(x), and I3(x) € [0, 1] sub-indeterminacies. Then we get a single-valued
refined neutrosophic set.

Ueoncept (X) = T(x) (truth-membership);

[Juppgsitg( x) = F(x) (falsehood-non—membershlp)

Hindeterminacy (X) = I1 (x) (first sub-indeterminacy);

Hambivalence (X) (x) (second sub-indeterminacy);
I

=1
Heonflict(X) = I3(x) (third sub-indeterminacy).

The Single-Valued Refined Neutrosophic Set is defined as follows. Let U be a universe of discourse,
and M C U a set. For each element:

(T1(x), To(x), ..., Ty (x); (%), (%), ..., 1 (x); F1(x),Fa(x), ..., Fs(x)) € M

Ti(x),1 < j < p, are degrees of subtruth-submembership of element x with respect to the set M.

I(x), 1 < k < r, are degrees of subindeterminacy-membership of element x with respect to
the set M.

Lastly, Fi(x), 1 < I < s, are degrees of sub-falsehood-sub-non-membership of element x with
respect to the set M, where integersp,r,s > 1,andp+7r+s=n>4.

Therefore, Montero et al.’s multidimensional fuzzy set is a particular case of the refined
neutrosophic set, whenp =1,7 =3,ands = 1, wheren =1+3+1=5.

4.6. Plithogeny and Plithogenic Set

Fourthly, in 2017 and in 2018 [24-27], the Neutrosophy was extended to Plithogeny, which is
multipolar, being the dynamics and hermeneutics [methodological study and interpretation] of many
opposites and/or their neutrals, together with non-opposites.

(A), (neutA), (antiA);

(B), (neutB), (antiB); etc.

(C), (D), etc.

In addition, the Plithogenic Set was introduced, as a generalization of Crisp, Fuzzy, Intuitionistic
Fuzzy, and Neutrosophic Sets.

Unlike previous sets defined, whose elements were characterized by the attribute ‘appurtenance’
(to the set), which has only one (membership), or two (membership, nonmembership), or three
(membership, nonmembership, indeterminacy) attribute values, respectively. For the Plithogenic Set,
each element may be characterized by a multi-attribute, with any number of attribute values.
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4.7. Refined Neutrosophic Set as a Unifying View of Opposite Concepts

Montero et al.’s statement [5] from their paper Abstract: “we propose a consistent and unifying view
to all those basic knowledge representation models that are based on the existence of two somehow opposite
fuzzy concepts.”

With respect to the “unifying” claim, their statement is not true, since, as we proved before, their
paired structure together with three types on neutralities (indeterminacy, ambivalence, and conflict)
is a simple, particular case of the refined neutrosophic set.

The real unifying view currently is the Refined Neutrosophic Set.

{I was notified about this paired structure article [5] by Dr. Said Broumi, who forwarded it to me.}

4.8. Counter-Example to the Paired Structure

As a counter example to the paired structure [5], it cannot catch a simple voting scenario.

The election for the United States President from 2016: Donald Trump vs. Hillary Clinton. USA
has 50 states and since, in the country, there is an Electoral vote, not a Popular vote, it is required to
know the winner of each state.

There were two opposite candidates.

The candidate that receives more votes than the other candidate in a state gets all the points of
that state.

As in the neutrosophic set, there are three possibilities:

T = percentage of USA people voting for Mr. Trump;

I = percentage of USA people not voting, or voting but giving either a blank vote (not selecting
any candidate) or a black vote (cutting all candidates);

F = percentage of USA people voting against Mr. Trump.

The opposite concepts, using Montero et al.’s knowledge representation, are T (voting for, or
truth-membership) and F (voting against, or false-membership). However, T > F, or T = F, or
T < F, that the Paired Structure can catch, mean only the Popular vote, which does not count in the
United States.

Actually, it happened that T < F in the US 2016 presidential election, or Mr. Trump lost the
Popular vote, but he won the Presidency using the Electoral vote.

The paired structure is not capable of refining the opposite concepts (T and F), while the
indeterminate (I) could be refined by the paired structure only in three parts.

Therefore, the paired structure is not a unifying view of all basic knowledge that uses opposite
fuzzy concepts. However, the refined neutrosophic set/logic/probability do.

Using the refined neutrosophic set and logic, and splits (refines) T, I, and F as:

T; = percentage of American state S; people voting for Mr. Trump;

I; = percentage of American state S; people not voting, or casting a blank vote or a black vote;

Fj = percentage of American state S; people voting against Mr. Trump, with T}, I;, F; € [0, 1] and
Ti+1;+F=1, forall je (1, 2, ..., 50}.

Therefore, one has:

(T1, T, ..., Tso; It I, ..., Is0; Fy,Fa, ..., Fsp).

On the other hand, due to the fact that the sub-indeterminacies Iy, I, . . . , Isg did not count towards
the winner or looser (only for indeterminate voting statistics), it is not mandatory to refine I. We could
simply refine it as:

(T1,Ta, ..., Tso; I; F1,Fa, ..., Fso).

4.9. Finite Number and Infinite Number of Neutralities

Montero etal. [5]: “(... ) we emphasize the key role of certain neutralities in our knowledge representation
models, as pointed out by Atanassov [4], Smarandache [70], and others. However, we notice that our notion of
neutrality should not be confused with the neutral value in a traditional sense (see [22-24,36,54], among others).
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Instead, we will stress the existence of different kinds of neutrality that emerge (in the sense of Reference [11])
from the semantic relation between two opposite concepts (and notice that we refer to a neutral category that does
not entail linearity between opposites).”

In neutrosophy, and, consequently, in the neutrosophic set, logic, and probability, between the
opposite items (concepts, attributes, ideas, etc.) (A) and (antiA), there may be a large number of
neutralities/indeterminacies (all together denoted by (neutA) even an infinite spectrum—depending
on the application to solve.

We agree with different kinds of neutralities and indeterminacies (vague, ambiguous, unknown,
incomplete, contradictory, linear and non-linear information, and so on), but the authors display only
three neutralities.

In our everyday life and in practical applications, there are more neutralities and indeterminacies.

In another example (besides the previous one about Electoral voting), there may be any number
of sub indeterminacies/sub neutralities.

The opposite concepts attributes are: (A) = white, (antiA) = black, while neutral concepts
in between may be: (neutA;) = yellow, (neutA;) = orange, (neutAz) = red, (neutA;) = violet,
(neutAs) = green, and (neutAs) = blue. Therefore, we have six neutralities. Example with infinitely
many neutralities:

— The opposite concepts: (A) = white, (antiA) = black;
—  Theneutralities: (neutA;, 5, . «) = the whole light spectrum between white and black, measured
in nanometers (n11) [a nanometer is a billionth part of a meter].

5. Conclusions

The neutrosophic community thank the authors for their criticism and interest in the neutrosophic
environment, and we wait for new comments and criticism, since, as Winston Churchill had said, the
eagles fly higher against the wind.

Funding: The author received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

Notations

nonS P P
<N means nonstandard n-tuple neutrosophic inequality;
<uN means standard (real) n-tuple inequality;
<pons means nonstandard unary neutrosophic inequality;
<N mean standard (real) unary neutrosophic inequality;
=N means neutrosophic equality;
N means neutrosophic negation;
UnN means neutrosophic union;
= means classical equality;
<, >, <, mean classical inequalities.
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Abstract: Linguistic neutrosophic numbers (LNNs) include single-value neutrosophic numbers and
linguistic variable numbers, which have been proposed by Fang and Ye. In this paper, we define
the linguistic neutrosophic number Einstein sum, linguistic neutrosophic number Einstein product,
and linguistic neutrosophic number Einstein exponentiation operations based on the Einstein operation.
Then, we analyze some of the relationships between these operations. For LNN aggregation problems,
we put forward two kinds of LNN aggregation operators, one is the LNN Einstein weighted average
operator and the other is the LNN Einstein geometry (LNNEWG) operator. Then we present a
method for solving decision-making problems based on LNNEWA and LNNEWG operators in the
linguistic neutrosophic environment. Finally, we apply an example to verify the feasibility of these
two methods.

Keywords: multiple attribute group decision making (MAGDM); Linguistic neutrosophic;
LNN Einstein weighted-average operator; LNN Einstein weighted-geometry (LNNEWG) operator

1. Introduction

Smarandache [1] proposed the neutrosophic set (NS) in 1998. Compared with the intuitionistic
fuzzy sets (IFSs), the NS increases the uncertainty measurement, from which decision makers can use
the truth, uncertainty and falsity degrees to describe evaluation, respectively. In the NS, the degree of
uncertainty is quantified, and these three degrees are completely independent of each other, so, the NS
is a generalization set with more capacity to express and deal with the fuzzy data. At present, the study
of NS theory has been a part of research that mainly includes the research of the basic theory of NS,
the fuzzy decision of NS, and the extension of NS, etc. [2-14]. Recently, Fang and Ye [15] presented
the linguistic neutrosophic number (LNN). Soon afterwards, many research topics about LNN were
proposed [16-18].

Information aggregation operators have become an important research topic and obtained a
wide range of research results. Yager [19] put forward the ordered weighted average (OWA) operator
considering the data sorting position. Xu [20] presented the arithmetic aggregation (AA) of IFS.
Xu and Yager [21] presented the geometry aggregation (GA) operator of IFS. Zhao [22] proposed
generalized aggregation operators based on IFS and proved that AA and GA were special cases
of generalized aggregation operator. The operators mentioned above are established based on the
algebraic sum and the algebraic product of number sets. They are respectively referred to as a special
case of Archimedes t-conorm and t-norm to establish union or intersection operation of the number set.
The union and intersection of Einstein operation is a kind of Archimedes t-conorm and t-norm with
good smooth characteristics [23]. Wang and Liu [24] built some IF Einstein aggregation operators and
proved that the Einstein aggregation operator has better smoothness than the arithmetic aggregation
operator. Zhao and Wei [25] put forward the IF Einstein hybrid-average (IFEHA) operator and IF

Mathematics 2019, 7, 389; doi:10.3390/math7050389 107 www.mdpi.com/journal/mathematics
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Einstein hybrid-geometry (IFEHG) operator. Further, Guo etc. [26] applied the Einstein operation to
a hesitate fuzzy set. Lihua Yang etc. [27] put forward novel power aggregation operators based on
Einstein operations for interval neutrosophic linguistic sets. However, neutrosophic linguistic sets are
different from linguistic neutrosophic sets. The former still use two values to describe the evaluation
value, while the latter can use a pure language value to describe the evaluation value. As far as we know,
this is the first work on Einstein aggregation operators for LNN. It must be noticed that the aggregation
operators in References [15-18] are almost based on the most commonly used algebraic product and
algebraic sum of LNNSs for carrying the combination process, which is not the only operation law that
can be chosen to model the intersection and union on LNNs. Thus, we establish the operation rules of
LNN based on Einstein operation and put forward the LNN Einstein weighted-average (LNNEWA)
operator and LNN Einstein weighted-geometry (LNNEWG) operator. These operators are finally
utilized to solve some relevant problems.

The other organizations: in Section 2, concepts of LNN and Einstein are described, operational
laws of LNNs based on Einstein operation are defined, and their performance is analyzed. In Section 3,
LNNEWA and LNNEWG operators are proposed. In Section 4, multiple attribute group decision
making (MAGDM) methods are built based on LNNEWA and LNNEWG operators. In Section 5, an
instance is given. In Section 6, conclusions and future research are given.

2. Basic Theories

2.1. LNN and Its Operational Laws

Definition 1. [15] Set a finite language set ¥ = {1/1t|t € [0,4] }, where Yy is a linguistic variable, k +1 is the
cardinality of Y. Then, we define u = (g, Py, Ps), in which Yg, Py, s € ¥ and B,y,6 € [0, k1, g, s and Py,
expresse truth, falsity and indeterminacy degree, respectively, we call u an LNN.

Definition 2. [15] Set three LNNs u = <¢ﬁ, Yy, Ps), U = <¢ﬁl,¢yl,¢51> and uy, = (wﬁz,lpyz,tpg,z)
in'Y and A > 0, then, the operational rules are as following:

Oz = (g, Wy, W) @ (W, by Wsy) = (o i Wi Wy ) (1)

ur @2 = (P by Ps) @y Py sy = (b prea by 1y, v by L s @
A= Ag,, Py, Ps,) = <¢k_k<1_§)hwk(%y‘,tpk(%)m @)

W= W YY) = W b g Yo 4)

Definition 3. [15] Set an LNN u = (Y, y, ¥s) in ¥, we define {(u) as the expectation and n(u) as
the accuracy:
C(u)= (2k + p—y=5)/3k ©®)

n(u) = (B-0)/k (6)

Definition 4. [15]: Set two LNNs u1 = (g, Yy, ¥, ) and uz = (Yp,, Py, Yss,) in Y, then
If Clur) > C(un), then s >
If C(u1) = C(up) then
If n(ur) > n(u2), then uy > uy;
If n(u1) = n(up), then uy ~ uy.

108



Mathematics 2019, 7, 389

2.2. Einstein Operation

Definition 5. [28,29] For any two real Numbers a, be [0,1], Einstein @, is an Archimedes t-conorms,
Einstein ®, is an Archimedes t-norms, then

a+b ab
= —— o = —— 7
B e W g T @

2.3. Einstein Operation Under the Linguistic Neutrosophic Number

Definition 6. Set u = (lpﬁ, Uy, Ps), uy = (1,[}/31, Uy, s, ) and up = <1P[32/ Uy,, Y5, ) as three LNNs in ¥, A > 0,
the operation of Einstein @, and Einstein ®, under the linguistic neutrosophic number are defined as follows:

Uy @, U= <¢k2(ﬁ1+ﬁz) ’ l/) kr1yo ’ IP ko106 % 8)
Zipipy KHkey))(k-ra)  K2(k=01)(k=0p)
u @ 2= gy PRy Ve ) )
K2+ (k=py) (k=B2) K+y17o K2+0109
Au= (d)k () —(—p)t 7 I,Uk 2 Y 2] Y (10)
©rpTropt @t eh @-oret
A_
W= g W wtae) Y, e (11)
@=prept Tt wro )t

Theorem 1. Set u (=Yg, Py, Ps), ur = (Yp,, Yy, s, ) and uy = (g, , 1y, Ps,) as three LNNs in ¥, A > 0,
then, the operation of Einstein ®, and Einstein ®, have the following performance:

Uy ®e Uy = Up S Uy; (12)
U ®e Up = U B¢ U1; (13)
)L(Ll] D, uz) = /\ul D, /\uz,’ (14)
(11 ® u2)" = w1 @ ur?; (15)

Proof. Performance (1) and (2) are easy to be obtained, so we omit it; Now we prove the performance (3):
According to Definition 6, we can get

O m@uw=Wepp) ¥ b W ks )
Ripapy Pl k-0 (k-dp)

@  A(ug @ uz)

= @ Bee) )t R 24 Ay rarz 34 YL ’
1261 R K2+ (k=) (k=72) . 2+ (k=dy) (k=35)
k*m ( i bk T v [ 7
L K24p1p ) = K2+p1po ) K24 (k1) (k=72) R+(k=y1) (kr2) K24(k=07) (k=0p) K2+ (k=07) (k=57)
=W g o g o) Y 20170t p 255" %
(k+61)™ (k)M + (k=P )M (k=) (k1) @y M) +(r172)t ((2k-51)} (2Kk=09)1) +(0109)%
® Am = <’vbk ()M~ k=py) 'lpk RS P L
(k+B1) M+ (k=g ) (2k-y) 1t (2k-01) 4011
@ Aup = (IJJk (k) (k=) ,IPk 2,1 'l’bk* wh
(k+52) "+ (k=) (@-rp) 2 (k=091 051
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® Ay @, Auy
=@ 2 KB B () - Ghpy) W PR G S - L A S S S )
k)N koppt T (k)M ()t (zm/mﬁw (zk—m"wz: <2k761>A\+»1" (2k*02>”‘+°22
2 BB (kgD | (k)N (k=) 2 (k= (k 2y (k= (e 2r2 K2 (h (e 2617 k(b 2
s o n ™ gy gy T T eyt e e eyt
- <‘/’, (B ki) =) ot Y 217" 2 2(759)" )
(k+p1) 7 (ko) M+ (k=B ) (k=) (@k=y1)A 2k=y2) V) +(r172)t ((2k=57)} (2k=59)1)+(6159)7
So, we can get A(u; ®e uz) = Aug @e Aup.
Now, we prove the performance (4):
A .
D" = <4’k I 4 (e ()t "Pk (krop)A=(h=ay )
(@) +p1 1 () +kyp)t (k1) M+ (k-07)t
A .
@uy” = W’k #p W Pt oY oot Y
(@B +p2? (k)M (k=p) (ko) M+ (k=)
Y N 211 . 26,7 ’,
@k=pp+p A (2k=pp) ot
24 251
12+ (k= (k )) (k=(k
(Zk’ﬁl)/‘ﬂgl/\ (2’(*52)’”!32)“
v (e A=ttt
®ut @ upt = iy Myt 7 @hepptipt Ty
g2 ) oyt ot
(k) -y @pp) 45y
ll’kz ® (k) =(k=0)" | | (k) =(k=55)" 3
(k+07)N+ (k=57)" (k+09) N+ (k=5,)"
2 (o)A —(k=dp)A | (k+0p) (k-0
(k69N +(k=01)A T (k+00) M+ (k=0p) 1
=¥ 2(p15)" W My o) e W oA o - Moyt Y
((@k=p1) N (2k-p2))+(B152) (k+y1) () M+ ) ()t (k+01) (k+09) -+ (k=01) (k=09)
@uy @ uy = <lpkﬁl¢’ lpkz(hﬂ’z) 4 1l)kz(bfrﬁz) %
K2+ (k=py ) (k=p2) K+y1yn k240105
® (ul ®e u2) =@ 2 KkB1By ))‘ W - Ry +yz))’\7(kikz()/1 +y2)j" P 4 k2(01+02)j",(,{,k2<01-f’z>)/\ )
K2+ (k=py) (k=p2) . Z+y10 Z+y12 . K2+0109 K2+010y
. kB16 A kB16 A R+ b Rty b Roy+0p) 1 R0+ )
O R o) P ) ) TR ke e
- Wk 218" W Gy syl gt 2 W, o) ey ity oy ”

((2K=By )" (2k—p2) M) +(B1 o) (kty) Mk ty) M (k)Y (k)Y (k1) (k+69) A+ (k=51)} (k=5) %

So, we can get (11 @, uz)A =uwtre,uwt. O
3. Einstein Aggregation Operators
3.1. LNNEWA Operator
Definition 7. Set a LNN u; = (g, ¥y, ¢s,) in ¥, fori=1.2, ..., z, we define the LNNEWA operator:

LNNEWA(u1, 11y, ... 11z) = e €t (16)
i=1

i
with the relative weight vector € = (€1, €, .. .,eZ)T, Y, ei=1lande€[0,1].

Theorem 2. Set a collection u; = (Pg,, Py, Y5y in'¥, fori=1,2, ...
agqregation operator, we can get the following result:

,z, then according to the LNNEWA

z
LNNEWA (uq,up, JUz) = D€l
i=1
=W i e oY
TE, () T, ()

R ) 17)

e
2017, ¥
TE_, Gy T HIE, 1

z €

2117, 0%
Z —5;)€i Z €
T2, (k=011 o7
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with the relative weight vector € = (€1, €2, . .. ,ez)T Y ei=1landei €0,1].

Proof.
@ eiti =P, wappiogeppi ¥ e Y ws )
(k-+B;)5 + (k)i (2k=y;)Ci+y i (2k—5;)%i 45,1

2
® z=2,LNNEWA(u1,up) = @ €ill;

i=1
= 2o BBV Gp) Y (k) 2= (hopy)2 ) s K 1 292 Y K21 292, )
(ktp7) 1{\ (k=py )‘16 (H/fz)q:(k*ﬁz) i (2%-y; >*1F>,v. T (2 2+>r2€2 (2%-5,) 1e<¢1*1 (Zk—ﬁz)‘2+h252
2 (e BTNy )L (k4 Bp) 2= (k=) 2 24 (k- (k 21 (ke 272 2. (k—(k 251 (K 20,2
K2+(( (k57T T (ko 1 ) (k+/>'2)€2+(k—52>‘2) K24 (k=( By T D) k=( (zk—yz)‘2+,v2€2)) K2+ (k=( WG] D (k=( <2k—h2>fz+h252))
=P, ) ) 2= ()2 - P y s 2011652
(k1)1 (k+$) 2 + (k=P )T (k—p)2 (2k—y1)T (2k=yp) 24711, %2 (2k=1 )T (2k=57 )2 +0, 10,52
= W” T2, (k)i =TTy (k=) Y . 2012 8¢ ).
T2 (g4I G T T2, (2k-0) i +TI2 677
Suppose z = m, according t formula (17), we can get
m
LNNEWA(uq,uy, ... Uy) = GBel €ll;
. 18
= <w’ TI ) (k)i =TI (k)i Y 200 7S ’ l,bk 201, ;% )2 ( )
T (ke B) ST+ TITE ) (k=py)T T (2h=y)ST+TT T (k=) F+TTL ) 07
Then z = m + 1, the following can be found:
m
LNNEWA(uy, tiy, ... iy, Uyg1) = ($n1€iui) De €11
i=
P . e, (k+/)',-)?fH;-":1 (kfﬁ,)("‘ lPk* (k4B 1) ML = (k=B 1)1 7
TIPE (k) T +TT ) (k)i () L4 (kgL
20y ’ 'y €m+1 ’
= l/)k* H’*},)' i _ Y @e ( #’k* Z:‘Z_u+1 mt C )
7T, ey T I 77 o T
Y ampa LN L
T, (k=0 T +1T & (20 1) 404 T
‘J’kz((.. Ly )Ty (o) (b )7L —mpyyy )L 7
T ()T (k)i () ()T
2 e Jit Ut T T ) ()T | (1) (g )1
T, G T T, G O B Ty )T
‘/) i zn;[] yii " 2 L ) ’
= ", (Zkf;/f2‘1+1[§":1 Vi k) My )
2017, yici 21 Mt
R+ (k= (ke ety ) 6 0 g )
P " 21 o ’ 20,4054 |
Ty (2k=0) i+ TIE ) 6T (kb q) ML 48 T
201" 5.5 25 €m+1
K2 — (ks i=1"1 (k> m41
Ktk n, (zk—o,-)ﬂ‘ﬂl;!] o Nl (2K=0y 1) ML 40, 4 1 )
= <l/)’ T () G-I (pp)©i Y 2y ’ l’bk 211 o )-
T et ST (k) T @k T T k)T 0,

So, Equation (17) is satisfied for any z according to the above results.
This proves Theorem 1. O

Theorem 3. (Idempotency). Set an LNN u = (g, )y, Ys) in ¥, for every u; in u is equal to u, we can get:

LNNEWA(uy,up, ... u;) = LNNEWA(u,u...u) = u.
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Proof. For u; = u, then p; = ;vi =y;6; =0=(i=1,2, ...z), the following result can be found:

LNNEWA(u1, 1y, ... 112) = LNNEWA (i, u...u) = (See;t)
i=1

<11Z} Iy (kp)Ci-TTZ_; (k=p)° /lyz) 2017, ) ’ll}k 2015, % )
Hz 1(k+5)6,+nz p) 2, @ )C:+1'[1’-71 i TR, @0 5
(IP L ep)=(p) Y S 2
S CrE = 2k o e

= (Yp, Yy, Ys) = u

Theorem 4. (Monotonicity) set two collections of LNNs u; = (g, ¥y, s, ) and ui” = (g, Py, sy (=1,
2,...,2)inY, if u; <uy then

LNNEWA(uy,uyp,...uz) < LNNEWA(uy', up’, ... us").

Proof. For u; < u;’, then €;u; < eju;
So, we can easily obtain:
z Z
@, €U < D€ty
i=1 i=1
z z
For LNNEWA(uy,uy,...u;) = ®€u; and LNNEWA(uy/,up’,...u.") = eage,u, , then we can get:
i=1 i1
LNNEWA (uy,uy, ... u;) < LNNEWA(uy,uy,...u'). 0

Theorem 5. (Boundedness) Let a collection u; = (g, ¥y, ¥s) in ¥, u” =
(min(g,), max(yy,), max(s,)) and u™ = (max(g,), min(y,), min(s,)), we can get:

u~ < LNNEWA((uy,up,...uz) <ut.
Proof. The following can be obtained by using Theorem 3:
u” = LNNEWA(u",u”...u"), um” = LNNEWA(u™,u"...u").
The following can be obtained by using Theorem 4:
LNNEWA (u,u”...u") < LNNEWA (uy,up,...u;) < LNNEWA(u®,u®...ut).

Above all, we can get:
u” < LNNEWA (u,up,...u;) <u'.

3.2. LNNEWG Operators

Definition 8. Set a collection u; = (g Wy s, in Y, fori=1,2,...,z wedefine the LNNEWG operator:

LNNEWG(u1, 1y, ... 12) = & (1), (19)
i=1

with the relative weight vector € = (€1, €3, .. .,eZ)T Y ei=1lande; €0,1].

112



Mathematics 2019, 7, 389

Theorem 6. Set a collection u; = (l,l}/gi,lpy,., Yoy in'Y, fori=12, ...z, then according to the LNNEWG
aggregation operator, we can get the following result:

z
LNNEWG(uy,tig, ... uz) = ®(u;)"
i=1
20
= 20 YT ST G Y T oI o)) (20)
TI7_y (2K—p)) T +TTE BT T ety ST+TTE ) (koy)©i TI7_ ) (ero)) T +TTE (k-0))¢%

with the relative weight vector € = (€1, €2, . .. ,eZ)T, Y€ =1lande €[0,1].

Theorem 7. (Idempotency) Set a collection u; = (g, Yy, Ys) in¥, fori=12, ... z, for every u; in u is
equal to u, we can get
LNNEWG(uy,u,...uz) = LNNEWG(u,u...u) = u.

Theorem 8. (Monotonicity). Set two collections of LNNs u;
1,2,...,2)inY, if u; <uy then

gy Uy s and wi’ = (o, s ) (i =
LNNEWG(uy,up,...uz) < LNNEWG(uy’, up’, ... u;").

Theorem 9. (Boundedness) Let a collection u; = Wps ¥y, 50 n ¥, u =
(min(pg,), max(yy,), max(ps;)) and u™ = (max(Pg,), min(py,), min(ps,)), we can get:

u~ < LNNEWG(uq,ua, ... uz) <u’
We omit the proof here because it is similar to Theorems 2-5.

4. Methods with LNNEWA or LNNEWG Operator

We introduce two MAGDM methods with the LNNEWA or LNNEWG operator in
LNN information.
Now, we suppose that a collection of alternatives is expressed ® = {©®,0,,...,0,} and
a collection of attributes is expressed E = {Eq,Ej,...,E;}. Then, € = (61,62,...,€n)T with
1,6 = 1and ¢ € [0,1] is the weight vector of E;j(i=1,2,...,n). Establishing a set of
experts D = {Dy,Dy,...,Dy} , p = ([ul,,uzl...,yt)T with 1 > p; > 0 and Z§:1 pj = 1 is the
weight vector of D;(i=1,2,...,t). Assuming that the expert Dy(y =1,2,...,t) uses the LNNs
()

to give out the assessed value Qi/.y for alternative ©; with the attribute E;, the value 0" can be

ij

written as ef;ﬂ = <1p§“,1p;]_,lpg_ Wy=1,2,...,t;i=12,...,mj=1,2,. ..,n),lpg”,lp;j,lpgl_ €Y. Then,
ij L ij ij E ij

the decision evaluation matrix can be found. Table 1 is the decision matrix.

Table 1. The decision matrix using linguistic neutrosophic numbers (LNN).

Eq ... En

Y Y Y Y Y Y
®1 <¢§n' '4’?./%‘/31) <¢§1”' wzj/m' LP?/M)
©2 <¢.521 ! %’21 ’ Il}On) T <1/)52v' wh"’ l'b02r1>
O Wp Via¥s) e W Vh¥s,)

The decision steps are described as follows:
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Step 1: the integrated matrix can be obtained by the LNNEWA operator:

t
Oij = Wpy Py Vo) = LNNEWA(@}],, 61.2],,...,65],) =& elefj
_ - (21)
W n;q<k+ﬁ§]>“1—n§71<k7ﬁ§j>"1"/’ 211 24 2111 oL H
1y gl ) TmT]_y (el T 11f_y =0 )!1411f_ o 4

Step 2: the total collective LNN 0; (i=1,2,...,m) can be obtained by the LNNWEA or
LNNEWG operator.

n
0; :LNNEWA(Q,‘l,Qiz,...,Qm) = _99361']‘91']‘

j=1
= . ; p . (22)
(1p H?:l (k+ﬁij)tl]7n}‘1:1 (’“ﬁij)qj P 21—[}1:1 VifCI/ ’ ll)k* 21—[;,:1 ‘)ijcl/ )
T Gey) T (ki) Ty k) 1 T (k=0 T+ 1 077
Or
n
e
0; = LNNEWG(GH, 0, ..., Gin) = ®e1(6ij) 1
=
= . . . (23)
@ 2115y ﬁi;ﬂ] a4 Iy (H)’i/')t”*l_l;':l (k*‘/ij)g” 2 iy (Hbi;)m*l_l}':l (k*f’z/‘)t” )

k (k=) T i n
Hj:] (2k=Bij) +H/-:1 Bij I1

= = = =
e (b T HTTE (keyi) IT_y (ki) T HTTT (k=0y) Y

Step 3: according to Definition 3, we can calculate ((6;) and 17(6;) of every LNN @;(i = 1,2,...,m).
Step 4: According to {(6;), then we can rank the alternatives and the best one can be chosen out.
Step 5: End.

5. Illustrative Examples

5.1. Numerical Example

Now, we adopt illustrative examples of the MAGDM problems to verify the proposed decision
methods. An investment company wants to find a company to invest. Now, there are four companies
® = {01,0,,03,04} to be considered as candidates, the first is for selling cars (®;), the second
is for selling food (®;), the third is for selling computers (©3), and the last is for selling arms
(®4). Next, three experts D = {D1,D2,D3} are invited to evaluate these companies, their weight
vector is u = (0.37, 0.33,0.3)T. The experts make evaluations of the alternatives according to three
attributes E = {Ey, Ep, E3}, E; is the ability of risk, E; is the ability of growth, and Ej3 is the ability of
environmental impact, the weight vector of them is € = (0.35,0.25, 0.4)T. Then, the experts use LNNs
to make the evaluation values with a linguisticset ¥ = {i9 = extremely poor, ¥y = very poor,
Y = poor,P3 = slightly poor, ¢, = medium , 15 = slightlygood, s = good,p; = very good,
g = extremely good}.

Then, the decision evaluation matrix can be established, Tables 2—4 show them.

Table 2. The decision matrix based on the data of D.

Ey E; E;
0, W vy, vp) W, 3,91 W1y, 93)
0, Wl w%,wp W, w;wb <¢;¢;¢i>
03 % vy ) (AR <w§, w; vp)
®4 <¢7' IJJ], 2) <w;/ w%/ w;> (4’ 4’])
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Table 3. The decision matrix based on the data of D5.

L E, E;
SO 7 41 G 7 4 I 701 |
O QR 7 I 70 |
S 4 S O R
Table 4. The decision matrix based on the data of D3.
51 E, E3
0, <1P3
37 % % 5 % 3 5 % 5
PO 1 S 1 0 QR
o, <w7,¢2, w8 <w5,w§ W <¢6, §,¢§

Now, the proposed method is applied to manage this MAGDM problem and the computational
procedures are as follows:
Step 1: the overall decision matrix can be obtained by the LNNEWA operator in Table 5.

Table 5. The overall decision matrix.

E E, E;

Oy V63671, P1.4116, V24888) (V67366 P'1.8191, P1.4116) (Y¥5.1343, ¥2.000, ¥'3.0637)
S (V6.7630, Y1.7705, ¥2.2397) (V6.2295, 1.5275, Y'1.5997) (Y6.0042, 12,000, P2.0355)
O3 (¥6.1200, P1.5997, Y2.4888) (62067, 11.000, ¥'1.5564) (¥6.1200, V2.5427, P2.4888)
Oy (V6.7366, P1.2370, V181910 (P5.9645, ¥1.5097, P15275)  (V6.2067, P1.6329, ¥'1.4602)

Step 2: the total collective LNN 0;(i = 1,2,...,m) can be obtained by the LNNWEA operator:

61 = (Ve.0661, V1.7313, P2.3644), 02 = (Y6.0961, ¥1.7929, Y'1.9840),
03 = (P5.7523, Y1.7260, ¥2.2199), and Oy = (14198, P1.4753, P1.5957)-

Step 3: according to Definition 3, the expected values of ((6;) for 6;(i = 1,2,3,4) can be calculated:
0(01) = 0.7488, (0;) = 0.7633, {(03) = 0.7419, and {(64) = 0.8062.

Based on the expected values, four alternatives can be ranked ®, > ©; > @ > O3, thus, company
@y is the optimal choice.

Now, the LNNEWG operator was used to manage this MAGDM problem:

Step 1’: the overall decision matrix can be obtained by the LNNEWA operator;

Step 2’: the total collective LNN 6; (i = 1,2,...,m) can be obtained by the LNNEWG operator,
which are as following:

01 = (Y5.9491, P1.7507, Y2.4660), O2 = (V6.5864, ¥'1.8026, 12.0000), O3 = (V6.8354, 1.8390, Y'2.2614).
and 04 = (P6.3950, P'1.4868, P'1.6033)-

Step 3’: according to Definition 3, the expected values of (6;) for 6;(i = 1,2,3,4) can be calculated:
£(61) = 0.7389,(62) = 0.7827, (03) = 0.7806, and ((04) = 0.8043.
Based on the expected values, four alternatives can be ranked ®4 > ©; > @3 > @1, thus, company

Oy is still the optimal choice.
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Clearly, there exists a small difference in sorting between these two kinds of methods. However,
we can get the same optimal choice by using the LNNEWA and LNNEWG operators. The proposed
methods are effective ranking methods for the MCDM problem.

5.2. Comparative Analysis

Now, we do some comparisons with other related methods for LNN, all the results are shown in
Table 6.

Table 6. The ranking orders by utilizing three different methods.

Method Result Ranking Order The Best Alternative
Me'hfvlel’:;;dg?ﬂ ?lr;‘]hme“c 4(81) = 0.7528, 4(8,) = 0.7777, &(83) = 0.7613, ¢(84) = 0.8060. 04> 0, > 03 > O 0,
Meth":‘if;;;i? ﬁ?}memc 0(81) = 0.7397,(02) = 0.7747,3(03) = 0.7531,4(04) = 0.8035. 04> 0, > 03 > 6; 0,
Me;\]/‘l‘e’:fiz‘"’[sl:‘} z’;‘f‘f}“flr;"“‘ £(01) = 0.7298, £(03) = 0.7508, {(03) = 0.7424 £(03) — 0.7864. 04> 0; > 03 > 0 04

The proposed method (01) =0.7488, £(02) = 0.7633, £(03) = 0.7419 {(04) = 0.8062. 04> 0, > 01 > 03 04

As shown in Table 6, we can see that company 0y is the best choice for investing by using four
methods. Many methods such as arithmetic averaging, geometric averaging, and Bonferroni mean can
all be used in LNN to handle the multiple attribute decision-making problems and can get similar
results. Additionally, The Einstein aggregation operator is smoother than the algebra aggregation
operator, which is used in the literature [15,16]. Compared to the existing literature [2-14], LNNs can
express and manage pure linguistic evaluation values, while other literature [2-14] cannot do that.
In this paper, a new MAGDM method was presented by using the LNNEWA or LNNEWG operator
based on LNN environment.

6. Conclusions

A new approach for solving MAGDM problems was proposed in this paper. First, we applied
the Einstein operation to a linguistic neutrosophic set and established the new operation rules of this
linguistic neutrosophic set based on the Einstein operator. Second, we combined some aggregation
operators with the linguistic neutrosophic set and defined the linguistic neutrosophic number Einstein
weight average operator and the linguistic neutrosophic number Einstein weight geometric (LNNEWG)
operator according the new operation rules. Finally, by using the LNNEWA and LNNEWG operator,
two methods for handling MADGM problem were presented. In addition, these two methods were
introduced into a concrete example to show the practicality and advantages of the proposed approach.
In future, we will further study the Einstein operation in other neutrosophic environment just like the
refined neutrosophic set [30]. At the same time, we will use these aggregation operators in many actual
fields, such as campaign management, decision making and clustering analysis and so on [31-33].
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Abstract: In complex rings or complex fields, the notion of imaginary element i with i = —1 or
the complex number i is included, while, in the neutrosophic rings, the indeterminate element I
where I? = I is included. The neutrosophic ring (R U I} is also a ring generated by R and I under the
operations of R. In this paper we obtain a characterization theorem for a semi-idempotent to be in
(Zp U I), the neutrosophic ring of modulo integers, where p a prime. Here, we discuss only about
neutrosophic semi-idempotents in these neutrosophic rings. Several interesting properties about
them are also derived and some open problems are suggested.

Keywords: semi-idempotent; neutrosophic rings; modulo neutrosophic rings; neutrosophic
semi-idempotent
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1. Introduction

According to Gray [1], an element & # 0 of a ring R is called a semi-idempotent if and only if « is
not in the proper two-sided ideal of R generated by a? — , that is & ¢ R(a> — )R or R = R(a? — a)R.
Here, 0 is a semi-idempotent, which we may term as trivial semi-idempotent. Semi-idempotents have
been studied for group rings, semigroup rings and near rings [2-9].

An element I was defined by Smarandache [10] as an indeterminate element. Neutrosophic
rings were defined by Vasantha and Smarandache [11]. The neutrosophic ring (R U I) is also a ring
generated by R and the indeterminate element I (1% = I) under the operations of R [11]. The concept
of neutrosophic rings is further developed and studied in [12-16]. As the newly introduced notions
of neutrosophic triplet groups [17,18] and neutrosophic triplet rings [19], neutrosophic triplets in
neutrosophic rings [20] and their relations to neutrosophic refined sets [21,22] depend on idempotents,
thus the relative study of semi-idempotents will be an innovative research for any researcher interested
in these fields. Finding idempotents is discussed in [18,23-25]. One can also characterize and
study neutrosophic idempotents in these situations as basically neutrosophic idempotents are trivial
neutrosophic semi-idempotents. A new angle to this research can be made by studying quaternion
valued functions [26].

We call a semi-idempotents x in (R U I) as neutrosophic semi-idempotents if x = a + bl and
b # 0;a,b € (RUI). Several interesting results about semi-idempotents are derived for neutrosophic
rings in this paper. As the study pivots on idempotents it has much significance for the recent studies
on neutrosophic triplets, duplets and refined sets.

Here, the notion of semi-idempotents in the case of neutrosophic rings is introduced and several
interesting properties associated with them are analyzed. We discuss only about neutrosophic
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semi-idempotents in these neutrosophic rings. This paper is organized into three sections. Section 1 is
introductory in nature. In Section 2, the notion of semi-idempotents in the case of

(ZyUT) = {a+bllab € Zyn < oo; I =1}
is considered. Section 3 gives conclusions and proposes some conjectures based on our study.

2. Semi-Idempotents in the Modulo Neutrosophic Rings (Z, U I)

Throughout this paper, (Z, UI) = {a+bl/a,b € Z,,2 < n < oo;I> = I} denotes the
neutrosophic ring of modulo integers. We illustrate some semi-idempotents of (Z, U I) by examples
and derive some interesting results related with them.

Example 1. Let S = (Zo UI) = {a+bl/a,b € Zp, 1> = I} be the neutrosophic ring of modulo integers.
Clearly, I* = I and (1+ 1)> = 1+ I are the two non-trivial idempotents of S. Here, 0 and 1 are trivial
idempotents of S. Thus, S has no non-trivial semi-idempotents as all idempotents are trivial semi-idempotents

of S.
Example 2. Let
R=(Z3UI)={a+bllabe Z% 1> =1} ={0,1,2,1, 21,1+ ,2 + 1,1+ 21,2 4 2I}

be the neutrosophic ring of modulo integers. The trivial idempotents of R are 0 and 1. The non-trivial neutrosophic
idempotents are I and 1 + 21. Thus, the idempotents I and 1 4 21 are trivial neutrosophic semi-idempotents
of R. Clearly, 2 and 2 + 21 are units of Ras 2 x 2 = 1(mod 3) and 2 +21 x 2+ 21 =1(mod 3). 1 +1 € R is
such that

A+ —(A+D)=1+2[+1—-(1+1)=1+2+2] =2l

Thus, 1+ I is a semi-idempotent as the ideal generated by 1+ Tis ((1+ )2 — (1+ 1)) = (21I) is such
that 1+ 1 ¢ R. However, it is important to note that (1+1) € Risaunitas (1+1)2 =1+21+1 =1,
hence 1+ 1 is a unit in R but it is also a non-trivial semi-idempotent of R. 2 4 I is not a semi-idempotent as

QR+ -2+ =1+4I+1-2+)=2+1;

hence the claim. 2 +2I € R is a unit, now (2 +2I)> = 4 + 81 4+ 41% = 1, thus 2 + 21I is a unit. However,
Q+20)2—242)=1+1+1=2+1

Now, the ideal generated by (2 + I) does not contain 2 + 21 as (2+ 1) = {0,2+ 1,1+ 21}, thus 2 4 21
is also a non-trivial semi-idempotent even though 2 + 21 is a unit of R. Thus, it is important to note that
units in modulo neutrosophic rings contribute to non-trivial semi-idempotents. Let P = {0,2 + 21,24+ 1,1+
21,1,1 + 1,1} be the collection of trivial and non-trivial semi-idempotents. 21 is not a semi-idempotent as
(21)> — 21 = I + I = 21, hence the claim. Thus, P is not closed under sum or product.

Theorem 1. Let S = {(Z, UI),+, x } be the ring of neutrosophic modulo integers where p is a prime. x is
semi-idempotent if and only if x € (Z, UI)\ {Zy1,0,1,a 4 bl with a + b = 0}.

Proof. The elements x = a + bl € S with b = 0 are such that x> — x generates the ideal, which is S,
thus x is a semi-idempotent. Let y = a + bl; if a = 0, the ideal generated by y is Z, I, thusy € Z,1 C S,
hence y € Z, I, therefore y is not a semi-idempotent.

Consider z = a + bl € Switha +b = 0(mod p); then, z> — z generates an ideal M of S such that
every element x = d + cI in M is such that d + ¢ = 0(mod p), thus z is not a semi-idempotent of S.
Letx=a+bl€S(a#0,b#0anda+b #0).
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m m & Zp or
X*—x=4qnl neZ,or
n+ml m+n#0

If x> — x = m, then the ideal generated by x? — x is S, thus x is a semi-idempotent. If x2 — x = nI,
then the ideal generated by n1 is Z,1, thus x ¢ Z,I, hence again x is a semi-idempotent. If x> — x =
n+mI(m+n # 0), then the ideal generated by n + mI is S, thus x is a semi-idempotent by using
properties of Zp, p a prime. Hence, the theorem is proved. [

If we take S = {(Z, UI),+, X} as a neutrosophic ring where  is not a prime, it is difficult to find
all semi-idempotents.

Example 3. Let S = {(Z15 U I), +, x } be the neutrosophic ring. How can the non-trivial semi-idempotents of
S be found? Some of the neutrosophic idempotents of S are {1491, 6 +41, 1+5I, 1+ 141,6 +5I,6 + 91,
1,61,101,10,6,6 + 101,10 + 111,10 + 61,10 + 51 }.

The semi-idempotents are {1 + I,1 + 21,1 + 31,1 + 41,1 + 61,1 + 71,1 + 8I,1+10],
1+ 11,1+ 12,1+ 13,6 +1,6+21,6+31,6+61,6+71,6+81,6 +111,6 +121,6 + 13,6 + 141,10 + I,
104 21,10 + 31,10 + 41,10 4+ 71,10 + 81,10 + 91,10 + 101,10 + 121,10 + 131,10 + 141 }.

Are there more non-trivial neutrosophic idempotents and semi-idempotents?
However, we are able to find all idempotents and semi-idempotents of S other than the once
given. In view of all these, we have the following theorem.

Theorem 2. Let S = {(Zp; U I); x,+} where p and q are two distinct prines:

1. There are two idempotents in Zpq say r and s.
2. Ar,s,rlsl, Lr+tl,s+tl|t € {Zy;\ 0} } suchthatr +t =s,1orOand s+t =0, 1orr is the partial
collection of idempotents and semi-idempotents of S.

Proof. Given S = {(Z,; U I),+, x} is a neutrosophic ring where p and g are primes, we know
from [12,17,18,20,23-25] that Z,; has two idempotents r and s to prove A = {r,s,rIsI,I,r + tI
and s +tI/t € Zy;\ {0}} are idempotents or semi-idempotents of S.{r,s,rI,sI,I} are non-trivial
idempotents of S. Now, r + tI € A and (r + tI)? — (r + tI) = mI asr? = r, thus the ideal generated by
mI does not contain ;1. Therefore, r¢I is a non-trivial semi-idempotent. Similarly, s + ¢I is a non-trivial
semi-idempotent. Hence, the theorem is proved. [

We in addition to this theorem propose the following problem.

Problem 1. Let S = {(Z,, U I), I, x }, where p and q are two distinct primes, be the neutrosophic ring. Can S
have non-trivial idempotents and non-trivial semi-idempotents other than the ones mentioned in (b) of the
above theorem?

Problem 2. Can the collection of all trivial and non-trivial semi-idempotents have any algebraic structure
defined on them?

We give an example of Z pars where p, q and r are three distinct primes, for which we find all the
neutrosophic idempotents.

Example 4. Let S = {(Z3o U I),+,x}, be the neutrosophic ring. The idempotents of Zsy are
6, 10, 15, 16, 21 and 25. The non-trivial semi-idempotents of S are {1 + I,1 + 2I,1 + 3I,
1+4L,1+61,1+71,1+8,1+10[,1+111,1+ 13,1+ 12I,1 + 161,14+ 171,14+ 181,1 + 191,1 + 211,
1+22[,1+231,1+251,1+4261,1+271,1+ 281}.

121



Mathematics 2019, 7, 507

Py = {1+451,14+9I,1+141,1+ 151,1 + 20I,1 + 241,1 + 291} are non-trivial idempotents of S.
Jo={6+16+21,6+31,64+51,6+61,6+71,6+81,6+111,6+121,6+131,6+ 14,6 + 161,64+ 171,
6+ 18,6 +201,6 +211,6 + 221,6 + 231,6 + 261,6 + 271,6 + 281,6 + 291} are non-trivial neutrosophic
semi-idempotents of S. Py = {6 + 41,6 + 91,6 + 101,6 + 151,6 + 241,6 + 191, 6 + 251 } are non-idempotents
of S.

Now, we list the non-trivial semi-idempotents associated with 10 of Zzy. J3 = {10+ 1, 10 + 21,
10 + 31,10 +41,10+71,10+81,10+91,10+ 101,10 + 111,10 + 121,10+ 131,10 + 141,10 + 161,10 +- 171,
10+ 181,10 4 191,10 + 221,10 4 231,10 + 241,10 + 251,10 4 271,10 + 281,10 + 291}

Py = {10+5,10 + 61,10 + 151,10 + 201,10 + 211,10 + 261,10 + 111} are the collection of non-trivial
idempotent related with the idempotents. Now, we find the non-trivial idempotents associated with 15: J4 =
{15+ 21,15+ 31,15+ 41,15+ 71,15+ 81,154 91,15 + 111,15+ 121,15 + 131, 15 + 141, 15+ 171,15 +
181,15+ 191,15 + 201,15 + 221,15 + 231,15 + 241,15 + 251,15 + 261,15 + 271, 15 + 281, 15 + 291}.

Py ={15+1,15+51,15+ 61,15+ 101,15 + 151,15 + 161,15 + 211} are the non-trivial idempotents
associated with 15. The collection of non-trivial semi-idempotents associated with 16 are: Js = {16 +1,
16 +21,16 431,16 + 41,16 +- 61,16 +- 71,16 4+ 81,16 4+ 101,16 + 191,16 + 271,16 + 211, 16 4 221, 16 +
231,16 + 251,16 + 111,16 + 121,16 4+ 131,16 4+ 171,16 + 181,16 + 281. Ps = {16 + 141, 16 + 151, 16 +
201,16 + 241,16 + 291,16 + 51,16 + 91} are the set of non-trivial idempotents related with the idempotent.
We find the non-trivial semi-idempotents associated with the idempotent 21: Jo = {21 + 1,21+ 21,21 +
31,21+4-51,21461,21+71,21+ 81,21+ 121,21+ 111,21+ 131,21+ 141,21 + 161,214+ 171,21 + 181,21 +
201,21 + 211,21 + 221,21 + 231,21 + 261,21 + 271,21 + 281,21 4+ 291}. Pg = {21 + 41,21+ 91,21 +
101,21 + 151,21 + 191,21 + 241,21 + 251} is the collection of non-trivial idempotents related with the
real idempotent 21. The collection of all non-trivial semi-idempotents associated with the idempotent 25.
J7 ={25+1,25+21,25+ 31,25+ 41,25+ 71,25+ 81,25+ 91, 25 + 101, 25+ 121,25 + 131,25+ 141,25 +
161,25 + 241,25 + 171,25 + 181,25 + 191,25 + 221, 25 + 231, 25 + 271,25 + 281,25 + 291} P; = {25+
51,25+ 61,25 + 111,25 + 151,25 + 201,25 + 211,25 + 261} are the non-trivial collection of neutrosophic
semi-idempotents related with the idempotent 25.

We tabulate the neutrosophic idempotents associated with the real idempotents in Table 1. Based
on that table, we propose some open problems.

Table 1. Idempotents.

S.No Real Neutrosophic Sum Missing

1451 1+5=6
1+91 1+9=10
1+ 141 1+14=15

1 1 1+151 1+15=16 1
1+201 1+20=21
14241 1+24=25
1+291 1+29=0
6+ 41 6+4=10
6+ 91 6+9=15
6+ 101 6+10=16

2 6 6+ 151 6+15=1 6
6+ 241 6+24=0
6+ 191 6+19=25

6+ 251 6+25=1
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Table 1. Cont.

S.No Real Neutrosophic Sum Missing

10 + 51 10+5=15
10 + 61 10+6=16
10+ 151 10+15=25

3 10 10 + 201 10+20=0 10
10+ 211 10+21=1
10 + 261 10+26=6
10+ 111 10+ 11 =21
15+1 15+1=16
15 +51 15+5=20
15 +61 15+6=21

4 15 15+ 101 15+10=25 15
15+ 151 15+15=0
15+ 161 15+16=1
154211 15+21=6
16 + 141 16+14=0
16 + 151 16+15=1
16 + 201 16 +20=6

5 16 16 + 241 16 +24 =10 16
16 +291 16 +29 =15
16 + 51 16 +5=21
16 +91 16 +9=25
21441 21+4=25
21+91 21+9=0
21+ 101 21+10=1

6 21 21+ 151 21+15=6 21

214191 21+19=10
21 + 241 21+24=15
21 + 251 21+25=16

25+1 25+5=0
25+ 51 25+6=1
25+ 61 25+11=6
7 25 25+ 101 25+15=10 25

25+ 161 25+20=15
25+ 211 25+21=16
254261 25+26=21

We see there are eight idempotents including 0 and 1. It is obvious that using 0 we get only
idempotents or trivial semi-idempotents.
In view of all these, we conjecture the following.

Conjecture 1. Let S = {(Z, U I),+, x} be the neutrosophic ring n = pqr, where p,q and r are three
distinct primes.

1. Zy = Zpgr has only six non-trivial idempotents associated with it.

2. Ifmy,mp, m3, my, ms and me are the idempotents, then, associated with each real idempotent m;, we have
seven non-trivial neutrosophic idempotents associated with it, i.e. {m; + nd,j =1,2,...,7}, such that
mi+n; =t where tj takes the seven distinct values from the set {0,1,my, k # i;k = 1,2,3,...6}.
i=1,2,...,6.

This has been verified for large values of p, g and r, where p, g and r are three distinct primes.
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3. Conjectures, Discussion and Conclusions

We have characterized the neutrosophic semi-idempotents in (Z, U I), with p a prime.
However, it is interesting to find neutrosophic semi-idempotents of (Z, U I), with n a non-prime
composite number. Here, we propose a few new open conjectures about idempotents in Z, and
semi-idempotents in (Z, U ).

Conjecture 2. Given (Z, UI), where n = py, pa, ... pst > 2 and p;s are all distinct primes, find:

the number of idempotents in Zy;
the number of idempotents in (Z, UI) \ Zy;
the number of non-trivial semi-idempotents in Z,; and

W=

the number of non-trivial semi-idempotents in (Z, UI) \ Zy.

Conjecture 3. Prove if (Z, U I) and (Z,, U I) are two neutrosophic rings where n > mand n = p'q (t > 2,
and p and q two distinct primes) and m = p1py ... ps where p;s are distinct primes. 1 < i <'s, then

1. prove Z, has more number of idempotents than Z,,; and
2. prove (Zy, U I) has more number of idempotents and semi-idempotents than (Z, U I).

Finding idempotents in the case of Z,, has been discussed and problems are proposed in [18,23,24].
Further, the neutrosophic triplets in Z, are contributed by Z,,. In the case of neutrosophic duplets,
we see units in Z, contribute to them. Both units and idempotents contribute in general to
semi-idempotents.
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Abstract: The neutrosophic triplets in neutrosophic rings (Q U I) and (R U I) are investigated in this
paper. However, non-trivial neutrosophic triplets are not found in (Z U I). In the neutrosophic ring
of integers Z \ {0,1}, no element has inverse in Z. It is proved that these rings can contain only three
types of neutrosophic triplets, these collections are distinct, and these collections form a torsion free
abelian group as triplets under component wise product. However, these collections are not even
closed under component wise addition.

Keywords: neutrosophic ring; neutrosophic triplets; idemponents; special neutrosophic triplets

1. Introduction

Handling of indeterminacy present in real world data is introduced in [1,2] as neutrosophy.
Neutralities and indeterminacies represented by Neutrosophic logic has been used in analysis of real
world and engineering problems [3-5].

Neutrosophic algebraic structures such as neutrosophic rings, groups and semigroups are
presented and analyzed and their application to fuzzy and neutrosophic models are developed
in [6]. Subsequently, researchers have been studying in this direction by defining neutrosophic rings of
Types I and II and generalization of neutrosophic rings and fields [7-12]. Neutrosophic rings [9] and
other neutrosophic algebraic structures are elaborately studied in [6-8,10,13-17]. Related theories of
neutrosophic triplet, duplet, and duplet set were developed by Smarandache [18]. Neutrosophic
duplets and triplets have fascinated several researchers who have developed concepts such as
neutrosophic triplet normed space, fields, rings and their applications; triplets cosets; quotient groups
and their application to mathematical modeling; triplet groups; singleton neutrosophic triplet group
and generalization; and so on [19-36]. Computational and combinatorial aspects of algebraic structures
are analyzed in [37].

Neutrosophic duplet semigroup [23], classical group of neutrosophic triplet groups [27],
the neutrosophic triplet group [12], and neutrosophic duplets of {Z,,, X} and {Z,,, x } have been
analyzed [28]. Thus, Neutrosophic triplets in case of the modulo integers Z, (2 < n < o) have been
extensively researched [27].

Neutrosophic duplets in neutrosophic rings are characterized in [29]. However, neutrosophic
triplets in the case of neutrosophic rings have not yet been researched. In this paper, we for the
first time completely characterize neutrosophic triplets in neutrosophic rings. In fact, we prove this
collection of neutrosophic triplets using neutrosophic rings are not even closed under addition. We also
prove that they form a torsion free abelian group under component wise multiplication.

2. Basic Concepts

In this section, we recall some of the basic concepts and properties associated with both
neutrosophic rings and neutrosophic triplets in neutrosophic rings. We first give the following
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notations: I denotes the indeterminate and it is such that I x I = I = I?. I is called as the neutrosophic
value. Z,Q and R denote the ring of integers, field of rationals and field of reals, respectively.
(ZUI)={a+bllabc Z I = I} is the neutrosophic ring of integers, (QU I) = {a + bl|a,b € Q,
I? = I} is the neutrosophic ring of rationals and (RUI) = {a+bl|a,b € R, I> = I} is the neutrosophic
ring of reals with usual addition and multiplication in all the three rings.

3. Neutrosophic Triplets in (QU I) and (RUI)

In this section, we prove that the neutrosophic rings (Q U I) and (R U I) have infinite collection
of neutrosophic triplets of three types. Both collections enjoy strong algebraic structures. We explore
the algebraic structures enjoyed by these collections of neutrosophic triplets. Further, the neutrosophic
ring of integers (Z U I) has no nontrivial neutrosophic triplets. An example of neutrosophic triplets in
(QUI) is provided before proving the related results.

Example 1. Let S = (QUI),+, % (or (RUI),+,x) be the neutrosophic ring. If x = a—al €
S(a # 0), then

1
y=z72°¢°%

is such that

xxy=(afal)x(%f£>=17171+1=1*1-

Thus, for every x = a — al, of this form in S we have a unique y of the form

Q=
Q| ~

such that x x y =1 — 1. Further,1 —1 € Sissuchthat1 —Ix1—-1=1—-14+1—-1=1—-1¢& S.Thus,

these triplets
{aful,lfl,lfl} and {lfi,lfl,afal}
a a a a

form neutrosophic triplets with 1 — I as a neutral element.
Similarly, for al € S(a # 0), we have a unique

£eSsuchthatuI><£:I
a a

{al, I, 1} and {z,l,al}
a a

are neutrosophic triplets with I as the neutral element.

and I x I = I is an idempotent. Thus,

First, we prove (QUI) and (R U I) have only I and 1 — I as nontrivial idempotents as invariably
one idempotents serve as neutrals of neutrosophic triplets.

Theorem 1. Let S = (QUI),+, x (or {(RUI),+, x} ) be a neutrosophic ring. The only non-trivial
idempotents in S are I and 1 — 1.

Proof. We call 0 and 1 € S as trivial idempotents. Suppose x € S is a non-trivial idempotent, then

x=alorx =a+bl € S(a#0,b#0). Now, x x x = al x al = a*I (as I? = I); if x is to be an
idempotent, we must have al = a2]; that is, (a— a?)l = 0(I # 0), thus a? = a. However, in Q or R,
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a2 =a impliesa = 0ora = 1;asa # 0, we have a = 1; thus, x = I and x is a nontrivial idempotent

inS. Now, lety =a+bl;a # 0and b # 0 for a = 0 will reduce to case y = I is an idempotent.
y? = (a+bI) x (a+bl) = a® + b1 + 2abl

That is, > = a+bl xa—bl = a?+ abl + abl + b’ = a + bl, equating the real and
neutrosophic parts.
?=aie,ala—1)=0=a=Tlasa#0and2ab+b*—b=0

b(2a+b—1) = 0;b # 0, thus 2a + b — 1 = 0; further, a # 0 as a = 0 will reduce to the case I> = I,
thusa = 1. Hence,2+b —1 =0, thusb = —1. Hence,a = 1and b = —1 leading toy = 1 — I. Thus,
only the non-trivial idempotents of Sare [and 1 — 1. O

We next find the form of the triplets in S.

Theorem 2. Let S = {(QUI),+, x} (or (RUI),+, x) be the neutrosophic ring. The neutrosophic triplets
in S are only of the following form for a,b € Q or R.

(1)
<afal,1fl,17£> and (171,171,u7a1>;a;&0.
a a a a
(ii)
bII£ d £Ib ;b#0
g an bl ; .
(ii)

1 bl 1 bl
b[,1,- — —— |; b#0and (- — ——,1, bl ).
<a+ a a(u+b)> a+b#0an (a a(a+Db) ot >
Proof. Let S be the neutrosophic ring. Let x = {a + bl,e+ fI,c+ dI} be a neutrosophic triplet in
S;a,b,c,d,e, f € Q or R. We prove the neutrosophic triplets of S are in one of the forms. If x is a
neutrosophic triplet, then we have

a+blxe+ fl=a+0bl (1)

e+ flxc+dl=c+dl )
and

a+blxc+dl=e+ fI (3)

Now, solving Equation (1), we get
ae+ (bfI+bel +afl) = a+ bl
Equating the real and neutrosophic parts, we get
ae=a (4)
bf +be+af =b ©®)
Expanding Equation (2), we get
ce+ fcl+del + fdl = c+dl.
Equating the real and neutrosophic parts, we get

ce=c (6)
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fet+de+ fd=d. (7)

Solving Equation (3), we get
ac+bcl +bdl +adl = e+ fI
Equating the real and neutrosophic parts, we get
ac=e ®)

bc+bd +ad = f )

We find conditions so that Equations (4) and (5) are true.

Now, ae = a and bf +be+af = b; ae = a givesa(e —1) = 0if a = 0 and e # 1 using in
Equation (4), thus if 2 = 0, we get ¢ = 0 and using e = 0 in Equation (6), we get ¢ = 0. Thus,
a=c=e=0.This forces b # 0,d # 0 and f # 0. We solve for b,d and f using Equations (5), (7)
and (9). Equations (5) and (7) gives bf = basb # 0, f = 1. Now, fd =d as f = 1;d = d. Equation (9)
gives bd = f or bd = 1, thus

1
d=2(b#0).

I
(o1.1)
I
(L)

is also a neutrosophic triplet. Thus, we have proved (ii) of the theorem.
Assume in Equation (4) ae = a;a # 0, which forces ¢ = 1. Now, using Equation (8), we get
ac = 1, thus

Thus, we get

to be neutrosophic triplet then

cC= —.
a

Using Equation (5), we get bf +b+af = b, thus (a + b)f = 0. If f = 0, then we have
1
<a+bl,1,a +d1>

should be a neutrosophic triplet. That is,
1
(a+bI) x (E +dl> =1
b
1+El+dal+de= 1
b
2 +da+db=0
b+a*d+abd =0
b(ad +1) +a?d =0

d(a® + ab) = —b.
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ie -b —b
a2+ab  a(a+b)
a#0anda+b#0.a+b#O0forifa+b=0,thenb = 0we getd = 0. Thus, the trivial triplet
(@1,-)

will be obtained. Thus, a + b # 0 and

1 bl 1 bl
(a—l—bl,l,; — m) and <E — m,l,a—i—bl)

are neutrosophic triplets so that Condition (iii) of theorem is proved.
Now, let f # 0, thusa+b =0andc+d =0. Wegeta = —borb = —aand d = —c. We have
already proved ¢ = 1. Using Equations (8) and (9) and conditions a = —b and ¢ = —d, we get f = —1.
Hence, the neutrosophic triplets are

(a—ul,l—l,l— I) and <1—£,1—I,a—al>
a a a a

which is Condition (i) of the theorem. [

Theorem 3. Let S = {(QUI),+, x} (or (RUI), +, x }) be the neutrosophic ring.

M= {<afa1,171,%7£> |a€Q\{O}}

be the collection of neutrosophic triplets of S with neutral 1 — I is commutative group of infinite order with
(1—-1,1—1,1—I) as the multiplicative identity.

Proof. To prove M is a group of infinite order, we have to prove M is closed under component-wise
product and has an identity with respect to which every element has an inverse.

Let
xz(a—al,l—l,l—z) andy:(c_c[,]_[,1_£>eM

a a c ¢
x><y:<ufal,lfl,17£)><(cfcl,lfl,17£>

a a c ¢
:(acfaclfzchJracI,l72I+1,lfifi+i>

ac ac ac ac

:<ac—acl,l—l,l—i>eM,
ac ac

Thus, M is closed under component wise product.
We see that, whena =1, wegete = (1— 1,1 —1,1—I) € M is the identity of M under component
wise multiplication. Clearly, e x x = x x e = x for all x € M, thus e is the identity of M. For every

X = (u—al,1—1,1—£>,
a a

x*1:<1—£1—1,a—u1>eM

’
a a

we have a unique
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such that
xxx l=xlIxx=e=(1-1L1-11-1)

xxx = (afal,lfl,17£> X (17£>7<17£,171,a7a1>
a a a a a a

I al al I al al
<5—”——“—+”—,1—21+1,5—”——“—+”—>
a a a a a a a a

—(1-L1-L1-1)

asa # 0. Thus, (M, x) is a group under component wise product, which is known as the neutrosophic
triplet group. [

Theorem 4. Let S = {{(QUI),+,x} (or {(RUI),+, x}) be the neutrosophic ring. The collection of

neutrosophic triplets
N = { (al, I 5) o e Q\{O}}

(or R\{0}) forms a commutative group of infinite order under component wise multiplication with (I, 1, I) as the
multiplicative identity.

Proof. Let ;
N = {(111,1,;) \a;«éOEQorR}

be a collection of neutrosophic triplets. To prove N is commutative group under component wise

X = <al, I, £>
a

I
= <b1,1,5> € M.

I I I
XXy = (ul, I';) X <b[, I'E) = (ab[, I,%> ,

using the fact I = I. Hence, (N, x ) is a semigroup under product.
Considering e = (I,1,I) € N, we see thate x e = x x e = x forall x € N.

product, let

and

To show x x y € N.

I I
exx=(I,1I)x (al, 1,;> = (ul, I’E) = x( using I> = I).

Thus, (I,1,1) is the identity element of (N, x ). For every

X = <a1,1,£>,
a
1= <£,I,a> eN
a

xxx = (al, 1£> = (LI

we have a unique

is such that

asa#0and I? = I.
Thus, {N, x } is a commutative group of infinite order.
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It is interesting to note both the sets M and N are not even closed under addition.

Next, let
1 bl
P= 11, = — — . . )
{a+b e a(a+b),u7éb,a+b7é0,a7é0}
We get
1 bl
a+blxa—m—l.
O

We call these neutrosophic triplets as special neutrosophic triplets contributed by the unity 1
of the ring which is the trivial idempotent of S; however, where it is mandatory, x and anti(x) are
nontrivial neutrosophic numbers with neut(x) = 1.

Theorem 5. Let S = (QUI),+, x (or (RUI), +, X) be the neutrosophic ring. Let

P= {(a-i—hl,l,% — %;a # b, wherea,b € Q\{0}(or R\0) and a + b # O}

be the collection of special neutrosophic triplets with 1 as the neutral. P is a torsion free abelian group of infinite
order with (1,1,1) as its identity under component wise product.

Proof. It is easily verified P is closed under the component wise product and (1, 1, 1) acts as the
identity for component wise product. For every

1 bl
X = <ﬂ—bl,1,;+m> EP,

we have a unique

1 bl
y= <7+7_b),1,a—bl> eP

a  a(a

such that x x y = (1,1,1). We also see x" # (1,1,1) forany x € Pand n # 0(n > 0);x # (1,1,1),
hence P is a torsion free abelian group. [

4. Discussion and Conclusions

We show that, in the case of neutrosophic duplets in (ZUI), (QUI) or (RUI), the collection
of duplets {a —al} forms a neutrosophic subring. However, in the case of neutrosophic triplets,
we show that (Z U I) has no nontrivial triplets and we have shown there are three distinct collection of
neutrosophic triplets in (RUI) and (Q U I). We have proved there are only three types of neutrosophic
triplets in these neutrosophic rings and all three of them form abelian groups that are torsion free
under component wise product. For future research, we would apply these neutrosophic triplets to
concepts akin to SVNS and obtain some mathematical models.
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Abstract: The Process Capability Index (PCI) has been widely used in industry to advance the
quality of a product. Neutrosophic statistics is the more generalized form of classical statistics and is
applied when the data from the production process or a product lot is incomplete, incredible, and
indeterminate. In this paper, we will originally propose a variable sampling plan for the PCI using
neutrosophic statistics. The neutrosophic operating function will be given. The neutrosophic plan
parameters will be determined using the neutrosophic optimization solution. A comparison between
plans based on neutrosophic statistics and classical statistics is given. The application of the proposed
neutrosophic sampling plan will be given using company data.

Keywords: acceptance number; neutrosophic approach; operating characteristics; risks; sample size

1. Introduction

Acceptance sampling is the most widely used tool for the inspection of the raw material,
semi-finished product, and finished product. But, the presence of the indeterminacy in the observations
or parameters may affect the performance of the sampling plan. A well-designed sampling plan used
for the inspection of the product under the uncertainty and determinacy environment is needed at each
stage to check that the finished product meets either the customer’s upper specification limit (USL)
and lower specification limit (LSL) before sending it to market. The quality of interest beyond the LSL
and USL creates a non-conforming item. At the time of inspection, a random sample is taken and lot
sentencing is made on the basis of this primary information about the lot. Thus, the sample information
may mislead the experimenters in making the decision about the submitted product lot. There is a
chance of rejecting a good lot and accepting a bad lot on the basis of the sample information. Thus, the
sampling schemes are developed with the aim of reducing the cost of the inspection, non-conforming
items, and minimizes the risk of the sampling. The acceptance sampling plan has two major types,
known as attribute sampling plans and variable sampling plans. Attribute sampling plans are easier to
apply but are more costly than the variable sampling plans. On the other hand, the variable sampling
plans are more informative than attribute sampling plans [1]. A number of authors designed variable
and attribute sampling plans: Jun et al. [2] studied variable sampling plans for sudden death testing;
Balamurali and Jun [3] studied skip-lot sampling for the normal distribution; Fallah Nezhad et al. [4]
designed a sampling plan using cumulative sums of conforming run-lengths; Pepelyshev et al. [5]
applied a variable sampling plan in photovoltaic modules; Gui and Aslam [6] designed a time
truncated plan for weighted exponential distribution; and Balamurali et al. [7] designed a mixed
variable sampling plan.

The Process Capability Index (PCI) has been widely used in industry for quality improvement
purposes and to make a relation between specification limits and process quality. Kane [8] originally
proposed the PCI for classical statistics. Boyles [9] provided the bounds on the process yield for
the normally distributed process. Kotz and Johnson [10] provided a detailed review of PCIs. More
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details on PCIs can be seen in [11]. Pearn et al. [12] discussed an effective decision method for product
inspection; Montgomery [1] mentioned the applications of PCIs. Boyles [13] studied PCIs for an
asymmetric tolerances case and Ebadi [14] studied a simple linear profile using PCls. Due to the
importance of the PCIs in industry, several authors focused on the development of inspection schemes
using classical statistics based on PClIs for various situations including for example, and Chen et al. [15]
studied PClIs for entire product inspection. Pearn et al. [12] presented an effective decision method for
the inspection. Aslam et al. [16] designed various sampling plans using PClIs. Seifi and Nezhad [17]
studied resubmitted sampling using PCI and Arif et al. [18] worked on a sampling plan using PCI for
multiple manufacturing lines.

Fuzzy sampling plans have been widely used in the industry when the proportion of the
non-conforming product is a fuzzy number [19]. Kanagawa and Ohta [20] introduced an attribute
plan using fuzzy sets. Sadeghpour Gildeh et al. [19] designed a single sampling plan using fuzzy
parameters. Kahraman et al. [21] designed single and double sampling plans using fuzzy approach.
The PCIs using fuzzy logic can be seen in [22-24].

Smarandache [25] defined the neutrosophic logic in 1998 as the generalization of fuzzy logic.
Smarandache [26] gave the idea of descriptive neutrosophic statistics. The neutrosophic statistics
is the more generalized form of classical statistics and applied when the data from the production
process or a product lot is incomplete, incredible, and indeterminate [26]. Chen et al. [27,28] studied
the rock joint roughness coefficient using neutrosophic statistics. According to [29] “All observations
and measurements of continuous variables are not precise numbers but more or less non-precise.
This imprecision is different from variability and errors. Therefore also lifetime data are not precise
numbers but more or less fuzzy. The best up-to-date mathematical model for this imprecision is
so-called non-precise numbers”.

Recently, Aslam [30] introduced the neutrosophic statistics in the area of the acceptance sampling
plan. Aslam [30] proposed an acceptance sampling plan using the neutrosophic process loss function.
The sampling plan for multiple manufacturing lines using the neutrosophic statistics is proposed
by [31]. The sampling plan for the exponential distribution under the uncertainty is proposed by [32].
Some more details about the sampling plan using the neutrosophic plans can be seen in [33-37].

The existing sampling plans using PCls cannot apply when the data is indeterminate or incomplete.
Also, the available sampling plans using the neutrosophic statistics do not consider the PClIs for the
inspection of the product. By exploring the literature and best of the author knows there is no work on
the sampling plan for PCIs using the neutrosophic statistics. In this paper, we will originally propose
a variable sampling plan for the PCIs using the neutrosophic statistics. The neutrosophic operating
function will be given. The neutrosophic plan parameters will be determined using the neutrosophic
optimization solution. A comparison between plans based on neutrosophic statistics and classical
statistics is given. We expect that the proposed plan will be more effective to be applied in an uncertain
environment. The application of the proposed sampling plan using neutrosophic statistics will be
given using the company data.

2. Design of a Neutrosophic Plan Based on PCI

Let nyel{ng, ny} be a random sample selected from the population having some uncertain
observations, where 77, and ny; are the lower and upper sample size of the indeterminacy interval,
respectively. Suppose that a neutrosophic quality of interest, Xy, is expressed in the indeterminacy
interval, say, Xnie{X1, Xu);i =1,2,3, ..., ny having indeterminate observations follow the neutrosophic
normal distribution, where X; and Xj; are the lower and the upper values, respectively, with the
neutrosophic population mean pe{yr, py} and neutrosophic population standard deviation (NSD)
onelor, oy} (see [26]). The neutrosophic process capability index process (NPCI), say, 6Npk, is defined as:

USL -y uy —LSL

Cn, = Mi
Ny m{ 3oy ' 3oy

}; pnelpr, tul, onelor, oul (€]
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where USL and LSL are the upper specification limit and lower specification limit, respectively.

Note that CNpk reduces to PCI for classical statistics when no indeterminate observations are
recorded in Xy. Usually, une{ur, pu} and one{or, oy} are unknown in practice and the best linear
unbiased estimate (BLUE) of une{ur, py} is the neutrosophic sample mean XNe{}_(L,Xu} and a BLUE
of onefor, oy} is the neutrosophic sample standard deviation sye{st, sy} which can be used to evaluate
Cn,,- The CNpk based on sample estimate is given as by:

USL—-Xyn Xn-—LSL

A M
CNpk ln{ o 3o

}; )_(N€{XL,§LI}, sn = {s,sul (2)

where X = Y7, xZ,L/nL,

Xu = Z::l xzu/nu, SL = A ' Z:l:1(xiL - XL)Z/}’ZL and sy = \/Z?:](xlu - Xu)z/ﬂu

To design the proposed sampling plan, it is assumed that there is uncertainty in the selection of
a random sample from the submitted product lot. Thus, a random sample will be selected from a
neutrosophic interval. The proposed sampling plan is stated as follows:

Step 1: Select a random sample of size nye{n, ny} from the product lot. Compute the statistic

A . fUSL-Xy Xn-LSL|.V ¥~ %
CNpkEMlVl{WN, I\%S—N}, XNG{XL, Xu}r SNe{ersU}-

Step 2: Accept a product lot of CNpk > kn; knelkar, kau), otherwise reject a product lot, where
knelkar, kaur} is the neutrosophic acceptance number. An acceptance number is also called
the action number/boundary number. A product lot is rejected if the statistic C N is smaller than
kn, otherwise, the product lot is accepted.

The evaluation of the proposed sampling plan will be used on two parameters, namely ny = {nr, ny}
and kyetkar, ko). The neutrosophic operating characteristic (NOC) for the proposed plan is derived
as follows:

L(p) = P(CNpk > ky) = P{LSL + 3kysn < Xy < USL - 3kysn} = P{Xy + 3knsy <USL}
_P{XN —3knsn < LSL}; nyefny, nul, XNG{ﬁL,Xu}SNG{SuSu} and knetkar, kaur}-

®)

Duncan [38] suggested Xy + knsn; YNe{)_(L,Yu} and sy = {sg,sy} is distributed as an
— 2 2 2
approximately neutrosophic normal distribution, thatis Xy + knysy ~ NN(yN + Ccoy, :—x + 52;;17 ) where

N (.) shows neutrosophic normal distribution.

Suppose that quality of interest Xy beyond the USL or LSL is labeled as the defective item and
this probability is defined as py; = P{Xy > USLLuN} and py = P{XN(LSLIun}; un = {pr, pu}. Thus, the
probability of acceptance is given by the following [39]:

USL —un — 3knon o LSL — un + 3knon

(on/nn) A1 +9K%, /2 (on/nn) /1 +9Kk%, /2

Let us define the neutrosophic standard normal random variable as:

Lp) =@

@)

USL - un
=—a
ON

_ LSL-puy
=

nd —ZN

pL (5)

ZNle
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Now, the final form of NFOC is given by:

nN
1+ (9%, /2)

nN

1+ (9% /2) ©

L(p) =@ (ZNpu - 3kN) -® _(ZNPL - 3kN)

where ®(.) is the neutrosophic cumulative standard normal distribution.

Research Methodology

To meet the given producer’s risk, say, @, and the custumer’s risk, say, f, the plan parameters of the
proposed sampling plan will be determined in such a way that NFOC passes through the two points
(p1,1— ) and (p2, B), where py is the acceptable quality limit (AQL) and p; is the limiting quality limit
(LQL). The plan parameters of the proposed sampling plans will be determined through the following
non-linear solution under the neutrosophic statistical interval method:

Minimize:

nnefng, nyl 7)

subject to:

Ln(p1) = cI>{((ZNpu1 - 3ky) %)} - <1>{(—(ZN,,L1 - 3ky) \/%)} 2= o

a; knetkar, kaul; nnefng, ny}

and:

Ln(pa) = <1>{((ZN,,uz ~3ky) \/%)} - cb{(—(sz - 3k) \/%)} <B )

knetkar, kaul; nnelne, nul

The plan parameters of the proposed plan are determined through Equations (7)—(9) using the
search grid method for the various combinations of AQL and LQL. Several combinations of plan
parameters in the indeterminacy interval satisfy Equations (7)—(9). The plan parameters having the
smallest range in indeterminacy interval are chosen and placed in Table 1. To save the space, we present
Table 1 when a = 0.05 and g = 0.10. Similar tables for other values of @ and f can be prepared.
The neutrosophic lot acceptance probabilities, Ly(p1) and Ly (p2) at the consumer’s risk and producer’s
risk are also reported in Table 1.

From Table 1, we note that, for the fixed values of all other parameters, the values of kyetk,r, ko)
nne{ng, ny} decrease as LQL increases. This means the indeterminacy in the sample size and acceptance
number reduces. For example, under the uncertainty, when AQL = 0.001 and LQL = 0.02, the sample
size will be in the interval [18,20]. This means the industrial engineers should select a sample
size between 18 and 20. Furthermore, for the smaller values of AQL and LQL, larger the values
of nye{nr, ny} are required. Note here that the appropriate sample size is decided on the basis of
pre-defined parameters, such as AQL, LQL, @, and B. The following algorithm is used to determine the
neutrosophic plan parameters:

1. Specify the values of AQL, LQL, a and .

2. Specify the suitable ranges for nye{nr, ny} such that np < nyy and knetkar, ko) such that k< kgyr.

3. Perform the simulation by the grid search method and select those values of the neutrosophic
plan parameters where nye{nr, ny;} and satisfy the conditions given in Equations (7)-(9).
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Table 1. The plan parameters of the plan when & = 0.05, § = 0.10.

p1 p2 nnN kn Ln(py) Ln(p,)
0.001 0.002 [602, 643] [1.093,1.095]  [0.9500,0.95033]  [0.0441, 0.0891]
0.003 [218, 228] [1.052,1.054]  [0.9500,0.9505]  [0.06223, 0.0898]
0.004 [128, 133] [1.022,1.024]  [0.9506,09513]  [0.0700, 0.0914]
0.006 [69, 71] [0.978,0980]  [0.9513,09517]  [0.0807, 0.0969]
0.008 [47, 49] [0.946,0.948]  [0.9506,0.9528]  [0.0848, 0.0977]
0.010 136, 38] [0921,0923]  [0.9502,09504]  [0.0849, 0.0958]
0.015 [24, 28] [0.874,0.876]  [0.9541,09675]  [0.0914, 0.0959]
0.020 [18, 20] [0.842,0.844]  [0.9521,09614]  [0.0761, 0.0823]
0.0025 0.030 [21, 23] [0.793, 0.795] [0.9529, 0.9606] [0.0923, 0.0995]
0.050 [13,15] [0.731, 0.735] [0.9567, 0.9674] [0.0607, 0.0754]
0.005 0.050 [19, 21] [0.730, 0.732] [0.9512, 0.9599] [0.0897, 0.0967]
0.100 [9,11] [0.631, 0.633] [0.9575, 0.9740] [0.0957, 0.0961]
0.01 0.020 [274, 290] [0.854, 0.856] [0.9500, 0.9504] [0.0513, 0.0881]
0.030 [95, 99] [0.803, 0.805] [0.9504, 0.9512] [0.0696, 0.0918]
0.03 0.060 [165, 174] [0.718, 0.720] [0.9503, 0.9509] [0.0581, 0.0903]
0.090 [55, 57] [0.659, 0.661] [0.9505, 0.9511] [0.0756, 0.0950]
0.05 0.100 [123,129] [0.647,0.649]  [0.9502,0.9505]  [0.0690, 0.0986]
0.150 [41, 43] 0.584, 0.586 0.9509, 0.9530 0.0736, 0.0911

3. Comparison Study

In this section, we will compare the efficiency of the proposed plan with the sampling plan using
classical statistics in terms of the sample size required for the inspection of the submitted product lot.
For a fair comparison, we will consider the same values of all the specified parameters. The sample size
ny along with range (R = ny; — 1) in the indeterminacy interval of the proposed plan and sample size
n using classical statistics when & = 0.05, § = 0.10 are placed in Table 2. From Table 2, it can be noted
that the proposed plan provides a smaller indeterminacy interval in the sample size as compared to
the plan using classical statistics. For example, when AQL = 0.001 and LQL = 0.002, the proposed plan
has ny € [602, 643] while the existing plan has n = 1134. Therefore, the proposed plan needs a smaller
sample size and range in the indeterminacy interval for the inspection of a product lot. From this
comparison, it is quite clear that the proposed plan using neutrosophic statistics is more efficient than
the existing sampling plan under classical statistics in terms of sample size. In addition, the proposed
plan is quite suitable, effective, and informative to be used in uncertainty than the existing plan.

Table 2. The comparison of proposed plan and the plan based on classical statistics.

1 P2 Proposed Plan Plan Based on Classical Statistics
nN n
0.001 0.002 [602, 643] (R = 41) 1134 (R = 1134)
0.003 [218, 228] (R = 10) 351 (R = 351)
0.004 [128,133] (R = 5) 161 (R = 161)
0.006 [69,71] R =2) 74 (R =74)
0.008 [47,49] R =2) 47 (R =47)
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Table 2. Cont.

- P2 Proposed Plan Plan Based on Classical Statistics
nN n

0.01 0.020 [274,290] (R = 16) 449 (R = 449)
0.030 [95,99] (R = 4) 132 (R =132)

0.03 0.060 [165,174] (R =9) 240 (R = 240)
0.090 [55,57] (R =2) 68 (R = 68)

0.05 0.100 [123,129] (R = 6) 167 (R = 167)
0.150 [41,43](R=2) 46 (R = 46)

4. Application of the Proposed Plan

In this section, we will give the application of the proposed plan using the data of the amplified
pressure sensor that came from industry. Viertl [29] commented that the observations obtained from
the measurements are not usually precise. According to [40] “For this amplified pressure sensor
process, the span is the focused characteristic”. As the observations for the quality of interest are
measured, some observations in the data may be indeterminate or imprecise. Under the uncertainty,
the experimenter is not sure about the sample size for the inspection of a product lot when some
indeterminate or imprecise observations are recorded. For this data, LSL = 1.9 V, USL 2.1. Suppose that
AQL =0.001, LQL = 0.04,a = 0.05, and 8 = 0.10. The neutrosophic plan parameters from Table 1 are
nne{128,133}. Thus, the experimenter should select a random sample between 128 and 133. Suppose
that the industrial engineers decided to select a random sample size of 128 for the inspection of a
product lot. The amplified pressure sensor data of = 128 having some indeterminate observations are
reported in Table 3. Based on the given data, the neutrosophic average and standard deviation (SD)
are computed as follows:

[1.9422,1.9422] + [1.9651,1.9651] + [2.0230,2.0230] + ... + [1.9994,1.9994],

- 1.9422,1.9422] + [1.9651,1.9651] + [2.0435,2.0435] + ... + [2.0512,2.0512
Xy = il ] 1[28 ] [ L _ 1.9805,1.9827]

and, similarly, sy = {0.0193,0.0225}.
The NPCI is computed as follows: CNpk = Min{%ﬁ’,%}, CANpke [1.7377,2.0639] for
Xy = [1.9805,1.9827] and sy = {0.0193, 0.0225}.
The proposed plan will be implemented as follows:
Step 1: Select a random sample of size ny = {128,133} from a product lot. Compute the statistic
Cn,e€ [1.7377,2.0639].
p
Step 2: Accept a product lot as [1.7377,2.0639] > {1.022,1.024}.
The application of the proposed sampling plan shows that the proposed sampling plan is quite

effective, adequate, and flexible to be used under the uncertainty environment than the plan based on
classical statistics which provide the determined values of the plan parameters.
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5. Concluding Remarks

In this paper, we originally proposed a variable sampling plan for the PCI under the neutrosophic
logic. We presented the NPCI in the paper and used it to design the sampling plan. The proposed plan
is the extension of the plan using classical statistics which can be applied where data is indeterminate or
unclear. The plan parameters are presented for practical use in industry. A real example from industry
is also added to show the application of the proposed sampling plan. The proposed plan is designed
under the assumption that the data follow the neutrosophic normal distribution which can be tested
using some statistical test or graphical depictions. For non-normal data, a suitable transformation can
be applied to transfer non-normal data to normal data. From the comparison study, it is concluded that
the proposed plan is more efficient than the plan based on classical statistics in terms of sample size.
It is recommended to use the proposed plan in the industry where the data came from the complex
situation or where there is a chance of some unclear data in the sampling. The proposed sampling plan
using a double sampling scheme will be considered as a future research. The proposed plan using big
data can be considered as future research.
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Abstract: Distance measure and similarity measure have been applied to various multi-criteria
decision-making environments, like talent selections, fault diagnoses and so on. Some improved distance
and similarity measures have been proposed by some researchers. However, hesitancy is reflected in all
aspects of life, thus the hesitant information needs to be considered in measures. Then, it can effectively
avoid the loss of fuzzy information. However, regarding fuzzy information, it only reflects the subjective
factor. Obviously, this is a shortcoming that will result in an inaccurate decision conclusion. Thus, based on
the definition of a probabilistic neutrosophic hesitant fuzzy set (PNHFS), as an extended theory of fuzzy
set, the basic definition of distance, similarity and entropy measures of PNHFS are established. Next,
the interconnection among the distance, similarity and entropy measures are studied. Simultaneously,
a novel measure model is established based on the PNHFSs. In addition, the new measure model is
compared by some existed measures. Finally, we display their applicability concerning the investment
problems, which can be utilized to avoid redundant evaluation processes.

Keywords: probabilistic neutrosophic hesitant fuzzy set; distance measure; similarity measure;
entropy measure; multi-criteria decision-making (MCDM)

1. Introduction

Neutrosophic set (NS) [1,2] as a more general theory form of fuzzy sets (FS) [3] provides a simple
method to describe uncertain information under the MCDM environment. Afterwards, in order to better
combine with practical problems, Wang et al. proposed the single-valued neutrosophic set (SVNS) [4-6]
and interval neutrosophic set (INS) [7-9] by depicting the range of different membership functions
to encourage the application of FS. For instance, NS adds three independent membership functions:
truth-membership function T(x), indeterminacy-membership function I(x) and falsity-membership
function F(x). In development, according to the complexity of the information in the MCDM problems,
SVNS and INS have been applied to deal with some different types of problems [10-16]. When some
decision makers (DMs) make a decision, some DMs may at the hesitancy among truth membership,
indeterminacy membership and falsity membership. Thus, different forms of NS have been proposed,
like single-valued neutrosophic hesitant FS (SVNHES) [17-19], multi-valued NS (MVNS) [20-23],
some types of linguistic NS [24-26], and other types of NS [27-32]. Some experts applied to algebraic
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systems [33—40], which clarified that the extended NSs are the effective tools for describing uncertainty
and imprecise information, the information including imperfect, fuzzy, uncertainty and so on. Then,
based on the different requirements of practical applications, the axioms of NS are investigated. The most
important thing is how to minimize the loss of information when uncertain problems are resolved.

The use of truth-membership, indeterminacy-membership and falsity-membership degrees to depict
the fuzziness only expresses subjective uncertainty. However, the statistical data can describe the occurrence
frequency of membership degree based on objective views. The elements that decide on the accurate
evaluation conclusion of MCDM include both fuzzy and statistic information. The DMs can explain the
subjective information by utilizing NSs, SVNSs, SVNHSs and so on. As the amount of information increases,
the impact of statistical information on decision outcomes will increase.

Xu et al. proposed hesitant probabilistic fuzzy set [41] and researched its basic operations.
Next, Hao et al. [42] constructed probabilistic dual hesitant fuzzy set and applied in risk evaluation.
Zhai et al. [43] took the probabilistic interval-valued intuitionistic hesitant fuzzy set and investigated its
distance, similarity and entropy measures. Later, these theories have been widely studied and applied to
solve MCDM problems [44-47]. However, when solving some decision problems, the decision makers
will give the indeterminacy-membership hesitant degrees and corresponding probability information.
In order to solve this situation, Shao et al. [48] and Peng et al. [49] established probabilistic single-valued
neutrosophic hesitant fuzzy set (PSVNHFS or PNHFS) and probability multi-valued neutrosophic set
(PMVN), respectively. Shao et al. investigated the basic operation laws of PNHFSs and their characteristics.
Next, they established the probabilistic neutrosophic hesitant fuzzy weighted averaging (geometric)
operators to fuse the uncertain information. Peng et al. presented a new QUALIFLEX method to fuse
and analyze the uncertain information. The new form of expression is conductive to reducing the loss of
uncertain information and improving the application in MCDM environments.

Distance measure, similarity measure and entropy measure are three effective ways to solve MCDM
problems. As the key step of implicating fuzzy information explanation into MCDM, different types of
distance and similarity measure for NSs [50,51], SVNSs [52,53], and SVNHES [54,55] have been investigated.
On the other hand, some ranking methods and MCDM approaches based on the measures of linguistic
NSs have been established and utilized in various practical problems [56,57]. The effectiveness of similarity
measure is to express the degree of similarity between factors. Additionally, the distance measure focuses
on the divergence of items, which is opposite to the similarity measure. Simultaneously, similarity measure
is an effective tool to express the relationship between items. Distance measure also has this characteristic.

The present notions of measures include the three independent membership degrees (truth, indeterminacy,
falsity membership degrees) of fuzzy information, which can be effective to reduce the loss of information.
Researchers pay attention to study the measures to improve the exactness and effectiveness in MCDM problems.
According to the inner construction of present measure formulae, we establish a novel distance measure and
anovel similarity. Sahin [58] proposed the Hamming distance measure of SVNHFSs as follows:

b Ly Ly ) ) (R0 (i) Lyl (i)
SVNHFS = 3 Y (f 2 lay, (%) — ey (V)] + » Z 1B, (x) = By, (X)] + 7 Z I7n, () =7, (X)),
xeX " i=1 i=1 i=1

in which «,  and v are the truth-membership, indeterminacy-membership and falsity-membership
degrees of x; € X to a situation, N; and N, are SVNHFSs. However, there are some drawbacks, for which
it is necessary to be concerned. For instance, the truth-membership and falsity-membership degrees
are utilized to describe DMs’ determination on x to the situation A. According to DMs, there is some
associated information about x to the situation A, and « and vy are given at the same time when DMs
make judgements. However, 8 expresses the vagueness of DMs’ un-known about x, and this is distinct
to the « and B. Obviously, it is not logical for any DCDM problems when DMs characterize them by
utilizing the same formula and equal potentiality in a measure function.
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Due to the complexity of the uncertain information, the evaluation information given by the decision
makers will be fused. For example, T4, [4 and F,4 describe the proportion of pros, cons, and abstentions,
respectively, in the voting model. In the case of some subjective factors, the decision maker cannot be
sure that it is fully or completely opposed, so some of the abstentions tend to vote in favor, expressed by
TI. Similarly, IF describes the fusion information between abstention and opposition. TF describes the
fusion information between approval and opposition. T;, F; and I; represent information that is fully
in favor, totally opposed, and completely abstained. Then, this type of information can be solved with
neutrosophic hesitation fuzzy theory, Ty = T; + TF +T1,Fy = F; + TF+IFand I = I + TI1 + IF.

The whole uncertainty set is separated into vagueness, non-vagueness and hesitancy. The non-vagueness
sub-domain includes truth-membership and falsity-membership regions, whereas the vagueness sub-domain
is organized by the indeterminacy-membership region. The uncertainty in the non-vagueness sub-domain
can be expressed as an undetermined attribute. The indeterminacy indicates that there are a variety of
thoughts about x belonging to the situation A. Every thought can not be certain. Hesitancy sub-domain
describes the hesitancy degrees of DMs. Thus, it is appropriate to explore and solve the uncertain information
based on the vagueness, non-vagueness and hesitant degrees. The distinction among the novel measures and
previous measures is distinguished.

According to the instructions above, our main aim is to accomplish the fuzzy description system
based on the PNHFS. By holding more uncertainty parameters, the uncertain information is expressed.
At the same time, the uncertainty information is divided more clearly. The particular introduction is related
in Section 2. The second aim is to propose novel distance, similarity and entropy measures. This work
is done in Section 3 exactly. We expect to take advantages of this new approach to improve the accuracy
of practical MCDM results. In Section 4, the detail is described and an application case about reducing
the excess re-evaluation is shown, respectively. Finally, the discussion and future research are presented
followed by the Conclusions section.

2. Preliminaries

Firstly, the basic theoretical knowledge used in this paper is reviewed. For convenience, SVNHFS is
simply called the neutrosophic hesitant fuzzy set (NHFS) in this work.
2.1. Several Types of NS

Definition 1. Suppose X is a non-empty reference set. An NHFS is described by the following mathematical
formula [4]:

N = {(x, £(x),i(x), f(x))|x € X},
where F(x), i(x) and f(x) € [0,1]. F, { and f denote three different types of degrees, respectively. F: X — [0,1]
describes the truth-membership degree, i : X — [0,1] denotes the indeterminacy-membership degree, f : X — [0,1]
depicts the falsity-membership degree. F(x),i(x) and f(x) satisfy the following condition: 0 < F(x) +i(x) +
fx) <3,

Definition 2. Suppose that X is a non-empty reference set; then, an NHFS involved with X on the basis of three
functions to X return three subsets of [0, 1]. Ye proposed an NHES with the following mathematical sign [18]:

N = {(x, T(x), I(x), F(x))[x € X},

where T(x), I(x) and F(x) are three subsets of [0,1], respectively. Moreover, the definition of single-valued
neutrosophic hesitant fuzzy element (SVNHFE) is proposed. If T(x), I(x) and F(x) are three finite subsets,
then the SVNHFE can be expressed by
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((aa (x), 2(x), - g7y (%)), (B1(x), Ba(x), -+ Br(ny (%)), (v1(x), 72(x), -+, vy (X))
= (T(x),I(x),F(x)),

in which L(T), L(I) and L(F) are three positive integers to describe the corresponding number of values in the
T(x), I(x) and F(x). Simultaneously, ay (a € {1,2,--- ,L(T)) describes the ath possible truth-membership degree,
By (b €{1,2,---,L(I)) describes the bth possible indeterminacy-membership degree, and «y. (c € {1,2,---,L(F))
describes the cth possible falsity-membership degree of x € X to a situation. The restrictions of SVNHFS are
listed below:

0 <ag B,y <land 0 <at + BT+ 97+ <3, at = max{ay}, Bt = max{By}, v+ = max{y.} for
x € X.

After that, single-valued neutrosophic hesitant fuzzy measures and correlation coefficients, aggregation
operators on SVNHFS have been investigated to solve MCDM problems, medical diagnoses and so on.

2.2. The Distance and Similarity Measures for SVNHFSs

Definition 3. A mapping D : NHFS(X) x NHFS(X) — [0,1], “x” is the Cartesian product. Then, D is
defined to be a distance measure of NHFS, if it satisfies the following four conditions [58] : A, B,C € SVNHFS(X),

(1) 0<D(AB)<L

(2) D(A,B)=0iff A=B;

(3 D(A,B) = D(B,A);

(4) IfACBCC, then D(A,C) > D(A,B), D(A,C) > D(B,C).

Definition 4. A mapping S : NHFS(X) x NHFS(X) — [0,1], “x” is the Cartesian product. Then, S is
defined a similarity measure, if S has the following four axioms [58]: A,B,C € NHFS(X),

(1) 0<S(AB)<1;

2) S(AB)=1iffA=B;

3)  S(A,B)=S(B,A);

(4) IFACBCC, thenS(A,C) < S(A,B),S(A,C) < S(B,C).

Definition 5. A mapping E : NS(X) — [0,1] is called an entropy on NS(X), “x” is the Cartesian product.
Then, E holds the following properties [51]: A, B € NS(X),

(1) E(A) =0if Aisacrisp set;

2) E(A)=1iff A=1{050505};

(3) E(A) < E(B) if A is more crisper than B;

(4) E(A) < E(AF), where A® is the complement of A.

3. The Distance and Similarity Measures of PSVNHFS

For the content of this part, as an extended theory of FS, Shao et al. [48] first proposed the probabilistic
single-valued neutrosophic hesitant fuzzy set (PSVNHES). The PSVNHES can better describe the uncertainty
by involving objectively uncertain information and subjective uncertain information. However, the vote set
was first introduced by Zhai et al. [43]. Thus, according to the division of certain opinion, indeterminacy
opinion and contradictory (vagueness) opinion, inference set as a new kind of vote set is constructed and
applied to the NHFS. Finally, the distance measure and similarity measure are introduced and investigated.

Definition 6. Suppose that X is a finite reference set. A PNHFS on X is denoted by the following
mathematical symbol [48]:
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N = {{x, T(x)[P"(x), I(x) P! (x), F(x) | P (x))|x € X}. (9]

The T(x)|PT(x), I(x)|P!(x) and F(x)|PF(x) are three elements of N, in which T(x), I(x) and F(x) is
defined as the possible truth-membership hesitant function, possible indeterminacy-membership hesitant function
and possible falsity-membership hesitant function of x, respectively. PT(x), P!(x) and PF (x) is the probabilistic
information of factors in the components T(x), I(x) and F(x), respectively. This subjective information and
objective information have the following requirements:

L(T) L(I) L(F)
a, Bpve €[0,1,0 <at 4+t +4T <3;PTPLPFefo1]; Y PT <1, ) Pl<1, ) PF<1,
a=1 b=1 c=1

where a, € T(x), By € 1(x), vc € F(x). at = max{a,}, p* = max{B,}, v+ = max{y.}, Pl € PT,
P} € P!, Pf € PE. The symbols L(T), L(I) and L(F) are the cardinal numbers of elements in the components
T(x)|PT(x), I(x)|P!(x) and F(x)|PF(x), respectively.

Generally, a probabilistic neutrosophic hesitant fuzzy number (PNHFN) of x is expressed by the
mathematical symbol:

N = ((w1|P{,a2|P, - ar(r)|PLip)), (B1|PL B2l Py, -, BLony | PL ), (IPE 72 PE, -+ vy 1P )
= {T|PT,1|P!, F|PF}.
Definition 7. If X is a finite reference set and N is a PNHFN, then N is a normalized PNHEN [49]:

N = {T(x)[P"(x), I(x)|P' (x), F(x)|PF (x)}, €

5T _ P si_ P osr_ P
where P, = Z;”aT'Pb =5 P = T

Example 1. If X = {x} is a reference set, an PNHFS can be denoted by
N = {x, ({0.5]0.3,0.6/0.5}, {0.40.4,0.60.6}, {0.3/0.6}) }.

For every membership function, the PNHEN N = ({0.5(0.3,0.6/0.5}, {0.4]0.4,0.6|0.6}, {0.3|0.6}) independently
denotes the whole uncertain area with three probabilistic membership functions, where ZaLLTl) Pl =03 +05 = 08,

r Pl —04+06=1,5"F) PF = 0.

The PNHEFS is considered a generalized theory of aforementioned various of FS, including FS, IFS,
HFS, etc. Next, some special cases of normal PNHFS are introduced.

(1)  If the probability values are equal for the same type of hesitant membership function, i.e.,

plT:plT:...:pLT(T),plI:pll:...:pi( pf:pf:...:pf

I)”
Then, the normal PNHFS is reduced to the SVNHFS.

(2 IfL(T)=L(I)=L(F) =1and P] = P/ = P[ = 1, then the normal PNHFS reduces to the SVNS.

(3) IfI(x) = @ (there is also P!(x) = @), a* + g+ > 1, then the normal PNHFS reduces to the PDHFS,
which can be expressed by N = {(x, T(x)|PT (x), F(x)|PF(x))|x € X}.

(4) If the normal PNHEFS satisfies the conditions in (3), and PlT = PlT = ... = PLT(T), PlF = P1F =

s = PLF(F), then the normal PNHFS reduces to the DHFS, denoted by N = {(x, T(x), F(x))|x € X}

(5) IfI(x) = F(x) = @ (there s also P! (x) = PF(x) = @), then the normal PNHFS reduces to the PHFS,
the mathematical symbol is N = {{x, T(x)|PT(x))|x € X}.
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(6)  If the normal PNHFS satisfies the conditions in (5), and P = PlT == PE (1) the normal PNHFS
reduces to the HFS, denoted by N = {(x, T(x))|x € X}.

(7) IfI(x) = @ (thereis also P!(x) = @), L(T) = L(F) = 1, PT = Pf = 1,a1 + 91 > 1, then the normal
NHEFS reduces to the IFS, denoted by N = {(x, a1, 71)|x € X}.

(8) IfI(x) = @ (thereisalso P'(x) = @), L(T) = L(F) =1, P] = P{ =1,and 1 — a; — 71 = 0, then the
normal NHFS reduces to the FS.

Definition 8. Suppose that X = {x1,xy, -+ ,x,} is a finite reference set and N is a PNHEN, then the hesitant
degree of x; is defined by the following mathematical symbol:

(o o ) ®
X(ON) = 23 x(w), @

where L(T), L(I) and L(F) represent the total numbers of factors in the components T(x)|PT (x), I(x)|P!(x) and
F(x)|PF(x).

The hesitant degree of x; reflects the decision maker’s degree of hesitation, the bigger x(N),
the bigger the hesitation of decision maker in making decisions. If x(N) = 0, then the decision
information is completely unhesitating.

By the definition of PNHFS, we know that the information {a1|P{,as|PJ, - - -, ap(r) \PLT(T)} denotes
the positive attitude for x to a situation A, Those data express a certain and non-vagueness component.
In this case, we can not obtain effective data to denote the specific truth-membership degree. Similarly,
the information elucidated by the data {y1|Pf,7|P},--- v L(F) |PiT ( F)} is like the introduction of
the truth-membership hesitant degrees with probability, which denotes determinate attitude and
uncertain settled data. However, the information {B1|P{, B2|PJ,---,B (D) |P£( I)} expresses uncertain
attitude and inconclusive membership degree with probability. Thus, through the above analysis,
the truth-membership hesitant degrees and false-membership hesitant degrees are considered as the
components of non-vagueness subspace. The indeterminacy-membership degrees expresses the uncertain
attitude. It denotes the imprecise notion of people’s knowledge about x. The rest of the region denotes
a contradictory (vague) attitude about whether the x belongs to an event. It represents the unexplored
domain of people’s knowledge about x. As people acquire more and more knowledge, the fuzzy
information represented by contradictory (vague) subspace will be converted to the uncertain knowledge
repressed by the information T (x)|PT(x), I(x)|P!(x) and F(x)|PF(x).

Thus, we propose a method to get all uncertain parameters and accurately describe the certain
attitude subspace, indeterminate attitude subspace and contradictory (vague) subspace. Considering the
certain subspace, the standpoint about the truth-membership hesitant degrees and false-membership
hesitant degrees is correct. Thus, we let the truth-membership hesitant degrees have assigned positive
values; the value domain is [0, 1] and then the false-membership hesitant degrees are assigned negative
values; the value domain is [—1, 0]. Eventually, the value of certain attitude belongs to [—1, 1]. Obviously,
by the Definition 6, the value of indeterminate attitude belongs to [0, 1]. Next, through the above
analysis, we found that PNHFS is a convenient way to express fuzzy information. However, for decision
makers, they prefer to get the optimal result more conveniently. However, the hesitant degree can
describe the hesitation of uncertain information. Thus, we fuse the truth-membership hesitant degrees,
false-membership hesitant degrees and hesitant degree into an attitude presentation. The uncertain
neutrosophic space is relatively macroeconomic expressed by a certain attitude, indeterminate attitude
and hesitation. The calculation process can be simplified and made more feasible for solving problems.
Based on the above analysis, the definition of inference set (IS) is established as follows:
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Definition 9. Suppose that X is a finite reference set; then, a inference set (IS) is expressed by the following
mathematical symbol:

IS = {{x,d(x),e(x),g(x))|x € X}, (5)

where IE = (x,d(x),e(x),g(x)) is defined as an inference element (IE), (d(x),e(x),andg(x)) is called an
inference number (IN). The function d : X — [—1,1] describes the attitude of x belonging to the situation A.
It is a compositive product about the truth-membership hesitant degrees and false-membership hesitant degrees.
The mapping e : X — [0,1] expresses the un-vagueness opinion of x belonging to the situation A. In addition,
the mapping g : X — [0, 1] figures the contradictory (vague) degree for people’s attitudes about x belonging to the
situation A. Note, when 0 < d(x) < 1, the decision makers remain optimistic about x belonging to the situation A;
when —1 < d(x) < 0, the decision makers are pessimistic about x belonging to the situation A. If d(x) = 0, then
the decision makers” attitude is neutral.

Example 2. The mathematical symbol (x,0.4,0.7,0.2) is an IE. It describes the decision maker having a 40%
degree of agreement about x belonging to the situation A. However, there is a 70% degree of determination about
the information on x to the situation A. In addition, there is a 20% degree of non-hesitation on the x belonging to
the situation A.

3.1. The Method of Comparing PNHFSs

In this subsection, a way to convert the PNHEFE to the IE is established. Next, the PNHFS can be
compared by utilizing IEs. In the entire space, the certain attitude subspace, the indeterminate attitude
subspace, the contradictory (vague) attitude subspace and corresponding probabilistic values express the
different meanings. The certain attitude subspace represents the degrees of agreement or disagreement
about x belonging to the situation A; the indeterminate attitude subspace can be described to the lack of
decision makers’ information, whereas the contradictory (vague) subspace represents the contradiction of
decision makers” knowledge. Additionally, the probability theory expresses uncertainty, which is shared
by the certain attitude subspace, the indeterminate sub-space and contradictory (vagueness) subspace.
Thus, the probability values are integrated to reduce uncertain variables. Next, in order to establish
distance measure and similarity measure, a function from a PNHFS to an IS is given.

Definition 10. Suppose that X is a finite reference set, N is a finite PNHFE, and a mapping H is defined as follows:

L(T) L(F) L(I)
H(N) = { Y taPf — Y fePE, Y (1—iy)Pf, 1 — x(x)} ©)
a=1 c=1 b=1
For instance, when PIT = PZT = ... = PLT(T), Pll = le == Pi(,)/ PlF =P == PLF(p)r

the PNHFS is reduced to an NHFS. Thus, the function H(N) can be transformed to an IS as

L(T) L(F) L)y
V) = (Bt B e B O 3,

According to Equation (6), the IS includes the probabilistic information and fuzzy information, which

can be illustrated with the help of investigating the Definition 10. The formula Zﬁg) t,PT — Zgg) f.PF
introduces the average value of certain attitude obtained by the truth-membership subspace and the
false-membership subspace. The expression Zég (1—1iy) P} explains the average degree of an un-hesitant
opinion given by the indeterminate-membership subspace. Then, the formula 1 — x(x;) illustrates the
average value of the un-sloppy attitude for known information about x related to the situation A.
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By Definition 6, all objective and subjective uncertain elements are considered and different types of
fuzzy spaces are distinguished. However, if PNHFE is infinite, the formula 6 will change

L(T) L(F) L(1) )
HN) ={ [ wpl = [ gpE [ —inp)00. @

Based on the importance of objective and subjective information, the method of comparison for IEs
is defined as follows:

Definition 11. Let X be a finite reference set, IE; = (dq(x),e1(x), g1(x)) and IE; = (da(x),e2(x), g2(x)) be
two IEs, then

(1) Ifg] S 82, then IE1 S IEz,'

(2) Ifg1 > g, then IE; > IEy;

(3)  Ifg1 = g2, then (i) If ey < ey, then 1Ey < IEy; (ii) If ey > ey, then 1Ey > 1Ep;

(4) Ifg1 = go,e1 = ey, then (i) If dy < dy, then IEy < IEy; (ii) If dy > dy, then IE; > IE;.

The division of entire uncertain field to describe the certain, indeterminate and hesitant attitude.
By Definition 9, based on the internal perspective and external perspective, the IE expresses the certain
subdomain without probabilistic information. Thus, according to the degree of information obtained and
the importance of experience in decision-making activities, the method of comparison for IEs is based on
the rule “degree of non-hesitation, determinacy and lastly opinion”.

Supposing that A and B are two PNHFEs to the finite reference set X, then the corresponding IEs
can be expressed by IE4 = (d4(x),ea(x),ga(x)) and IEg = (dp(x),ep(x),gp(x)), respectively. Thus,
the notion of binary relation for PNHFEs can be described as follows:

Definition 12. Suppose that A and B are two PNHFEs to the finite reference set X. Then, the binary relations for
PNHEFEs are given as follows:

(1) If(da(x),ea(x),ga(x))
(2) If(da(x),ea(x),ga(x))
(3)  If(da(x),ea(x),ga(x))

3.2. Distance and Similarity Measures of PNHFSs

(dp(x),ep(x),gp(x)), then A > B;
<dB(x)reB(x),gB(X)>, then A < B;
(dp(x),ep(x),gp(x)), then A = B.

IN IV

According to the work mentioned above, the distance measure, similarity measure and entropy
measure of PNHFE are established in this subsection. The inclusion between IS4 and ISp is given.
Similarity, the inclusion between PNHFS 4 and PNHFSg are proposed.

Suppose that X is a finite reference set, A and B are PNHFS to set X, and IS 4 and IS are corresponding
ISs of A and B, respectively.

A C Biff Vx € X, T4|PT4 < Tg|PTs, I5|Pla > Ig|P's, F4|PTa > Fg|PFs and x(A) > x(B),

where T4|PTa and Tp|PTs describe the average value of truth-membership hesitant degree of A and B,
respectively, I4|P!4 and I|P!s express the average indeterminate-membership hesitant degree of A and
B, respectively. Similarly, F4|PF4 and Fg|Pfs represent the corresponding average false-membership
hesitant degree of A and B.

Additionally, if IS4 C ISg, the following conditions need to hold:

ap <ap,by < bp,ca < cp.
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Definition 13. Suppose that X is a finite reference set, IS4, 1Sp and 1Sc are three ISs in X. A function
Djs = IS(X) x IS(X) — [0,1], where “x” means the Cartesian production. Then, Djg is called a distance
measure, if Dyg satisfies the following three requirements:

(1) Djs(ISA,ISB):OlffISA:ISB;
(2)  Dis(IS4,1Sp) = Dis(ISp, 1S4);
(3)  Dis(ISa,1Sc) > Dis(1S4,1Sg), Dis(1Sa,1Sc) > Dys(1Sp, ISc) when IS4 C I1Sp C ISc.

Theorem 1. Suppose that IS, = {{da(x),ea(x),ga(x))|x € X} and ISg = {(dp(x),ep(x),gp(x))|x € X}
are three ISs in X, then the function

Dis = AIO(MIT(MIU; (|da(x) — dp(x)|), MIUz(Jea(x) — ep(x)]), MIUs(|ga(x) — g8 (x)[))) ~ (8)

is a distance measure for IS, where the mappings: MIUy, MIU,, MIUs : [0,1] — [0, 1], satisfy the conditions:
MIUy, MIU, and MIUs are three monotonically increasing unary functions and MIU; (0) = 0, MIU,(0) = 0,
MIU;(0) = 0. Those functions can be the same and are not mandatory here. The mapping MIT : [0,1]% — [0,1] is
a monotonically increasing ternary function; MIT holds the following requirements: MIT(0,0,0) = 0; MI T]’ >0,
MIT} > 0, and MIT} > 0, MIT{, MIT} and MIT] are corresponding partial derivatives of MIU;, MIU, and
MIUs, respectively. Additionally, AIO : [0,1]" — [0,1] is an aggregation operator and the partial derivative
AIO; > 0(i € {1,2,--- ,n}); n represses the total numbers of factors in X.

Proof. According to the conditions of MIU;, MIUy, MIUz, MIT and AIO, Definition 13 (1) and (2)
obviously hold. Thus, the proof process of condition (3) is listed, here. Since the restrictive conditions
IS4 C ISp C IS¢ hold, thus the inequalities are listed below:

lda(x) —dc(x)| = |da(x) —dp(x)], [ea(x) —ec(x)] > lea(x) —ep(x)],[8a(x) — gc(¥)] = |ga(x) — gB(x)[;
lda(x) —dc(x)| = |dp(x) —dc(x)], lea(x) —ec(x)| = [ep(x) —ec(x)], [ga(x) = gc(x)| = IgB(¥) — gc(¥)]-

=

Because functions MIU;, MIU, and MIUjz are three monotonically increasing functions, so we can
get, Vx € X

MIU; ([da (x) = dc(x)]) = MIUy(Jda(x) —dp(x)]), MIUz(Jea(x) —ec(x)]) = MIUy(Jea(x) — ep(x)]),
MIUs([ga(x) = gc(x)]) = MIUs(|ga(x) — gp(x)|); MIU(|da(x) — dc(x)]) = MIU; (|dp(x) —dc (%)),
MIUp(Jea(x) *ec(x)\) > MIUy(lep(x) — ec(x)[), MIU3(|ga(x) — gc(x)]) = MIUs(Igp(x) — g (¥)])-

However, the partial derivatives MIT] > 0, MIT} > 0, and MIT} > 0, thus

MIT(MIU;(|da(x) — dc(x)]), MIUx(Jea(x) — ec(x)]), MIU3(|ga(x) — gc(x)1))
> MIT(MIU, (Jda(x) — dp(x)]), MIUz(ea(x) — e (x)]), MIUs(|ga(x) — g8(x)]));
MIT(MIU(|da(x) — dc(x)]), MIUz(Jea(x) — ec(x)]), MIU3(|ga(x )—gc( X))
> MIT(MIUy(Jda(x) —dc(x)]), MIUz([ea(x) — ec(x)]), MIU3([ga(x) = gc(x)]))-

According to the characteristic of function AIO, the following results are shown:

AIO(MIT(MIU; (|da(x) — dc(x)]), MIUs(lea(x) — ec(x)]), MIU3(|ga(x) — gc(x)1)))
> AIO(MIT(MIU;(|da(x) — dp(x)]), MIUx(|ea(x) — ep(x)|), MIUs(|ga(x) — g8(x)])));
AIO(MIT(MIU; (|da(x) — dc(x)]), MIUs(lea(x) — ec(x)]), MIU3(|ga(x) — gc(x)1)))

|
> AIOMIT(MIUy(|da(x) — dc(x)]), MIUs(fea(x) — ec(x)|), MIUs(|ga(x) — gc(x)])))-

Namely, Dls(lsA, ISC) = D[s(ISA, ISB), D]s(ISA, ISC) = Dls(ISB,ISC). 0
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Theorem 2. Suppose that IS, = {{da(x),ea(x),ga(x))|x € X} and ISp = {(dp(x),ep(x),gp(x))|x € X}
are three ISs in X, then the function

Dis = AIO(MDT(MDU (|d4(x) — dp(x)[), MDUz(lea (x) — ep(x)[), MDUs(Iga(x) — g8(x)1))) (9)

is a distance measure on IS, where the mappings: MDU,, MDU,, MDUs : [0, 1] — [0, 1] satisfy the conditions:
MIUy, MIUy and MIUs are three monotonically decreasing unary functions, respectively. MDU;(1) = 0,
MDU,(1) = 0, MDU3(1) = 0. Those functions can be the same and are not mandatory here. The mapping
MDT : [0,1]® — [0,1] is a monotonically decreasing ternary function, MDT holds the following requirements:
MDT(1,1,1) = 0; MDT; < 0, MDTj < 0, and MDT} < 0, MDT,, MDT} and MDT] are corresponding
partial derivatives of MDUy, MDUy and MDUj, respectively. AIO : [0,1]" — [0,1] is an aggregation operator
and the partial derivative AIO; > 0 (i € {1,2,-- - ,n}), n represses the total numbers of factors in X.

Proof. Since the process of proof is similar to Theorem 1, thus the whole conditions of Definition 13 are
held by Theorem 2. [

Definition 14. Suppose that X is a finite reference set; A, B and C are three PNHFSs on X, a mapping Dpnprs :
[0,1] x [0,1] is called a distance measure on PNHFS(X), if it holds the following three requirements: “x” is the
Cartesian product,

(1) Dpnurs(A,B) =0iff A= B;
(2)  Dpnurs(A, B) = Dpnurs(B, A);
(3) If AC BCC,then Dpnurs(A, B) < Dpnnrs(A, C) and Dpnprs(B, C) < Dpnnrs(A,C).

Theorem 3. Suppose that X is a finite reference set, A, B and C are three PNHFSs in X, IS 4, ISp and IS¢ are
corresponding ISs of A, B and C, respectively. Then, a real-valued mapping:

DpNhrs(A, B) = MIU(Dis(IS 4, 1Sp))

is a distance measure on PNHFS(X), where MIU : [0,1] — [0,1] is a monotonically increasing unary
mapping, MIU.

Proof. According to the conditions of Theorem 3, the mapping Dpnprs holds the requirements of
Definition 14 (1), (2). Thus, the requirement (3) merely needs to be proved.

Based on the explanation of A € B C C, A,B,C € PNHFS(X), thus, by Definition 10,
the corresponding ISs of A, B, C exist in the following inclusion relation:

IS4 C ISg C ISc.
Obviously, the following inequalities are obtained:

Dis(1S4,1Sc) > Dys(1S4,1Sg),
Dys(ISa,1Sc) > Dis(1Sg, ISc).

Since the function MIU is a monotonically increasing unary mapping, so the following inequalities
are shown:

MIU(Dys(ISa,1Sp)) < MIU(Dys(I1Sa,1S¢)), MIU(Dys(ISp, ISc)) < MIU(Dys(I1Sa, ISc)).

This completes the proof process. [
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Example 3. Suppose that X is a finite reference set, A, B are PNHFSs on X, ISp = {(da(x),ea(x),ga(x))|x €

X} and 1Sp = {(dp(x),ep(x),gp(x))|x € X} are the corresponding ISs for those two PNHFSs. Based on

the Theorem 1 and Theorem 3, let MIU; = y¢, MIU, = y*, MIU; = y', y € [0,1],0 < ¢, u,v < 1.

MIT = logs(1+y1 +y2 +v3), y1,Y2,y3 € [0,1]. Additionally, suppose MIU = y*, where y € [0,1],0 < A.

Then, we have

|da(x) — dp(x)]
2

1+ (Jea(x) — ep())t + (8AG) =88y 4

Di(A/B) = 5 T (loga(1+( ;

xeX

Ifp =p=v=A=1,wehave
DI ="2=Y(A,B) = i ¥ex(loga(1+ (1Al o (o, (x) — ep(x)]) + (12aB78@y)) - (11

Ifzp:y:v:Z,/\:%,then

2

DY (A B) = 4 Erex((Toga(1 + M3 0))2 - (e (1) — en(x))2 + L8281 E) 1 1)
From the formulas of D;(A, B), D}b:":V:A:l (A,B) and Df:;l:VZZ’A:% (A, B), we know that the
parameters ¢, 1, v manage the functions of |d4(x) — dp(x)|, |ea(x) —ep(x)| and |ga(x) — gp(x)| to
establish the internal framework of D;(A, B). However, the parameter A is utilized to regulate the
reciprocity among the |d 4 (x) — dg(x)|, lea(x) —ep(x)| and |ga(x) — gp(x)]| in the regulate area. Based on
different application environments, the parameters ¢, j, v are decided. Thus, for a MCDM problem, it is a
tool applied to measure the distinction in their knowledge background. Thus, it is rational to decide the
parameters utilized to manage the internal framework of measures based on respective importance degree.
By dispatching different functions to |d4(x) — dp(x)|, |ea(x) —ep(x)| and |ga(x) — gp(x)], the value of
adjusting the feasibility of [d4(x) — dg(x)|, |ea(x) —ep(x)| and |ga(x) — gg(x)| can also be solved.

Example 4. Suppose that X, A, B, IS5 and 1Sp are as mentioned above in Example 3, MIU; = In(1+y),
(y € [0,1)); MIUy = y?, (y € [0,1]),¢ > 0; MIUs = y*, (y € [0,1]), 4 > 0, MIT = (y1-y2-y3)",
(y1,v2,¥3 € [0,1], A > 0). Additionally, MIU = t(InY), (y € [0,1],t > 0). Then,

Da(a,B) = L H(an(1-+ LI i 1) ey AL 2800y

In addition, if = p=v=A=1t=1,then

DI A 8) = L tn(r-+ AL A0 ) 1) g o A7 800,

Definition 15. Suppose that X is a finite reference set, IS4, IS and IS¢ are three ISs on X, Syg = IS(X) x

IS(X) — [0,1] is a real-valued function, where “x” is the Cartesian product. Then, Sys is called a similarity
measure on 1S(X), if it holds the following three axiomatic conditions:

(1) S[s(ISA,ISB) :llffISA:ISB,

(2)  S15(ISa,ISp) = Sis(ISg, ISa);
(3) IfISa C ISp C IS, then Sys(IS4,ISp) > Sys(ISa,ISc), Sis(ISp, ISc) > Sis(ISa, ISc).

Theorem 4. Suppose that X is a finite reference set, ISy = {(da(x),ea(x),ga(x))|x € X}, ISp =

{({dp(x),ep(x),gp(x))|x € X} are two ISs; then, function S;s(1S 4, ISp) is called a similarity measure, and
the mathematical symbol is as follows:
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Sis(ISa, ISg) = AIO(MDT(MIU; (Ma®Za8C) M1t (|ea(x) — en(x)]), MIUs(1ga (%) — g8(x)])), (13)

where MIUy, MIUy, MIU; : [0,1] — [0,1] hold the following conditions: MIUy, MIU, and MIUj are three
monotonically increasing unary mappings, MIU;(0) = MIU(0) = MIU3(0) = 0. They may be the same
functions, and there are no requirements here. MDT : [0,1] — [0,1] is a monotonically decreasing ternary mapping,
MDT], MDT}, MDT} are three corresponding partial derivatives of MDT with respect to MIUy, MIUp, MIUs,
respectively. Those partial derivatives hold the following requirements: MDT] < 0, MDT} < 0, MDT} < 0 and
MDT(0,0,0) = 1. The mapping AIO : [0,1]" — [0, 1] is an aggregation operator, the partial derivative describes
AIO; >0 (i € {1,2,--- ,n}); n describes the total numbers of factors in X.

Proof. The process of proof is similar to Theorem 1, thus it is unimportant here. [

Theorem 5. Suppose that X is a finite reference set, ISy = {{(da(x),ea(x),ga(x))|x € X}, ISp =
{(dp(x),ep(x),gp(x))|x € X} are two ISs, then function S;s(1S4,1Sp) is called a similarity measure, and
the mathematical symbol is as follows:

Sis(ISa, IS8) = AIO(MIT(MDU, (Ha@Zd8C)l ) MDU (Jey (x) — e(x)]), MDUs (g4 (%) — g5 (x)]))), (14)

where MDU,, MDUp, MDU3 : [0,1] — [0,1] satisfy the following requirements: MDU;, MDU, and
MDUj are three monotonically decreasing unary mappings, MDU; (1) = MDU,(1) = MDU3(1) = 0.
They may have equal functions, and there are no requirements here. MIT : [0,1]3 — [0,1] is a monotonically
increasing ternary mapping, MIT|, MIT,, MIT} are three corresponding partial derivatives of MIT with respect
to MIUy, MIU,, MIUs, respectively. Those partial derivatives hold the following requirements: MIT, > 0,
MIT} > 0, MIT} > 0and MIT(0,0,0) = 0. The mapping AIO : [0,1]" — [0,1] is an aggregation operator and
the partial derivative AIO; > 0 (i € {1,2,--- ,n}), n describe the total numbers of factors in X.

Proof. The proof process is omitted. [

Definition 16. Suppose that X is a finite reference set, for any three PNHFSs A, B and C on X, a function
SpNHFs : PNHFS(X) x PNHFS(X) — [0,1] is called a similarity measure, if it holds the following three
axiomatic conditions: “x " is the Cartesian product,

(1) Spnurs(A,B) =1iff A=B;

(2)  Spnurs(A, B) = Spnurs(B, A);
(3) IfAC BCC,then Spnurs(A, B) > Spnnrs(A, C) and Spyurs(B, C) > Spnurs(A, C).

Theorem 6. Let X be a finite reference set, and A and B be two PNHFSs on X. The IS 4 and 1Sg are corresponding
ISs of A ,B, respectively. Then, the mapping Spnprs is called a similarity measure on PNHFS(X), and
the mathematical symbol is

Spnnrs(A,B) = MIU(Sis(I1S4,1SB)), (15)
where MIU : [0,1] — [0, 1] is an increasing function and MIU(0) = 0

Proof. According to the Theorem 14, we know the proof is obvious. Thus, the process of proof
is omitted. [
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Example 5. Suppose that X, A, B, 1S4, 1Sp are as above mentioned, MDU; = MDU, = MDU3 = ¥V —t,

(0 < ty <1); MIT = (1 +y2+y)% 0 < ¢y1,y2,y3 < 1. Additionally, suppose MIU = y*,

0 < y < 1,A > 0. The similarity measure is described as follows:

|d 4 (x)—dp(x
2

- + tleat)—es(@)] 4 4lga(¥)=gp() _ 3p)2,

S1(A,B) = Z (t

xeX
. 1
In addition, suppose t = g,q; = A =1, thus

—A= 1, lda(x)—dp()| 1 1 .
s‘f,ti% "B =Y (g)% + (g)‘L’A(’f)*QB(x)‘ + (g)\gA(A)ng(x)\ 1

xeX

Through Example 5, we know that those parameters and mappings to decide the effects of |d 4 (x) —
dp(x)], lea(x) —ep(x)| and |ga(x) — gp(x)| to establish the internal framework of similarity measures.
Those parameters and mappings’ selection methods are similar to the methods of Example 3.

3.3. The Interrelations among Distance, Similarity and Entropy Measures

According to the concept of “duality”, the distance and similarity measures among SVNS, IVNS
were investigated. However, different knowledge backgrounds of decision makers will lead to different
results. According to the interrelation among distance and similarity measures, Wang [23] first proposed
the definition of entropy and across entropy of MVNS and applied them to solving MCDM problems.

In the section, the interrelations among distance, similarity and entropy measures of PNHFS are
investigated. According to Subsection 3.2, the distance measure shows the difference between factors.
Additionally, the similarity measure investigated the uniformity of factors. Because distance measure
and similarity measure describe two opposite aspects, the relationship between these two measures is
investigated based on the following theorem:

Theorem 7. Suppose that A and B are two PNHFES on X, the distance measure Dpnyrs(A, B) holds the
conditions in Definition 14, and then Spnprs(A, B) = FN(Dpnpurs(A, B)) is a similarity measure, which holds
the axiomatic conditions in Definition 16, in which FN : [0,1] — [0,1] is a fuzzy negation.

Proof. By Definition 14 and Definition 16, the process proof is obvious, so it is omitted. [J

According to the interpretation of the divisions of the neutrosophic space, to better describe stability
of PNHEFS, the entropy measure of a PNHFS is designed as follows:

Definition 17. Suppose that X is a reference set, A = {(x, {T|PT}, {I|P'}, {F|PF})|x € X} isa PNHFS in X.
Then, the complement of A is expressed by the following mathematical symbol:

A = {{x,{F|P"}, {1|P"}, {T|P"})|x € X}.
Obviously, A€ is also a PNHFS.

Definition 18. Suppose that X is a finite reference set, A and B are two PNHFSs in X, IS 4, ISp are corresponding
ISs of A and B, respectively. Then, a function E : PNHFS(X) — [0,1] is called to be an entropy measure when it
holds the following four requests:

(1) E(A)=0if A= {{x, {11}, {0[1},{0[1})|x € X} or A = {{x, {01}, {O[1}, {1]1})[x € X}
or A= {(x,{0|P1},{0|P2}, {0|P3})|x € X},
(2)  E(A)=1ifA={(x,{051},{05]1}, {0.5]1})|x € X};
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(3)  E(A) = E(A) iff A = {(x, {T|PT},{1|P'}, {F|PF})|x € X} holds the requirement that "'} i, P! =

Cg fePE, in which AC is the complement of A.

4 (B) E(C) when Spnpirs(A, B) < Spnnrs(A, C) or Dpnnirs(A, B) > Dpnnrs(A, C), in which
={(x,{05[P1},{05|P,},{0.5|Ps})|x € X}.

Since we only are concerned with the importance of a(x), b(x) and ¢(x) on the stationarity of IS,
the following theorems are introduced:

Theorem 8. Suppose that X is a finite reference set, A isa PNHFS in X, and the corresponding IS of A is described
by IS 5. Then, the following formula:

E(A) = MDT(MIUy(|d(x)[), MIUy(|2e4(x) —1]), MIU5(|ga(x)|) (16)

is an entropy measure, in which MIUy, MIUy, MIU; : [0,1] — [0,1] are three monotonically increasing
unary mappings with MIU; > 0, MIU, > 0, MIU} > 0, and MIU;(0) = MIU,(0) = MIU3(0) = 0,
MIU; (1) = MIUy(1) = MIU3(1) = 1. The function MDT : [0,1]> — [0,1] is a monotonically decreasing
ternary mapping, and its partial derivatives are lower than zero with the requirements: MDT(0,0,0) = 1,
MDT(1,1,1) = 0.

Proof. The function E(A) is illustrated to hold all the conditions of Definition 18.

(1) Let A = {{x {11}, {01}, {0)}x € X}, A = {(x{0[1}, {011}, {O11})]x € X} or 4 —
{(x,{0[1},{0|1},{1]|1})|x € X}, thus the corresponding ISs of A are shown:

IS4 = (1,1,1) 0r IS4 = (—1,1,1).
Next, the entropy measure of A is calculated as follows:

E(A) = MDT(MIU; (1), MIU,(1), MIU3(1)) = MDT(1,1,1) = 0.

E(A) =1

& MDT(MIU; (|d(x)]), MIUy(|2e4(x) — 1]), MIU3(|ga(x)]) = 1
& MIUL(0) = 0, MIU,(0) = 0, MIU3(0) = 0

& |d(x)| = 0,]2e(x) — 1] = 0,|g(x)| =0,

<ty =f.=05,i,=05.4a0bc € oo

3 Let A = x, Ta|PT,14|P!,F4|PF)|x € X}, then the complementary of A is obtained:
P y
= {(x, FA\PF, IA|PI, TA|PT, )|x € X}. By Definition 9, the following equality is obtained:
ISA = IS sc. Obviously, E(A) = E(A°).

(4)  Suppose that B and C are two PNHFS of X, A = {(x, {0.5|PT},{0.5|P{}, {0.5|Pf}}|x € X}. Thus,
the corresponding IS of A is IS4 = {0,0,0}. By Theorem 5, the following similarity measures can
be obtained:

dp(x)

2
Sewnrs(4,C) = MIU(ATO((MIBMDU (7S, MDUy(ec (x)1), MDUS I3 ()

Spnurs (A, B) = MIU(AIO(MIB(MDU; (

), MDUy(|es (x)[), MDUs(|g5(x)))));
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Since Spnprs(A, B) < Spnurs(A, C), every function is monotonous, thus, we have |dg(x)| > |dc(x)],
leg(x)| > lec(x)| and |gg(x)| > |gc(x)|. Finally, based on the requirements of Theorem 8, E(B) < E(C).

Additionally, DpNprs(A,B) = 1 — Spyurs(A, B), Dpnurs(A,C) = 1 — Spnprs(A,C). Thus,
the process of proof based on the distance measure is omitted. I

Theorem 9. Suppose that X is a finite reference set, A isa PNHFS on X, and 1S 4 is the corresponding IS about A.
Then, Equation (17) is an entropy measure:

E(A) = MIT(MDU(|d(x)[), MDUy(|2e4(x) — 1f), MDUs(|ga(x)|))- 17)

E(A) satisfies the following limits: MDUy, MDU,, MDUs : [0,1] — [0, 1] are two monotonically decreasing
unary mappings, and MDU, (0) = MDU,(0) = MDU3(0) =1, MDU; (1) = MDU,(1) = MDUz(1) = 0.
The mapping MIB : [0,1]3 — [0,1] is a monotonically increasing binary function, its partial derivatives are better
than 0, MIB(0,0,0) = 0, MIB(1,1,1) = 1.

Based on the Equations (16) and (17), the different entropy measures can be established.

Through the above analysis, we know that entropy measure can be depicted by the unsteadiness
of a PNHFS. However, distance measure and similarity measure play a vital role. Vice versa, entropy
measure can better help us to comprehend distance measurement and similarity measurement. Next,
according to the distance measure and similarity measure, respectively, the entropy measure can
be established.

Theorem 10. Suppose D is a distance measure obtained according to Definition 14,
B = {( x{05/PT}, {05|P[},{05Pf})[x € X}, then E(A) = MDU(Dpnurs(A,B)).
The MDU : [0,1] — [0, 1] is a decreasing unary function, its partial derivatives are lower than 0,
and MDU(0) = 1, MDU(1) = 0.

Theorem 11. Suppose S is a similarity —measure obtained according to Definition 14,
B = {(x,{0.5|P]},{0.5|P}},{0.5|PF})|x € X}, then E(A) = MIU(SpNurs(A, B)). The MIU : [0,1] —
[0,1] is a decreasing unary function, its partial derivatives are bigger than 0, and MDU(0) = 0, MDU(1) =

The process of proof about Theorem 10 and Theorem 11 is not unfolded here. Similarity, we can also
get the following theorems. The proof processes are visualized.

Theorem 12. Supposing that Dpnpyrs is the distance measure of PNHFS A, Spnprs is
the similarity measure of PNHFS A, B = {(x,{05|PT} {05|P[},{05Pf})|x € X},
then E(A) = MIB(MDU (Dpnprs(A, B)), MIU(Spyurs(A,B))) s a entropy measure.
MIB : [0,1] — [0,1] is an increasing binary function under the conditions that the partial derivatives are
bigger than 0, MIB(0,0) = 0, MIB(1,1) = 1. The mappings MDU : [0,1] — [0,1] and MIU : [0,1] — [0, 1]
are decreasing unary function and increasing function, respectively. In addition, MDU(0) = 1, MDU(1) = 0,
MIU(0) = 0, MDU(1) = 1.

Theorem 13. Supposing that Dpnprs is the distance measure of PNHFS A, Spnprs is
the similarity measure of PNHFS A, B = {(x,{05|PT} {05|P[}, {05Pf})|x € X},
then E(A) = MDB(MIU(DpNprs(A,B)), MDU(SpnpEes(A,B))) is an  entropy measure.
MDB : [0,1] — [0, 1] is a decreasing binary function under the conditions that the partial derivatives are lower
than 0, MIB(1,1) = 0, MIB(0,0) = 1. The mappings MIU : [0,1] — [0,1] and MDU : [0,1] — [0,1]
are increasing unary function and decreasing function, respectively. In addition, MIU(1) = 1, MIU(0) = 0,
MDU(1) = 0, MDU(1) = 1.
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4. Method Analysis Based on Illustrations and Applications

4.1. Comparative Evaluations

In real life, the investment problem is a common MCDM problem, and many researchers have
proposed different types of distance and similarity measures of SVNHFS to settle this problem.
In this part, a famous investment selection situation is introduced. The specific evaluation and the
precise data of alternatives for investment company to invest the money problem are listed in Table 1.
Table 1 displays the decision matrix of four alternatives A;, Ay, Az, A4 and three evaluated criteria Cy,
(3, C3. The four alternatives are Real Estate, Oil Exploitation, Bank Financial and Western Restaurant,
respectively. The three criteria are Market Prospect, Risk Assessment and Earning Cycle, respectively.
The idea element A* = (1]1,0(0,0/0}.

Table 1. Probabilistic neutrosophic hesitant fuzzy decision matrix of the investment problem.

C1 C2
A {{0.3|0.3,0.4/0.3,0.5/0.3},{0.1|1}, {0.3]0.5,0.4/0.5} } {{0.5]0.5,0.6/0.5}, {0.2]0.5,0.3|0.5},{0.3|0.5,0.4|0.5} }
Ay {{0.6/0.5,0.7|0.5}, {0.1]0.5,0.2/0.5},{0.2/0.5,0.3]0.5} } {{0.6/0.5,0.7/0.5},{0.1]1},{0.3|1}}
Az {{0.5/0.5,0.6/0.5},{0.4|1},{0.2|0.5,0.3]0.5} } {{0.6/1},{0.3]1},{0.4|1}}
Ay {{0.7]0.5,0.8/0.5}, {0.1]1},{0.1/0.5,0.2|0.5} } {{0.6/0.5,0.7]0.5},{0.1]1},{0.2|1} }
(&

Ay {{0.20.5,0.30.5},{0.1]0.5,0.2]0.5}, {0.5]0.5,0.6/0.5} }
Ay {{0.60.5,0.7/0.5},{0.1]0.5,0.2/0.5}, {0.10.5,0.2/0.5} }
As {{0.5/0.5,0.6/0.5}, {0.1]1}, {0.3[1}}

Ay {{03]05,05/0.5},{0.2]1},{0.1/0.3,0.2/0.3,0.3]0.3}}

Note 1. The data on this investment selection problem in Table 1 is in the form of PNHFNs. The PNHFS is one
of the generalized from the NHFS, which we have described by item (1) after Definition 6. Thus, the definition of
PNHFS can also utilized to NHFS. For instance, ({0.5,0.6},{0.1},{0.3}) is an NHFE. We can describe it as
({0.5/0.5,0.6/0.5},{0.1|1},{0.3|1}), which is an PNHFE.

Note 2. The results are listed in Table 2, and the optimal result is according to the minimum value among
distance measures.

Table 2. Results shown by Equation (10) corresponding to different parameters.

Parameter Aq Ay Ajz Ay Ranking
D¢=n=v=A=1 0.1269  0.0635 0.0989 0.1053 Ay > Ag > Az > Ay

DY=H=v=2A=] 0.1498 01063 0.1150 0.1239 A; > Ay > A3 > A,
DP=r=1v=2A=1"" 00956 0.0622 0.0561 0.0792 A} > Ay > A3 > Ay
D=v=1p=21=1 0.1024  0.691  0.0523 0.0733 Ay > Ay > Ay > A

DP=2v=1=p=1A=1" (1871 01203 0.1071 0.1449 A; > Az > Ay > A3

The optimal selections are shown in Table 3. By comparing the conclusions shown by the present
distance measures Xu and Xia’s Method, Singh’s Method, and Sahin’s Method, we found that the selections
calculated are the same as our method with D?=#=v=A=1 D¢=p=v=2A=} 4nq DP=r=1r=2A=1 However,
the conclusions calculated by D#=V=1#=2A=1 D¢=2v=1=p=11=1 are different from the present method.
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Table 3. Relationships between presenting methods and our method .

Method Ranking The Best Result The Worst Result
Xu and Xia’s Method Ay > Ay > A3 > Ay Aq Ap
Singh’s Method Ay > Ay > A3 > Ap Aq Ap
Sahin’s Method Ay > Ay > A3 > Ap Aq Ap

Thus, we deduce that the consequences may change if we change the inner frames of the distance
measure formula. According to the components of |d4(x) — dg(x)|, |ea(x) —ep(x)| and [ga(x) — gp(x)],
which describe the certain attitudes, knowledge backgrounds and hesitancy degree, respectively, we trust
that the new type of distance measures are effective and significant. If the difference of the decision
makers” hesitancy degree and background knowledge is relatively big, it does not have a lot of effective
consult values regarding whether they have the same conclusions. However, when the difference between
the decision maker’s hesitation and background knowledge is not too big, analyzing the reasons for the
difference in their opinions is significant. Thus, it is important for making rational decisions.

4.2. Streamlining the Talent Selection Process

In many areas of life, the existing evaluation systems are incomplete, resulting in redundancy in the
evaluation processes and waste of resources. This situation results in the low efficiency of evaluation
for the entire decision-making section. Through the evaluation and analysis of the existing concerned
decision documents, the matter of unnecessary waste of manpower resource is extensive. For example,
many companies with well-established evaluation systems are concentrated in large cities or large
countries, under the context of rapid growth in information and the trend of economic globalization.
In addition, the untimely exchange of information is an important reason for the waste of decision
resources. In the process of multi-criteria decision-making, the final results show inaccurate features in
the case of a loss of decision information. Thus, in this situation, we explain the application by taking the
investment company’s choice of the best investment project as an example.

ABC Investment Co., Ltd. is a large investment consulting company. The company’s decision-making
level is in the leading position. Thus, policymakers prefer to choose ABC Investment Co., Ltd. instead of
other relatively backward companies. As a result, large investment companies are common, and small
investment sectors create a waste of corporate resources. Ultimately, helping companies to share information
in decision-making systems to improve decision-making processes is critical to guiding companies to
choose more rational decision-making companies. Thus, when enterprises face risky decision-making
problems, they should choose large decision-making departments to deal with them effectively, but not all
decision-making problems blindly choose large investment departments to solve.

With regard to those decision-making issues that need to be transferred to the upper-level department
for processing, the decision given by the decision-maker is a critical step. Therefore, accurate judgment,
the consensus of the decision-makers at the corresponding level and the decision-making departments at
higher levels provide a reference for the development of the enterprise. This can synthesize different
levels of knowledge information to improve decision-making efficiency.

Combined with the above considerations, companies establish decision-making systems to improve
decision-making efficiency. It is necessary for companies to have a database of their decision information.
In some enterprises, decision information storage and retrieval systems have been established based on
computer networks for enterprise-centric data collection and investigation. Effectively sharing decision
data among decision-making departments is beneficial to the development of companies. Therefore,
in reducing excessive unnecessary decisions, PNHFNSs are used to express the conclusions of decision
makers for the MCDM problems faced by companies.

For instance, the formula {(T|PT, I|P!, F|PF)} is a decision maker’s judgment for an MCDM problem,
where T describes that the decision maker’s support degrees for the problem can be solved, I indicates
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that the professor’s indeterminacy degrees for the problem can be solved, and F expresses that the
decision maker’s dissentient degrees for the problem can be solved. The probabilities PT, PT and PF are
the corresponding statistic value of T, I and F, respectively.

Next, we introduce an illustration by utilizing the new distance and similarity measures to perfect
the accurate evaluation for reducing the excessive re-evaluations. The special illustration of a talents
selection problem is introduced as follows:

C: {A1, Ay, A3, Ay} is a set of three investors.

E : {E;, Ep} is a set of two stock consultants from the higher and lower companies, respectively.

A : {RE Network Technology Company (RE); DR Biotechnology Company (DR); EV Chemical
Company (EV); and FL Technology Company (FL)} is a set of stocks that the investors need to be
premeditated.

Then, regarding the investment questions, the evaluation information of the two experts is described

and listed in Tables 4 and 5.

Table 4. Probabilistic neutrosophic hesitant fuzzy decision matrix of E;.

RE DR
A; {{0.4]0.6,0.6/0.2},{0.4|0.6},{0.3]0.4,0.4/0.5} }  {{0.3]0.4,0.6/0.4},{0.5/0.5,0.6]0.4},{0.3]0.4} }
Ay {{05]0.4,0.6/0.3},{0.4/0.2,0.6|0.5},{0.3]0.4}}  {{0.6]/0.5},{0.4|0.3,0.6/0.5},{0.4|0.6,0.6|0.3} }
Az {{0.5]0.7},{0.4|0.3,0.5/0.4},{0.4]0.3,0.6/0.5} }  {{0.4]0.5,0.6/0.5},{0.5/0.6},{0.4|0.4,0.5/0.4}}
Ay {{05]0.3},{0.2|0.1,0.4|0.5,0.6]0.2},{0.5]0.7} } {{0.6]0.5}, {0.4]0.5,0.6/0.5}, {0.50.3,0.6/0.5}

EV FL
A; {{0.7]0.5,0.8/0.5},{0.3|0.5,0.4/0.4},{0.5/0.6}}  {{0.5]0.4,0.7|0.6},{0.3|0.5,0.5/0.4},{0.5/0.4} }
Ay {{0.7]0.3,0.8|0.5},{0.6|0.6},{0.4/0.5,0.6/0.4}}  {{0.6]0.4,0.8/0.4},{0.4/0.2,0.6|0.5},{0.5/0.3} }
Az  {{0.6/0.5},{0.4/0.5,0.5/0.3},{0.4/0.5,0.6/0.4}}  {{0.6]0.5},{0.5/0.4,0.6/0.4}, {0.5/0.6,0.6/0.4} }
Ag  {{0.6/0.3,0.8/0.5},{0.4|0.6},{0.5/0.3,0.6/0.5} } {{0.6/0.5,0.8|0.4},{0.4]0.6},{0.4/0.5,0.5/0.4}

Table 5. Probabilistic neutrosophic hesitant fuzzy decision matrix of E;.

RE DR
A; {{0.6/0.5},{0.4/0.2,0.6|0.6},{0.4/0.6,0.6/0.2}}  {{0.5]0.4,0.7|0.4},{0.6/0.4}, {0.4|0.6,0.5/0.4} }
A, {{0.3]|0.4},{0.5/0.4},{0.2/0.2,0.4]0.5,0.6/0.3} } {{0.5]0.6},{0.6/0.4},{0.5|0.3,0.6/0.4} }
Az {{0.4]0.6,0.6/0.2},{0.6|0.3},{0.5/0.4,0.6/0.5}}  {{0.6]0.4,0.8/0.4},{0.5/0.3,0.7|0.5},{0.5/0.4} }
Ay {{0.5]04,0.6/0.4},{0.5/0.3},{0.3]0.4,0.6/0.5} } {{0.7|0.5},{0.5|0.6,0.6]0.3},{0.5|0.6}

EV FL
Ay {{05]0.3,0.6/0.5},{0.4|0.4,0.6|0.6},{0.3]0.6}}  {{0.6]0.6},{0.3|0.5},{0.4|0.4,0.5/0.3,0.6|0.3} }
Ay {{0.5]0.4,0.6/0.3},{0.5/0.6,0.6|0.3},{0.5]0.5}}  {{0.5]0.6,0.6/0.4},{0.4|0.5,0.6/0.3},{0.3]0.4}}
Az {{0.5]0.4,0.6/0.5},{0.5/0.4,0.7|0.5},{0.5]0.8}}  {{0.4]|0.6,0.7|0.4},{0.3|0.4,0.4|0.6},{0.5/0.5} }
Ay {{05]0.6},{0.5/0.5},{0.4]0.2,0.6|0.5,0.7]0.3} } {{0.5]0.5,0.7]0.5}, {0.5/0.4}, {0.4/0.6,0.6/0.3}

First, normalize the evaluation information, since the space is limited, so the results are neglected.
According to the above-mentioned explanations, the distance and similarity measures among the two
reports’ evaluations are calculated by utilizing the following functions:

DEy Ey) = { 510831+ HACIIEE o (x) — e (x)] + KaLL0) whenfe (x) —ep(x)] 2 015, (1g)
’ 5logs(1+ M +lea(x) —ep(x)|* + ‘g*‘(x)z;gs(x)l),when\ef‘(x) —ep(x)] <0.15.
S(EEa) = %((1 _ 2—\dA(x2)—dB(x)\)3 + (%)‘FA(W*EB(X)‘ + |3A(X);gs(x)\ —0.5), whenlea(x) — ep(x)| > 0.15; 19)
%((%)N“’A(x)’@(«\')‘ _ \dA(X);dA<X)\ + \8/\(3’)583()()\ +0.5), whene(x) — ep(x)| < 0.15.
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According to the investors knowledge backgrounds, the threshold value is set to 0.15. If the difference
of the stock consultant evaluation is lower than 0.15, the discussion of their evaluations is worth deeply
discussing and studying, and it may be a key factor of the investment choice. Conversely, the impact of
the difference in conclusions is not the most important.

Next, for the consequences of distance and similarity measures of every criterion for each investment
problem, these are described by the corresponding matrices D(Ej, Ez), S(E1, Ez):

0,2242,0.0396,0.7380, 0.0715
0.7777,0.4676,0.5701,0.1101
0.2693,0.3948, 0.7351, 0.7932
0.2208,0.3892, 0.5937, 0.2866

D(Ey, E) =

7

0.6575,0.7257,0.6833,0.7455
0.5023,0.6088, 0.5272, 0.6933
0.6367,0.5848, 0.6522, 0.6589
0.6806, 0.6400, 0.5485, 0.6628

S(E1, Ep) =

Based on the above conclusions, in order to confirm which criterion needs further examination,
the stock consultant should discuss the threshold value of the distance value with investors. However,
the similarity consequences are considered as a reference for the investor and stock consultant for the
consideration of further examinations. According to this question background, 0.15 is the threshold
value of distance measures for every investor (the threshold value of distance measures is determined by
a third party data source, and we are not discussing this here.). On the basis of the explanation of distance
measure, the threshold value of similarity measure will be determined. Next, the matrices D(E;, Ep) and
S(E1, E») help us to understand the meaning.

Observing the matrix D(Ej, Ey), investor Aq needs to focus on EV; investor A, needs to focus on RE;
investor Aj needs to focus on EV and FL; and investor A4 does not need to focus on: RE, DR and FL.

Likewise, about the matrix S(E1, E), for the investors A, and A4, we can obtain the same conclusion
as the ones explained by D(E;, E;). However, the similarity measure of A; is not the smallest, and neither
is the similarity measure of A3 for EVand FL. Both A; and Aj3 reflect the greater distance and similarity
measures. The reason is that the context of the problem is different, and the distance and similarity
measure of A; are investigated by the corresponding first formulas in (18) and (19); the conclusions of
the A3 are investigated by the corresponding second formula in (18) and (19). Obviously, the different
knowledge background of the stock consultants caused the results of Aj, the results of A; are relatively
less strict for rule EV. Furthermore, stock consultants need more in-depth communication to make
judgments and suggestions about rules EV and FL for As.

However, in order to make a decision faster for A3, the entropy measure can be utilized. For A3,
the stock consultants provide the normal probabilistic neutrososphic hesitant fuzzy information with
respect to the EV listed:

E; = ({0.6]1}, {0.4]0.625,0.5/0.375}, {0.4]0.56,0.6|0.44}),
E, = ({0.50.44,0.6|0.56}, {0.5]0.44,0.7|0.56}, {0.5[1}).
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By utilizing Equations (18) and (19), and the following entropy measures

_ 1D(4,B) +5(4,B)

E(4) -

(20)
to obtain the stock consultants’ entropy for rule EV, in which B = {(x,{0.5|P;},{0.5|P,},{0.5|P3})|x €
X}, we can get

Ey = 0.5393; E, = 0.5977.

The bigger the entropy value, the easier it is for the stock consultant to change his/her mind.
The investor should make a contract with the stock consultant E; first, then make a contract with E;.
Suppose the stock consultant E, changes his mind previously, and his opinion is closer to E;. Then,
it is not necessary for investor A3 to make an appointment with E;. Obviously, this method is more
convenient, flexible and efficient. This method is beneficial for reducing the unnecessary selective
re-examinations. In addition, the entropy measure is applied in MCDM situations, which is conducive to
improving resource utilization.

It is worth noting that the evaluation information is described by PNHFS, which include the objective
information and subjective degrees. The decision makers can select the optimal form of expression of
PNHES to solve practical situations.

5. Conclusions and Future Research

Based on the concept of PNHES, the theories of NSs are enriched and its application ranges are increased.
Next, the different types of fuzziness related to the uncertainty neutrosophic space are investigated. Through
analysis and comparison, we know that the neutrosophic space is composed of indeterminate subspace and
relatively certain subspace. These two different types of subspace should be distinguished. Simultaneously,
the connections among these subspaces are investigated. According to the drawbacks of distance and similarity
measures, a new method is established to describe the measures of PNHFSs. The basic axioms of measure are
satisfied. Next, the connections among the novel distance, similarity and entropy measures are researched,
and compared with other proposed methods. It shows that our methods are more effective. Finally, under
the background of investment selection, the novel distance, similarity and entropy measures are shown for
reducing the invalid evaluation processes. This is important for improving the evaluation efficiency of the
entire selection system. The results have expressed that our proposed methods are meaningful and, if applied,
solve the more complicated problems, like talent selections.

Furthermore, in Example 3 and Example 5, the parameters ¢, i1, v and A can depict the experts’
individual preferences and knowledge background. Additionally, the more information that is expressed,
the more accurate the parameters will be. Thus, how to decide the parameters in measurements is
a significant problem. Next, the practicality of new measures is explained by applying distance, similarity
and entropy measures into the investment selection. The new distance (similarity) and entropy measures
will be researched by integrating them with some related backgrounds to promote the other practical
situations. Considering the privacy of information, the related situations of new measurements will help
with evaluation to guide decision makers. In the future, the novel measures will be investigated and
integrate some related methods in order to expand the scope of application. Based on the correlation
and complexity of investors’ information, the novel measures will be established. Finally, the properties
of entropy measurements have not been studied in full. Thus, in the future, the axioms of the entropy
measure will be given more attention. The basic operation laws of PNHFSs and IS have been omitted,
so the research about this situation will be studied further.
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Abstract: In this paper authors for the first time introduce the concept of Neutrosophic Quadruple
(NQ) vector spaces and Neutrosophic Quadruple linear algebras and study their properties. Most of
the properties of vector spaces are true in case of Neutrosophic Quadruple vector spaces. Two vital
observations are, all quadruple vector spaces are of dimension four, be it defined over the field of reals
R or the field of complex numbers C or the finite field of characteristic p, Zy; p a prime. Secondly all
of them are distinct and none of them satisfy the classical property of finite dimensional vector spaces.
So this problem is proposed as a conjecture in the final section.

Keywords: Neutrosophic Quadruple (NQ); Neutrosophic Quadruple set; NQ vector spaces;
NQ linear algebras; NQ basis; NQ vector spaces; orthogonal or dual NQ vector subspaces

1. Introduction

In this section we just give a brief literature survey of this new field of Neutrosophic
Quadruples [1]. Neutrosophic triplet groups, modal logic Hedge algebras were introduced in [2,3].
Duplet semigroup, neutrosophic homomorphism theorem and triplet loops and strong AG(1, 1)
loops are defined and described in [4-6]. Neutrosophic triplet neutrosophic rings application to
mathematical modelling, classical group of neutrosophic triplets on {Z,, x } and neutrosophic
duplets in neutrosophic rings are developed and analyzed in [7-11]. Study of Algebraic structures
of neutrosophic triplets and duplets, quasi neutrosophic triplet loops, extended triplet groups,
AG-groupoids, NT-subgroups are carried out in [6,12-17]. Refined neutrosophic sets were developed
by [18-21]. Neutrosophic algebraic structures in general were studied in [22-25]. The new notion
of Neutrosophic Quadruples which assigns a known part happens to be very interesting and
innovative, and was introduced by Smarandache [1,26] in 2015. Several research papers on the
algebraic structure of Neutrosophic Quadruples, such as groups, monoids, ideals, BCl-algebras,
BCI-positive implicative ideals, hyperstructures, BCK/BCI algebras [27-32] have been recently studied
and analyzed. However in this paper authors have defined the new notion of Neutrosophic Quadruple
vector spaces (NQ vector spaces) and Neutrosophic Quadruple linear algebras (NQ linear algebras)
and have studied a few related properties. This work can later be used to propose neutrosophic based
dynamical systems in particular in the area of hyperchoaos from cellular neural networks [33].

This paper is organized into five sections. Basic concepts needed to make this paper a self
contained one is given in Section 2. NQ vector spaces are introduced in Section 3, further NQ
subspaces are introduced and the notion of direct sum and NQ bases are analysed. It is shown all
NQ vector spaces are of dimension 4 be it defined over R or C or Z;, p a prime. Section 4 defines and
develops the properties of NQ linear algebras. The final section proposes a conjecture which is related
with the finite dimensional vector spaces, which are always isomorphic to finite direct product of fields
over which the vector space is defined. Finally we give the future direction of research on this topic.
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2. Basic Concepts

In this section basic concepts on vector spaces and a few of its properties and some NQ algebraic
structures and their properties needed for this paper are given.

Through out this paper R denotes the field of reals, C denotes the field of complex numbers and Z,,
denotes the finite field of characteristic p, p a prime. NQ = {(a,bT, cI,dF) denotes the Neutrosophic
Quadruple; with a,b,c,d in R or C or Zp, where T, I and F has the usual neutrosophic logic meaning
of Truth, Indeterminate and False respectively and a denotes the known part [26].

For basic properties of vector spaces and linear algebras please refer [22].

Definition 1 ([22]). A vector space or a linear space V consists of the following;

1. Afield of R or C or Z, of scalars.
2. Aset V of objects called vectors.
3. Avrule (or operation) called vector addition; which associates with each pair of vectors x,y in V;x 4y is in

V, called sum of the vectors x and y in such a way that ;

(1)  x+y=y+ x (addition is commutative).

(b)  x+ (y+z) = (x+y)+ z (addition is associative).

(c)  Thereis a unique vector 0 in V such that x +0 = x forall x € V.

(d)  For each vector x € V there is a unique vector —x € V such that x + —x = 0.

(e)  Arule or operation called scalar multiplication that associates with each scalar c € R or C or Z,

and for a vector x € V, called product denoted by *." of c and x in such a way that for x € V and
cx e Vand;
i. cx=xcforeveryx V.
ii. (c+d)x=cx+dx
iii. c(x+y)=cx+cy
iv. c.(dx)=(cd)x;

forallx,y € Vandc,din Ror Cor Z,.

We can just say (V, +) is a vector space over a field R or C or Z,, if (V, ) is an additive abelian group
and V is compatible with the product by the scalars. If on V is defined a product such that (V, x) is a monoid
and c(x X y) = (cx) x y then V is a linear algebra over R or C or Z, [22].

Definition 2 ([22]). Let V be a vector space over R (or C or Z)). A subspace of V is a subset W of V which is
itself a vector space over R (or C or Z),) with the operations of addition and scalar multiplication as in V.

Definition 3. Let V be a vector space over R (or C or Zy,). A subset B of V is said to be linearly dependent
or simply dependent if there exist distinct vectors, x1,x2,x3,...,%; € B and scalars ay,a,a3,...,a; € R
or C or Z, not all of which are zero such that a1x, + axxp + asx3 + ... +arxy = 0. A set which is not
linearly dependent is called independent or linearly independent. If B contains only finitely many vectors
X1,X2,X3, ..., Xy We sometimes say x1,Xa, X3, ..., Xy are dependent instead of saying B is dependent.

The following facts are true [22].

A subset of a linearly independent set is linearly independent.
Any set which contains a linearly dependent subset is linearly dependent.
Any set which contains the zero vector (0 vector) is linearly dependent for 1.0 = 0.

Ll

A set B is linearly independent if and only if each finite subset of B is linearly independent; that is
if and only if there exist distinct vectors x1, xp, x3, ..., x; of B such that ajxq + ayxy +azxz + ... +
apxy = 0 implies eacha; = 0;i =1,2,...,k.

For a vector space V over a field R or C or Z, , the basis for V is a linearly independent set of
vectors in V which spans the space V. We say the vector space V over R or C or Z, is a direct sum
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of subspaces Wy, Wy, ..., W;ifand only if V.= W; + W, + ...+ Wyand W; N W,- is the zero vector for
i#jand1<i,j<t

The other properties of vector spaces are given in book [22].

Now we proceed on to recall some essential definitions and properties of Neutrosophic
Quadruples [26].

Definition 4 ([26]). The quadruple (a,bT,cI,dF) where a,b,c,d € R or C or Zp, with T, I, F as in classical
Neutrosophic logic with a the known part and (bT,cl,dF) defined as the unknown part, denoted by NQ =
{(a,bT,cI,dF)|a,b,c,d € Ror Cor Z,} in called the Neutrosophic set of quadruple numbers.

The following operations are defined on NQ, for more refer [26].
For x = (a,bT,cl,dF) and y = (e, fT,gl, hF) in NQ [26] have defined

x4y = (abT,cl,dF)+ (e, fT,gI,hF) = (a+e,(b+ f)T, (c+ g)L, (d + h)F)

and x—y=(a—e (b—f)T,(c—g)L,(d—h)F)

are in NQ. For x = (a,bT,cI,dF) in NQand s in R or C or Z, where s is a scalar and x is a vector in V.
s.x =s.(a,bT,cl,dF) = (sa,sbT,scl,sdF) € V.

If x =0 = (0,0,0,0) in V usually termed as zero Neutrosophic Quadruple vector and for any
scalar s in R or C or Z,, we have 5.0 = 0.

Further (s + t)x = sx +tx,s(tx) = (st)x,s(x +y) = sx +sy forall s,t € R or C or Z, and
x,y € NQ. —x = (—a, —bT, —cI, —dF) which is in NQ.

The main results proved in [26] and which is used in this paper are mentioned below;

Theorem 1 ([26]). (NQ, +) is an abelian group.
Theorem 2 ([26]). (NQ,.) is a monoid which is commutative.

We mainly use only these two results in this paper, for more literature about Neutrosophic
Quadruples refer [26].

3. Neutrosophic Quadruple Vector Spaces and Their Properties

In this section we proceed on to define for the first time the new notion of Neutrosophic Quadruple
vector spaces (NQ -vector spaces) their NQ vector subspaces, NQ bases and direct sum of NQ vector
subspaces. All these NQ vector spaces are defined over R, the field of reals or C, the field of complex
numbers and finite field of characteristic p, Z,, p a prime. All these three NQ vector spaces are
different in their properties and we prove all three NQ vector spaces defined over R or C or Zp are of
dimension 4.

We mostly use the notations from [26]. They have proved (NQ,+) = {(a,bT,cI,dF)|a,b,c,d € R
or C or Zp, p a prime; +} is an infinite abelian group under addition.

We prove the following theorem.

Theorem 3. (NQ,+) = {(a,bT,cl,dF)|a,b,c,d € R or C or Zp; p a prime, +} be the Neutrosophic
quadruple group. Then V.= (NQ, +, o) is a Neutrosophic Quadruple vector space (NQ-vector space) over R or
Cor Z,, where ‘o’ is the special type of operation between V and R (or C or Z,) defined as scalar multiplication.

Proof. To prove V is a Neutrosophic quadruple vector space over R (or C or Z, p is a prime), we have
to show all the conditions given in Section two (Definition 1) of this paper is satisfied. In the first
place we have R or C or Z, are field of scalars, and elements of V we call as vectors. It has been
proved by [26] that V = (NQ, +) is an additive abelian group, which is the basic property on V to
be a vector space. Further the quadruple is defined using R or C or Z,, p a prime, or used in the
mutually exclusive sense. Now we see if x = (a,bT,cI,dF) isin Vand n € R (or C or Zp) then
the scalar multiplication ‘o” which associates with each scalar n € R and the NQ vector x € V,
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nox =mno (a,bT,cl,dF) = (noa,nobT,nocl,nodF)whichisin V, called the product of n with x in
such a way that

lox=x01 VxeV
(nm)ov=mno (mv)
no(v+w)=nov+now
(m+n)ov=mov+nov

Ll

forallm,n € R or C or Zp ando,w e V.

0= (0,0,0,0) is the zero vector of V and for 0in R or C or Zy; we have 0o x = 0o (a,bT,cl,dF) =
(0,0,0,0);Vx € V.

Clearly V = (NQ, +, 0) is a vector space known as the NQ vector space over Ror Cor Z,. [

However we can as in case of vector spaces say in case of NQ-vector spaces also (NQ, +) is a NQ
vector space with special scalar multiplication o.

We now proceed on to define the concept of linear dependence, linear independence and basis of
NQ vector spaces.

Definition 5. Let V = (NQ, +) be a NQ vector space over R (or C or Z,). A subset L of V is said to be
NQ linearly dependent or simply dependent, if there exists distinct vectors ay, as,...,ar € L and scalars
dy,da, ..., dx € R(or Cor Zp) not all zero such that dy o a; +dy o ay + ... +dy o ay = 0. We say the set of
vectors ay,ay, ..., ay is NQ linearly independent if it is not NQ linearly dependent.

We provide an example of this situation.

Example 4. Let V = (NQ, +) vector space over R. Let x = (3, —4T,5I,2F),y = (—2,3T, —2I, —2F) and
z=(—1,T,—31,0)bein V. Weseelox +1oy+1oz = (0,0,0,0), so x,y and z are NQ linearly dependent.
Let x = (5,0,0,2F) and y = (0,5T, —31,0) be in V. We cannot find a a,b € R such that aox+boy =
(0,0,0,0). If possibleao x +boy = (0,0,0,0); this impliesao5+bo0 =0, forcinga = 0;a00+bo5=0,
forcingb =0;a00+4bo =3 =0, forcingb =0and ao2+ b o0 = 0 forcing a = 0. Thus the equations are
consistent and a = b = 0. So x and y are NQ linearly independent over R.

The following properties are true in case of all vector spaces hence true in case of NQ vector
spaces also.

1. Asubset of a NQ linearly independent set is NQ linearly independent.
2. Aset L of vectors in NQ is linearly independent if and only if for any distinct vectors ay,a, ..., ax
of L;dyoay +dyoay+...+dyoa =0implieseachd; =0, fori =1,2,...,k.

We now proceed on to define Neutrosophic Quadruple basis (NQ basis) for V. = (NQ,+),
Neutrosophic Quadruple vector space over R or C or Z, (or used in the mutually exclusive sense).

Definition 6. Let V = (NQ, +) vector space over R (or C or Zy). We say a subset L of V spans V if and
only if every vector in 'V can be got as a linear combination of elements from L and scalars from R (or C or
Zp). That isif ay,a0,. .., ay are n elementsin L; then v = dyoay +dy 0as + ... +dy o ay, is the NQ linear
combination of vectors of L; where dy,dy, . ..,d, are in R or C or Z, and not all these scalars are zero.

The Neutrosophic Quadruple basis for V.= (NQ, +) is a set of vectors in V which spans V. We say a set
of vectors B in V is a basis of V if B is a linearly independent set and spans V over R or C or Zp.

We say V is finite dimensional if the number of elements in basic of V is a finite set; otherwise V'
is infinite dimensional.

Theorem 5. Let V = (NQ, +) be the Neutrosophic Quadruple vector space over R (or C or Z,). V is a finite
dimensional NQ vector space over R (or C or Z))) and dimension of these NQ vector spaces over R(or C or Z)
are always four.
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Proof. Let V = (NQ,+) = {(a,bT,cl,dF)|a,b,c,d € R (or C or Zp), 4}, be the collection of all
neutrosophic quadruples of the Neutrosophic Quadruple vector space over R (or C or Zp). To prove
dimension of V over R is four it is sufficient to prove that V has four linearly independent vectors which
can span V, which will prove the result. Take the set B = {(1,0,0,0), (0,T,0,0),(0,0,1,0),(0,0,0,F)}
contained in V; to show B is independent and spans V it enough if we prove for any v =
(a,bT,cl,dF) € V, v can be represented uniquely as a linear combination of elements from B and
scalars from R (or C or Zp). Now v = (a,bT,cI,dF) = a0 (1,0,0,0) + b o (0,T,0,0) +co (0,0,1,0) +
d0(0,0,0,F) for the scalars a,b,¢,d € R (or C or Zp). Hence we see the elements of V are uniquely
represented as a linear combination of vectors using only B, further B is a set of linearly independent
elements, hence B is a basis of V and B is finite, so V is finite dimensional over R (or C or Z;). As order
of B is four, dimension of all NQ vector spaces V over R (or C or Zp) is four. Hence the theorem. [

We call the NQ basis B as the special standard NQ basis of V.

Definition 7. Let V = (NQ, +) be a NQ vector space over R (or C or Z). A subset W of V is said to be
Neutrosophic Quadruple vector subspace of V if W itself is a Neutrosophic Quadruple vector space over R (or C
or Zy).

4

We will illustrate this situation by examples.

Example 6. Let V = {NQ, +} be a NQ vector space over R. W = {(a,bT,0,0)|a, b € R} is a subset of V
which is a NQ vector subspace of V over R. U = {(0,0,cI,dF)|c,d € R} is again a vector subspace of V and
is different from W.

We observe that the only common element between W and U is the zero quadruple vector (0,0,0,0).

Further it is observed if we define the dot product or inner product on elements in V. For x = (a,bT, cI, dF)
andy = (e, fT,gI,hF) € V, x ey denotedas x ey = (aee,bT e fT,cl e gl,dF e hF); and x e y is in V.
Ifxey = (0,0,0,0) for some x,y € V then we say x is orthogonal (or dual) with y and vice versa. In fact
xey=yex;Vx,y € V. Wesay two NQ vector subspaces W and U are orthogonal (or dual subspaces) if for
every x € W and for every y € U; x ey = (0,0,0,0), that is two NQ vector subspaces are orthogonal if and
only if the dot product of every vector in W with every vector in U is the zero vector.

{(0,0,0,0)} is the zero vector subspace of V. Every NQ wvector subspace of V trivial or nontrivial is
orthogonal with the zero vector subspace {(0,0,0,0)} of V. V the NQ vector space is orthogonal with only the
zero vector subspace of V, and with no other vector subspace of V. W orthogonal U =W e U = {w e u|w € W
and u € U} ={(0,0,0,0)}; we call the pair of NQ subspaces as orthogonal or dual NQ subspaces of V.

Definition 8. Let V. = (NQ,+) be a Neutrosophic Quadruple vector space over R (or C or Z);
Wi, Wa, ..., Wy be n distinct NQ vector subspaces of V. Wesay V.= Wi @ Wo @ ... ® W, is a direct
sum of NQ vector subspaces if and only if the following conditions are true;

1. Everywvectorv € V can be written in the formv = dyowy +dyowy + ... +d, ow,, wheredy, dy, ..., dy
arein R (or C or Z) not all zero with w; € W;,i =1,2,...,n.
2. W;eW; ={(0,0,0,0)} for i # jand true for all i, j varying in the set {1,2,...,n}.

First we record that in case of all NQ vector spaces over R (or C or Z,) we can have the value of
n given in definition to be only four, we cannot have more than four as dimension of all NQ vector
spaces are only four. Secondly the minimum of 7 can be two which is true in case of all vector spaces of
any finite dimension. Finally we wish to prove not all NQ vector subspaces are orthogonal and there
are only finitely many nontrivial NQ vector subspaces for any NQ vector space over R (or C or Zp).
We prove as theorem a few of the properties.

Theorem 7. Let V = (NQ, +) be a NQ vector space over R (or C or Zy,). V has only finite number of NQ
vector subspaces.
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Proof. We see in case of NQ vector spaces over R (or C or Z) the dimension is four and the special
standard NQ basis for V is B = {(1,0,0,0),(0,T,0,0),(0,0,1,0),(0,0,0,F)}. So any non trivial
subspace of V can be of dimension less than four; so it can be 1 or 2 or 3. Clearly there are some
vector subspaces of dimension one given by, W; = ((1,0,0,0)), W, = ((0,T,0,0)), W3 = ((0,0,1,0)
Wy = ((0,0,0,F)), Ws = ((1,T,0,0)), Wg = ((1,0,1,0)), Wy = {((1,0,0,F)), Wg = ((0,T,1,0)
Wy = ((0,T,0,F)), Wip = (0,0, F)), W1 = ((1,T,1,0)), Wi = ((1,T,0,F)), Wiz = ((1,0,, F)
Wiy = ((0,T,I,F)) and Wy5 = ((1,T,I,F)). Some the two dimensional vector spaces are U; =
((1,0,0,0),(0,T,0,0)), U, = ((1,0,0,0),(0,0,1,0)),..., Uos = ((0,T,LF),(1,T,I,F));

in fact there are 105 NQ vector subspaces of dimension two. Further there are 1365 NQ vector
subspaces of dimension three. Thus there are 1485 non trivial NQ vector subspaces in any NQ vector
space V = (NQ, +) over R (or C or Zp). We have shown that there are four NQ vector subspaces of
dimension three all of them are hyper subspaces of V, of course we are not enumerating other types of
dimension three subspaces generated by vectors of the form M; = {((1,T,0,0), (0,0,1,0),(0,0,0,F))},
or M, = {((1,0,0,F),(0,0,1,0), (0, T,0,0)) } are spaces of dimension three which we do not take into
account as hyper subspaces. [

)
)
)

We define the three dimensional NQ vector subspace generated only by
{((0,T,0,0),(0,0,1,0),(0,0,0,F))} is defined as the special pseudo Singled Valued Neutrosophic
hyper NQ vector subspace of V [22,24].

4. Neutrosophic Quadruple Linear Algebras over R or C or Z,

In this section we take the basic concepts defined in [26] (NQ, +) for the Neutrosophic Quadruple
additive abelian group and (NQ, .) as the commutative monoid with (1,0,0,0) as the identity with
respect to *.” and for any (a,bT,cl,dF) = x, and y = (e, fT,gI, hF) in NQ [26] have defined x.y =
(ae, (af +be+bf)T,(ag+bg +ce+cf +cg)l, (ah+bh+ ch+de+df + dg+ dh)F).

Theorem 8. V = (NQ, +,.) is a Neutrosophic Quadruple linear algebra (NQ linear algebra) over R (or C
or Zy).
P

Proof. To prove V is a NQ linear algebra we have to prove the following; (NQ, +) is an abelian group
under addition given in [26] and it is proved that (NQ, +) is a vector space (Theorem 3). To prove V is
a NQ linear algebra it is sufficient if we prove (NQ, .) is a monoid under product *.” which is proved
in [26], further d o (x.y) = (dox).y ford € R (or C or Zp) and x,y € V which is true as x.y is in V.
Thus (V, +,.) is a NQ linear algebra over R (or C or Z,). [

Definition 9. Let V = (NQ, +,.) be a NQ linear algebra over R (or C or Zp). Let W be a nonempty proper
subset of V, we say W is a NQ sublinear algebra of V over R (or C or Z), if W itself is a linear algebra over R
(or Cor Zp).

We provide some examples of them.

Example 9. Let V = (NQ, +.) be a linear algebra over the field Z;. W = {((1,0,0,0))} generated under +, .
and ‘o’ multiplication by scalar from elements of Zy is a sublinear algebra and of order 7 and dimension of W
over Zy is one. Similarly U = {{(1,£,0,0), (0,0,1,0))} generated by these two vectors is a sublinear algebra of
dimension two. Just we show how the product of x = (3,4T,1,5F) and y = (2,3T,41,F) in V is carried out;
xy = (6,2T,1,2F) which isin V.

We can as in case of NQ vector spaces derive all properties of NQ linear algebras , further as in
case of NQ vector spaces dimension of all these NQ-linear algebras is four.

We in the following section propose some open conjectures and the future work to be carried out
in this direction.
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5. Conclusions and Open Conjectures

In this paper for the first time we define the notion of NQ vector spaces and NQ linear algebras.
All the three NQ vector spaces are of dimension four only. The NQ vector space V over R, is different
from the NQ vector space W over C, and both has infinite number of vectors; but is of dimension four
and U the NQ vector space over Z, has only p* elements and is of dimension four.

We know the classical result on vector spaces states “A vector space V of say dimension 1 (1 a
finite integer) defined over the field F is isomorphic to F X F x ... x F n-times”; in view of this we
propose the following conjectures:

1. Is the NQ vector space V defined over R isomorphic to R X R x R x R?
2. Is the NQ vector space W defined over C isomorphicto C x C x C x C?
3. Is the NQ vector space U defined over Z, isomorphic to Z, x Z, x Z;, X Z,?

Finally we would be developing the new notion of NQ algebraic codes and analyse them for
future research. In our opinion a new type of NQ algebraic codes can certainly be defined with
appropriate modifications. Also we would develop the notion of Neutrosophic quadruples in which
the unknown part would be these neutrosophic triplets or modified form of neutrosophic duplets
which would be taken for further study.
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Abstract: In this paper, the diagnosis of the manufacturing process under the indeterminate
environment is presented. The similarity measure index was used to find the probability of
the in-control and the out-of-control of the process. The average run length (ARL) was also computed
for various values of specified parameters. An example from the Juice Company is considered under
the indeterminate environment. From this study, it is concluded that the proposed diagnosis scheme
under the neutrosophic statistics is quite simple and effective for the current state of the manufacturing
process under uncertainty. The use of the proposed method under the uncertainty environment in
the Juice Company may eliminate the non-conforming items and alternatively increase the profit of
the company.

Keywords: similarity index; diagnosis; process; indeterminacy; neutrosophic statistics

1. Introduction

To control the non-conforming products in the industry is an important task for industrial
engineers. Their mission is to minimize the non-conforming product which can be achieved only if the
problems in the manufacturing process can be tackled immediately. The control charts are essential
tools in the industry to monitor the manufacturing process. These tools are used to indicate the state of
the process. A timely indication about the state of the process leads to the high quality of the product.
Epprecht et al. [1] and Chiu and Kuo [2] proposed a chart for monitoring one, and more than one,
non-conforming product, respectively. Hsu [3] designed a variable chart using the improved sampling
schemes. Ho and Quinino [4] proposed an attribute chart to control the variation in the process. Aslam
et al. [5] and Aslam et al. [6] worked on a time-truncated chart for the Birnbaum-Saunders distribution
and the Weibull distribution respectively. Jeyadurga et al. [7] worked on an attribute chart under
truncated life tests.

To analyze the vague and fuzzy data, the fuzzy logic is applied. The fuzzy logic is applied
to analyze the data when the experimenters are unsure about the exact values of the parameters.
Therefore, the monitoring of the process having fuzzy data is done using the fuzzy-based control charts.
Afshari and Gildeh [8] and Ercan Teksen and Anagun [9] worked on fuzzy attribute and variable charts,
respectively. Fadaei and Pooya [10] worked on a fuzzy operating characteristic curve. For more details,
the reader may refer to Jamkhaneh et al. [11] who discussed the rectifying fuzzy single sampling plan.
Senturk and Erginel [12] studied variable control charts using fuzzy approach. Ercan Teksen and
Anagun [9] worked on the fuzzy X-bar and R-charts. More details on fuzzy logic can be seen in Lee
and Kim [13] and Grzegorzewski [14].

A fuzzy and imprecise data usually have indeterminate values. Fuzzy and vague data only
considered the membership of the truth and false values. A neutrosophic logic deals with membership
of truth, false and indeterminacy values. Therefore, the neutrosophic logic is useful to analyze the data
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having indeterminacy. Smarandache [15] introduced the neutrosophic statistics, which analyze the data
when indeterminacy is presented. Aslam [16] and Aslam and Arif [17] introduced the neutrosophic
statistics in the area of quality control. More details about the neutrosophic logic can be seen in
references [18-23].

The similarity measure index (SMI) has been widely used in a variety of fields for classification
purposes. In medical sciences, this index is used to classify the patients having a particular disease
or not under indeterminacy, see De and Mishra [24]. By exploring the literature and to the best
of the author’s knowledge, there is no work on the process monitoring using SMI. In this paper, a
method to classify the state of the process using SMI is introduced. The operational process of the
proposed method is also given. The proposed classification method is simple in application compared
to the existing method under classical statistics. It is expected that the proposed diagnosis method
for the manufacturing process under the indeterminate environment will be effective, adequate and
easy compared to the existing control charts under classical statistics. In Section 2, the SMI index is
introduced in process control. A comparative study and application are given in Sections 3 and 4,
respectively. Some concluded remarks are given in the last section.

2. The Proposed Chart Based on SMI

Suppose that Zy = sy +unl; Zn € [Z1, Zy] is a neutrosophic number having a determined part sy
and an indeterminate part unI, I € [infl, infU] denotes the indeterminacy. Note here that Zy € [Z1, Zy]
is reduced to the determined number Zy = sy when no indeterminacy is found. The practitioners
cannot record observations of the variable of interest in the precise and determined form in the
presence of indeterminacy. The monitoring of the data having neutrosophic numbers using classical
statistics as discussed in reference [25] may mislead decision-makers regarding the state of the process.
For example, the practitioners decide the process is in the control state using classical statistics, but in
fact, some observations are in the indeterminacy interval. More details on this issue can be seen in
reference [26]. Suppose that ti;, fi and Iy presents the probabilities of the non-defective, defective
and indeterminate. For the classification of the state of the process, let t = 1 and f = 0 show that the
process is in control. Therefore, the value of SMI close to 1 indicates that the process is in control and
the values away from the SMI show the process is out-of-control. The SMI from De and Mishra [24] is
given by:

|(t = tu) = (I = Iu) = (fp = fu)l
SMI = \/(1— 3 fio) A=l —tw) + (-Iu) + (- fu)) @
Note here 0 < f1,I, fi, < 1,0 <ty Iy, fu €1, 0<tp + fr <1, 0<ty+fu <L tp+IL+fL <2,
tu+Iu+ fu<2.

Based on SMI, the following classification procedure is proposed to diagnose the state of the
manufacturing process.

Step1: Select a random sample of size n and determine t;, fi; and Iy;.
Step2: Compute the values of SMI. Classify the process in-control if SMI > 0.95, otherwise,
the out-of-control.

The operational process of the proposed method is also given with the help of Figure 1.
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[ Take a sample of 1 from the production process ]

l

[ Compute the values of SMI ]

YES NO
(i Jo— oz —{ oo

Figure 1. The operational process of the proposed method.

Note here that unlike the traditional control charts under classical statistics, the proposed chart
using SMI is independent of the control limits and the control limits coefficients. The proposed chart
reduces to the traditional control charts under classical statistics if no indeterminacy is found. Suppose
that the probability of in-control of the process is determined from SMI. Let SMI = Pj,, the P;, for the
process is given by

P, — \/(1_ [(tr —tu) — (I _BIU)_(fL_fU)l)(l—KtL—l‘u)+(IL—IU)+(fL—fu)|) o)

The average run length (ARL) is used to see when on the average the process is expected to be
out-of-control. The ARL under indeterminacy is given by:

ARL = ! 3

[\/(1 _ I(frfu)*(IL;IU)*()‘L*]U)I)(1 — (k= ty) + (I~ Tu) + (i — fu)l)

The values of ty;, fiy and Iy for various values of n are given in Tables 1-3. Tables 1 and 2 are
given when 1 = 25 and n = 50, respectively. Table 3 is presented for a variable sample size. In Table 4,
the values of P;, and ARL are given for the parameters given in Tables 1-3. The classification of the state
of the process based on SMI is also presented in Table 4. The process is said to be the in-control (IN)
state if SMI > 0.95 and the out-of-control (OOC) state if SMI < 0.95. It is noted no specific trend in ARL
values. The following algorithm is used to classify the state of the process using the proposed method.

Step1: Specify n and determine the values of fy7, fiy and I;.
Step2: Use the SMI to find the probability of in-control.
Step 3: Classify the process IN if SMI > 0.95 and OOC if SMI < 0.95.
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Table 1. Neutrosophic data when 1 = 25.

Sample Sample Numbe.r of Number o.f Numbel: of
No. Size Def?ctlve fu Non-l?efectlve tu Indetel:mlnate Iy
Units D Units ND Units I
1 25 3 0.12 21 0.84 1 0.04
2 25 4 0.16 19 0.76 2 0.08
3 25 2 0.08 23 0.92 0 0
4 25 5 0.2 20 0.8 4 0.16
5 25 2 0.08 22 0.88 1 0.04
6 25 1 0.04 22 0.88 2 0.08
7 25 0 0 20 0.8 5 0.2
8 25 4 0.16 21 0.84 0 0
9 25 6 0.24 17 0.68 2 0.08
10 25 1 0.04 23 0.92 1 0.04
11 25 2 0.08 20 0.8 3 0.12
12 25 5 0.2 18 0.72 2 0.08
13 25 4 0.16 19 0.76 2 0.08
14 25 8 0.32 16 0.64 1 0.04
15 25 3 0.12 21 0.84 1 0.04
16 25 2 0.08 21 0.84 2 0.08
17 25 5 0.2 17 0.68 3 0.12
18 25 3 0.12 19 0.76 3 0.12
19 25 7 0.28 17 0.68 1 0.04
20 25 1 0.04 23 0.92 1 0.04
21 25 0 0 23 0.92 2 0.08
22 25 2 0.08 19 0.76 4 0.16
23 25 5 0.2 17 0.68 3 0.12
24 25 7 0.28 17 0.68 1 0.04
25 25 8 0.32 17 0.68 0 0
Table 2. Neutrosophic data when n = 50.
Sample Sample Numbe.r of Number o.f Numbel: of
No. Size Defective fu Non-Defective tu Indeterminate Iy
Units D Units ND Units I
1 50 1 0.02 48 0.96 1 0.02
2 50 2 0.04 47 0.94 1 0.02
3 50 3 0.06 45 0.9 2 0.04
4 50 5 0.1 43 0.86 2 0.04
5 50 2 0.04 43 0.86 5 0.1
6 50 6 0.12 41 0.82 3 0.06
7 50 1 0.02 46 0.92 3 0.06
8 50 2 0.04 44 0.88 4 0.08
9 50 7 0.14 37 0.74 6 0.12
10 50 8 0.16 34 0.68 6 0.12
11 50 1 0.02 47 0.94 2 0.04
12 50 6 0.12 43 0.86 1 0.02
13 50 1 0.02 41 0.82 8 0.16
14 50 3 0.06 39 0.78 8 0.16
15 50 6 0.12 41 0.82 3 0.06
16 50 3 0.06 45 0.9 2 0.04
17 50 9 0.18 40 0.8 1 0.02
18 50 2 0.04 41 0.82 7 0.14
19 50 4 0.08 46 0.92 0 0
20 50 6 0.12 43 0.86 1 0.02
21 50 1 0.02 47 0.94 2 0.04
22 50 7 0.14 43 0.86 0 0
23 50 2 0.04 45 0.9 3 0.06
24 50 0 0 48 0.96 2 0.04
25 50 1 0.02 48 0.96 1 0.02
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Table 3. Neutrosophic data with variable sample size.

Sample Sample Numbe.r of Number o.f Numbel: of

No. Size Def.ectlve fu Non-l?efectlve tu Indetel:mlnate Iy
units D Units ND Units I
1 100 12 0.120 78 0.780 10 0.10
2 80 8 0.100 67 0.838 5 0.06
3 80 6 0.075 69 0.863 5 0.06
4 100 9 0.090 89 0.890 2 0.02
5 110 10 0.091 99 0.900 1 0.01
6 110 12 0.109 98 0.891 0 0.00
7 100 11 0.110 85 0.850 4 0.04
8 100 16 0.160 79 0.790 5 0.05
9 90 10 0.111 66 0.733 14 0.16
10 90 6 0.067 72 0.800 12 0.13
11 110 20 0.182 89 0.809 1 0.01
12 120 15 0.125 99 0.825 6 0.05
13 120 9 0.075 108 0.900 3 0.03
14 120 8 0.067 107 0.892 5 0.04
15 110 6 0.055 95 0.864 9 0.08
16 80 8 0.100 72 0.900 0 0.00
17 80 10 0.125 69 0.863 1 0.01
18 80 7 0.088 68 0.850 5 0.06
19 90 5 0.056 78 0.867 7 0.08
20 100 8 0.080 88 0.880 4 0.04
21 100 5 0.050 88 0.880 7 0.07
22 100 8 0.080 91 0.910 1 0.01
23 100 10 0.100 88 0.880 2 0.02
24 90 6 0.067 80 0.889 4 0.04
25 90 9 0.100 80 0.889 1 0.01
Table 4. Classification of the process.
n=25 n=>50 Variable Sample Size
pP; Classification ARL P;, Classification ARL P;, Classification =~ ARL

0.9451 00C 18 0.9865 IN 74 0.9223 00C 13
0.9165 00C 12 0.9797 IN 49 0.9438 00C 18
0.9729 IN 37 0.9660 IN 29 0.9526 IN 21
0.8265 00C 6 0.9521 IN 21 0.9626 IN 27
0.9591 IN 24 0.9521 IN 21 0.9654 IN 29
0.9591 IN 24 0.9380 00C 16 0.9629 IN 27
0.9309 O0oC 14 0.9729 IN 37 0.9486 O0C 19
0.9451 00C 18 0.9591 IN 24 0.9273 00C 14
0.8869 00C 9 0.9092 00C 11 0.9040 00C 10
0.9729 IN 37 0.8763 00C 8 0.9300 00C 14
0.9309 00C 14 0.9797 IN 49 0.9335 O0C 15
0.9018 00C 10 0.9521 IN 21 0.9398 O0C 17
0.9165 O0C 12 0.9380 O0C 16 0.9628 IN 27
0.8717 00C 8 0.9237 O0C 13 0.9630 IN 27
0.9451 00C 18 0.9380 00C 16 0.9532 IN 21
0.9451 00C 18 0.9660 IN 29 0.9660 IN 29
0.8869 00C 9 0.9309 00C 14 0.9526 IN 21
0.9165 00C 12 0.9380 00C 16 0.9480 O0C 19
0.8869 00C 9 0.9729 IN 37 0.9526 IN 21
0.9729 IN 37 0.9521 IN 21 0.9591 IN 24
0.9729 IN 37 0.9797 IN 49 0.9591 IN 24
0.9165 00C 12 0.9521 IN 21 0.9695 IN 33
0.8869 00C 9 0.9660 IN 29 0.9591 IN 24
0.8869 00C 9 0.9865 IN 74 0.9610 IN 26
0.8869 00C 9 0.9865 IN 74 0.9619 IN 26

Note: IN = in-control and OOC = out-of-control.
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3. Comparative Study

In this section, a comparison of the effectiveness of the proposed method is given over the control
charts under classical statistics reported in reference [25]. According to Aslam et al. [26], a method
which deals with indeterminacy is said to be more effective than the method which provides the
determined values. The proposed method reduces to the traditional method under classical statistics if
no indeterminacy is recorded. From reference [25], it is noted that the control chart under classical
statistics does not consider the measure of indeterminacy which makes it limited to be used in an
uncertainty environment. The performance of the existing control chart depends on the control limit
coefficient which is determined through the complicated simulation process. On the other hand,
the current method considered the measure of indeterminacy to evaluate the performance of the control
chart. In addition, the proposed method is independent of the control limit coefficient. The proposed
process can be applied easily to classify the state of the process. Note here that, the proposed method
reduces to the method under classical statistics if no indeterminacy is found in the production data.
The values of ARL from the proposed method and method under classical statistics discussed by
Montgomery [25] are shown in Table 5 when n = 25 and D = 2. It is well-known theory that the smaller
the values of ARL means more efficient the control chart process [25]. From Table 5, it can be seen
that the proposed method provides the smaller values of ARL than the existing method. It means the
proposed control chart has the ability to detect a shift in the process earlier than the method under
classical statistics. For example, when n = 25 and d = 2, the value of ARL of the existing method from
Table 5 is 37. On the other hand, the proposed method provides smaller values of ARL which are 24,
14,18 and 12. From this comparison, it is concluded that the process is classified as IN. The industrial
engineers can expect the process to be out-of-control at the 37th sample by using the existing method
and on the 12th sample for sample number 22 using the proposed method. Therefore, the proposed
method is efficient in detecting shifts earlier than the existing method. From this comparison, is the
authors concluded that the proposed method is more effective than the existing charts as it considered
the measure of indeterminacy and indicated when the process was OCC.

Table 5. The comparison of the proposed method with existing method when 1 =25 and D = 2.

Sample No ARL Control Chart
3 37 Under classical statistics
5 24 Under neutrosophic statistics
11 14 Under neutrosophic statistics
16 18 Under neutrosophic statistics
22 12 Under neutrosophic statistics

4. Application

In this section, a discussion of the application of the proposed method in an orange juice company
is given. According to Montgomery [25], “Frozen orange juice concentrate is packed in 6-0z cardboard
cans. These cans are formed on a machine by spinning them from cardboard stock and attaching a
metal bottom panel”. By inspection, it was found that a sample of 50 juice cans was formed. Some
cans were found to be leaking and some were labeled as good. For some cans, the industrial engineer
is indeterminate about whether the juice product is labeled as either conforming and non-conforming.
Therefore, classical statistics cannot be applied to monitor the process in the presence of indeterminacy.
The data for n = 50 is shown in Table 2. The classification of the state of the process for the juice cans is
shown in Table 4. From Table 4, it is noted that the first five subgroups show that the process is the IN
control state. The 5th subgroup shows that the process is OOC and industrial engineer should take
action to bring back the process in the IN state. It is noted that overall eight samples are in OOC state.
From this study, it is concluded that the use of the proposed method to classify the state of the process
is quite easy, effective and adequate to be applied under an uncertainty environment.
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5. Conclusions and Remarks

In this paper, the diagnosis of the manufacturing process under the indeterminate environment
was presented. The similarity measure index was used to find the probability of the in-control and the
out-of-control of the process. The average run length (ARL) was also computed for various values of
specified parameters. An industrial example was given to explain the state of the process. An industrial
example under the indeterminate environment was presented. From this study, it is concluded that
the proposed diagnosis scheme under the neutrosophic statistics is quite simple and effective for the
current state of the manufacturing process under uncertainty. The practitioners can apply the proposed
method to save time and efforts in the industry. The proposed method using non-normal measures can
be considered as future research.
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Abstract: The aim of reducing the inspection cost and time using acceptance sampling can be achieved
by utilizing the features of allocating more than one sample item to a single tester. Therefore, group
acceptance sampling plans are occupying an important place in the literature because they have
the above-mentioned facility. In this paper, the designing of a group acceptance sampling plan is
considered to provide assurance on the product’s mean life. We design the proposed plan based on
neutrosophic statistics under the assumption that the product’s lifetime follows a Weibull distribution.
We determine the optimal parameters using two specified points on the operating characteristic curve.
The discussion on how to implement the proposed plan is provided by an illustrative example.

Keywords: time-truncated test; Weibull distribution; risk; uncertainty; neutrosophic

1. Introduction

The ambition of each producer is to globalize their business by means of marketing the products.
However, few producers reach this goal since they only make sincere efforts in improving and
controlling the product’s quality to accomplish this target. The producer who enhances the product’s
quality need not concern its globalization because the continuous improvement in quality helps to
increase the positive opinion of the products and to fulfill the consumer’s expectations. Hence, the
involvement of the producers with great efforts supports to attain the desired result and to achieve the
ambition. For quality improvement and maintenance purposes, the producer uses certain statistical
techniques, namely control charts and acceptance sampling (see Montgomery [1] and Schilling and
Neubauer [2]). In spite of the application of control charts in quality maintenance via monitoring the
manufacturing process, it is not suitable for assuring the quality of the finished products. But there is a
necessity to provide quality assurance for the products before they are received by the consumer. Under
this situation, the manufacturers may prefer complete inspection. However, complete inspections
are not appropriate for all situations because they are costly, require quality inspectors, and are time
consuming. Therefore, in most of the cases, manufacturers adopt sampling inspections to provide
quality assurance. In sampling inspection, a sample of items is selected randomly from the entire lot
for inspection.

Acceptance sampling is also a form of sampling inspection, in which the decision to accept or
reject a lot is made based on the results of sample items taken from the concerned lot. Obviously,
acceptance sampling overcomes the drawbacks of complete inspections, such as inspection cost and
time consumption, since it inspects only a part of the items of the lot for making decisions. Acceptance
sampling plans yield the sample size and acceptance criteria associated with the sampling rules to be
implemented. For further details on acceptance sampling, one may refer to Dodge [3] and Schilling and
Neubauer [2]. In the literature, several sampling plans are available for lot sentencing with different
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sampling procedures; however, a single-sampling plan (SSP) is the most basic, as well as the easiest,
sampling plan in terms of the implementation process. In SSP, a single sample of size n is taken for
lot sentencing, and the acceptance/rejection decision is made immediately by comparing the sample
results with acceptance numbers determined from attribute inspections or with acceptance criteria
from variables inspections. Many authors have investigated SSPs under various situations (see, for
example, Loganathan et al. [4], Liu and Cui [5], Govindaraju [6], and Hu and Gui [7]).

In SSP implementation, a sample of 7 items is distributed to 1 testers, and the decision is made after
consolidating the information obtained from all the testers. Obviously, it requires much time to make a
decision, and the inspection cost is also high. One can overcome these drawbacks by implementing a
group acceptance sampling plan (GASP) instead of using SSP. In GASP, a certain number of sample
items are allocated to a single tester, and the test is conducted simultaneously on the sample items.
Therefore, the testing time and inspection cost are reduced automatically under GASP when compared
to SSP. It is to be mentioned that the number of testers involved in the inspection is frequently referred
to as the number of groups, and the number of sample items allocated to each group is defined as
the group size. For the purposes of making a decision on the lot by utilizing minimum cost and time,
GASP has been used for the inspection of different quality characteristics by several authors (see, for
example, Aslam and Jun [8]).

When industrial practitioners are uncertain about the parameters, the inspection cannot be done
using traditional sampling plans. In this case, the use of fuzzy-based sampling plans is the best
alternative to traditional sampling plans. Fuzzy-based sampling plans have been widely used for lot
sentencing. Kanagawa and Ohta [9] proposed a single-attribute plan using fuzzy logic. More details on
fuzzy sampling plans can be seen in Chakraborty [10], Jamkhaneh and Gildeh [11], Turanoglu et al. [12],
Jamkhaneh and Gildeh [13], Tong and Wang [14], Uma and Ramya [15], Afshari and Gildeh [16], and
Khan et al. [17].

The fuzzy approach has been used to compute the degree of truth. Fuzzy logic is a special case of
neutrosophic logic. The later approach computes measures of indeterminacy in addition to the first
approach (see Smarandache [18]). Abdel-Basset et al. [19] discussed the application of neutrosophic
logic in decision making. Abdel-Basset et al. [20] worked on linear programming using the idea
of neutrosophic logic. Broumi et al. [21] provided the minimum spanning tree using neutrosophic
logic. More details can be seen in [22,23]. Neutrosophic statistics is treated as an extension of classical
statistics, in which set values are considered rather than crisp values. Sometimes, the data may be
imprecise, incomplete, and unknown, and exact computation is not possible. Under these situations,
the neutrosophic statistics concept is used (see Smarandache [24]). Broumi and Smarandache [25]
discussed the correlations of sets using neutrosophic logic. More details about the use of neutrosophic
logic in sets can be seen in [26-28]. But one can use a set of values (that respectively approximates
these crisp numbers) for a single variable using neutrosophic statistics. Chen et al. [29,30] introduced
neutrosophic numbers to solve rock engineering problems. Patro and Smarandache [31] and Alhabib
et al. [32] discussed some basicsofprobablity distribution under neutrosophic numbers. Nowadays, the
neutrosophic statistics concept is used for quality control purposes. When designing the control chart
and sampling plans under classical statistics, it is assumed that the value which represents the quality
of the product is known. But in neutrosophic statistics, such value is indeterminate or lies between
an interval. Some researchers have designed the control chart and acceptance sampling plans under
these statistics (see, for example, Aslam et al. [33]). Aslam [34] introduced neutrosophic statistics in
the area of acceptance sampling plans. Aslam and Arif [35] proposed a sudden death testing plan
under uncertainty.

As mentioned earlier, Aslam and Jun [8] designed GASP to ensure the Weibull-distributed
mean life of the products under classical statistics. They determined the optimal parameters for
some calculated values of failure probability; however, they did not consider the case where the
failure probability is uncertain. Therefore, in this paper, we attempted to design GASP for providing
Weibull-distributed mean life assurance where the values of shape parameters and failure probabilities
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are uncertain. That is, we considered the design of GASP under neutrosophic statistics, which is the
main difference between the proposed work and the work done by Aslam and Jun [8]. We will compare
the proposed plan with the existing sampling plan under classical statistics in terms of the sample
size required for inspection. We expect that the proposed plan will be quite effective, adequate, and
efficient compared to the existing plan in an uncertainty environment.

2. Design of the Proposed Plan using Neutrosophic Statistics

The method to design the proposed GASP for providing quality assurance of the product in terms
of mean life is discussed in this section. The ratio between the true mean life and the specified mean life
of the product is considered as the quality of the product. A Weibull distribution is considered as an
appropriate model to express the lifetime of the product because of its flexible nature. So, we assume
that the lifetime of the product ty € {t, f;;} under study follows a neutrosophic Weibull distribution,
which has the shape parameter oy € {0, 017} and scale parameter Ay € {A;, Ay}. Then, the cumulative
distribution function (cdf) of the Weibull distribution is obtained as follows.

ON
Fltn; An, 6y) = 1 - exp(—(f\—l\l\]]) ) ty > 0,AN > 0,5y > 0. (1)

In this study, it is assumed that the scale parameter Ay is unknown and the shape parameter
O is known. It can be seen that the cdf depends only on 