789 research outputs found

    Lidar-based scale recovery dense SLAM for UAV navigation

    Get PDF
    Imagine of having an autonomous agent (drone, robot, car, ..) that wants to navigate inside an unknown environment. The first question that it needs to answer for accomplish such task is: where Am I? Where are the objects that are surrounding me? The SLAM algorithm can answer to both questions simultaneously, in an on-line manner. This thesis focus on the implementation of a monocular SLAM algorithm on the UAV framework, where the classical obtained sparsity map is densified by means of a Convolutional Neural Network, properly scaled through 2D lidar measurements.Imagine of having an autonomous agent (drone, robot, car, ..) that wants to navigate inside an unknown environment. The first question that it needs to answer for accomplish such task is: where Am I? Where are the objects that are surrounding me? The SLAM algorithm can answer to both questions simultaneously, in an on-line manner. This thesis focus on the implementation of a monocular SLAM algorithm on the UAV framework, where the classical obtained sparsity map is densified by means of a Convolutional Neural Network, properly scaled through 2D lidar measurements

    Doctor of Philosophy

    Get PDF
    dissertationDigital image processing has wide ranging applications in combustion research. The analysis of digital images is used in practically every scale of studying combustion phenomena from the scale of individual atoms to diagnosing and controlling large-scale combustors. Digital image processing is one of the fastest-growing scientific areas in the world today. From being able to reconstruct low-resolution grayscale images from transmitted signals, the capabilities have grown to enabling machines carrying out tasks that would normally require human vision, perception, and reasoning. Certain applications in combustion science benefit greatly from recent advances in image processing. Unfortunately, since the two fields - combustion and image processing research - stand relatively far from each other, the most recent results are often not known well enough in the areas where they may be applied with great benefits. This work aims to improve the accuracy and reliability of certain measurements in combustion science by selecting, adapting, and implementing the appropriate techniques originally developed in the image processing area. A number of specific applications were chosen that cover a wide range of physical scales of combustion phenomena, and specific image processing methodologies were proposed to improve or enable measurements in studying such phenomena. The selected applications include the description and quantification of combustion-derived carbon nanostructure, the three-dimensional optical diagnostics of combusting pulverized-coal particles and the optical flow velocimetry and quantitative radiation imaging of a pilot-scale oxy-coal flame. In the field of the structural analysis of soot, new structural parameters were derived and the extraction and fidelity of existing ones were improved. In the field of pulverized-coal combustion, the developed methodologies allow for studying the detailed mechanisms of particle combustion in three dimensions. At larger scales, the simultaneous measurement of flame velocity, spectral radiation, and pyrometric properties were realized

    Earth resources technology satellite spacecraft system design studies. Volume 2, book 1 - Subsystems studies Final report

    Get PDF
    Developing structure, payload, communication and data handling subsystems for ERT

    The 1982 NASA/ASEE Summer Faculty Fellowship Program

    Get PDF
    A NASA/ASEE Summer Faculty Fellowship Research Program was conducted to further the professional knowledge of qualified engineering and science faculty members, to stimulate an exchange of ideas between participants and NASA, to enrich and refresh the research and teaching activities of participants' institutions, and to contribute to the research objectives of the NASA Centers

    FPGA-based High Performance Diagnostics For Fusion

    Get PDF
    High performance diagnostics are an important aspect of fusion research. Increasing shot-lengths paired with the requirement for higher accuracy and speed make it mandatory to employ new technology to cope with the increasing demands on digitization and data handling. Field programmable gate arrays (FPGAs) are well known in high performance applications. Their ability to handle multiple fast data streams whilst remaining programmable make them an ideal tool for diagnostic development. Both the improvement of old and the design of new diagnostics can benefit from FPGA-technology and increase the amount of accessible physics significantly. In this work the developments on two FPGA-based diagnostics are presented. In the first part a new open-hardware low-cost FPGA-based digitizer is presented for the MAST-Upgrade (MAST-U) integral electron density interferometer. The system is shown to have an optically limited phase accuracy and a detection bandwidth of over 3.5 MHz. Data is acquired continuously at 20 MS/s and streamed to an acquisition PC via optical fiber. By employing a dual-FPGA approach real-time processing of the density signal can be achieved despite severly limited resources, thus providing a control signal for the MAST-U plasma control system system with less than 8 μs latency. Due to MAST-U being still inoperable, in-situ testing has been conducted on the ASDEX Upgrade, where fast wave physics up to 3.5 MHz could first be observed. The second part presents developments to the Synthetic Aperture Microwave Imaging (SAMI) diagnostic. In addition to improving the utilization of long shot-lengths and enabling dual-polarized acquisition the system has been enhanced to continuously acquire active probing profiles for 2D Doppler back-scattering (DBS), a technique recently developed using SAMI. The aim is to measure pitch angle profiles to derive the edge current density. SAMI has been transferred to the NSTX-Upgrade and integrated into the experiment’s infrastructure, where it has been acquiring data since May 2016. As part of this move an investigation into near-field effects on SAMI’s image reconstruction algorithms was conducted

    Application of Machine Vision in UAVs for Autonomous Target Tracking

    Get PDF
    This research presents experimental results for the application of Machine Vision (MV) techniques to address the problem of target detection and tracking. The main objective is the design of a prototype UAV surveillance environment to emulate real-life conditions. The model environment for this experiment consists of a target simulated by a small electric train system, located at ground level, and a MV camera mounted on a motion-based apparatus located directly above the model setup. This system is meant to be a non-flying mockup of an aerial robot retrofitted with a MV sensor. Therefore, the final design is a two degree-of-freedom gantry simulating aircraft motions above the ground level at a constant altitude. On the ground level, the design of the landscape is an attempt to achieve a realistic natural landscape within a laboratory setting. Therefore, the scenery consists of small scale trees, bushes, a mountain, and a tunnel system within a 914 mm by 1066 mm boundary. To detect and track the moving train, MV algorithms are implemented in a Matlab/SimulinkRTM based simulation environment. Specifically, image pre-processing techniques and circle detection algorithms are implemented to detect and identify the chimney stack on the train engine. The circle detection algorithms analyzed in this research effort consists of a least squares based method and the Hough transform (HT) method for circle detection. The experimental results will show that the solution to the target detection problem could produce a positive detection rate of 90% during each simulation while utilizing only 56% of the input image. Tracking and timing data also shows that the least squares based target detection method performs substantially better then the HT method. This is evident from the result of using a 1--2 Hz frequency update rate for the SimulinkRTM scheme which is acceptable, in some cases, for use in navigation for a UAV performing scouting and reconnaissance missions. The development of vision-based control strategies, similar to the approach presented in this research, allows UAVs to participate in complex missions involving autonomous target tracking

    Optical tweezers combined with interference reflection microscopy for quantitative trapping and 3D imaging

    Get PDF
    Optical tweezers are an indispensable tool in biophysical single-molecule studies. They provide the ability to mechanically probe the characteristics of biological processes, such as active transport of cargo by molecular motors. To this end, functionalized (sub)micron- sized dielectric particles are held in a tightly focused laser trap while external forces lead to displacements of the particle from the trap center. The measurement and calibration of these displacements yield insights into the mechanical properties of the molecule of interest. The study of molecular motors, such as kinesins, is carried out in in vitro surface-based experimental assays. The experimental needs for such assays are challenging. The instrument must be stabilized, i.e. decoupled form external noise, and drift must be minimized, and it needs to be combined with state of the art microscopy techniques to visualize the sample. These are, on the one hand, single-molecule fluorescence detection and, on the other hand, robust label-free imaging of diffraction limited specimen. The latter is commonly realized by differential interference contrast (DIC) microscopy, which is an expensive and rather complicated technique that also restricts the design of the optical tweezers and, therefore, reduces the experimental possibilities. Optical tweezers experiments, moreover, rely on precise and reliable calibration. Despite its importance, calibration is, at times, carried out with obsolete methods or based on vague assumptions. Especially, in the vicinity of the sample surface, where hydrodynamic effects can have a significant influence, such assumptions fail largely. Here, height-dependent active power spectral density analysis of the Brownian motion of the trapped particle can ame- liorate these inaccuracies, but—compared to other methods—is rather cumbersome, time- consuming and easy-to-use solutions are lacking. In this work I designed and assembled an optical tweezers setup combined with total in- ternal reflection fluorescence (TIRF) microscopy. Furthermore, I succeeded to reduce design restrictions of the optical tweezers by combining it with interference reflection microscopy, which is a simple, cost-efficient and robust contrast technique that can visualize diffraction limited specimen in three dimensions, such as microtubules. Moreover, I was able to use this technique to determine the three-dimensional profile of an upward bent microtubule which I used to simultaneously calibrate the evanescent field depth of the TIRF microscope. In ad- dition, I programmed a free and open-source optical tweezers calibration software, PyOTC, that provides the means for height-dependent active power spectral density analysis. My work will possibly influence the design of optical tweezers instruments for surface-based experiments. LED-based IRM could further improve or complement label-free detection tech- niques such as interferometric scattering microscopy. The free and open-source calibration software package could help to precisely calibrate optical tweezers data. Moreover, because the source is available to anybody, calibration and therefore the analysis of optical tweezers data will be more transparent to the scientific community

    A Magneto-Gravitational Neutron Trap for the Measurement of the Neutron Lifetime

    Get PDF
    Thesis (Ph.D.) - Indiana University, Physics, 2015Neutron decay is the simplest example of nuclear beta-decay. The mean decay lifetime is a key input for predicting the abundance of light elements in the early universe. A precise measurement of the neutron lifetime, when combined with other neutron decay observables, can test for physics beyond the standard model in a way that is complimentary to, and potentially competitive with, results from high energy collider experiments. Many previous measurements of the neutron lifetime used ultracold neutrons (UCN) confined in material bottles. In a material bottle experiment, UCN are loaded into the apparatus, stored for varying times, and the surviving UCN are emptied and counted. These measurements are in poor agreement with experiments that use neutron beams, and new experiments are needed to resolve the discrepancy and precisely determine the lifetime. Here we present an experiment that uses a bowl-shaped array of NdFeB magnets to confine neutrons without material wall interactions. The trap shape is designed to rapidly remove higher energy UCN that might slowly leak from the top of the trap, and can facilitate new techniques to count surviving UCN within the trap. We review the scientific motivation for a precise measurement of the neutron lifetime, and present the commissioning of the trap. Data are presented using a vanadium activation technique to count UCN within the trap, providing an alternative method to emptying neutrons from the trap and into a counter. Potential systematic effects in the experiment are then discussed and estimated using analytical and numerical techniques. We also investigate solid nitrogen-15 as a source of UCN using neutron time-of-flight spectroscopy. We conclude with a discussion of forthcoming research and development for UCN detection and UCN sources

    Cued Speech Gesture Recognition: A First Prototype Based on Early Reduction

    No full text
    International audienceCued Speech is a specific linguistic code for hearing-impaired people. It is based on both lip reading and manual gestures. In the context of THIMP (Telephony for the Hearing-IMpaired Project), we work on automatic cued speech translation. In this paper, we only address the problem of automatic cued speech manual gesture recognition. Such a gesture recognition issue is really common from a theoretical point of view, but we approach it with respect to its particularities in order to derive an original method. This method is essentially built around a bioinspired method called early reduction. Prior to a complete analysis of each image of a sequence, the early reduction process automatically extracts a restricted number of key images which summarize the whole sequence. Only the key images are studied from a temporal point of view with lighter computation than the complete sequenc

    A New Versatile Electronic Speckle Pattern Interferometer For Vibration Measurements

    Get PDF
    Electronic speckle pattern interferometry (ESPI) has been widely used for vibration amplitude and phase measurements. Conventional ESPI systems are bulk and expensive and need careful alignment of all the optical components which is a time consuming task. To overcome these problems alternative compact ESPI systems were developed using fibre-optical components or holographic optical elements (HOEs). The fibre-optic based ESPI systems suffer from random phase fluctuations induced by environmental temperature changes. Hence HOEs can be used as more powerful alternative optical elements to design ESPI systems. The time average ESPI method is widely used for vibration studies. The time average method combined with phase stepping can be used for automatic vibration measurements. Using this technique higher vibration amplitudes cannot be measured because fringe patterns follow Bessel function intensity distribution. To overcome this problem an alternative technique can be used by modulating the phase of the reference beam in an unbalanced interferometer. This thesis reports a novel ESPI system for vibration measurements by combining use of holographic optical elements (HOEs) and optical path length modulation (reference beam phase modulation). The optical path length modulation is implemented using laser diode wavelength (frequency) modulation. Different HOE based ESPI systems are reported in this thesis using either a single HOE or dual HOE. This thesis examines performance of different HOE based ESPI systems that are sensitive to out-of-plane displacement components using laser diodes operating either in the near infrared or visible electromagnetic spectrum. Vibration modes of a circular metal plate clamped at the edges of a loud speaker and a circular metal plate driven by a piezoelectric actuator (PZT) were studied using a single RHOE based ESPI system and a hybrid (transmission HOE with a partially reflecting mirror) HOE based ESPI system respectively using a near infrared laser diode (763nm). Optical path length modulation technique was implemented using a laser diode operating in visible electromagnetic spectrum (658nm). Vibration mode patterns of a circular metal plate driven by a PZT actuator were obtained using both single RHOE and dual HOE based ESPI systems. Using optical path length modulation technique in a dual HOE based ESPI system detailed phase and amplitude maps of a circular metal plate driven by a PZT actuator are obtained. The dual HOE based ESPI system was also used for measuring roations of a circular metal plate mounted on a mirror mount. In conclusion we have developed a compact HOE based ESPI system to conduct vibration measurements. A few potential future developments are also suggested at the end of the thesis
    • …
    corecore