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Abstract 
 

Application of Machine Vision in UAVs for Autonomous Target Tracking  
 

Joshua Patrick Effland 
 

This research presents experimental results for the application of Machine Vision 

(MV) techniques to address the problem of target detection and tracking.  The main 

objective is the design of a prototype “UAV” surveillance environment to emulate real-

life conditions.  The model environment for this experiment consists of a target simulated 

by a small electric train system, located at “ground” level, and a MV camera mounted on 

a motion-based apparatus located directly above the model setup.    This system is meant 

to be a non-flying mockup of an aerial robot retrofitted with a MV sensor.  Therefore, the 

final design is a two degree-of-freedom gantry simulating aircraft motions above the 

“ground” level at a constant altitude. On the “ground” level, the design of the landscape 

is an attempt to achieve a realistic natural landscape within a laboratory setting.  

Therefore, the scenery consists of small scale trees, bushes, a mountain, and a tunnel 

system within a 914 mm by 1066 mm boundary.  To detect and track the moving train, 

MV algorithms are implemented in a Matlab/Simulink® based simulation environment.  

Specifically, image pre-processing techniques and circle detection algorithms are 

implemented to detect and identify the chimney stack on the train engine.  The circle 

detection algorithms analyzed in this research effort consists of a least squares based 

method and the Hough transform (HT) method for circle detection.  The experimental 

results will show that the solution to the target detection problem could produce a 

positive detection rate of 90% during each simulation while utilizing only 56% of the 

input image.  Tracking and timing data also shows that the least squares based target 

detection method performs substantially better then the HT method.  This is evident from 

the result of using a 1-2 Hz frequency update rate for the Simulink® scheme which is 

acceptable, in some cases, for use in navigation for a UAV performing scouting and 

reconnaissance missions.  The development of vision-based control strategies, similar to 

the approach presented in this research, allows UAVs to participate in complex missions 

involving autonomous target tracking. 
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Chapter 1. Introduction 

1.1. Problem Definition 

 Unmanned Aerial Vehicles (UAVs) can generally be described as remotely 

piloted or autonomously piloted aircraft with sizes ranging from the small 5-pound 

SkySeer to the 2,250-pound Predator B. UAVs can carry different types of sensors, 

payloads, cameras, and communication equipment for an ever increasing range of 

applications.  A large majority of the UAVs in use within the United States are military 

crafts1.  For the military realm, they have played a large role in reconnaissance and 

intelligence gathering missions since the 1950s and more combat related mission are 

envisioned in the future2.  The progression of UAVs is leading to the development of a 

more lethal platform capable of performing precisions air and ground strikes.  This is 

evident from Figure 1.1 where the evolution of UAVs is displayed along with a useful 

reference to the Department of Defense’s (DOD) major UAV programs. 

 
Figure 1.1:  UAV Programs, 1985-20153

It is obvious from this diagram that the military and government sponsored companies 

have provided a great deal of support for UAV Research and Development (R&D) which 

can be accredited to their flexibility and moderately low-cost4.  Currently, Army UAV 
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systems support land warfare operations for different mission structures.  Typical 

missions include:   

• intelligence; 

• surveillance and reconnaissance; 

• battle damage assessment; 

• targeting; 

• persistent stare for continued operations, and convoy protection5. 

For example, Northrop Grumman has developed a UAV with missile-firing capabilities 

where this system is used for the U.S. Army’s extended-range multi-purpose UAV 

program and is currently used in Iraq for surveillance missions6.  UAVs are also very 

critical for U.S. Air Force missions where the RQ-1 Predator is used for surveillance and 

reconnaissance operations.  The mission structure for this UAV involves acquiring 

surveillance imagery obtained from video cameras and an infrared system which is 

distributed in real-time to the front-line soldier and operational commander.  The 

Predator can then play a multi-role for armed reconnaissance and solder protection.  

Predator UAVs have been operation in Bosnia since 1995 as part of the Operation 

Enduring Freedom in Afghanistan and Operation Iraqi Freedom7. 

The operation of UAVs is tightly controlled in the U.S. where they can only be 

flown in restricted airspace cut off from manned aircraft.  Before UAVs can be issued for 

widespread use, outside of the military realm, the Federal Aviation Administration (FAA) 

must be convinced that an unmanned aircraft is capable of the same tasks a manned 

aircraft is capable.  For example, in a manned aircraft, human pilots are responsible for 

looking out the cockpit window to avoid head on collisions.  Addressing this issue in 

UAVs, Northrop Grumman is currently conducting research that use video cameras and 

sophisticated image processing software to hunt for incoming aircraft8.  In situations 

where another aircraft is detected, the UAV would then carry out evasive maneuvers.  

The increasing popularity of UAVs is a direct consequence of their ability to extend tasks 

normally performed by human beings, who are classified to have a high degree of failure 

resulting from exhaustion, distractions, and illness.  This can be directly related to the 

extensive use of UAVs in Iraq where they account for 80 percent of all current flights and 

use digital cameras and sophisticated image processing software to detect incoming 
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targets9.  This capability is one example of the importance of UAVs in a military 

application, by eliminating the high risk posed to human pilots. 

In recent years, the evolution of microelectronics has shown direct results 

associated with improved sensors, larger memory, and faster microcomputers, which has 

significantly improved the level of UAV technology.  Utilizing new technology with low-

cost platforms, engineers are able to design highly sophisticated UAVs that can be 

employed within a large mission structure.  Furthermore, advances in digital camera 

technology have lead to the creation of powerful vision based sensors that are light 

weight and easily integrated with UAVs.  The overlying task at hand then becomes the 

integration of the vision based sensors with sophisticated image processing software.  

This is necessary to provide UAVs with vital target information enabling them to perform 

specific missions such as reconnaissance and surveillance. 

 When considering the five senses (sight, hearing, smell, taste, and touch) many 

consider sight to be the primary source of data for humans.  For this reason biological 

vision is studied and modeled in terms of psychological processes implemented by the 

human brain.  Computer vision can be described as a compliment to biological vision 

through interdisciplinary exchange. This exchange has helped lay the path for vision to 

play a large role in the expansion of UAV capabilities.  Manipulating computer vision 

into UAVs is defined as a form of Machine Vision (MV)10.  Within the basic innate 

action of sight or vision by the human eye and extremely efficient information processing 

through the human brain, the process of scene analysis occurs very quickly and easily.  

The applications noted can be very difficult to implement/reproduce with the same 

outcome through MV when large amounts of data have to be interpreted.  For this reason, 

many of the current MV algorithms are not applicable for real-time application. This 

introduces challenges for designing and implementing an on-board system for a UAV 

platform. However, advances in microelectronics and MV algorithms are leading to the 

capabilities of real-time video processing MV tasks on-board small UAVs.   

 Furthermore, the application of using MV based measurements for target 

detection and tracking is the current task at hand.  This research effort is geared towards 

the development of a MV system which would utilize an on–board camera for 

interpreting an image to extract, identify, and track an object of interest via an aircraft 

 3



platform.  The purpose is to address the target detection and tracking problem and 

evaluate and implement proper hardware and software approaches necessary to complete 

this task.  This includes the evaluation and acquisition of Commercial Off The Shelf 

(COTS) hardware that can be utilized for this application.  The software portion of this 

work involves the evaluation and implementation of image processing software necessary 

to detect a specific feature of an object using captured video frames.  Once the target is 

detected, it must then be tracked as it moves along its path, which will be made possible 

through the implementation of a control algorithm. 

1.2. Target Detection and Tracking 

 Research efforts in the area of MV initially became a topic of interest at West 

Virginia University (WVU) based on previous work in the topics of autonomous aerial 

refueling, runway detection, and aerial surveillance by unmanned systems.  Through 

these applications of MV, extensive algorithms should reliably detect an image feature, 

leading to the control of an aircraft platform based on a robust control system design.  

The correlation of this concept is thoroughly applied within this research effort by 

utilizing MV based techniques for measurement estimations of position and velocity of a 

moving target.  The measurements will be an input into a position control system, which 

will generate a feasible trajectory for the “UAV,” so that the target will stay in the 

camera’s field of view (FOV).   
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 To perform experimental testing of this research strategy, a mock environment 

shown in Figure 1.2 is setup to resemble a scaled model environment that simulates a 

UAV flying over a mountainous terrain. 

   
Figure 1.2:  Model Environment Setup 

This environment incorporates a digital camera for capturing images and continuously 

detects and tracks a single “ground” target.  To accomplish this task, a mechanical 

positioning system is constructed to represent the UAV position.  This system consists of 

stepper motors driving the camera on a rail type system, which allows movement within a 

two-dimensional grid at a predetermined height.  At “ground” level, shown in Figure 1.3, 

there will be a target incorporated within the scaled model environment, which will be 

continuously tracked by the MV system once detected.  A small electric train (model 

railroad setup) is utilized as the target vehicle for this application. 
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Figure 1.3:  “Ground” Level of Model Environment 

 When selecting the correct techniques for addressing the target detection problem 

the first issue that must be addressed is the processing time for the algorithms.  This is 

critical since the video stream that would be acquired on-board a UAV, in a real life 

scenario, must be processed in a timely fashion in order to perform tasks such as target 

detection while providing vital inputs to an on-board navigation system for tracking 

purposes and avoiding possible collisions with other obstacles.  Although, for the purpose 

of this effort, the MV software will not be fully capable of real-time processing, the issue 

of computation time is still of concern.  The MV algorithms must be computationally 

efficient to process each extracted video frame and allow input data to be placed into a 

position control system.  These tasks must be performed in a timely manner in order to 

keep the target in the FOV.  With this in mind, a concerning issue exists with a majority 

of the existing MV algorithms. In some cases these algorithms are not for use with 

mobile platforms, so the software environment and algorithms used must be chosen that 

produces the best results for this effort. 

 A common problem within MV, image processing, and computer vision is the 

task of determining if an image contains a specific object, target, or feature.  Many 

existing algorithms used for this task are at best able to detect specifically defined 

features and shapes11.  The general case of object detection for random shapes in random 
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situations is far from satisfactory.  There are a variety of image segmentation problems, 

which fall under the categories of object recognition, identification, and detection.  In 

principle, the problem addressed in this document is a classic example of an image 

segmentation problem.  Based on the defining features of the target, the image processing 

algorithms are used to clearly distinguish the target from the background.  Supporting this 

concept, the pre-processing methods become a critical aspect in the design of the MV 

software.  To further support this claim, it is a common trend that pre-processing 

algorithms usually require more computational time then the main image processing 

algorithm, therefore; it is important to make them as efficient as possible.  However, it 

can also be debated that it is equally important to design a robust and efficient feature 

detection algorithm for the main-processing stage.  This is important to differentiate a 

target from other features, which could produce false detections.  This document will 

show that equal emphasis is taken for the design of the main algorithm and the selection 

of the pre-processing methods. 

1.3. Research Objectives 

 This research is used to demonstrate, in principle, the design, implementation, and 

experimental validation of a prototype UAV surveillance system using MV for the 

purpose of target detection and tracking.  

 The envisioned final scenario features a MV camera system which will be used to 

perform surveillance missions within a defined area.  Specific MV algorithms will be 

used to extract information from captured frames of a live video camera stream.  With 

these capabilities, the MV algorithms will be used to detect moving targets and estimate a 

target’s position and velocity.  Once the target’s information is extracted, the position 

control system will generate a feasible trajectory to keep the target within the camera’s 

FOV.  The tasks outlined to complete this effort are described below: 

• Select and integrate MV hardware that can be used to test MV algorithms in a 

laboratory environment; 

• Design and construction of a scaled model environment for testing various MV 

algorithms;   
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• Develop filtering methods using Matlab® and  Simulink® programming tools for 

diminishing image noise in digital images captured from the MV camera.  

Experiments will be completed to compare various filtering techniques based on 

their timing profiles and statistical analysis.  The filtering techniques that best 

satisfies the performance requirements for computation time and noise 

suppression will be utilized; 

• Develop and test MV software using Matlab® and Simulink® programming tools 

that is capable of detecting circular patterns.  This software is used to extract the 

target from the digital image based on its defining circular features.  Experiments 

will be performed to asses the performance of the software when multiple objects 

are introduced in the background.  These experiments are used to obtain the 

repeatability performance, timing profiles, and statistical analysis of the methods 

used to complete this task; 

• Develop and integrate an active control scheme using Simulink® programming 

tools.  This enables the camera system to continuously track the target along its 

path.  Experiments will be performed to assess the performance of the control 

scheme. 

1.4. Overview of Thesis 

 This thesis will be organized in the following manner: 

• Chapter 2 will discuss the results of prior research on image segmentation, pattern 

recognition and related image processing techniques.  The focus will be placed on 

applications and hardware setups utilized in the aerospace industry; 

• Chapter 3 will discuss the theory behind the image processing algorithms used 

and the proposed solution to each problem.  Specifically it will cover the methods 

used for circle detection and tracking targets;   

• Chapter 4 will explain the setup of the experimental environment.  This includes 

detailed descriptions of how each pre-processing method is utilized and the 

implementation of the main processing algorithms. The hardware and laboratory 

configurations will be explained in detail; 

 8



• Chapter 5 will show the simulation results obtained for the target recognition and 

tracking algorithms;  

• Chapter 6 will contain the conclusive documentation of the results that are 

obtained from this effort and recommendations for continuing efforts leading to 

actual vehicle implementation.  
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Chapter 2. Literary Review 

2.1. General Description 

 MV has been extensively used within ground based industrial and manufacturing 

processes.  The absence of size and weight restrictions supports the wide spread use of 

MV in these processes.  However, this is not the case for UAV-based MV applications, 

which require smaller and light weight products while preserving accuracy and reliability.  

As technology improves over time, MV techniques are being used for a broader range of 

applications requiring more highly versatile MV systems.  Some examples of these more 

sophisticated MV applications are surveillance, automated inspection, vehicle guidance, 

traffic monitoring and control, and biometric measurements.  As technology will continue 

to evolve, MV systems are capable of higher computational loads and are much more 

efficient. 

 The MV industry can be characterized as a continuously evolving industry where 

price and performance ratios constantly improve.  An increase in processing speeds for 

vision-processing hardware allows for an increase in processing power reserve.  This 

reserve can be used for more intelligent vision tools in order to simplify a system’s 

programming12.  These advances in semiconductor technology have also enabled vision 

processing systems to decrease in size.  This substantial reduction in size will most likely 

result in an embedded hardware system that will encompass all of the capabilities of 

current MV systems.  This special purpose system would then be designed to perform 

one or a few specific tasks, sometimes with real-time computing constraints.  In contrast, 

the general PC is used to complete many different tasks.  The small embedded system is 

more specifically task driven; allowing engineers to optimize the device to make it 

smaller and less expensive.  This sensor is envisioned to be the adoption of network 

distributed computing techniques.  In the future, any network capable device will be used 

to configure and monitor MV applications13.  The vision sensor will continue to become 

smaller, faster, and easier to integrate. 

 The next section of this document, Section 2.2, will outline the commonly used 

methods of image segmentation and their applications within many different fields.  A 

brief understanding of each method is provided prior to the literary review.              
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2.2. Image Segmentation Methods 

 Image segmentation is a processing method that has been used for a variety of 

applications.  These applications apply to many different fields including: 

• medical; 

• aerospace; 

• manufacturing 

• agriculture. 

 The medical field accounts for a vast majority of these applications where image 

segmentation is used for: 

• the detection of tumors and other pathologies; 

• the measurement of tissue volumes; 

• computer-guided surgery; 

• diagnosis processes. 

Image segmentation techniques are also becoming very popular within the aerospace 

field.  Examples include aerial surveillance, runway detection, and guided landings for 

spacecraft.  This is a direct result of the advances in MV technology which have sparked 

the development of improved image segmentation algorithms and allowed MV systems 

to become much lighter and smaller along with an increase in computational power and 

speed.   These advanced systems are being more commonly used in aircraft and 

spacecraft; specifically for UAVs.  Enhanced technologies have triggered the 

development of superior techniques for image segmentation applications which may not 

have been possible with “old” technology and image segmentation methods.          

 The task of image segmentation can be described as the partitioning of a digital 

image into multiple regions or sets of pixels14.  This process is performed to transform an 

image into multiple sections that are easier to analyze and interpret.  Segmentation 

algorithms are generally based on two basic properties of pixel intensity values:  

discontinuity and similarity.  The first category is based on segmenting an image based 

on abrupt changes in pixel intensity, such as edges.  Edge-based segmentation methods 

fall in this category which will be discussed in Section 2.2.1.  The second category, 

similarity is based on segmenting an image into sections that are similar to specific 

criteria.  This category includes pixel-based methods, region-based methods, and 
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connectivity-preserving relaxation-based methods, which will be discussed in Sections 

2.2.2, 2.2.3, and 2.2.4, respectively.   

2.2.1. Edge-based Segmentation Method 

 Edge-based methods are an alternative path for image segmentation which allows 

features of an image to be extracted based upon the edges in the image.  Two methods are 

utilized to detect the edges of images, template matching (TM) and the differential 

gradient (DG) approach.  The basic concept shared by these two methods is determining 

the intensity gradient magnitude, otherwise known as the change of pixel intensity from 

one location to the next. An area of an image where the gradient magnitude is noticeably 

large is considered as an indicator for an edge.  Edge-based methods usually work well 

when they are used in conjunction with other superior segmentations methods.  The edge-

based methods rely on edge detection operators, which are used to mark the points in a 

digital image where the luminous intensity changes abruptly15.  These operators are 

defined as the Canny, Roberts, Sobel, and Prewitt operators.  Edge detection operators 

combined with other higher order segmentation methods and image processing 

techniques are used to determine the presence of an edge in a digital image.   

 However, using edge detection as an image segmentation approach can lead to 

some inadequate results.  These types of results are exhibited in images when detected 

edges have gaps in their boundary descriptions.  This is obtained when transitions 

between the image regions may not be abrupt enough or poor lighting conditions exist.  

Also, in some cases, edges may be detected in an image that aren’t apart of the region 

boundary, which is a result from the given image being noisy or poorly illuminated16.  A 

common solution to this problem is the use of a threshold technique combined with an 

edge detection method to help eliminate noisy features in an image.  For example, a pixel 

would be defined in an image as being an edge pixel if its intensity gradient magnitude is 

greater then a specific threshold value.  If the boundary region is clearly represented in an 

image then this method of filtering will be sufficient, however the image contrast may 

vary widely.  In this case there may be very little gained from using the thresholding 

technique.   
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 For simple cases of horizontal and vertical edge detection, a graphical approach 

can be utilized to apply image segmentation.  A method described by Kumar, Hart, and 

Ahuja performs edge based segmentation where the sum of pixel intensities along each 

directional peak is taken to be the boundary edge17.    This algorithm is sufficient when 

the image is free of severely curved edges.  Another method for edge detection is known 

as the Marr-Hildreth algorithm which is used to find the Laplacian and Gaussian-

smoothed image and obtains a result as a set of zero-crossing lines.  This specific method 

is attractive for the fact that it does not use any form of threshold in the detection process.  

However, this algorithm has the same limitations as the previously mentioned edge 

detection operators.  These are other examples where complex images that contain large 

amounts of noise and poor illumination may require the implementation of additional 

algorithms to enhance the edge detection process. 

 The design of edge detection operators has increased to a much more advanced 

stage, such that edges are detected with high pixel accuracy oriented to fractions of a 

degree.  Unfortunately some of these methods are very complex and result in very large 

computational loads.  When the image is free of noise or is considered to be a “clean” 

image, edge based segmentation techniques become very efficient.  Then, once noise is 

added into an image, difficulties arise when trying to detect true edges; some edges are 

detected where there is no true border and some edges are not detected where a border 

exists.  Furthermore, low level edge segmentation algorithms might not be capable of 

extracting edges that have overlapping boundaries.  There have been many attempts to 

resolve these issues and to attempt to eliminate noise interference.  One solution is the 

implementation of higher level edge segmentation methods, such as the Hough transform 

(HT).  

  The HT is classified as a higher level edge segmentation method that provides a 

highly robust method for locating specific features in images.  Historically, the HT has 

been the predominant means of detecting straight edges. This method was introduced by 

Paul Hough in 1962.  It was developed and refined for the particular purpose of detecting 

straight edges.  It was originally used for detection of lines, but has been modified for 

detection of arbitrary shapes such as ellipses, corners, and circles.  The modified 

methodology of HT utilized today was invented by Richard Duda and Peter Hart in 1972 
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who called it the “generalized Hough transform” (GHT)18.  The implementation of this 

method requires an analytical representation of the arbitrary shape or boundary, which is 

the only information required.  This characteristic makes the HT particularly useful for 

computing a global description of a feature, in which the number of solution classes need 

not be known a prior.  The motivating idea behind the development of the edge-based 

technique is to coordinate point or pixel locations indicating their contributions to a 

globally consistent solution.  The main advantage of the HT process is that it is fairly 

tolerant of gaps in feature boundary descriptions and is relatively unaffected by image 

noise19. 

2.2.2. Pixel-based Segmentation Methods 

 A simple approximation to image segmentation can be achieved by an image 

processing technique previously mentioned as thresholding.  This is classified as a low 

level pixel-based segmentation method that proves to be adequate in cases where the 

boundaries are highly distinguishable.  This procedure involves separating the light and 

dark pixels of an image by scanning an entire image, pixel by pixel, and then classifying 

each pixel as foreground or background.  Although this technique is very popular, it has a 

limited range of effectiveness.  One problem that may occur in thresholding is 

determining an optimum threshold value. This is difficult when illumination is not 

uniform throughout the image.  So, inadequate lighting is a problematic issue when using 

this technique.  This can cause the boundary of an object in the foreground to become 

blurry, making it difficult to determine a threshold value to segment the foreground from 

the background.  To solve this problem methods known as adaptive and local 

thresholding have been proposed as solutions20.  In most cases, other techniques of image 

segmentation are performed to establish cases in which intensity thresholding can be 

applied.  Since this method is a relatively simple pixel-based segmentation method it is 

commonly used in correlation with more advanced segmentation methods.  

 A more advanced pixel-based method of imaging segmentation is known as 

clustering which is performed in the work completed at Coventry University21.  In this 

research clustering is used to search for distinct groups of pixels in the image space.  

These groups are expected to have distinct features and can be clearly differentiated.  
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Clustering methods are used to combine an observed image into groups of data that 

satisfy two main criteria:  each group or cluster is homogeneous and each group or cluster 

should be different from other clusters22.  These techniques have been applied to a wide 

range of research problems.  Overall, the cluster analysis is a great utility that can be 

applied to any problem requiring the classification of a large image into manageable 

groups of data. 

2.2.3. Region-based Segmentation Method 

 Unlike pixel-based, region-based methods are considered to be a more advanced 

image segmentation method.  The objective of this method is to directly partition an 

image into regions rather then using the distribution of pixel properties. Regions are 

formed by grouping pixels or smaller regions based on certain criteria such as color, 

texture, or boundaries.  The selection of the similarity criteria for each region is based on 

the available image data and the problem at hand; image descriptors are sometimes used 

for this classification.  A disadvantage of this method is that the descriptors can lead to 

false results if connectivity or adjacent pixel information is not available for the region 

growing process.  A control issue identified with this method is an inadequate stopping 

rule that determines when the region has reached its maximum number of pixels in the 

growth process23. 

 An easy approach to region-based segmentation is to use a procedure that grows 

regions from a set of seed points.  Regions will then grow based on the chosen criteria 

and the location of the seed points.  This method requires strict criteria for the seed point 

selection which can result in large computation time when comparing the surrounding 

pixels to the seed points.   

 An alternative approach is used in the work completed at the University of Putra 

Malaysia24 which subdivides an image initially into arbitrary regions then merges or 

splits the regions based on the chosen criteria.  For this technique, two main algorithms 

are designed; the merging and the splitting algorithm. These work iteratively to satisfy 

the conditions.  The merging algorithm compares different regions which are then 

merged together if they represent the same properties.  The splitting algorithm is used to 

divide large regions, which may not be completely uniform, into smaller regions that 
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share similar properties.  This algorithm begins by representing the entire image as a 

region. It then uses the approach of subdividing the image into successively smaller and 

smaller regions so that, for any region, the chosen criteria is true.  If the sub region does 

not satisfy the given criteria the region will continue to be divided until the criteria is 

satisfied.  If only the splitting algorithm is used then the end result could contain adjacent 

regions with similar properties.  This problem can be solved using the merging algorithm 

in conjunction with splitting algorithm.  The adjacent regions in the portioned image that 

share similar properties can then be merged together.    

After reviewing these methods it is obvious that they have positive aspects as well 

as drawbacks for image segmentation applications.  One obvious drawback is the 

computation time.  This can drastically increase based on the complexity of the image 

and necessity for strict criteria to perform the merging and splitting techniques.    

2.2.4. Connectivity Preserving Relaxation Segmentation Method 

 A newer approach towards image segmentation is the connectivity preserving 

relaxation method or otherwise known as the active contour model.  This method is 

utilized in research regarding active contours for detection and tracking of moving 

targets25.  In this research an active contour, or ‘snake’, starts near an initial contour, or 

spline, then dynamically evolves.  The spline is attracted towards edges of a boundary 

with an effort to minimize an energy cost function.  The contour is initially set 

somewhere near the edge of interest.  It then dynamically evolves and is drawn towards 

the edge of the object.  Therefore, an active contour model is a segmentation method that 

doesn’t depend on a specific shape which makes it applicable to a number of different 

segmentation problems.  Spline curves, however, can represent very complex curves, 

which could add complexity to the shrink and expansion operations.  Other problems that 

snakes present are their inability to move towards objects that are far away from the 

initial spline location. It is also difficult for them to move into boundary indentations.  

Due to the computational cost and disadvantages that can result from this method, it is 

probably not the best solution for a near real time application.  In other applications 

where computational cost is not an issue, this new segmentation method has drastically 

increased in popularity. 
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2.3. Image Segmentation Applications 

 Many different applications of image segmentation have been investigated.  The 

four methods previously described are the main focus of this research.  All of the 

information that was found during this research stage is explained and documented in 

Sections 2.3.1 through 2.3.5.  Each section is segmented into their respective research 

areas, which include a detailed description of the images segmentation methods used. 

2.3.1. Aerospace Related Image Segmentation Applications 

 As mentioned earlier, MV has shown to be a key topic of research for applications 

within the aerospace industry.  For these applications, MV is typically used to eliminate 

or assist the presence of a human operator.  Currently, many different agencies and 

universities are conducting research involving MV applications.  UAVs, such as the 

USAF Predator, use infrared and visible sensors to help detect camouflaged targets, while 

companies like Harsh Environment Applied Technologies Inc. utilize various IR sensors 

to create better night vision systems for soldiers, motorized vehicles, and ships.  The 

principle at hand is to eliminate the necessity of human participation which will reduce 

the need to place a person or crew under harmful or extreme conditions.  This is a key 

reason why research within the aerospace industry has consistently involved UAVs.  MV 

applications will be used to further expand UAV capabilities and better approximate a 

manned aircraft as they continue to be an essential research topic within the aerospace 

industry.    

 Traditionally, UAVs are used for missions in military settings that pose high 

human risk and significance.  The trend of reducing human involvement has now become 

appealing to civil and commercial users as well.  For example, in 2005, researchers at 

National Oceanographic & Atmospheric Administration flew a UAV into the tropical 

storm Ophelia.  Since the use of UAVs is virtually risk-free, it can be flown in very 

dangerous and extreme conditions where a manned aircraft could not perform as 

efficiently.  The U.S. Forest Service is exploring UAV technology as well.  In October of 

2007, in conjunction with NASA, they flew a UAV over a 40,200 acre fire near Palm 

Springs, California.  For 16 hours the unmanned vehicle circled the area while beaming 

down images that are used to determine the perimeter of the fire.  Manned flights are 

 17



much less efficient for the fact that they have to terminate flights when the pilot is 

fatigued, hungry, or for other reasons.  With the UAV applications previously described, 

as well as with many other applications, it is essential that they have the ability to detect a 

specific target or object in the air or on the ground.  This ability can be accomplished 

with MV, which will drastically increase the longevity of a UAV and its capabilities.  

After conducting an extensive literary review, many engineering applications related to 

this research topic are investigated.  Each of the applications are explained in this section 

and are separated into their respective research areas.            

 Airborne surveillance has proven to be very important to a wide range of 

occupations, such as boarder patrol, crop control, wildfire detection, and resource 

investigation.  A topic under investigation at the University of South Florida (USF) 

involves aerial surveillance, which represents a MV application that will interpret data 

acquired by a UAV onboard camera26.  The objective of this research was to design a MV 

system that would be able to interpret data detected by a MV sensor.  Once the data is 

interpreted, this processes a system decision to send an alarm while circling the target 

location. This research involves components of image processing such as noise reduction 

and feature extraction.  Images acquired by the MV sensor are then subjected to gauss 

filtering for noise reduction purposes.  The selection of the noise filter is based on its 

ability to remove noise without significant information loss.  When using a Gaussian 

filter, the size of the filter is an important factor considering performance requirements.  

A larger filter (i.e.: 7x7) would offer a more accurate representation of the Gaussian 

function, but would include additional computational cost and, therefore, more 

processing time.  The use of a smaller filter would reduce the number of computations, 

but would sacrifice accuracy of the Gaussian bell.  Some other filters commonly used in 

image processing include mode and median filters.   

 The next stage of research at USF is a feature extraction process, which is 

involved in the surveillance process.  For this process a region-based technique is used, 

which partitions the image into various regions.  The size and mean intensity for each of 

these regions are selected as features.  The features are then extracted from the image by 

using the pixel-based method known as thresholding.  The process of thresholding 

converts the initial gray-scale image into a binary image in which objects appear as black 
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figures on a white background or vise versa, according to the threshold value.  The areas 

with a larger grayscale intensity value are then extracted for image processing. 

 Other research related to reconnaissance, surveillance, and target acquisition 

using small UAVs integrated with MV has also been completed at Drexel27.  The concept 

in this research emphasizes on the ability to fly autonomously in a near-Earth 

environment in scenarios where GPS data and communications are not available.  This 

requires sensors that will allow the vehicle to compensate for the loss of signal.  The 

researchers at Drexel address this issue by designing a test rig that can capture the 

performance characteristics of a non-flying mockup of a UAV shown in  

  
Figure 2.1:  Experimental UAV Test Rig 

The mockup UAV is retrofitted with collision avoidance sensors.  In this set up the sensor 

data is inputted into a mathematical model of the aircraft.  The aircraft is then moved by 

the 6 degrees of freedom gantry, using model reference adaptive control.  The concept is 

to expose small UAV performance to small places like forests and buildings.  The 

controller structure is used to control the gantry motors, which ultimately controls the 

position of the mockup UAV.  State feedback and proportional integral and derivative 

(PID) controllers are successfully implemented to position the gantry arm; to control the 

gantry motor in the z-axis, integral control is necessary to implement gravity 

compensation.  To demonstrate the hardware in the loop test, a collision avoidance 

algorithm is designed and tested moving the gantry around the small environment using 

inputs from the sensors.  The controller gives a new target position until it is safe to move 

back to the original position.  Within the small environment the mockup UAV is 

equipped with an infrared sensor (IR) to determine distances from objects.  From the 

analyzed test results it is concluded that the IR sensor responds differently to colors and 
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textures of objects.  A problem with using just an IR sensor is the difficulty in 

distinguishing objects that are similar in shape and color.  Using a similar collision 

avoidance algorithm, the full scale UAV should be equipped with more efficient sensors 

such as a MV camera. 

 There has also been a significant amount of research focused on autonomous 

formation flight which has been performed at WVU28,29.  Additional formation flight 

research was also conducted at Georgia Institute of Technology30, ,31 32.  Autonomous 

aircraft flight has proven to be a very important research topic for the aerospace industry.  

This research focuses on techniques to achieve robustness to specific areas of 

aerodynamic interference.  One specific issue that is addressed in formation flight is the 

loss of communications.  In other particular applications active radio communications 

should be avoided entirely.  In these cases when there is a break of communications 

between autonomous aircraft, it is impossible for the follower aircraft to know the 

position of itself with respect to the leader aircraft.  An alternative method for radio 

communications in formation flight would be an aircraft vision system that would be able 

to interpret the leader aircraft’s position and attitude from measured data.  The research 

conducted by WVU focuses on a MV system that is used to detect five markers that are 

placed on the leader aircraft33.  In this research, the follower aircraft identifies and detects 

the markers on the leader aircraft using MV then, using pose estimation algorithms, the 

relative displacement between each aircraft is estimated.  Once the position and attitude 

of the leader aircraft is determined with respect to the follower aircraft, formation control 

algorithms are used to allow the follower aircraft to emulate the flight of the leader 

aircraft.  

 Formulation flight researched at the Georgia Institute of Technology focuses on 

performing vision-based formation flight control of multiple aircraft when obstacles are 

present30, 31.  This research also addresses the challenge of minimizing communication 

between the aircraft.  The approach to this research is to observe the leaders state of 

motion through MV techniques.  The vision information is then utilized through two 

different techniques for formation control. One method uses the Extended Kalman filter 

(EKF) to estimate the relative velocity and position for aircraft guidance.  The second 

method is based on directly utilizing the vision measurements obtained through MV. This 
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is done by regulating the image position to be in the center of the image plane and by 

regulating the size of the target image.  This solution for maintaining formation flight 

cannot be separated from obstacle avoidance.  The controller design for obstacle 

avoidance in this research is based on a reactive “steer towards silhouette edge” 

approach.  In this research there are several approaches for vision-based formation 

control none of which required communication between aircraft. 

 Researchers at the University of California at Berkeley implement another 

example of vision-based control34.  This research is based on the vision-based control of a 

small UAV following the path of a road.  The UAV detects specific features of the road 

in order to provide the necessary inputs to the control algorithms.  This allows the UAV 

to autonomously follow the road.  Real time road detection is an essential part of this 

research, which is achieved by applying various MV techniques such as the HT.  In this 

effort, various pre-processing techniques along with HT are used to detect the road.  After 

the pre-processing stage is completed and a rough location of the road is detected, lane 

markings on the road are then searched for within the image.  Once the lane markings are 

found, HT is used to test for multiple candidate lanes.  The HT, along with a robust line 

fitting algorithm, is used to determine the center lane marking of the road.  Once the road 

detection process is completed further research is conducted towards developing lateral 

control strategies which allow the UAV to autonomously follow the road.  The first 

strategy of this vision-based control uses direct PID feedback between the lateral error 

and the commanded turning angle.  The second and third strategies both use nonlinear 

controllers to aim the aircraft at a point along the road.  The third strategy is also used to 

control the lateral motion of the aircraft with respect to the road.  Keeping the velocity of 

the aircraft constant, the controller commands the aircraft to aim at a desired point along 

the road.  The control signal is determined by creating a geometric relationship between 

the aircraft velocity and position.  The vision-based control systems described in this 

research are intended for testing on a UAV test bed, but simulations are initially 

performed to complete tests of the vision system and control algorithms under ideal 

conditions.  The road detection algorithm using HT is implemented and is able to detect 

ninety percent of the road images presented to the vision system. During the simulation, 

using the velocity ratio controller, the aircraft successfully tracks the road for 2.5 km.  
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This is an example of how HT can be useful in aerospace applications for feature 

detection.            

 Experimental MV tests have also focused on ‘runway detection,’ which is 

displayed from previous work completed at WVU.  In this research MV is used to detect 

lines on a runway during aircraft landing and takeoff.  To complete this task it is 

important to design an algorithm to perform in a real-time or near real-time manner.  For 

this criteria, the software environment, algorithms used, and complexity of the filtering 

process are influenced.  In conclusion to this research effort it is found that the pre-

processing stage had the greatest effect on the processing time and must be taken into 

account when choosing the image filtering methods.   A second problem developed when 

using a line detection algorithm.  It is obvious that other items in an image may contain 

prominent lines, which will interfere with the results of the main line detection algorithm.  

To resolve these issues there is three essential processes performed.  These image 

processing functions are labeled as edge detection, morphological opening, and HT.  Two 

main types of edge detection methods studied include Gradient Based and Laplacian 

Based methods.  These detection methods are used to detect the edges or straight lines on 

a runway.  Edge detection has proven to be an important image processing tool, but 

yields inconsistent and unreliable results caused from background noise.  To solve this 

problem, the line-detecting algorithm known as HT is then used in conjunction with an 

edge detection routine. Therefore, edge detection is used as a low level filtering technique 

and HT is used as the main line detection algorithm.   

 The next image processing tool used in this research is known as morphology, 

which is considered part of the pre-processing stage.  Morphology includes eight image 

processing operations that filter an image based on structural elements.  In this research 

only two of these operations are used, morphological dilation and morphological erosion.  

This combination is used for noise removal and to find certain shapes in the image that 

are defined by the structural element. 

 Morphological operations are further explored in research at Ghent University 

with grayscale image interpolation35.  This research designed an algorithm to detect and 

eliminate jagged edges in magnified images. This task is accomplished utilizing 

mathematical morphological techniques such as morphological opening and the hit-miss 
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transform.  Morphological opening is an image processing technique based on two basic 

operators, dilation and erosion.  Dilation is used to expand objects into the background 

and is able to eliminate “salt” noise within an object.  Erosion is used to shrink objects 

and is able to eliminate “pepper” noise.  When an image is magnified, the number of 

pixels the image covers is increased, allowing for finer detail, not seen in the original 

image.  This magnification process also introduces jagged edges to the image boundaries, 

which make it harder to distinguish the true edges.  The hit-miss transform is a 

morphological operator used in the algorithm along with morphological opening.  The 

hit-miss transform can be used to search an image for particular characteristics of a shape 

or other particular image features.  In this algorithm, the hit-miss transform is used to 

detect corners of a binary image.  A problem arose when using the hit-miss transform on 

grayscale images.  The classification of foreground and background pixels is not 

straightforward, which made the detection of corners more difficult.  To account for this, 

the binarization method is completed only for the pixels that are covered by a specific 

part of an image.  The pixels are classified according to a threshold value.   

 The algorithm used in the grayscale image, interpolation can be broken into four 

steps.  The first step is pixel replication; the image is magnified by a certain degree, 

which resulted in jagged edges.  The next step is corner detection, which uses the hit-miss 

transform to determine the positions of corner pixels, both real and false (due to jagged 

edges).  Once the positions of the corners are determined, the next step is to validate the 

corners as either real or false.  The corner pixels created from a jagged edge are labeled 

as false corners and the real corner pixels of the image are retained.  The final step is 

labeled as pixel swapping, which swaps the binary pixel values, classified as false 

corners, from 0 to 1 or vise versa.  This operation is repeated iteratively until the edge of 

the image is enhanced and smoothed creating a more refined edge. 

 A current application of MV being used by the military and other operators 

around the world is the forward-looking infrared radar (FLIR).  The FLIR imaging 

systems are used to perform missions as diverse as search and rescue, border patrol, and 

other reconnaissance missions.  These mission profiles require a high performance 

imaging system that can be operated by a variety of airborne platforms.  One type of 

FLIR used by the U.S. military is the FLIR Star SARIRETM HD36.  This system 
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incorporated with MV technology, will allow UAVs to track, range find, and locate 

targets at high resolutions with a 25 kilometer range.  This type of performance makes it 

extremely useful with airborne platforms.  This technology offers wide-area surveillance 

and over the horizon detection and tracking that otherwise may go undetected by surface 

based sensors.  This is a prime example of the capabilities of MV with airborne 

platforms, which will continue to increase in popularity as technology advances. 

2.3.2. Electrical and Computer Engineering 

In addition to aerospace engineering, other applications of MV are found in areas 

such as electrical and computer engineering.  Examples in these areas focus on enhanced 

edge based segmentation methods to perform different image processing techniques.   

 The robustness of the HT and its usefulness in detecting circular features in an 

edge-enhanced image has, again, been proven.  A technique at the department of 

electronic engineering at the City Polytechnic of Hong Kong is aimed at improving the 

efficiency of circle detection using HT and to reduce the size its accumulator array37.  

This approach focuses on approximating a circular image with a set of straight line 

segments.  Based on this technique, only a two dimensional (2-D) accumulator array is 

necessary.  This path is chosen because the HT is a robust technique mainly used for 

straight line detection within edge enhanced images; using the HT to detect circular 

images can be a time costly operation depending on the circumstances.  The 

implementation of this method for circle detection is proven to have a shorter processing 

time, use less memory, and perform more efficiently.  In this designed method a circular 

object is represented by four sets of vector pairs.  The corresponding “vertex” position of 

the circle is calculated using the HT for line segment patterns and the results are 

accumulated in a 2-D array.  The accumulator array is then used to estimate the presence 

and location of the local peaks, which will determine the location of the vertices of the 

corresponding circles.  This research shows that the proposed algorithm for circle 

detection gives satisfactory results in noisy environments and determines the location of 

partial circles. 

Another application of HT for circle detection is shown in the work completed at 

Hunan University38.  This research proves how the GHT for circle detection can be 
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enhanced to improve the detection time and detection rate.  Their proposed method 

involves an adaptive randomized HT algorithm.  In this algorithm a moving window is 

defined that moves over the entire image iteratively.  Over each window HT is used to 

perform circle detection.  Therefore, the original detection task for a large edge image is 

broken into a number of detection tasks for smaller sub-images.  This method is 

introduced to suppress the effect of noise on the detection precision and increase the 

detection rate.  Two issues to consider when performing this algorithm are the size of the 

moving window and the length of the moving step for the window.  If these parameters 

are chosen correctly then the proposed algorithm is found to produce a faster running 

speed and a higher detection rate. 

2.3.3. Manufacturing Industry 

Current technology has limited MV to specific areas of manufacturing such as 

inspecting products on a conveyor belt.  This entails the use of MV for a variety of visual 

inspection applications identified as:  

• identification; 

• recognition; 

• gauging; 

• flaw detection. 

Industry has traditionally relied on manual control to manage these production processes, 

which require humans to visually inspect and control the entire manufacturing procedure.  

However, the manufacturing industry can be quite tedious for a human as it requires 

repetitious work for long periods of time.   With this in mind, it is known that humans 

tend to be easily affected by distractions, boredom, and restlessness.  These traits can 

affect the overall quality and reliability of human workers within the manufacturing 

industry.  Therefore; MV is favored in this field of work because it offers several 

advantages over human operators.  These advantages include: non contact operation, high 

speed inspection, long term continuous inspection, consistency and accuracy, and cost 

reduction.  MV technology has begun to aide manufactures by performing a variety of 

important functions which have diminished the economic disadvantages associated with 

employing human inspectors.  
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 Applications of MV are often used in the food industry.  A typical application is 

displayed in the assessment of fruit quality39.  Many inspection systems in the food 

industry utilize some type of camera system to categorize their product.  In this case an 

industry has to deal with large quantities of citrus harvested every year, which has to be 

classified depending on their quality.  To complete this task, the quality of the fruit is 

classified using MV systems to analyze their external features such as the color, size, and 

skin defects.  This type of system will eliminate the necessity of using humans to classify 

the fruit manually, which will allow for a much faster inspection process.  This MV 

system segments the colorful fruit from the background by using a threshold technique on 

the digital image.  The next step consists of using a boundary extractor to detect the 

boundary of each piece of fruit in the scene.  The performance of this system is not 

perfect due to bad positioning of fruit which can occur when a boundary in the image 

belongs to two or more fruit.  For this reason, a specific algorithm is used to detect this 

case of bad positioning and separate the individual fruit by detecting the contact points 

between the fruit edge boundaries.  Once the individual fruits are segmented, the fruit 

surface is then inspected, which segments the blemishes on the surface from the rest of 

the image.  Fruit with large blemishes are then sorted from the batch. 

 In another manufacturing application the use of HT is very attractive when the 

detection of specific shapes or straight lines is necessary.  In particular, this MV 

technique is utilized for quality inspection of rice seeds40.  Combined with some image 

pre-processing techniques, HT accurately separates the rice seeds into three categories 

based on their distinguishing characteristics.  The separation into their respective 

categories is based on the location and number of Hough peaks on each seed.  This 

becomes a useful tool for external feature measurement and another reason why 

automatic inspection using MV can improve the quality of the product, reduce the 

necessity of human operation, and eliminate flawed manual inspections. 

2.3.4. Medicine 

As stated previously, MV is helping manufacturers maintain efficient 

productivity, but that’s not the end of its relationship with inspection systems.  MV is 

being used to track and inspect medical devices as well as improve the capabilities of 
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digital imaging systems.  Within the medical industry, MV is being used for three types 

of applications:  

• automated product inspection; 

• imaging; 

• product tracking. 

Imaging has proven to be an important diagnostic tool within the medical field and is 

used in many medical procedures.  Medical imaging systems are among the largest 

application areas for MV. These systems consist of magnetic resonance imaging (MRI), 

computed tomography (CT), and digital x-rays.  Advances in this area of medicine have 

proven to be very useful for improving medical procedures used to reveal, diagnose, or 

examine the human body.  MV is not exclusively used for diagnostic procedures, but has 

also become very important for people with vision problems where specific MV 

techniques are being used to enhance their sight.  It is evident that there is a great deal of 

research being performed, utilizing MV applications to improve the medical industry. 

Using MV to aid in image recognition for the visually impaired is becoming a 

very popular topic of research41.  In a recent paper a method is designed that utilizes MV 

techniques to read and interpret visual displays that would otherwise be difficult to 

interpret for visually impaired people.  This research focuses on text detection using a 

threshold method to distinguish the text from the background, which allows the text to be 

converted to a binary form.  While conducting this research effort some error is found 

when there is bad illumination in the original image causing some of the pixels to fall 

below the threshold value.  This is solved by performing two iterations of erosion on the 

new image.  Once the text is detected the next stage performs character recognition.  In 

this process the extracted image is compared to a template of the character to be matched.  

The basic approach of this method can lead to false interpretations because of the range 

of variability between characters.  To account for this, it is defined what characters are 

allowed in each region of the image; the recognition module is provided with a set of 

templates to account for the variability.  This is yet another example of thresholding 

being used as a pre-processing method to a more complex processing technique.    

 In nuclear medicine brain scanning is one of the most widely used procedures.  

This procedure is useful for detecting brain abnormities such as tumors, lesions, or head 
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trauma.  Research has been completed that utilizes MV techniques to perform these kinds 

of procedures42.  When using a MV system for brain scanning the initial task is to 

segment the brain from the image.  In this research this is completed using the technique 

of variable thresholding and region classification.  Thresholding is used to filter out the 

brain from the background.  Once this is completed a more advanced region based 

technique is used to classify the areas within the brain.  Once the brain regions are 

identified the next step is to identify any abnormities within the brain.  This procedure is 

very similar as the one used to identify the brain. Therefore; with some modifications, 

similar techniques are used to design an algorithm to locate the abnormities within the 

brain tissue.  A problem occurs when detecting tumors that lie along the boundary of the 

brain, which tend to result in a false boundary extraction using only a thresholding 

technique.  To solve this problem a pattern recognition technique is used that compares 

the boundary segments of normal brain images to those of patients with tumors.  In this 

research thresholding is used as a pre-processing technique allowing more advanced 

techniques to be utilized to process the image. 

The importance of using MV in medical imaging is also displayed in research 

completed at St. Mary’s University. In this research effort MV is utilized by segmenting a 

moving organ in a CT scan43.  A number of image segmentation techniques are used and 

compared to properly segment features within the scan.  It is determined that segmenting 

images from a CT scan can be difficult due to the fact that the organs do not have 

uniform density and there can be large amounts of noise caused from the moving organs. 

The techniques used in this research for image segmentation are classified as:  

thresholding, pixel classification, and edge-based approaches.  It is made apparent that 

each segmentation method has its advantage over the other.  The pixel classification 

method known as the K-Means Clustering algorithm is proven to be more effective in 

speed and in detecting small variations in pixel intensity values within the different 

regions of an organ. 

 Similar to other applications of MV, HT also plays an important role within 

medical imaging; this is yet another example which displays its versatility.  Research 

completed at Texas Tech University uses an approached based on the GHT to develop a 

robust segmentation technique to locate the cervical vertebrae within x-ray images44.  To 
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achieve good success with this segmentation approach it depends on three parameters:  

accumulator votes, gradient information, and template representation.  Since x-ray 

images typically do not represent clear edges within the image it is necessary to perform 

Gaussian filtering before edge detection if performed on the image.  Once this is 

completed the next step is to choose a template representation of the target image.  When 

using HT this is a critical step to obtain the necessary number of votes in the accumulator 

matrix.  The task of segmenting the cervical vertebrae with GHT is completed using a 

number of templates with different vertebra orientations.  This makes the process very 

robust for the fact that bone growth can vary drastically from person to person.  The HT 

approach is very useful for detecting features with unique characteristics.  Using MV for 

vertebra inspection is likely to reduce error resulting from a physician’s diagnosis 

process. 

 Another example of the HT being used in the medical field is shown from the 

research completed in China which uses HT for iris segmentation45.  For iris recognition 

both the inner and outer boundary of the iris can be classified as circles, therefore; the 

circular HT is utilized to detect these boundaries.  It is determined that when the quantity 

of data to analyze is large, the HT method is difficult to use in a near real-time manner. 

To reduce the amount of data, a thresholding technique is used to eliminate unwanted 

features in the image.  This will reduce the computation time for the HT algorithm by 

reducing the amount of edge points in the image.  This is yet another application of HT 

that shows that this technique has high accuracy and is a good method to detect object 

edges. 

2.3.5. Agriculture Field 

 The agriculture industry is another field that utilizes MV technology in many 

applications.  One particular application is shown by research completed at the University 

of Illinois.  In this work the K-Means Clustering algorithm is used to detect weeds in a 

soybean field46.  To accomplish this task a MV system is employed on an herbicide 

spraying machine.  This machine is then used to scan the soil rows between the soybean 

rows for specific weeds.  The spraying machine applies MV algorithms to the captured 

images from the camera to distinguish particular plants.   In each captured image a K-
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means cluster analysis is used to associate individual pixels in the image with specific 

classes based on their characteristics.  Each weed that is detected will then be sprayed 

with the herbicide and its location will be stored for later evaluation.  Once the plant is 

classified as a weed and sprayed by the machine, it can later be evaluated to determine if 

it is killed or not.  This process eliminates the necessity of the farmer to manually 

evaluate the soybean fields saving time, money, and energy.  The results have proven that 

MV can be utilized to increase time efficiency and cost effectiveness when large farm 

lands and crops need to be evaluated. 
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Chapter 3. Theoretical Background 

3.1. Overview of Theoretical Background 

 The theoretical approach to this research is broken down into two stages.  The 

first stage involves the image processing methods used in this research, which include 

two distinctive layers.  These layers are described as the pre-processing stage and the 

higher level processing methods.  The pre-processing stage consists of low to medium 

level image processing functions which are used to help reach the overall goal of target 

recognition and tracking.  Without the exploitation of these functions it would make it 

impossible to obtain results from the higher level methods.  The significance and theory 

behind each of these functions will be explained in detail in Section 3.2.  The second 

layer of the first stage is categorized as the higher level functions used to complete the 

main task of image recognition.  The main algorithms and methods used in this layer will 

be explained in Section 3.3.  The second stage of this research involves the target 

tracking problem.  This stage utilizes the results obtained from the first stage to produce 

the necessary input to achieve continuously target tracking. The methods and techniques 

necessary to complete this task will be discussed in Section 3.4. 

3.2. Image Processing Functions 

 As discussed above, this section will explain the pre-processing methods used in 

the first layer of the image processing stage, which include the image acquisition process 

and enhancements methods.  To obtain a full understanding of the methods in the first 

layer, it is necessary to provide an explanation of the simplest and most appealing areas 

of digital image processing: the representation and definition of a digital image.  This is 

discussed in Sections 3.2.1 and 3.2.2, which cover the coordinate conventions used 

throughout this research and the definition of a digital image, respectively.  Section 3.2.3 

defines the methods used for digital image enhancement.  This process is useful for 

enhancing specific image features in the target detection process.  Finally, Section 3.2.4 

will discuss the theory and importance of thresholding within digital image processing, 

which is used in the edge and target detection methods. 
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3.3. Coordinate Convention 

 The overall objective of a MV system is to analyze digital images measured from 

a vision sensor.  To accomplish this goal it is necessary to convert the sensed data into a 

digital form.  This conversion process results in a quantized matrix consisting of real 

numbers.  This data matrix, or digital image, will be represented with the same coordinate 

convention throughout this research.  To explain the conversion process, it is first 

assumed that a digital image, f, is sampled and is represented using the nomenclature, 

f(x,y).  The resulting digital image is the a matrix with M rows and N columns where 

integer values represent each spatial (plane) coordinate, (x,y).  For example, the value of 

the coordinate located at the origin is (1,1), and (2,1) is used to represent the second 

coordinate along the first row.  Figure 3.1 displays the coordinate convention used 

throughout this research. 
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Figure 3.1:  Coordinate Convention for Image Data Matrix 

 The coordinate system in Figure 3.1 will result in the following representation for 

a digital image: 
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The right side of the equation represents the digital image, where x and y are discrete 

integers that fall between the ranges:  x = [1,M] and y = [1,N]. Each spatial coordinate in 

the digital image then represents a pixel or image element that is categorized as either 

color or intensity level. 

3.3.1. Image Definition 

The image obtained from the MV camera is a color image, which is represented 

by three components corresponding to the red, green, and blue components; for this 

reason it is referred to as an RGB color image.  For this reason, an RGB color image has 

a quantized representation of an MxNx3 array of color pixels, where each pixel value is a 

triplet at a specific location in the digital image.  To better understand this representation, 

this type of digital image can be compared to a combination of three gray scale images 

stacked on top of each other, that when fed into the red, green, and blue inputs of a color 

display result in a color image displayed on the screen.  The range of values that 

represent each pixel value is determined by the data class of the image.   

Converting between data classes is a frequent operation when using image 

processing operations, which is completed several times in the MV software.  If an RGB 

image is of class double then the range of values is [0,1].  For RGB images of class uint8 

(8-bit) or uint16 (16-bit) the range of values is [0, 255] and [0, 65535], respectively.  

When using the standard 8-bit case to represent a RGB color image it has 16.8 million 

possible colors.  Other possible representations include 32-bit and 64-bit, which result in 

a larger color range for the image representation.  The data classes used throughout this 

research are double and 8-bit. An example of an RGB image of class double is displayed 

in Figure 3.2.  This type of image definition is used in Matlab® software environment. 
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Figure 3.2:  RGB Color Image 

 An RGB color image can sometimes be referred to as an indexed image, which 

consists of a data matrix of integers as well as a colormap matrix.  The colormap matrix 

is an mx3 array of class double where m is the number of defining colors.  Each row of 

the colormap specifies the red, green, and blue components used in a specific pixel color 

in the image.  This representation of an RGB color image is usually not displayed unless 

a colormap is defined.  Regardless if the colormap is defined or not, this image 

representation always occurs.  This method is useful when it is necessary to represent 

different variations of a certain color.  For example, an infinite number of shade 

variations can be used to represent one color, which can then be used to construct an 

image.  The colormap concept is shown in Figure 3.3. 
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Figure 3.3:  Colormap Representation for RGB Image

The input image type used in the image processing software is referred to as a 

grayscale image, which is a data matrix that represents brightness intensities within a 

range of pixel values according to the data class.  In other words, for an image of class 

double the value of f at any spatial coordinate will have values ranging between 0 and 1 

where an intensity of 0 represents black and an intensity value of 1 represents white.  

When comparing grayscale images to RGB color images, a grayscale image is not 

represented by a colormap.  This is true because it is represented by a single data matrix 

where each element of the matrix corresponds to one pixel value, unlike a color image 

where each element corresponds to three pixel values.  A grayscale image can be 

compared to a single color component that makes up a color image, with the exception 

that the image is not represented by color but a brightness level from black to white.  

When discussing similarities between the two types of images, the discrete representation 

of the images has no limits except those set by the image processing software.  An 

example of a grayscale image is shown in Figure 3.4.  
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Figure 3.4:  Intensity Image Construction 

3.3.2. Intensity Transformation 

Intensity transformation methods are used to directly manipulate the pixels in the 

spatial domain.  The spatial domain techniques discussed in this section are represented 

by Equation (3.2) 47: 

 ( ) ( )[ ]yxfTyxg ,, =  (3.2)

Where f(x,y) is the input image, T is the operator that is performed on the input image, 

and g(x,y) is the processed output image.  Several gray-level intensity transformation 

methods are analyzed during this research.  These methods include:   

• logarithmic transformation; 

• contrast-stretching transformation; 

• negative transformation; 

• gamma correction. 

For this particular research effort, the best results are obtained when contrast-stretching 

transformation is applied to the digital images.  This operation is useful in this research to 

help illuminate specific features on the target. 

 Contrast-stretching transformation is a piecewise linear function used for dynamic 

range manipulation for each pixel value47.  This transformation method is commonly 

used for low-contrast images resulting from poor illumination, an inadequate dynamic 
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range in the sensor, or an incorrect lens setting.  In this research, this method is utilized to 

manipulate the range of gray level pixel values in the digital image to illuminate a 

specific feature on the target.  The typical transformation used for contrast stretching is 

shown in Figure 3.5.  The locations of the points (r1,s1) and (r2,s2) control the output of 

the transformation function. 

 
Figure 3.5:  Contrast-Stretching Transformation Function 

The function shown in the figure above is represented using the notation expressed in 

Equation (3.3)48.  This representation is expressed in equation shown below: 
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where L represents the number of input pixels, r represents the intensities of the input 

image, E controls the slope of the function, and s is the intensity value of the output 

image.  This equation is implemented on each pixel in the digital image; it compresses 

the input values lower than m into a narrow range of dark levels and compresses the input 

values higher than m into a narrow range of bright levels in the output image.   The 

illustration shown in Figure 3.6 shows an example of an input and output image when 

Equation (3.3) is applied to the digital image.  The input image shown in Figure 3.6a is a 

typical intensity image.  The result of applying contrast-stretching to the digital image is 

then shown in Figure 3.6b.  
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(a) Original Low Contrast Image 

 
(b) Result of Contrast-Stretching 

Figure 3.6:  Example of Contrast-Stretching Transformation 

3.3.3. Color Level Conversion 

Color level conversion is described as the process of converting an RGB image 

into an intensity image.  This process results in an MxNx3 data matrix transformed into 

an MxNx1 data matrix, which has its obvious advantages.  The first noticeable advantage 

is the reduced complexity of an image.  The size of the data matrix is drastically reduced 

as a result of this conversion process; the representation of an intensity image is a third of 

the amount of data used to represent an RGB image.    

This image conversion process is completed using the Matlab® software 

environment by the function, rgbtogray, which converts RGB colors to grayscale values 

by forming a weighted sum of the R, G, and B components of the image.  This process is 

represented by Equation (3.4)49 below: 
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where the R, G, and B components are the color level values for each respective pixel in 

the original color image.  The class of the output intensity image will match that of the 

input RGB image. So, the pixel values of the output image will be represented by the 

same range of values used in the input image.  An example of this process is shown in 
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Figure 3.7.  The image shown in Figure 3.7a is the input image represented by a three-

dimensional data matrix, one for each color component.  The image shown in Figure 3.7b 

is the output image which is now represented by a one-dimensional data matrix. 

 
(a)  RGB Color Image 

 
(b) Intensity Image 

Figure 3.7:  Example of Color Level Conversion

3.3.4. Thresholding 

Thresholding is an image segmentation technique that is very useful for filtering 

images from homogenous features.  This technique is an important feature for many 

different image processing methods and algorithms.  The most common application of 

thresholding is its utilization when extracting objects from the background of an image 

where distinctive modes separate the foreground from the background.  In this case a 

threshold value, T, can be defined where any pixel location, (x,y), for which f(x,y) > T is 

called a foreground point; otherwise, the pixel is labeled as a background point.  

Thresholding also plays an important role in edge detection methods which will be 

explained later in this chapter.   

For grayscale images the threshold operation is effective in extracting objects 

which have a distinct ranges or patterns of grey level values.  Another important 

application of thresholding, which is utilized in this research, is its use to reduce the 

amount of noise in the image by eliminating undesired image features, which enhances 

the signal to noise ratio.  Reducing the noise in an image from this simple technique 

drastically decreases the computation time for the higher level image processing methods.          

The mathematical representation of thresholding is the best way to obtain a full 

understanding of this segmentation process.  Once the mathematical representation is 
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understood, the operation can easily be applied to any image.  For example, if a given 

image, f,  has the gray level range [I1,Ik],  and t is any gray level value between I1 and Ik, 

the result of thresholding the image at t is the binary image represented by ft defined by 

Equation (3.5). 
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This procedure is used to eliminate the noise in the image that is represented by gray 

level values below the threshold value, t, which will obtain a new pixel value of 0.  The 

image pixels that are of interest will be represented by a pixel value of 1, producing a 

binary image.  A visual representation of this process is shown in Figure 3.8.  Figure 3.8a 

represents an 8-bit grayscale image with corresponding pixel intensity values.  The 

threshold, t, for this particular example is chosen to be the pixel intensity value of 106. 

Therefore, following the mathematical representation in Equation (3.5), the resulting 

segmented image is shown in Figure 3.8b.  

 
(a) Original Image 

 
(b) Segmented Image 

Figure 3.8:  Example of Thresholding Process of Intensity Values 

3.3.5. Sobel Edge Detector 

The Sobel edge detection method is utilized in this research effort which has 

proven to be a common method for detecting discontinuities in gray level pixel values.  

This segmentation method is formally introduced in Section 2.2.1.  The focus of this 

section is based on the theory behind this particular method.  Some concepts previously 

introduced in the earlier section will be briefly stated again to be able to establish 

connection.   
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In many cases edge detection operators are used in conjunction with other image 

processing techniques, which is why they are so popular in image processing 

applications.  There are several ways to perform edge detection, but the majority of the 

methods are classified into two categories known as the gradient method and Laplacian 

method.  Gradient methods can further be broken down into specific edge detection 

operators known as the Roberts, Prewitt, and Sobel.  Each of these gradient methods are 

used to approximate the pixel intensity gradient level of an image, f(x,y), at each pixel 

location.  The difference recognized with each operator is evident in their respective 

convolution masks, which will be explained later in this section.  The implementation of 

each operator is used to determine where edges exist in images, which are areas with 

strong intensity contrasts.   

The Laplacian method, unlike the gradient method, is represented by one operator 

only, known as the Canny edge detection operator.  This method for edge detection is 

generally not used in its original form.  As a method that calculates the second-order 

derivative of the image, which yields a double-edge image, it is usually very sensitive to 

noise and it is unable to calculate edge direction.  This method is commonly combined 

with Gaussian smoothing to reduce the amount of noise, which is why it is sometimes 

referred to as the Laplacian of a Gaussian.  The Canny edge detection operator is then 

utilized to determine the location of the edges via zero-crossing of the second derivative 

of the Gaussian smoothed image. 

As previously stated, the Sobel operator is classified as a gradient method for 

edge detection.  A gradient based method is used to determine the first-order derivative of 

a digital image, which can be approximated using the Sobel operator.  The gradient of a 

pixel located in a digital image will have the representation shown in Equation (3.6). 
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The important value used in the edge detection process is the magnitude of Equation 

(3.6), which is represented by Equation (3.7) below. 

 [ ] 2/122)( yx GGfmagF +=∆=∆ (3.7)
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The operation described by Equation (3.7) should be implemented for each pixel in the 

image to determine the maximum rate of increase of f(x,y) per unit distance in the 

direction of ∆f.  To re-state this direction, this operation is used to return edges at the 

points where the gradient of the image is a maximum.  For example, an edge in a digital 

image is represented by a group of pixels whose intensity level decrease and increase as 

the line is approached.  The edge pixels are determined by the pixels that have the peak 

gradient magnitude within the group of pixels.  To begin this process, the partial 

derivatives shown in Equation (3.6) can be approximated for an entire image by applying 

the convolution mask representing the Sobel operator displayed by Equation (3.8)47 and 

Equation (3.9).  Each of these masks is used to calculate the component of the gradient in 

the x-direction, Gx, and component of the gradient in the y-direction, Gy, respectively. 
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This procedure is displayed using a sample 3x3 pixel group shown in Equation (3.10) 

which represents an area of gray level pixels within a digital image. 

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

987

654

321

iii
iii
iii

I  (3.10)

Implementing each of the masks previously explained on the neighborhood of pixels, the 

resulting gradients are calculated using Equation (3.11) and Equation (3.12). 

 ( ) )2(2 321987 iiiiiiGx ++−++= (3.11)

 ( ) )2(2 741963 iiiiiiGx ++−++= (3.12)

This procedure is followed for each edge operator; the only difference lies in their 

respective matrix representations.   

As previously stated, the masks in Equations (3.8) and (3.9), are used to obtain the 

gradient components in the x and y directions.  Computation of the magnitude gradient 

requires that the two components be combined in the manner displayed by Equation 
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(3.7).  However, both masks can be applied to an image to compute the gradient 

components separately.  This is useful in cases where either vertical or horizontal lines 

are the edges of interest.  The procedure for this method is shown below using a gray 

scale picture of a circuit board. 

 
Figure 3.9:  Intensity Image of a Circuit Board 

From this point the Sobel operator is applied to the image to detect the horizontal and 

vertical edges.  Therefore the masks shown in Equations (3.8) and (3.9) are applied to the 

image and the results are shown in Figure 3.10a And Figure 3.10b, respectively. 

 
(a)  Horizontal Edge Detection of Board

 
(b) Vertical Edge Detection of Board

Figure 3.10:  Sobel Edge Detection Process 

These results can then be combined together to determine the gradient magnitude 

matrix following Equation (3.7).  The resulting image is shown in Figure 3.11 where each 

edge is detected in the circuit board.  This is the exact procedure that Matlab® follows 

when the edge detection algorithms are utilized within the software.  A binary image is 

produced by applying a threshold algorithm to filter out insignificant edges. From this 

point forward the background pixels are filtered out and labeled as the black pixels and 
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the edges are then defined by the white pixels.  The sensitivity threshold value is user 

defined where all edges weaker than the threshold value will be ignored. 

 
Figure 3.11:  Result of Sobel Edge Detection Process 

Edge detection is an essential image pre-processing technique utilized in the 

target recognition portion of this research.  In order for this pre-processing technique to 

be effective the outline of the feature must be obvious.       

3.4. Circle Detection 

The detection of circular objects is very important in this research effort, 

acknowledging the fact that circular patterns suggest the existence of important features 

on the target.  To accomplish this task, the method that immediately presents itself is a 

low level edge detection method that involves boundary tracking.  Unfortunately, these 

types of algorithms are insufficiently robust and tend to produce inadequate results.  

Therefore, it is necessary to utilize edge detection algorithms that are able to overcome 

many of these problems.  Two methods that can be effective in this research application 

are the HT method and an estimation technique known as the fast, finding and fitting 

(FFF) algorithm for circle detection50.  These methods are found to be particularly robust 

and efficient.  Both of these techniques are investigated for their achievability of accurate 

circle detection.     

 The HT is considered to be a higher-level image processing technique for edge 

detection.  In most applications, this method is used for line detection but can be used to 

detect arbitrary shapes.  The application of the HT for circle detection appears to be the 

most straightforward use of this technique.  Using this technique in combination with a 

low level edge detection method proves to be a sufficient method for circle detection.  To 
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accomplish this task, HT uses a mathematical transformation in combination with a 

global search method to search for peaks in the output matrix which correspond to the 

center location of circular objects.  Since edges have a nonzero pixel width, noise will 

always affect the process of peak location.   

 Although HT proves to be an adequate method for circle detection, its speed and 

accuracy can be a concerning issue.  Depending on the amount of edge pixels in the input 

image,   significant amounts of time can be spent transforming the image into parameter 

space and locating the global maximum in the data matrix.  When considering these 

issues it is important to have a secondary method for circle detection that is less 

computationally costly.  Based on the research for circle detection methods, the FFF 

algorithm is chosen as the second method for circle detection.  This method uses the 

circle’s geometric symmetry and an estimation theory to estimate locations of circular 

features.  Based on the estimation theory, least-square estimators51 are used to estimate 

the origin and radius of circles within a digital image.  This process along with the HT 

approach will be taken and the results of each solution will be compared. 

3.4.1. Hough Transform 

The HT application is typically used as a line detection method through 

mathematical transformation.  More common line detection methods, such as Sobel edge 

detection, typically identify pixels lying only on edges.  However, the resulting edge 

pixels seldom fully characterize a line because of noise and other reasons that cause the 

intensity levels of an edge feature to be altered.  Therefore, the HT is used as a higher 

level edge detection algorithm to determine meaningful line segments in an image.  

Although the focus of the HT is typically on straight lines it is also be applied to any 

function of the form g(v,c)=0, where v is a vector of coordinates and c is a vector of 

coefficients.  This description is very appealing for circle detection.  For circle detection, 

the principle of this method is to recognize that there are an infinite number of circles that 

pass through a given point.  The HT is used to determine which of these circles pass 

through the greatest number of points.   

 To determine if a number of points lie on the same circle it is necessary to define 

a representation of a circle that enables the comparison between the points, which is the 
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procedure that the HT follows. Considering an edge point, (xi,yi), the HT utilizes the 

general representation of a circle shown in Equation (3.13). 

 ( ) ( ) 222 rbyax =−+−  (3.13)

Infinitely, many circles pass through (xi,yi) while satisfying the equation of a circle for 

varying values of a, b, and r.  Equation (3.13) can be oriented to the form shown in 

Equation (3.14). 

 ( )22 byrxa −−±=  (3.14)

where the ab-plane, or parameter space, is now considered.  Using this orientation the 

value of a is calculated for every possible value of b for a fixed radius, r.  This means the 

shape of a single circle can be represented for a fixed pair of coordinates, (xi,yi).  A 

second point, (xj,yj), also represents its own distinctive circle in the parameter space.   If 

these points lie on the same circle in the image space, then the circle in the parameter 

space intercepts the circle associated with the point (xi,yi) at (a’,b’), where a’ and b’ 

represent the center coordinates of the circle in the image space.  All (x,y) points that 

make up a circle in the image space each represent different circles in the parameter 

space which all intersect at (a’,b’), in theory.  This concept is displayed in Figure 3.12 

where three points taken from the geometric space represent three circles in the parameter 

space shown by the green dashed lines.  This is performed by inputting each (x,y) 

coordinate into Equation (3.14).  The intersection of each circle in Figure 3.12 is shown 

by the red dot, which gives the center coordinates of the circle shown in the geometric 

space.  This is the procedure that the HT follows for circle detection. 
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Figure 3.12:  Hough Transform Process for Circle Detection 

The computational attractiveness of the HT arises from subdividing the parameter 

space into accumulator cells.  The cells combined then represent the accumulator matrix, 

A(i,j,), which is initially set to 0; the size of the matrix depends on the image space 

expected for the location of the center coordinates.  Respectively, for every edge point in 

the (x,y) plane, the parameter a is calculated based on Equation (3.14) in which the 

parameter b is equal to each of the allowed subdivision values on the b-axis.  Each 

calculated value of a is then rounded off to the nearest value on the a-axis.  If a value for 

bi results in a solution for aj then A(i,j) = A(i,j) + 1 to account for the spatial coordinate 

system.  When this procedure is completed for every edge point, then the value in each 

accumulator cell in the accumulator matrix represents the number of points that make up 

the circle in the x-y plane with the defined radius.  The local maxima of the accumulator 

array corresponds to the center location of the detected circle in the image.  This 

algorithm is much easier to implement when the radius of the circle is known prior to the 

detection process.  When this isn’t the case, the accumulator matrix would be represented 

by a three dimensional matrix rather then two dimensions as explained above.  The 

computation time would increase drastically in this situation.   

 Once the list of a and b values for a particular edge point is determined, then the 

circle is plotted in the ab-plane.  This process is continued until the a values calculated, 

from the range of b values, are plotted for each edge pixel in the input image.  Once this 
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task is completed then a threshold function determines the location of peak values in the 

parameter space.  The location of peaks in the parameter space corresponds to possible 

locations of circular origins.  Each circular origin point is represented by its 

corresponding a and b value, which can be directly related to the center point of a circle 

in the image space.  This process for circle detection is better displayed by the flowchart 

representation shown in Figure 3.13. 

 

Plot center location
back in xy-plane

Hough Peaks
Search for maximum peak

based on number of
desired peaks

Input
Binary
Image

Hough Matrix
Display intensity circles

in parameter space

Center Location
Maximum peak location

is the location of the
center for the circle

(ai,bi)

Output
Image

Circle Hough
Transform

(Calculated for all edge
points)

( ) ( )2 2 2x a y b r− + − =

2 2( ) ( ( ) )a x i r y i b= − − −

a b

 
Figure 3.13:  Hough Transform Operations for Circle Detection 

3.4.2. Fast Finding and Fitting Algorithm 

The FFF algorithm is based on an estimation theory which estimates the center 

location of a circle and its radius.  The estimation theory is based off of the least square 

estimator.  This method utilizes a linear regression technique to estimate parameters of a 

circle without leading to a nonlinear system of equations unlike most statistical methods.  

The input image to this algorithm is a binary image consisting of groups of detected edge 

pixels found by implementing low level image processing techniques.  Each group of 
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edge pixels is then inputted into the detection algorithm separately.  Each edge pixel 

within its respective group is then used to estimate a possible center location and radius.  

To determine the location of a circle, the algorithm minimizes the sums of the residual, or 

error, between the predicted and estimated values.  A detailed procedure is described 

below. 

The representation of a circle is shown in Figure 3.14.  The center of the circle is 

located at Po(xo,yo) and the circle has a radius, r,  and n number of edge points.  The edge 

points are represented as Pi(xi,yi). 
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Figure 3.14:  Representation of a Circle 

The circle in Figure 3.14 has the following mathematical representation: 

 ( ) ( ) 222 ryyxx oioi =−+−  (3.15)

or 

 ( ) ( ) 0222 =−−+− ryyxx oioi (3.16)

However, since the edge pixels are determined from pre-processing techniques, in most 

cases the resulting edges are not an exact representation as the one displayed in Figure 

3.14.  This causes the right hand side of Equation (3.16) to not be exactly equal to zero.  

Therefore, using the estimation theory an error function can be represented as follows: 

 ( ) ( )[
2

1

222∑
=

−−+−=
n

i
oioi ryyxxE ] (3.17)
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where n represents the total number of edge points.  To represent the sum of the errors of 

all edge points inputted into the algorithm, the following representation is made: 

 [ ]
2

1

222 22∑
=

+−+−=
n

i
oiioii zyyyxxxE (3.18)

where z is defined below: 

 222 ryxz oo −+=  (3.19)

 The optimum estimation is determined from the group of edge pixels whose error 

function is a minimum.  Thus, the partial derivative of the error function, E, with respect 

to xo, yo, and z have to satisfy the condition shown in Equation (3.20). 
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The condition shown in Equation (3.20) can be rewritten as a matrix equation: AX=D.  

As X is a full rank matrix, the solution to X can be determined by calculating the inverse 

of the A matrix and rewriting the equation as follows:  X=A-1D.  Using Equation (3.20) 

the following representations for the A, D and X matrices are shown below: 
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Using this representation and solving for the X matrix, the resulting center location of the 

proposed circle is estimated at (xo,yo).  Furthermore, the radius can be estimated using 

Equation (3.24) below: 

 zyxr oo −+= 22  (3.24)

Now that a center location and radius are estimated, the mean squared error52 

(MSE) of the estimator, or circle radius, is determined.  This is determined by finding the 

difference in the estimator and the quantity to be estimated.  For this to occur it is 

necessary to know the size of the circle to be detected prior to implementing the 

algorithm.  If this is known, the following procedure can be completed to determine the 

MSE of the estimated circle: 

 ( )[ ]∑
=

−−+−=
n

i
oii ryyxxError

1

2222
0 )( (3.25)

 MSE=
n

Error  (3.26)

 Following the detailed procedure explained above, the FFF algorithm consists of 

the following steps implemented in Matlab® software environment. 

1. Scan the binary image from left to right and top to bottom.  Create a matrix, d, 

containing labels for the connected groups of pixels in the image 

2. For each labeled group of pixels find the (x,y) pixel location for each pixel within 

the group where n is the total number of edge points in the corresponding group.   

3. Compute each component of the A matrix shown in Equation (3.21). 

4. Compute each component of the D matrix shown in Equation (3.22). 

5. Solve for X, the estimated value of the center location: 

X=A-1D 

6. Compute the estimated radius of the circle using Equation (3.24). 

7. Sum the errors for all edge points in the corresponding pixel group. 

8. Calculate the MSE for the corresponding pixel group. 

9. Determine if the MSE and estimated radius values satisfy the threshold values.  
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10. Repeat steps 2 through 9 for each labeled group. 

11. Determine which group of pixels that fall within the requirements has the correct 

radius. 

The FFF algorithm is determined to be a feasible approach towards circular 

feature detection.  Once this method is decided upon, further research is completed to test 

its feasibility for vision control problems.  Computational efficiency of the algorithm is 

directly related to the amount of edge pixels in the image.  As the number of labeled 

groups of pixels increase, the amount of computation time increases because the above 

calculations must be implemented for each edge pixel within each group.  For circle 

detection purposes, the algorithm is very efficient when utilizing the MSE calculation.  

Circular objects are easily detected within the image.  To decrease the computational time 

for this algorithm efficient pre-processing techniques must be utilized to eliminate the 

amount of noise in the image, but at the same time enhance the important features of the 

target. 

3.5. Motor Control Operations 

To resemble the characteristics of a UAV in flight, the experimental setup must 

allow the MV camera to be continuously and controllably positioned over the target once 

it is sensed be the camera.  In this experimental setup, three stepper motors are used to 

control the position of the camera.  This positioning system is a two degree of freedom 

(DoF) system; one motor moves the camera along the y-axis while two separate motors 

are used to move the camera along the x-axis.  To properly control the MV camera in the 

experimental setup, the necessary motor inputs must be obtained.   To acquire these 

inputs, it is necessary to convert the sensed data from the MV camera into usable 

information.  The information obtained from the MV camera is the pixel locations of the 

detected target along the x and y-axis of the image.  Once the spatial coordinate location 

of the target is known in the image frame, the distance along each axis is calculated 

between the center of the image, at pixel location (320,240), to the pixel location of the 

target within the image.  This procedure results in two pixel distances, one distance along 

the x-axis and one along the y-axis of the image.  Figure 3.15 represents the target 

position situation for calculating the pixel distances. 
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Figure 3.15:  Target Position Situation for Calculating Pixel Differences 

Depending upon the location of the target with respect to the center of the image, the 

values may be positive or negative.  The sign convention of the image is shown in Figure 

3.16. 
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Figure 3.16:  Image Sign Convention 

The blue dot in the middle of the image represents the center of the MV camera’s FOV.  

If the target is detected to the left or below the blue dot, the pixel distance will have a 

negative sign convention and vise versa.  This orientation is used to determine the 

direction the MV camera must move.  

 To convert each pixel distance into a usable form of measurement, such as 

meters, it’s necessary to form a relationship between the two forms of measurement.  

This relationship is obtained from the camera specifications.  It’s already known that the 

camera’s FOV at its height above the “ground” level is 0.635 meters wide by 0.486 

meters high.  From this information a linear relationship can be defined which relates the 

pixel dimensions of the image to the dimensions, in meters, of the camera’s FOV; the 

ratio of meters to pixels is approximately 1:1000.  Using this relationship, the pixel 

distance sensed from the MV camera, represented by ∆x and ∆y in Figure 3.15, is 

converted into the distance, in meters, that the camera must travel to position the detected 

target in the center of the camera’s FOV.      

Once this distance is calculated the next step is to convert the linear distance into 

a rotational distance.  This is necessary to determine the number of rotations each motor 

must turn to position the MV camera in the correct location.  This procedure is completed 

using Equation (3.27).   
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where ntotal is the total number of steps for the stepper motor, dp is the pitch diameter of 

the gear attached to each respective motor, D is the distance the MV camera must travel 

along the x and y-axis of the model environment, and nmotor is the number of steps per 

motor revolution.  The stepper motor specifications are explained later in Section 4.1.4; 

the value for the gear pitch diameter is different for the motor system along each 

direction. 

Once the motor inputs, in respect to number of revolutions, are determined the 

speed of each motor is then controlled.  This is determined based on the distance the 

detected target is from the center of the camera’s FOV.  The target position situation for 

determining the motor speeds is shown in Figure 3.17. 
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Figure 3.17:  Image Situation for Speed Control Decisions 

The velocity controller has three settings.  The “fast” speed is experimentally determined 

through a number of simulations.  This is determined as the speed which allows the 

fastest movement of the camera up until the point before the stepper motors begin to slip.  

The “medium” and “slow” speeds are then reduced by a certain percentage of the “fast” 

speed.  The speed is selected based on the position of the target within the image frame.  

If the target is located within the center boundary then the motor speed is set to “slow.” If 
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the target is located outside of the center boundary and within the second largest 

boundary then the motor speed is set to “medium.” Finally, if the target is located outside 

the second largest boundary then the motor speed is set to “fast.”  This velocity controller 

allocates a smooth motor performance while implementing the tracking algorithm.  The 

estimated values for each speed setting are shown in Table 3.1.   

Table 3.1:  Estimated Speed Settings for Motor Control 

Speed Setting Estimated Speed (m/s)

“Slow” 0.105 

“Medium 0.185 

“Fast” 0.218 
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Chapter 4. Experimental Procedures 

The experimental procedure for this research topic requires the design and 

application of software algorithms utilizing specific hardware in a laboratory setting.  The 

ability to implement software in an actual experimental setting enhances the level of 

evaluation that can be obtained.  Utilizing real images with real hardware allows an 

increased number of issues to be addressed rather than depending on prerecorded video 

or virtual images for testing the software.  The experimental procedures for target 

detection and tracking are explained in three sections.  The first section, Section 4.2, 

includes a detailed description of the experimental setup, hardware descriptions, and 

hardware setup.  Sections 4.3 and 4.4 contain detailed descriptions of the software used 

for the target detection problem and target tracking problem, respectively. 

4.1. Experimental Environment Setup Procedure 

The experimental setup consists of the configuration and selection of specific 

hardware that is used to develop potential solutions to this research problem.  The 

selection of the hardware determines what information can be obtained and affects the 

overall software design.  This section provides a detailed description of the experimental 

environment and a physical and functional description of each piece of MV hardware.  

With this information, the functionality and importance of each piece of hardware will be 

made evident, and its direct relationship to the work effort.      

4.1.1. Description of Machine Vision Research Computer 

The MV research computer used in this research was purchased in separate pieces 

and assembled with the specific task of video and hardware experimentation.  The 

performance of this computer proved to be adequate for MV research regarding aerial 

refueling and runway detection, lab experiments carried out by a former WVU graduate 

student.  The selection process for each piece of the computer was based off of the fastest 

possible components for the budget available at that time.  High speed computer 

components are critical relating to the amount of processing power MV applications 

usually require.  Although computer technology has drastically improved since the 
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original construction of this MV computer, this machine proved to be satisfactory for this 

MV experimentation. 

Utilizing Intel technology, the main processor of the computer was selected as the 

Intel Pentium 4, 3.2 gigahertz (GHz) Prescott processor.  The processor is placed on a 

Micro-Star International (MSI) brand 915G motherboard.  The combination of the 

processor and motherboard allow the front side bus (FSB) to run at 800 megahertz 

(MHz).  The FSB was very critical in the design of this computer.  The FSB is used to 

carry the signals between the central processing unit (CPU) and the random access 

memory (RAM); therefore, the speed of the FSB is directly related to the speed of the 

computer53.  The computer is also using 256 megabytes (MB) of Double Data Rate 2 

(DDR2) Synchronous Dynamic Random Access Memory (SDRAM), which runs at a 

speed of 2700 MHz.  The DDR2-SDRAM was considered to be an upgrade over the 

existing Double Data Rate (DDR) memory available at the time.  This type of memory 

introduces features that allow the computer to obtain higher speeds and memory usage 

while using less power.  The selection of this device is based off of the speed of the FSB, 

which should typically run at speeds twice as fast54.  The hard drive speed is another 

critical performance specification that must be chosen.  The hard drive chosen for this 

machine is a special edition Western Digital 80 gigabyte (GB) hard drive, which runs on 

a serial advanced technology attachment (SATA) bus.  A SATA bus type hard drive is 

designed to replace parallel ATA technology and its development also supports 

overcoming the constraints that are increasing the difficulty of speed enhancements for 

the classic bus type hard drives55.  Therefore, this bus type hard drive allows for a faster 

data transfer, reducing the time it takes for data to be received and stored.  A photograph 

of the MV computer is shown in Figure 4.1, which includes a 17” flat screen monitor.   
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Figure 4.1:  MV Computer 

4.1.2. Description of the Lumenera USB Camera 

In this research, the camera utilized for the laboratory experiment is a Lumenera 

brand, model Lu075 camera.  The Lu075 camera is a high-speed USB 2.0 lightweight 

color camera.  The camera is equipped with a high-quality 1/3” charge coupled discharge 

(CCD) sensor which makes it ideal for capturing objects in motion.  At a maximum 

useable frame rate of 60 frames per second (fps) the MV camera can produce an 

obtainable resolution of 640 by 480 pixels.  The camera is normally powered via the USB 

cable with a 5 Volt (V) supply.  In cases where the USB cable does not supply power, a 

power adapter can also be used to power the camera, which must have a regulated 6 V 

direct current (DC) and a minimum current rating of 1000 milliamps (mA).  The camera 

specifications are listed in Table 4.1. 
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Table 4.1:  Lumenera Camera Specifications 

Image Sensor 1/3” format, 5.8mm x 4.9 mm array 

Effective Pixels 640 x 480 

Frame Rate 7.5 fps, 15 fps, 60 fps 

Sensitivity  High 

Exposure Auto/Manual 

White Balance Auto/Manual 

Gamma Correction 1 or correction 

Dimensions (W x H x D) 2.25 x 3.85 x 1.56 inches 

Power Consumption 2.5 Watts 

Lens Mount C-Mount (CS-Mount optional) 

Mass 300 grams 

Power Supply USB 2.0 bus supply or external 6 VDC, 

500mA 

 

This camera is designed to be used within a large variety of industrial 

applications.  Many of its features make it very appealing for MV applications.  Although 

most of the camera capabilities are not necessary for this research effort, they are 

determining factors for the utilization of this specific camera.  These camera features 

include:  gamma correction, white balance, shutter speed, size and weight, and the image 

sensor.  Based on the image processing methods used in this effort, the gamma correction 

function is not necessary; therefore, it is set to the default value of 1.  The exposure is 

also an adjustable parameter, which is set at its default value of 15.6 milliseconds (ms).  

This setting is adequate for the given conditions in the laboratory environment.  The 

contrast and brightness are also parameters that can be adjusted manually through the 

Lumenera software.  However, rather then using this approach it is much faster and easier 

to adjust the brightness through the camera lens.  The contrast of the image is adjusted 

using the Matlab® software environment.  The Lumenera camera is shown in Figure 4.2. 
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Figure 4.2:  Lumenera Camera 

The lens used with this camera is a Lumenera brand, model Lu935105CS lens.  

This lens is utilized because it provides a sufficient FOV for simulation studies.  The lens 

has a focal length between the range of 3.5~10.5 mm with manual iris and focus.  A 

detailed specification list for the Lumenera camera lens is shown in Table 4.2. 

Table 4.2:  Lumenera Camera Lens Specification List 

Mount Type CS-Mount 

Application 1/3” CCD Sensor 

Focal Length 3.5 ~ 10.5 mm 

Iris Control Manual 

Focus Control Manual 

Weight 64 grams 

FOV at 1 meter ~883 mm x ~617 mm 

Diagonal 

Horizontal Angle of View 

Vertical 
 

108.4 ~ 34.23o

81.6 ~ 27.2o1/3” 

59.2 ~ 20.4o
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4.1.3. Miniature Model Environment Setup  

In this laboratory experiment, the target object chosen for the detection and 

tracking problem is a small locomotive train model.  This type of target object is chosen 

because of its importance and utilization within society.  Due to its various benefits, rail 

transportation is a major form of public transportation in many countries and is a major 

component of logistics.  With the functionality of locomotive transportation systems, 

there are many reasons why a UAV would be given the task to detect and track a moving 

train.  The specific model train used in this experiment is shown in Figure 4.3, which is 

classified as a HO scale model train.  Figure 4.3b displays a top view of the train; to get a 

true perspective of the train size a dime is placed beside the train in the figure.  For HO 

scale models 3.5 millimeters (mm) represents one real foot, which works out to a scale 

ratio of 1:87.  The train is powered by a 0 to 18V DC variable power supply, which 

allows the speed of the train to be changed by regulating the supply voltage.   

 
(a) Side View of Model Train (b) Top View of Model Train 

Figure 4.3:  HO Scale Model Train 

The lab environment for this experiment consists of a train system and its 

surrounding scenery.  The design of the landscape is an attempt to achieve as much detail 

and to be as close to reality as possible within a laboratory setting.  Therefore, the scenery 

consists of small scale trees, bushes, and a mountain and a tunnel system to hide the train 

from the FOV.  The train is set up to travel in a circular path within the small simulated 

environment.  The diameter of the circular track is approximately 1 meter.  Incorporating 

all of these features in the setup allows for a more realistic implementation of the MV 
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software. This design allows issues to be addressed that could generate issues for the MV 

system, such as background interference. The model environment which includes the 

train system is shown in Figure 1.3. 

The MV camera is mounted on a positioning apparatus located directly above the 

model environment.  The apparatus can be manually adjusted to a desired height ranging 

from 0.90 to 1.5 meters.  Once the apparatus is placed at a desired height it is necessary 

to design a mechanical positioning system that would allow the camera to change 

position in the plane at that height.  To detect the moving train the camera must be able to 

move to any position in the plane over the “ground” level, which has a 914 mm (width) 

by 1066 mm (length) boundary.  This system is a mockup of an aerial robot that is 

retrofitted with a MV sensor.  Therefore, the final design is a two degree-of-freedom 

(DoF) gantry that is able to move in the xy plane.  Figure 4.4 is a concept drawing of the 

test rig displaying the orientation of each axis and its different components (note:  

drawing is not to scale).  In this figure, the y-axis represents the width of the “ground” 

level and the x-axis represents the length.  Figure 1.2 represents the model environment 

after the construction stage.  

 
Figure 4.4:  Concept Drawing of Model Environment 
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Three motors are used to position the camera at a position in the plane above 

“ground” level.  These motors are incorporated into a mechanical system that converts 

the rotational motion of the motors into linear motion of the camera.  The camera 

platform is shown in Figure 4.5. 

 
Figure 4.5:  Camera Positioning Apparatus 

Two motors are used to position the camera along the x-axis which is driven 

utilizing a rack and pinion design.  It is necessary to use two rack and pinion systems 

with two motors to produce a sufficient amount of torque to overcome the total weight of 

the camera apparatus.  The motor that positions the camera along the y-axis is driven by a 

belt system with the camera attached to the belt and a slider bar.  The specifications for 

each system are shown in Table 4.3. 

Table 4.3:  Specifications for Gear Systems 

Pinion Pitch Diameter 22.23 mm 

Pinion Number of Teeth 14 Teeth 

Belt Pulley Pitch Diameter 48.51 mm 

Belt Pulley Number of Teeth 16 Teeth 

Belt Pitch Length 1143 mm 

 

The selection of each piece of hardware in Table 4.3 is based on the motor 

constraints and the minimum velocity of the train.  Each motor system must produce a 

sufficient load inertia-to-rotor inertia ratio to ensure that the motors will be able to run at 

high speeds given the loads they must overcome.  The linear traveling distance per 
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rotational revolution is another important factor which is affected by the pitch diameter of 

the gear and pulley; a larger pitch diameter allows for a larger linear traveling distance 

per revolution.  Out of the given options from a variety of manufacturers, the 

specifications shown in Table 4.3 are the best choices for this research application. 

4.1.4. Stepper Motors and Stepper Motor Controller 

To position the camera at a location within the model environment it is necessary 

to select and design a motion control system.  Some available motion control systems are 

categorized as: stepper motors, DC motors, Brushless motors, linear stepper motors, and 

servo motors.  For this application stepper motors are used for the motion control system.  

A key advantage for using a stepper motor is the ease of determining the position of the 

camera system using the number of input steps applied to each motor.  Another 

advantage is the motor’s position can be precisely controlled without the use of a 

feedback control system.      

A typical stepper motor system consists of three elements, which are usually 

interfaced with a computer.  These elements include:  the indexer, driver, and stepper 

motor56.  The indexer is, in most instances, a microprocessor capable of creating step 

pulses and directional signals for the driver.  The driver then converts the pulses and 

signals from the indexer into power necessary to drive the motor windings.  The stepper 

motor driver that was purchased and built for this application is the 4-axis HCNCPRO 

Driver Board Kit manufactured by Hobby CNC.  This kit allows 3 to 4 axis unipolar 

stepper motor chopper control.  The specifications for the driver board are shown below: 

• 3 or 4 axis unipolar chopper control; 

• Individual or simultaneous control of 2/4 Phase Stepper Motors; 

• Accepts 5, 6, or 8 wire stepper motors only, 4 wire types are not usable; 

• 42VDC maximum input voltage, 12VDC minimum input voltage. 24VDC 

minimum recommended voltage; 

• 3.0 Amps Maximum per Phase, 500ma (.5A) minimum. Each axis is 

adjustable throughout this range; 

• 1/1, 1/2, 1/4, 1/8, and 1/16 micro-stepping; 

• Step and direction control; 
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• Idle current reduction to 50% when idle for 10 seconds.  The time delay can 

be changed; 

• Built-in protection circuit to help protect against blown chips on stepper 

motor short or open connections; 

• 3.7" by 6.8" double sided with top silkscreen and thru plated holes and lead 

free solder PCB; 

• Power on reset. 

This particular board is chosen because of its low cost and ability to control up to four 

stepper motors simultaneously.  Other key advantages are its ability to perform micro-

stepping and that it has a built in protection circuit.  Figure 4.6 displays the driver after 

the assembly stage. 

 
Figure 4.6:  Stepper Motor Driver 

The stepper motor driver is interfaced with the MV computer through the parallel 

port using the Matlab® software environment.  Utilizing Matlab’s® data acquisition 

toolbox57, this software provides digital input/output (DIO) capabilities.  The parallel port 

consists of eight data lines, four control lines, five status lines and eight ground lines.  

The data acquisition toolbox uses the parallel port to input and output digital values 

similar to typical DIO systems.  To access the parallel port lines, the MV CPU comes 

equipped with a 25-pin female connector.  The port identifications (IDs) and the 

associated pin numbers are shown in Table 4.4.  
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Table 4.4:  Parallel Port IDs and Associated Pin Numbers 

Port ID Pins Description 

0 2-9 Eight I/O lines, with pin 9 being the most significant bit.

1 10-13, and 15 Five input lines used for status 

2 1, 14, 16, and 17 Four I/O lines used for control 

 

To provide inputs to the stepper motor driver, pins two through nine will be utilized.  

Table 4.5 explains the connections the driver board makes with the computer’s parallel 

port.  

Table 4.5:  Parallel Port Pin Function 

Pin Function 

2 X direction 

3 X step 

4 Y direction 

5 Y step 

6 Z direction 

7 Z step 

8 A direction 

9 A step 

 

Through this pin selection, four stepper motors can be controlled:  motor “X,” motor “Y,” 

motor “Z,” and motor “A.”  Within the stepper motor system, the Matlab® software 

environment can be classified as the indexer as it supplies the step pulses and directional 

signals to each respective motor. 

 This stepper motor driver will accept 5, 6 and 8 wire stepper motors rated from 

500 milliamps (mA) to 3 amps (A) per coil.  To select the proper stepper motor for this 

application the first step is to determine the type of stepper motor that should be utilized.  

Either a unipolar or bipolar would be required.  This characteristic defines the winding 

arrangement for the electromagnetic coils in a two phase stepper motor.  In most cases a 
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stepper motor driver is used to activate the drive transistors in the correct order for a 

unipolar stepper motor.  The ease of this operation makes this type of motor very popular.  

When looking at the other motor type, the driving circuit for bipolar motors is more 

complicated because of their winding arrangement.  For this reason a unipolar stepper 

motor is chosen for this research effort.   

 The next step is to select the proper unipolar stepper motor that could perform 

well under the conditions of the laboratory setup.  The motor must supply enough torque 

to overcome any inertial loads while operating at speeds similar to the model train.  Since 

the speed of the train is adjustable, it can be set relatively low, which eliminates the 

necessity of a high speed motor.  The next determining factor is the maximum torque 

output of the motor.  The stepper motors controlling the apparatus in the direction along 

the x-axis, shown in Figure 4.4, must produce enough torque to overcome 4.128 

kilograms (kg), which is the weight of the camera positioning apparatus.  Accounting for 

these considerations during the selection process, the stepper motors used in this 

experiment are Hobby CNC brand, model #23-84-DS stepper motors.  The specifications 

for these motors are shown in Table 4.6.   

Table 4.6:  Stepper Motor Specifications 

Maximum Holding Torque 59.32 N-cm 

Rotor Inertia 2.47 g-m2

Motor Type 2 phase 

Shaft Type Dual Shaft (3/8” diameter) 

Step Angle 1.8o

Current Per Phase 1.2A 

 

The stepper motors are powered by an external variable power supply.  The power supply 

is connected directly to the stepper motor driver, which supplies 15 V and typically draws 

2.25 amps during the experimental procedures.   Figure 4.7 shows a picture of each 

respective stepper motor system used to control the camera positioning apparatus.   
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(a) Stepper Motor for Rack and Pinion System 

 
(b) Stepper Motor for Belt System 

Figure 4.7:  Stepper Motor Systems 

4.1.5.  Luminance Meter 

To assess the performance of the software under different lighting conditions it is 

necessary to measure the amount of luminance at each condition.  The luminance 

measurement is then used to quantify the amount of visible light reflected from the 

“ground” surface.  To obtain luminance measurements, a proposed method from research 

completed in Germany uses a digital still camera (DSC)58; this method is favored since 

the equipment is easily obtainable and quite accurate.  When using this method to obtain 

luminance measurements it should be known that a digital camera is not an exact 

measuring instrument.  However, for this application the luminance results of a digital 

camera will be sufficient since it is not necessary to have the absolute luminance value . 

In this research effort, the camera utilized for the luminance meter is a Canon 

brand, model EOS 400D.  It is determined that, to calculate the luminance, the exposure 

value (EV) should be obtained where EV is defined in ISO 272159.  Each EV value 

combines shutter time, t, and the relative aperture, f, combinations that result in the same 

exposure.  This is shown by the representation in Equation (4.1): 

 
t
fEV

2

2 =  (4.1)
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 For a given ISO speed, the EV can then be used as a measure of luminance.  In 

this research the luminance will be expressed in EV for ISO 100 speed.  The relationship 

between EV at ISO 100 and luminance is shown in Equation (4.2): 

 32 −= EVL  (4.2)

In order to determine the EV measurements at different lighting conditions, the Canon 

DSC is used to obtain the measurements for the shutter time and relative aperture at each 

lighting condition for ISO 100 speed.  Equation (4.1) is then used to calculate the EV, 

which is then used to calculate the luminance, following Equation (4.2).   

4.2. Limitations of the Experimental Setup 

Before the experimental procedures are discussed further, the limitations to the 

experimental setup should be identified.  Since this experiment is performed in a 

controlled environment there are many issues that are not fully explored that are likely to 

occur in a natural, non-controlled situation.  Limitations to the setup are noted as: 

1. Lighting conditions are controlled – The lighting conditions are fully 

controlled.  A possible solution to this is to perform the experiment in a 

location where the lighting conditions can be altered to account for many 

different conditions.  In this research the lighting could only be changed 

to obtain two different lighting conditions.  If an extensive lighting test 

could be conducted, this would produce a more realistic effect for the 

experiment.   

2.  Distance of the camera from the train – The distance of the camera to the 

train is limited.  This constraint allowed the train to appear larger then it 

might appear in a normal situation.  Because of this limitation the 

software might be able to detect the train easier due to the increased size 

of the train within the image frame. A possible solution to this limitation 

is to use a smaller camera or raise the height of the existing camera.   

3. Camera had limited motion – The positioning system for the camera is 

only a two DoF system, which allows movement in the x and y axis.  This 

limitation allowed for the design of a more simplistic positioning control 

system.  A more realistic situation would allow the camera to pitch, roll, 
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or yaw about its axis.  This would introduce other DoFs that would better 

simulate a UAV in flight.     

       These limitations had a direct effect on the performance of the MV algorithms 

used to solve this problem.  It is important to address these limitations before the main 

algorithms are discussed. A solution for each limitation should be reached before these 

algorithms can be implemented in a real life scenario.  

4.3. Software Used for Target Detection and Tracking 

The software used to perform target detection consists of two methods, the 

Simulink® based method using HT and the Simulink® based method using the FFF 

algorithm.  To apply both of these methods for target detection, many tasks must be 

performed.  These tasks include the data acquisition stage, the image filtering stage, the 

main feature detection algorithm, and an error identification scheme.  Finally, the final 

stage consists of the tracking software. This stage is incorporated with the target detection 

software which allows position control of the camera.  Each stage is represented by their 

respective colored block in the main Simulink® scheme shown on the following page in 

Figure 4.8.  Each block will be fully explained in the proceeding sections.  
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Figure 4.8:  Main Simulink® Scheme for Target Detection and Tracking 



The implementation of this software requires a detailed explanation for each of 

the main concepts used to solve this research problem.  The image acquisition block 

shown in Figure 4.8 is represented by the magenta block.  This block will be explained in 

Section 4.4.1.  The image pre-processing and edge detection routines are represented in 

Figure 4.8 as the orange block.  This block will be discussed in Section 4.4.2.  The main 

target detection algorithm is represented in Figure 4.8 as the green block.  This block is 

interchangeable between the HT algorithm and the FFF algorithm.  Each of these 

subsystems will be discussed in Section 4.4.3.  The error correction block is a subsystem 

that contains a routine that is capable of determining the necessary inputs when the 

camera is unable to detect the target.  This subsystem is represented by the gray block in 

Figure 4.8, which will be explained in Section 4.4.4.  Finally the position control routine, 

represented by the red block in Figure 4.8, supplies the necessary inputs to the stepper 

motors, which is based on the location of the train in the captured image frame.  This 

block will be explained in Section 4.4.5.   

4.3.1. Image Acquisition Stage 

The purpose of this Simulink® scheme is to perform target detection and tracking 

for a near real-time application.  Utilizing a small model environment to perform this 

research effort eliminated the necessity of using a pre-recorded video to test the designed 

software.  As a result of this, the image acquisition stage in the Simulink® scheme is used 

to capture frames from a live video feed.  Evaluating images from a live video produces 

slightly different results during each test.   This evaluation method better simulates the 

flight and video characteristics of a flying UAV allowing for a more realistic evaluation 

of this scheme. 

 The Image Capture subsystem, shown in Figure 4.9, contains all of the necessary 

procedures to capture a frame from the input video stream and convert the image frame 

from RGB to intensity.   
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Figure 4.9:  Image Capture Subsystem 

 The blocks used in this subsystem are a level-2 S-function and a Reshape block, 

both of which are included in the standard blocks within the Standard Simulink® 

Blockset60.  The Capture Image S-function block is shown in Figure 4.9 as the orange 

block.  Using an S-function provides the ability to build a general purpose block that can 

be used many times in a simulation which allows the variation of specific parameters in 

each simulation.  The parameters of this S-function include:  sampling time, dimensions 

of the captured image, and the video source.  The video input source must be initialized 

before the scheme can be implemented.  To accomplish this, Matlab’s® image acquisition 

toolbox61 is used to connect and configure the MV camera.  Once the video source is 

initialized the S-function is used to perform color space conversion on a captured image 

frame.  The reshape block is the used to obtain the correct dimensions of the image data 

matrix after the color conversion process.  Therefore, the captured image is converted 

from a 640x480x3 RGB image to a 640x480x1 grayscale intensity image of class double.  

This conversion operation is explained in detail in Section 3.2.4.  A typical result of the 

Image Capture subsystem is shown in Figure 4.10. 
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Figure 4.10:  Arbitrary Frame Captured from the Image Capture Subsystem 

4.3.2. Image Preparation, Edge Detection, and Filtering 

The Image Pre-Processing subsystem is shown below in Figure 4.11.  This subsystem 

contains all the functions necessary to convert the 640x480x1 intensity image to a 

640x480x1 binary image, which is defined by a matrix of  0’s and 1’s for pixel values.   
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Figure 4.11:  Image Pre-Processing Subsystem 

This subsystem performs image preparation, edge detection, and filters out most 

of the noise left in the binary image.  The input to this subsystem is the intensity image 

captured from the image acquisition block and the coordinates of the train’s previous 

location obtained through a feedback routine.  The output of the subsystem is then a 

filtered, binary image.  The blocks used in this subsystem are standard blocks within the 

Standard Simulink® Blockset.  The blue and red blocks, shown in Figure 4.11, represent 

the image preparation and image filtering routines, respectively.  These blocks are both 
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level-2 S-functions designed using the Matlab® software environment.  The orange block 

in Figure 4.11 is a standard Simulink® block used to perform Sobel edge detection on the 

image outputted from the Pre-Process S-function.     

 The list of parameters for the Pre-Process S-function include:  image dimensions, 

sampling time, threshold value for the edge detection routine, and the pixel intensity 

transformation inputs.  This S-function performs the intensity transformation method 

known as contrast-stretching, which is previously explained in Section 3.2.3.  This 

function also performs an image cropping routine on the input image to help decrease 

computation time during the simulation.  The cropping routine is performed by taking the 

full resolution image, which in this case is 640x480, and confines the image along each 

axis based on the previous location of the target.  The result is the same input image, but 

it’s cropped along its sides resulting in a 480x360 image of pixel data.  This allows 

approximately 44% of the image to be ignored while still allowing the target to be 

detected.  The portion of the image that is confined is based on the previous location of 

the target within one of the four equally divided quadrants.  If the train is detected in one 

of these quadrants then the cropping algorithm crops the input image around the specified 

quadrant with an added buffer zone.  The portion of the image outside the cropped image 

is set to the pixel intensity value of 1, or white.   The buffer zone ensures that the train 

will be detected when it is near the edge of the quadrants, this area can be adjusted 

depending on the execution speed of the software.  If the system has a relatively fast 

processing speed then the buffer zone can be reduced as long as the train isn’t fast enough 

to exit the buffer zone before the next frame is grabbed.  Figure 4.12 displays the image 

broken into its four equal quadrants.  Figure 4.13  displays the result of the cropping 

function when the train is detected in the forth quadrant.  Two other important points are 

considered when the train is not detected in the previous frame and when the train is 

detected in the exact center of the image at pixel location (320,240).  When these 

situations occur then the cropping routine is skipped and the entire image is inputted into 

the Simulink® scheme.     
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Figure 4.12:  Arbitrary Image Frame Broken Into Four Quadrants 
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Figure 4.13:  Result of Cropping Routine on Image Frame 

In the first three steps, no cropping alterations are performed on the input image.  

This three step buffer allows the circle detection routine to become established and to 

find a good set of target coordinates.  This three step buffer is chosen based off of 

previous simulation results.  It is found that less than three time steps could result in false 

detections at the beginning of the simulation.  If more than three time steps are used no 

notable benefits are obtained.  Therefore, it is determined there is no reason to postpone 

the cropping routine for more than three time steps.  This principle is controlled by the 

green block shown in Figure 4.11.  This block is called an ‘N-Sample Switch’ and its job 
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is to change state after the specified number of samples has occurred.  Once the desired 

number of samples occurs the switch will flip and the last detected train image 

coordinates will be input into the Pre-Process block. 

After the cropping routine is completed, the contrast-stretching transformation 

method is performed on the new image.  This method is previously discussed in Section 

3.3.2.  This operation is performed on the image to produce an overexposed image, which 

is necessary to illuminate the chimney stack on the train for the edge detection process.  

The resulting image is shown in Figure 4.14. 

 
Figure 4.14:  Result of Contrast-Stretching Transformation 

 Once this is complete the new image enters the Sobel Edge Detection block.  This 

routine is previously discussed in Section 3.3.5.  The output binary edge image from the 

Sobel edge detection routine is then sent to the Edge Enhancement block.  The list of 

parameters for this S-function include:  image dimensions, sampling time, and the 

filtering function input.  This S-function utilizes a function found within Matlab’s® image 

processing toolbox62 known as the bwareaopen function.  This function removes, from a 

binary image, all connected pixel components that have less than a specified number of 

pixels, producing a filtered binary image.  This filtering function reduces the amount of 

noise within the image.  The pixel threshold value is based off of previous simulation 

results.  The highest possible threshold value is used to eliminate unimportant pixels, but 

ultimately leaves the pixels defining the train unaltered.  The output of this subsystem is 

then a filtered binary edge image.        
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4.3.3. Circle Detection 

The subsystems shown in Figure 4.15 and Figure 4.16 both contain only one high-

level image processing operation.  In Figure 4.15 this block is represented by the Circle 

Detection level-2 S-function block which is displayed as the purple block. In Figure 4.16 

the Hough Transform level-2 S-function block, displayed as the orange block, represents 

the high-level image processing operation.  These blocks are standard blocks included in 

the Standard Simulink® Blockset and are designed using the Matlab® software 

environment.  The HT and FFF algorithms and their respective applications are 

previously discussed in Sections 3.4.1 and 3.4.2, respectively.  In this section the inputs 

and outputs for these applications, within this Simulink® scheme, are discussed.  To 

switch between the two different methods for the target detection routines, the respective 

subsystem must be represented as the green block in Figure 4.8. 
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Figure 4.15:  FFF Circle Detection Subsystem 
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Figure 4.16:  Hough Transform Circle Detection Subsystem 
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4.3.3.1. HT Operations 

The list of parameters for the HT level-2 S-function include:  image dimensions, 

x-axis and y-axis resolution, and the sampling time.  The HT subsystem uses the binary 

edge image obtained from the Pre-Processing subsystem, discussed in Section 4.3.2, as 

the input.  In particular, the HT S-function takes this input directly.  This block is found 

in Figure 4.16 as the orange colored block.  The outputs of the HT S-function are the a 

and b values that correspond to the location of the maximum peak value in the 

accumulator matrix.  These values represent the center coordinates of the detected circle.  

Figure 4.18 and Figure 4.19 illustrate the typical plots obtained when performing a 

simulation using the HT method for circle detection when Figure 4.17 is represented as 

the input image after the edge filtering process. 

 
Figure 4.17:  Input Binary Image to HT Circle Detection Algorithm 
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Figure 4.18:  Output Hough Transform Matrix 

(417,394)

 
Figure 4.19:  Output Binary Image from Hough Transform Algorithm 

4.3.3.2. FFF Algorithm Operations 

The list of parameters for the FFF S-function include:  the maximum MSE value, 

the circle radius, image dimensions, bias, and sampling time.  Similar to the HT 

subsystem, the FFF subsystem uses the black and white edge image obtained from the 

Pre-Processing subsystem where the FFF S-function takes the input directly.  This block 
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is displayed in Figure 4.15 as the magenta colored block.  The outputs of the FFF S-

function are the x and y coordinates of the center location for the detected circle.  These 

values correspond to the circle that best satisfies the user defined MSE and circle radius 

criteria.  A typical input image to the FFF algorithm is shown in Figure 4.20. Figure 4.21 

illustrates the result obtained when performing a simulation using the FFF method. 

 
Figure 4.20:  Input Binary Image to FFF Algorithm 

(418,395)

 
Figure 4.21:  Output Binary Image of FFF Algorithm 
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4.3.4. Error Detection Operations 

The Error Detection subsystem is shown previously in Figure 4.8 as the gray 

block.  All of the blocks in this subsystem are standard blocks found in the Standard 

Simulink® Blockset.  This subsystem takes the output of the Circle Detection subsystem 

and validates that the train is detected.  In the case of zero detection, the spatial 

coordinates, (x,y), will be equal to (0,0).  If this is the case, then the subsystem discards 

the current information and uses the values from the last time step for either the new x-

coordinate or the y-coordinate values.  This is performed by using two time step delays 

and a threshold value to compare both the x and y coordinates.  The coordinate that is 

chosen as the new input is determined by the Flag subsystem..  The Error Detection 

subsystem is shown in Figure 4.22 on the following page. 
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Figure 4.22:  Error Detection Subsystem



In the Error Detection subsystem, each coordinate value enters the magenta 

blocks found in Figure 4.22.  These blocks essentially compare the current outputs of the 

circle detection algorithm with a threshold value of 0.  If both coordinates are greater then 

0, representing a positive detection, then the block will output a value of 1, if not 0 is the 

output.  The outputs of these blocks allow the user to determine which time steps the 

detection algorithm failed to detect the target.  The flags are then fed into a ‘AND’ 

operator displayed by the orange block in Figure 4.22.  The ‘AND’ block will output a 

true signal, or value of 1, only if both input signals are greater then the threshold, 0.  The 

‘AND’ block allows the system to check both coordinate values simultaneously.     

 The process at this point shows a flag value indicating if the train has been 

detected in the image frame.  If there is an error in the detection software then there 

should be some attempt to guess the location of the train in the next time step.  This is 

completed using the Flag subsystem.  This subsystem determines what the outputs of the 

Error subsystem should be if the target detection software fails.  The Flag subsystem is 

shown in Figure 4.23.       
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Figure 4.23:  Flag Subsystem 

The error flag is determined using both the x and y coordinate values together, 

meaning that if one value is wrong, then both values will be “corrected.”  This is shown 

by the set of green switches, in Figure 4.23, which identifies which values exit the 

subsystem, the current values or the corrected values.  The corrected values are 

determined by examining the difference between the spatial coordinate values of the last 
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two time steps in the simulation.  The absolute difference is calculated between the 

coordinates at each time step.  The differences are then compared by the relational 

operator block, which is represented by the orange block in Figure 4.23.  This block will 

output a true signal, or 1, if the first input is greater then or equal to the second input.  If 

not, then the output is a false signal, or 0.  There is now a flag indicating which direction 

in the image, along the x-axis or along the y-axis, has the greatest pixel difference 

between the last two time steps.  If the pixel difference along the x-axis is larger, the x-

coordinate from the previous time step is used as the new input and the y-coordinate is set 

to 320.  If the pixel difference along the y-axis is larger, then the y-coordinate from the 

previous time step is used as the new input and the x-coordinate is set to 240.  Based off 

the error flag, only if the detection software failed, the output of the subsystem will either 

be (x(k-1),320) or (240,y(k-1)).  The “corrected” inputs are represented in a way to move the 

camera in only one direction, the direction of the new input.  This process is shown by 

the set of blue switches shown in Figure 4.23.   

The overall goal of this subsystem is an attempt to estimate the next location of 

the train if the detection subsystem fails to detect it in the current time step.  Only one 

direction is estimated due to the fact that it is highly unlikely that the next position of the 

train will be located using both of the coordinates from the previous time step.  This is 

determined by a number of simulation tests using different error correction schemes.  

Another important feature of this subsystem is that it only attempts to estimate the new 

position of the train once.  In other words, if the Circle Detection subsystem fails to 

locate the target in two sequential time steps, then the “UAV,” or camera system, will be 

given the necessary input to “loiter,” or hold its position until the target enters the 

camera’s FOV once again.  This feature is important to eliminate the “UAV” or camera 

system from moving randomly within the model environment.  The flag values are also 

stored for every time step to help determine where the error occurred in the detection 

software. 

4.3.5. Motor Control 

The Motor Control subsystem is shown previously in Figure 4.8 as the light blue 

colored block.  It should be noted that all of the blocks in this subsystem are standard 
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blocks found within the Standard Simulink® Blockset.  This block takes the x and y 

center coordinates of the circle, detected from the Circle Detection subsystem, and 

calculates the number of input steps for each motor to place the target in the center of the 

cameras FOV.  The coordinates are based off the coordinate system shown in Figure 3.1.  

This subsystem also records the position and velocity of the camera and train at each time 

sample.  This is performed by using a feedback loop with a one time step delay and an 

‘N-Sample Switch.’  Two feedback loops are required to obtain the positions for both the 

camera and the train.  The initial position of the camera is a constant specified by the user 

in the graphical user interface (GUI), which will be discussed in the next section.  Within 

the GUI the user has the option to choose from five locations within the model 

environment for the initial condition.  These locations are within the boundary of the 

model environment.  It should be noted that the position and velocity of the train is based 

off the data obtained through the MV camera, therefore; if a false detection occurs then 

the measured data of the train will be incorrect.  The Motor Control subsystem is shown 

in Figure 4.24. 
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Figure 4.24:  Stepper Motor Control Subsystem 

The red block shown in Figure 4.24 is a level-2 S-function designed using 

Matlab® software environment.  The inputs to this block are the initial positions of the 

camera and train and the center spatial coordinates of the detected circle within the image 
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frame.  This block is the heart of the Motor Control subsystem, that is, this level-2 S-

function performs all of the necessary conversions and calculations necessary to control 

the stepper motor position and speed.  The overall goal of this system is to minimize the 

distance between the location of the target and the center of the camera’s FOV.   

In order to begin the detailed discussion of the Motor Position subsystem the list 

of parameters for the S-function must be stated.  These parameters include the sampling 

time and the initial state of the parallel port pins, two through seven, which are 

represented by the vector: [0 0 0 0 0 0].  The parallel port representation is explained 

earlier in Section 4.1.4.  The first operation that is performed is the calculation of the 

pixel distance between the circle location and the center of the camera’s FOV.  The pixel 

distance is calculated along the x and y axis of the image.  Each distance is then converted 

into the number of steps and direction that each stepper motor must move to minimize 

each pixel distance.  The conversion process for this process is explained previously in 

Section 3.5.  Once the number of steps and direction for each motor is determined the 

speed of the motor is determined.  This parameter is determined by the process explained 

previously in Section 3.5.  The speed of each motor is controlled by a delay factor set 

within the S-function.  The output of this subsystem includes the new position of the train 

and camera system and the spatial coordinates of the detected circle. 

4.3.6. Description of Graphical User Interface 

This section will explain the features and functions of the GUI used in this 

research for the target detection and tracking scheme.  The GUI has many features useful 

for keeping track of the simulation results and inputs as well as a user friendly plotting 

interface.  The GUI is created using the Matlab® software environment.  To explain the 

GUI in detail, its features will be broken down into separate sections.  The simulation 

inputs will be explained in Section 4.3.6.1.  The plotting section will be explained in 

Section 4.3.6.2, which allows for any of the selected plots to be analyzed after the 

simulation is complete.  The final section of the GUI to be covered is the video analysis 

portion.  This stage will allow image frames at different stages throughout the scheme to 

be analyzed and help the user to adjust different parameters according to the simulation 
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results or to simply view the output.  The video analysis stage will be explained in 

Section 4.3.6.3.  The GUI used for this research is shown in Figure 4.25. 

   

 
Figure 4.25:  Target Detection and Tracking GUI 
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4.3.6.1. Simulation Inputs 

The simulation input portion of the GUI is self explanatory.  When the GUI is 

opened each input will be represented with a default value, which is displayed in their 

respective edit box.  The simulation inputs are broken up into three sections:  the “UAV,” 

or camera, starting position, the pre-processing inputs, and the target detection inputs.  

The simulation inputs section of the GUI is shown in Figure 4.26 and a description of 

each input is provided below. 

 
Figure 4.26:  Simulation Inputs 

The following breakdown explains each input parameter: 

1. Location – The “UAV,” or camera, starting position allows the user to 

choose where the camera system should start at the beginning of the 

simulation.  There are five options to choose from.  The initial position of 

the camera is represented as the “base,” which is represented by the 

coordinate (0,0) in the grid layout of the model environment.  The other 

four locations are shown in Table 4.7.  The distances are measured with 

respect to the “base” location in the grid layout.  The “UAV,” or camera 
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system, will then move to the starting position before the simulation is 

started.  The camera starting position input is used for the initial camera 

position block in Figure 4.24.      

Table 4.7:  Initial Camera Starting Location Options 

Location x (mm) y (mm) 

Sector 4 171.45 525.15 

Sector 3 984.25 525.15 

Sector 2 984.25 101.60 

Sector 1 171.45 101.60 
 

2. Method – This allows the user to test four different intensity 

transformation methods.  The method chosen for this research is the 

contrast-stretching operation.  The Pre-Processing S-function block 

shown in Figure 4.11 requires this input as a parameter to select the 

correct intensity transformation method. 

3. Input 1 – Since the contrast-stretching operation is used in this research, 

this input will only be discussed in regards to that particular method.  

This input is used to choose the threshold pixel intensity value for the 

contrast-stretching function.  The Pre-Processing S-function block shown 

in Figure 4.11 requires this input as a parameter. 

4. Input 2 – Since the contrast-stretching operation is used in this research 

this input will only be discussed in regards to that particular method.  

This input is used to control the slope of the contrast-stretching function.  

The Pre-Processing S-function block shown in Figure 4.11, requires this 

input as a parameter.   

5. Sensitivity Threshold – This represents the intensity gradient threshold 

value used in the Sobel edge detection operation.  Any gradient value 

below this threshold is disregarded as an edge pixel in the resulting 

binary image.  This value is used in the Edge Detection block shown in 

Figure 4.11. 

6. Radius – The circle radius input is used for both circle detection 

algorithms.  The radius value is a parameter used in the Circle Detection 
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S-function block shown in Figure 4.15.  The circle detection algorithms 

then search the image frame for circles with the user defined radius.  This 

input value sets the upper cut off threshold for the range of radii in the 

FFF circle detection algorithm. 

7. Bias – This is used to determine the cutoff radius threshold value for the 

FFF circle detection algorithm.  Essentially, the FFF algorithm is 

designed to detect circles with a radius within a certain range.  This 

allows a margin of error to be accounted for in the detection process.  

The bias input quantifies the margin of error by setting the lower limit of 

the range.  This value is a parameter used in the Circle Detection S-

function block shown in Figure 4.15. 

8. Maximum Mean Square Error – This input is used to set the maximum 

MSE threshold value for the FFF circle detection algorithm.  Any image 

feature that has a mean square error above this threshold value is 

disregarded as the target feature.  This input is used in the Circle 

Detection S-function shown in Figure 4.15.  

9. HT x-axis Resolution – Resolution for the descritization of the x values 

used in the HT Circle Detection S-function block shown in Figure 4.16.  

This number determines the interval of the a values in the parameter 

space. 

10. HT y-axis Resolution – Resolution for the descritization of the y values 

used in the HT Circle Detection S-function block shown in Figure 4.16.  

This number determines the interval between the b values in the 

parameter space. 

4.3.6.2. Trend Plotting Section 

The trend plotting section of the GUI is very useful for fine tuning the input 

parameters or for simply viewing the results.  This portion of the GUI enables the user to 

obtain a very in depth data analysis routine by using the check boxes to select specific 

data to plot.  The plotting routine can then be executed by the plot now button and 

controlled by the on/off buttons.  If the plot button is turned off then no data will be 
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plotted until the plot now button is pressed.  If the plot button is turned on then the plots 

will automatically be displayed after the simulation has been completed.  After each 

simulation, the information obtained from the MV camera is collected along with the 

error values.  This data can then be plotted to analyze the results.  The values of the 

inputs along with the data obtained from the simulation can also be saved if the user 

chooses to do so.  This is useful to obtain certain trends in the data as the input 

parameters are altered throughout each simulation.  The user now has the ability to 

determine how a particular change altered the performance of the Simulink® scheme by 

comparing the results of different experiments.      

 There are also options that allow the user to choose the type of plots.  The options 

on this GUI allow the user to select a single plot per figure type, multiple plots per figure 

type, or a subplot figure type.  This additionally allows the user to analyze the results in a 

fashion such that results can be compared on a single plot or across multiple plots.  This 

way an easy comparison can be made of the results when the input parameters are 

adjusted.  The trend plotting section of the GUI is displayed in Figure 4.27. 

 
Figure 4.27:  Trend Plotting Section of the GUI 

4.3.6.3.   Video Analysis  

Another approach utilized to analyze the target detection and tracking scheme can 

be accomplished through visual interpretation.  This is possible by examining several 

video output windows located at different stages in the Simulink® model. Through this 

analysis the user will be able to see the results of the pre-preprocessing stage, which 

includes the intensity transformed image, the image cropping routine results, and the edge 

detection and edge filtering results.  The user can also determine how well the circle 

detection software is working. 
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During the operation of the simulation, five video windows appear.  The first 

window is the unaltered input image captured from the image capture routine.  The 

second window shows the result of the intensity transformation and cropping routines, 

together.  This is useful to analyze the characteristics of the train around the edges of the 

quadrants within the image frame, which will help determine the necessary size of the 

buffer zone.  The user has the ability to watch the train location as it approaches the edges 

of the cropped image.  If the train passes through the buffer zone before it is detected, this 

will result in a false detection.  This video analysis window will allow the user to watch 

for these types of events and, if necessary, make any corrections accordingly. 

The third video window that is available is the result of the edge detection routine 

performed on the image after pre-processing has occurred; the result is a binary image.  

At this point the user will begin to visualize the presence of the desired image features.  A 

clear representation should be apparent; if this is not the case then the intensity 

transformation input values should be changed within the Pre-Process S-function.  There 

may also be significant amounts of noise in the binary image.  If this is true it may be 

necessary to make an adjustment to the sensitivity threshold for the edge detection 

routine.  If there is a problem with the circle detection algorithm, then this is the window 

where the root of the problem is displayed.   

The forth window is the output of the Edge Enhancement S-function in the Pre-

Processing subsystem.  The result is a filtered binary image of the resulting image 

obtained from the edge detection routine.  Here, the result of altering the filtering 

threshold value is displayed.  The purpose of the threshold is to help reduce the image 

noise, which affects the computation time of the circle detection algorithm.  To find the 

appropriate threshold value, the user can visually analyze the results during the 

simulation and determine if the threshold is too high or too low.  If the threshold value is 

too high then this could potentially eliminate parts of the desired image feature, which 

would reduce the detection rate of the circle detection algorithm.  In the other case, too 

much noise will be present in the image, which can affect the computation workload for 

the software. 

The fifth window is the result of the Circle Detection subsystem.   This display 

shows the result of the detected feature that satisfies the conditions established by the 
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user in the GUI.  The center location of the circular feature will be plotted on the binary 

input image.  This video window is another place where the user can possibly determine 

what is causing the scheme to not perform correctly.  This will allow the user to 

determine if the center location of the detected feature actually belongs to the desired 

feature.  If the wrong feature is detected, it may be necessary to alter the detection criteria 

to help eliminate false detections.  A large range for the radius criteria and a large 

maximum mean square error value will result in the detection of undesired features in the 

image.  In the other case where a small range of radii is set and small maximum mean 

square error value is chosen, it will make it difficult to detect any features in the image.  

A complete analysis of the scheme can then be performed by looking at each video 

window and analyzing the affects of changing the input parameters in the GUI.  A 

screenshot shown in Figure 4.28 and Figure 4.29 includes all the video analysis windows 

available to the user. 

  

 
Figure 4.28:  Output Window 1 and 2 of Simulink® Scheme 
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Figure 4.29:  Output Window 3, 4, and 5 of Simulink® Scheme 
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Chapter 5. Simulation Results and Evaluation 

5.1. Target Detection and Tracking Results Using the FFF Algorithm 

The solution to the target detection and tracking problem can be evaluated several 

ways.  For this research effort, the detection and tracking scheme is put through a number 

of tests to display its overall performance in terms of computational workload, 

robustness, and efficiency.  These tests include a statistical evaluation and a visual means 

of evaluation of captured frames from a live video feed.  The use of a live video feed, 

however, makes it difficult to obtain similar results through each test due to the 

randomness of image characteristics in the video.  These characteristics are largely 

influenced by the motion of the camera, where a captured frame may have more or less 

motion introduced than other captured frames.  Another key note is the computational 

workload, which is increased by introducing the use of a frame grabber procedure within 

the detection and tracking procedure.  The use of a frame grabber procedure with 

Matlab® or Simulink® also introduces a time delay due to the software is accessing the 

camera hardware through the Windows operating system, which can cause the results of 

the computational workload analysis to be slightly skewed.  It is possible that this time 

delay could be reduced if another operating system other then Windows is utilized.  The 

results of each experimental test conducted will be discussed in detail in the following 

sections.  Section 5.1.1 explains the computational workload evaluation of the enhanced 

and original target detection and tracking software.  This section analyzes the 

computational workload of the software when the amount of image data becomes 

significantly increased.  The next section, Section 5.1.2, is used to analyze the error 

estimation for the estimated train position.  Section 5.1.3 entails the visual means of 

evaluation for the train velocity and acceleration estimations, which is comprised of 

visually evaluating the output of the scheme and determining if it is working properly.  

Finally, Section, 5.1.4, evaluates the affect of changing the luminance or lighting 

conditions.  In this section, the position estimation results will then be compared at each 

test condition. The following tables represent the simulation tests, which are used to 

evaluate the target detection and tracking algorithms in Sections 5.1.1,  5.1.2, 5.1.3, 

respectively.  Table 5.1 shows the experimental breakdown for the computational 
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workload evaluation of the software.  In this table each test is a 25 second simulation 

using an update frequency of 1 Hz.  Four tests were performed at two different threshold 

values for the edge detection method, which was then used to simulate S/N variations. 

Table 5.1:  Computational Workload Test Breakdown Used for Evaluation 

Computational Workload Evaluation Via Matlab® Profiler 

Test 1:  25 sec simulation at 1 Hz. 

Test 2:  25 sec simulation at 1 Hz. 

Test 3:  25 sec simulation at 1 Hz. 

Test 1:  Threshold Condition #1 for 

Sobel Edge Detection 

Test 4:  25 sec simulation at 1 Hz. 

Test 1:  25 sec simulation at 1 Hz. 

Test 2:  25 sec simulation at 1 Hz. 

Test 3:  25 sec simulation at 1 Hz. 

Test 2:  Threshold Condition #2 for 

Sobel Edge Detection 

Test 4:  25 sec simulation at 1 Hz. 

 

Table 5.2 shows the experimental breakdown for the error evaluation of the software.   

Table 5.2:  Error Estimation Trial Breakdown Used for Evaluation 

Position Estimation Error 

“Actual” vs. Estimated Target Position RMS Error  

Trial 1:  25 sec simulation at 1 Hz; train travels CW. Trial 1 

Trial 2:  25 sec simulation at 1 Hz; train travels CCW. Trial 2 

Trial 3:  25 sec simulation at 1 Hz; train travels CW and stops. Trial 3 

Trial 4:  25 sec simulation at 1 Hz; train travels CW and then CCW. Trial 4 

Trial 5:  50 sec simulation at 1 Hz; train travels CW. N/A 

 

In this table each trial represents a different path taken by the target, which is explained 

later in Section 5.1.2.  The first four trials are used to show the error evaluation for a 25 

second simulation while using a 1 Hz update frequency.  The fifth trial is used to show 

the result from a 50 second simulation at 1 Hz.  The RMS error is then calculated 

between the “actual” and estimated target position for Trials 1 through 4. 
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Table 5.3 shows the experimental test breakdown for the tests performed at the second 

lighting condition.  Each test is used to display the target position estimation results 

obtained from a 25 second simulation with a 1 Hz rate. 

Table 5.3:  Robustness to Change in Lighting Test Breakdown Used for Evaluation 

Robustness to a Change in Lighting 

Test 1:  25 sec simulation at 1 Hz; train travels CW. 

Test 2:  25 sec simulation at 1 Hz; train travels CW. 

Test 3:  25 sec simulation at 1 Hz; train travels CW. 

5.1.1. Computational Workload Analysis 

To evaluate the efficiency of each method utilized for the target detection and 

tracking algorithm, a comparison is made using the Matlab® Profiler. The profiler method 

allows the computational workload of each function within the scheme to be analyzed 

independently.  This includes the total time each function took to execute as well as the 

number of times each function is executed.  Also included in this analysis, is the code 

breakdown for each function, which includes the number of times each line in the code is 

executed and the total execution time.  The profiler data is used to obtain the 

computational workload of each function used within the scheme.  This breakdown 

allowed each section to be compared within the software scheme.  Each algorithm is 

broken down into five sections, which are explained in the following list:    

1. Capturing the Image Frame – The computer creates a video input object and 

acquires a single image frame from the video object; 

2. Pre-Processing – This consists of each pre-processing method used in the 

scheme; 

3. Circle Detection – The method used to detect the distinguishable feature on 

the train.  The FFF algorithm and HT method are used for this section; 

4. Motor Control – This is utilized to control the stepper motor inputs for 

position and speed; 

5. Other Lines and Overhead – This is used for all other lines within the 

scheme, such as matrix reshaping and image class conversions. 
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The computational workload analysis is completed for each version of the target 

detection and tracking software for two different conditions.  For each condition, the 

Sobel edge detection threshold value is altered to display the affect this specific value has 

on the computation time for other sections.  The first step in this procedure is to 

determine the threshold value that will obtain the best overall result. This is completed by 

performing an edge detection analysis at four different locations within the experimental 

environment, as shown in Table 5.4.                

Table 5.4:  Sobel Edge Detection Analysis 
Target Detection and Tracking: Sobel Edge Detection Analysis 

Location Maximum 
Gradient Value 

Minimum 
Gradient 

Value 

Number of 
Edge 

Points 
Average Gradient 

Value 

Sector 1 0.4 0.0082 48 0.21 
Sector 2 0.45 0.0183 57 0.25 
Sector 3 0.41 0.0019 54 0.25 
Sector 4 0.4 0.0098 56 0.24 

Average Value 0.42 0.0096 54 0.24 
 

The results in this table are obtained from images captured at the sector locations listed in 

Table 4.7.  In Table 5.4, the gradient values referred to are the edge pixels of the detected 

target found using the FFF circle detection algorithm.  Once the circle is detected, the 

edge pixel locations are obtained and then used to obtain the gradient values within the 

gradient magnitude matrix approximated with the Sobel edge operator.  Using this 

procedure, the maximum and minimum pixel gradients values are obtained at each pixel 

location.  This table also identifies the total number of edge points that are detected with 

the FFF algorithm. 

The results in Table 5.4 above are used to determine the best overall threshold 

value for the Sobel edge detection method.  After analyzing the edge detection results the 

first analysis for the computational workload is completed using a gradient threshold 

value of 0.20.  This value is set below the average value to account for blurriness 

obtained when the image is captured during the simulation.  When the image is blurred 

the edges will result in weaker gradient magnitudes.  The second test is conducted using a 

gradient threshold value of 0.10.  This value is chosen to be fifty percent smaller than the 

first condition, which allows for weaker edges to be detected within the captured image.  
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This will display the timing characteristics of the pre-processing stage and circle 

detection algorithm when the number of edge pixels is drastically increased.     

Table 5.5 lists the time spent on each section of the software previously described 

using the enhanced and original version for the image representation method.  Using the 

unmodified version for image representation, the entire image is used as an input for the 

target detection and tracking scheme throughout the simulation tests.  For the enhanced 

version, the image cropping routine is then executed to reduce the size of the input image 

processed in the scheme.   

Table 5.5:  Timing Comparison Between Target Detection and Tracking Methods 

Threshold 
Value for 

Sobel Edge 
Detection 

Target Detection/Tracking 
Speed Comparison using 

Matlab®  Profiler 
Detection and 

Tracking Algorithm 
Modified Detection 

and Tracking 
Algorithm 

Machine Vision Process Time (s) Executions Time (s) Executions
Capturing the Image Frame 2.31 26 2.35 26 

Pre-processing 7.12 26 5.21 26 
Circle Detection 1.41 26 1.30 26 
Motor Control 11.07 26 10.29 26 

Other Lines and Overhead 3.76 N/A 4.07 N/A 

0.2 

Total Time 25.67 N/A 23.22 N/A 
Machine Vision Process Time (s) Executions Time (s) Executions

Capturing the Image Frame 2.10 26 2.23 26 
Pre-processing 7.40 26 5.69 26 
Circle Detection 10.27 26 8.22 26 
Motor Control 11.28 26 11.28 26 

Other Lines and Overhead 4.08 N/A 4.03 N/A 

0.1 

Total Time 35.13 N/A 31.46 N/A 
 

Results in the previous table are obtained from simulations performed for 25 

seconds with a 1 second update.  After analyzing the results, several comparisons can be 

made between each version of the target detection and tracking software and the results 

obtained for each threshold value.  The first comparison will be used to evaluate the 

difference between each software version since the characteristics are similar throughout 

the timing comparison.  The first result is the time required to capture the image frames 

during the experiment.  This procedure accounts for approximately 2.3 seconds of the 

total simulation time.  Technically, these values should be equal because this process is 

exactly the same for each experiment; however, there are slight differences in the times.  
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This can be credited to the different processes the Windows software is running in the 

background.  It is also believed that the timing result for this process could be reduced if 

operating software, other than Windows, is used. 

The largest time variation is found in the pre-processing stage.  In the unmodified 

software version the entire image is processed; this accounts for 307,200 pixels in each 

captured image.  On the other hand, the enhanced version performs the same operations 

on a smaller portion of the image, accounting for only 172,800 pixels in each captured 

image.  This is a 44% decrease in the amount of image pixels used for the pre-processing 

stage; the effect of this difference is evident after comparing the timing difference 

between the two methods. The fact that the image scanning area is drastically reduced in 

size directly correlates to the increased efficiently of the software.  For example, the pre-

processing stage for the unmodified version takes 7.12 seconds, in comparison to the 5.21 

seconds it takes for the pre-processing section for the modified version.  This difference 

accounts for a 26.83% decrease in time spent on this section. 

The circle detection section of the software is also affected by the difference in 

each software version.  Using the results obtained from the first threshold test, the 

unmodified target detection and tracking software spends 1.41 seconds scanning the 

entire image for the target while the modified version takes 1.30 seconds, utilizing only a 

portion of the image in the scanning process.  This difference accounts for a 7.8% 

decrease in time spent on this process.  A combination of a high threshold value for the 

edge detection method along with the image filtering routine used in the pre-processing 

stage eliminates a large amount of the noise in the image before the circle detection 

algorithm is performed.  It may appear that the decrease in input image size between each 

software version may not be beneficial for this section because the computational time 

has been minimally impacted.  However, the computational workload for this section is 

better displayed from the results obtained for the second threshold test condition, using 

the lower threshold value.  The circle detection algorithm for the unmodified software 

version takes 10.27 seconds and 8.22 seconds for the modified version.  This difference 

accounts for a 23.10% decrease in computation time, a much more noticeable affect.  

One last trend that should be noted within the comparison between the software 

versions is the time spent on the motor control section.  This section relates to the 

 102



tracking portion of the software and accounts for almost half of the time necessary for the 

total simulation time.  This section is strictly used to convert the information obtained in 

image processing portion of the software to motor inputs referring to position and 

velocity.  There is some difference between the two methods related to the computational 

time for this section.  This difference can be directly correlated to the fact that the total 

time for this section is accounted for in the time it takes the camera to move from one 

position to the next; therefore, the time varies slightly depending on the distance the 

camera must travel.   

Finally, after reviewing the computational time for each section, the total 

simulation time taken by each algorithm is shown.  Using these results, it is apparent that 

the modified version for the target detection and tracking software is more efficient 

resulting in a decreased computational workload.  An important characteristic of the 

computational time is that the software has real time capabilities.  This is only capable 

using the modified software version where the average computation time per frame is 

0.92 seconds, which is equivalent to an update rate of about 1 Hertz (Hz). 

The second comparison used to evaluate the efficiency of the software algorithms 

is accomplished by displaying the effect of changing the threshold value for the Sobel 

edge detection method.  This is performed to identify the influence of adding more image 

noise to the target detection portion of the software.  To quantify the amount of noise 

added to the image, the amount of image pixels is compared between each threshold 

condition.  In arbitrarily captured binary images there are 1,460 and 204 pixels using a 

threshold value of 0.10 and 0.20, respectively.  This accounts for an 86.03% decrease in 

the amount of image pixels after the edge detection routine has been completed.  After 

reviewing the results, the change in threshold value has the greatest affect on the 

computation time for the circle detection stage.  This stage, for the first threshold 

condition, has a computation time of 1.30 seconds and a computation time of 8.22 

seconds for the second test condition.  The difference in time accounts for an 85% 

decrease.  This alteration has little to no affect on the other stages of the software.  

Therefore, it is determined that the amount of image pixels resulting from the edge 

detection routine has the greatest influence on the circle detection stage, drastically 

increasing the computation time.                       

 103



5.1.2.  Position Error Estimation 

Error analysis is an important aspect for the performance evaluation of this 

research effort.  This evaluation tool is important for occurrences where the software is 

unable to or falsely detects the target.  However, since the software utilized during this 

research is very efficient, other means of error estimation must be formulated.  There are 

two methods that are implemented to perform this evaluation.  The first method compares 

the detected train position to the train track position, which is obtained by measuring its 

location within the model environment.  It was initially thought that this would be an 

accurate evaluation method. However, after performing this method, it is concluded that 

it is an inadequate procedure for error estimation; a false representation of the position 

error is introduced.  Therefore, a second method for the error evaluation is formulated, 

which compares the estimated train position to the “actual” train position.  The “actual” 

train position is determined by measuring the location of the train on the train track 

within each input image.  To measure the location of the train, reference points on the 

train track are pre-recorded within the 2-D grid and the train position is then extrapolated 

between the reference points in each captured image.  There are a total of 21 reference 

points on the train track.  In an ideal situation there would be a sensor, such as GPS, to 

obtain the exact location of the train.  This is not the case in this experiment; therefore, 

the “actual” train position may have slight error induced from the extrapolation process.  

However, for this experiment, the method used to obtain the “actual” train position is 

sufficient enough to display the error estimation.  

For each error evaluation method there are five trial simulations performed, in 

each trial the train travels a different path.  This is necessary to show the overall 

effectiveness of the target detection and tracking software.  Each train path is represented 

by a trial number, where each trial is explained below: 

1. The train travels clockwise around the track; 

2. The train travels counterclockwise around the track; 

3. The train travels clockwise around the track.  At two locations the train stops 

for a couple seconds and then continues the same path; 

4. The train initially travels clockwise around the track, then stops and changes 

direction;  
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5. The train travels counterclockwise around the track for an extended simulation 

time.   

Trial 5 is used to evaluate the response of the software when the train enters the tunnel 

system.   

 Although the first error evaluation method is determined to be an inaccurate 

procedure, the results are provided to obtain a better understanding of the process.  The 

results of both methods are then compared to display the superiority of the second error 

evaluation procedure.  The procedure of the first method is shown in Figure 5.1, which 

displays the estimated train position and the train track position. 
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Figure 5.1:  Train Track Position vs. Estimated Train Location for All Trials 

The train track position is shown as the blue line and the detected train locations found 

from the MV camera are shown by the red data points.  The measurements are in terms of 

x and y locations on the “ground” level of the experimental setup.  As shown in the plots, 

some error is introduced between the detected location of the train and the train track.  A 

major cause of this error is due to the movement in the camera as it changes position.  In 

some cases the camera lens is not completely parallel to the “ground” surface in the 
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model environment.  This causes the camera measurements to be offset by some value, 

introducing error, as the results show in Figure 5.1.                       

 A better representation of the estimated error is shown in Figure 5.2.  Similar to 

the previous figure, the estimated position is shown in red and the track position is shown 

in blue.  This plot is captured from the data obtained in the Trial 1 simulation shown in 

Figure 5.1.  In this figure it is much easier to see how the estimated position overshoots 

the train track.  At this time of the simulation the camera is slightly tilted causing the 

measurements to be offset, which is a major reason why this error evaluation method is 

inaccurate.      
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Figure 5.2 Train Track Position vs. Estimated Train Location for Trial 1 

 Another example of the error estimation is shown in Figure 5.3  Using the first 

method, the Euclidean distance is calculated from the measured position of the train to 

the train track.       
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Figure 5.3:  Euclidean Distance between Target and Train Track Position 

The shortest Euclidean distance from the train track to the detected train position, shown 

in Figure 5.1, is considered to be the Euclidean distance for each estimated position.  It is 

shown in Figure 5.3 that the error estimation is below 0.07 meters for all trials.  In Trials 

1, 3, and 4 the error is never above 0.06 meters.  As stated previously, a significant 

portion of error is a result of the camera movement while changing locations in the 

experimental environment.  To represent the overall error in each trial, the root mean 

squared error (RMSE) is calculated for the position error estimation.  The RMSE of the 

Euclidean distance is shown in Table 5.6.  The minimum, maximum, and mean Euclidean 

distances are also displayed for each trial. 

Table 5.6:  RMS Error between Estimated Train Location and Train Track 

Trial   Max. Euclidean 
Distance (m) 

Min. Euclidean 
Distance (m) 

Mean Euclidean 
Distance (m) RMSE (m) 

1 0.0563 0.0026 0.0257 0.0299 
2 0.066 0.0039 0.0331 0.0391 
3 0.0577 0.011 0.0333 0.0349 
4 0.0563 0.0021 0.0254 0.0293 
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After examining Table 5.6, the RMSE values are relatively similar for each trial.  The 

results from Trial 2 produced the largest RMSE, which is due mainly to the error shown 

in Figure 5.2.   

During each trial run there is no indication as to where the error exactly occurs.  

This is evident after examining each trial in Figure 5.1, where the error occurs at different 

locations throughout each trial.  If the camera had the same orientation and path 

throughout each trial the results would better display the accuracy of the target detection 

and tracking software.  Therefore, the error is caused from mechanical issues rather then 

a software design issue, which would require a redesign of the positioning apparatus.  It 

is also evident from these results that the time required to process each image is sufficient 

enough to allow the camera to keep the train in its FOV as it follows the train along its 

path.  If this is not the case then the train would eventually move out of the camera’s 

FOV. 

The error estimation for the fifth trial is shown in Figure 5.4.  Similar to the 

previous figures, the red line represents the estimated train location and the blue line 

represents the train track location.  The simulation in Trial 5 differs from the other trials 

shown in Figure 5.1 for the fact that this simulation is performed for 50 seconds rather 

then 25 seconds.  This trial is used to analyze the error correction portion of the software, 

or display the actions of the camera positioning system when the train enters the tunnel.  

In Figure 5.4 the starting and ending points for the trial are labeled and the box represents 

the tunnel system in the model environment.  The error plot in Figure 5.4 represents the 

flag output during the trial test, where an output of 1 represents positive target detection 

and an output of 0 represents zero target detection.  After analyzing the results from Trial 

5, the train exits the camera’s FOV when it enters the tunnel.  This situation occurs at two 

instances throughout the test, at frame 11 and 37.  The reactions of the camera 

positioning system are different in each case.  In the first case, at frame 11, the necessary 

inputs are given to the positioning system to allow the camera to detect the train as it 

exits the tunnel system, which is evident from the trial test results.  This is similar for the 

second case, however once the train enters the tunnel it stops.  Therefore, the train never 

reenters the camera’s FOV after entering the tunnel.  At this time, the camera is given the 
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command to hold its position until the train enters its FOV again.  In a real situation the 

UAV would be given the command to loiter until the train exits the tunnel system.     
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Figure 5.4:  Results of Error Correction Scheme for Trial 5 

 The second method for the error evaluation is used to compare the estimated 

location of the train to the “actual” position of the train.  Using this method a comparison 

is also made between the estimated values with and without added GPS error.  This 

approach is taken because in a real situation, a UAV is usually equipped with a GPS 

receiver to determine its location and speed in time.  With this in mind, there are several 

external sources that introduce error into the GPS measurements.  To simulate this effect, 

an error of ±5 meters is randomly added to the estimated train position.  The RMS error is 

then calculated and compared between each case of this error evaluation method.  Figure 

5.5 displays the error evaluation without GPS error for simulation Trials 1 though 4.            
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Figure 5.5: “Actual” vs. Estimated Location for All Trials without GPS Error 

In Figure 5.5 the “actual” train position is shown by the blue data points, the estimated 

train locations are shown by the red data points, and the green line represents the train 

track.  The measurements are in terms of x and y locations on the “ground” level of the 

experimental setup.  A better representation of the error is shown in Figure 5.6, which 

displays the results of Trial 2, shown in Figure 5.5. 
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Figure 5.6:  “Actual” vs. Estimated Train Location for Trial 2 without GPS Error  

Before the results of this method are further discussed, a comparison is made 

between both error evaluation methods to fully understand each procedure.  A portion of 

Figure 5.6 is used to compare both methods. Similar to the first method, the Euclidean 

distance is calculated, but following a different procedure.  To visually display the 

calculated Euclidean distance from each method the comparison is shown in Figure 5.7.  
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Figure 5.7:  Euclidean Distance Calculation for Trial 2 without GPS Error 

In the figure above, the purple and black arrows represent the Euclidean distance 

calculations using the first and second method, respectively.  It is evident from the length 

of each arrow that the Euclidean distance can be quite larger when the estimated target 

position is further away from the “actual” position.  This is the determining factor why 

the first method is much less accurate.  To quantify the difference between the 

measurements, the Euclidean distance for each estimated target position shown in the 

above figure is shown in Table 5.7, which also includes the percent difference between 

each method.  
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Table 5.7:  Comparison of the Euclidean Distance Calculation Methods for Trial 2 

Point (P) 
Euclidean Distance 

Using Method 1 (m) 

Euclidean Distance 

Using Method 2 (m) 
% Difference 

1 .0249 .0439 43.28 

2 .0467 .0767 39.11 

3 .0532 .0675 21.19 

   

It is evident that the second method displays more error in the position estimation results.  

However, it is more accurate for this evaluation procedure.  As stated previously, this 

error is accounted for from the orientation of the camera changing as each image is 

captured.  If the camera lens is exactly perpendicular to the “ground” level when each 

image is captured the error would be much less.     

Using the second evaluation procedure, the error with the added GPS error is then 

displayed in Figure 5.8.  In this figure the “actual” train position is shown by the blue 

data points, the estimated train locations with GPS error are shown by the red data points, 

and the green line represents the train track.  The measurements are in terms of x and y 

locations on the “ground” level of the experimental setup.   
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Figure 5.8:  “Actual” vs. Estimated Location for All Trials with GPS Error 

It is evident that the added GPS error introduces random error in the estimation of the 

target location.  To quantify and compare the error between the two different cases, with 

and without GPS error, the RMS error is determined using the Euclidean distance 

calculations.  The results are shown in Table 5.8.  

Table 5.8:  RMS Error between Estimated and “Actual” Train Location 

 Trial   Max Euclidean 
Distance (m) 

Min Euclidean 
Distance (m) 

Mean 
Euclidean 

Distance (m) 
RMSE (m)

1 0.0754 0.0072 0.0354 0.0413 
2 0.1053 0.0114 0.0502 0.0540 
3 0.0799 0.0053 0.0357 0.0417 

Without GPS 
Error 

4 0.0930 0.0033 0.0424 0.0488 
1 0.0991 0.0091 0.0382 0.0457 
2 0.1180 0.0065 0.0505 0.0559 
3 0.0800 0.0075 0.0407 0.0460 

With GPS Error 

4 0.1157 0.0124 0.0486 0.0559 
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After examining Table 5.8 it is evident that the position estimation results with  

random GPS error produce slightly larger RMS error.  Trial 2 produces the largest RMS 

error in each case.  Although the RMS error is larger, it is apparent that the added GPS 

error does not have a significant affect on the results.  It is also believed, in most cases, 

the GPS measurements would be more accurate then ±5 meters.  There are only some 

situations which would cause the error to reach ±5 meters.  For example, this could occur 

when several of the satellite signals is lost.     

A comparison can now be made to represent the difference between the RMS 

errors for each error evaluation method. The RMS error values are shown in Table 5.9. 

Table 5.9:  Comparison between Error Estimation Methods 

Trial
RMSE Using 

Method 1 
RMSE Using Method 

2 (w/o GPS Error) 
RMSE Using Method 

2 (w/ GPS Error) 
% Difference of Method 1 

& 2 (w/o GPS Error) 

1 0.0299 0.0413 0.0457 27.60 

2 0.0391 0.0540 0.0559 27.78 

3 0.0349 0.0417 0.0460 16.31 

4 0.0293 0.0488 0.0550 39.96 

   

After examining Table 5.9, it is evident that the RMS error results found using the second 

method show larger RMS error.  This further displays the inaccuracy of the first error 

evaluation procedure.  For this reason the second error evaluation procedure is chosen as 

the more accurate evaluation method other then using a sensor to measure the exact 

location of the train.    

Using the scale of the model environment, the estimated error can then be related 

to a real-life situation.  Therefore, this experiment is comparable to a UAV flying 

approximately 68 meters above ground level while detecting and tracking a ground 

target.  The error results at this altitude are shown in Table 5.10.  
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Table 5.10:  RMSE at an Altitude of 68 Meters 

Trial
RMSE Using Method 2 

w/o GPS Error (m) 
RMSE Using Method 2 

w/ GPS Error (m) 

1 3.60 3.98 

2 4.70 4.87 

3 3.63 4.00 

4 4.25 4.79 

 

 To reduce the error it is necessary to enhance the design of the MV camera 

positioning apparatus.  The camera should be perpendicular to the “ground” level at all 

instances throughout the simulation.  Due to time and cost restrictions, this task was not 

feasible during this particular research effort, but should be noted for future work using 

this laboratory setup.    

5.1.3. Velocity and Acceleration Estimations 

Similar to the position estimation results, there is no measured data to compare 

the estimated values of the train velocity and acceleration results.  For this reason, it is 

very difficult to analyze the accuracy of the results.  In any case, the method used to 

estimate the velocity of the train is by utilizing the “tictoc” command in Matlab®.  This 

command is used to output the measured time it takes to process each frame of the live 

video feed.  This data along with the distance the train traveled between each sequential 

frame is used to estimate the velocity and in turn, estimate the acceleration of the train.  

The time output after each sample is different due to the fact that this includes the time it 

takes the camera to move to each location.  The time it takes to capture each frame is 

approximately the same; variations with these times are due to the fact that Windows is 

running other programs in the background.  The computation time for the pre-processing 

stage and circle detection algorithm are relatively similar, as well, between each frame.  

Variation in the computation time is then accounted for by the motor control section.  

Additional time is also required if the image falls under one of the cases that require the 

entire image to be processed.  The computation time will be greater in this situation than 

in the other scenario that uses the cropped image as the input.  
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The results of the train velocity and acceleration estimates are displayed in Figure 

5.9 and Figure 5.10, respectively.  The velocity and acceleration estimations are only 

shown for the first four trials for the position estimation results shown in Figure 5.1.  By 

close examination of these plots it is evident that the train is not moving at a constant 

velocity throughout each simulation.  This is obvious due to the fact that it is difficult to 

keep the train moving at a constant velocity unless the maximum velocity setting is 

chosen.  In this experiment, this would not be possible due to speed limitation of the 

stepper motors.  On the other hand, an attempt to obtain slow train speeds would cause 

the train to stop on the track due to weak contact points between the two surfaces.  

Therefore, to keep the train constantly moving along the track it is necessary to manually 

adjust its power supply at instances when the train appeared as if it is going to stop.  As a 

result, the velocity of the train constantly changed during the course of each experiment.  

However, the average velocity for each trial is relatively precise as seen from Figure 5.9 

where this value is approximately 0.11 m/s.           
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Figure 5.9:  Velocity Estimation for each Trial 
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Figure 5.10:  Acceleration Estimation for each Trial  

After examining the figures above, it is evident that the velocity estimation 

procedure works well.  In order to quantify this indication, the results from the position 

and velocity estimations should be compared for Trial 3.  As previously stated, in this 

trial the train stopped at several instances during the simulation to display the actions of 

the positioning control system.  It may not be clearly evident in Figure 5.1 at what 

locations the train stopped, but the evidence is shown in the velocity estimation plot for 

Trial 3.  After close examination, the results from this plot show that the train stops 

between frames 9 and 10 and frame 20.  Comparing this visual evidence with the data 

obtained from Trial 3, this is a true deduction.  Other evidence is apparent when 

analyzing the distance between each data point in Figure 5.1.  When the distance between 

two data points is large, the velocity at this instance is represented by a larger value and 

vise versa.  This trend proves that the velocity controller is working properly.           

5.1.4. Robustness to Different Lighting Conditions 

A performance analysis is conducted to assess the performance of the software at 

two different lighting conditions.  This limited range of tests can not be considered a 

complete and extensive study of the effect of different lighting conditions, but it presents 

the basic outcome of the performance characteristics of the software.  This type of 
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performance analysis is chosen because it is fairly easy to manipulate and it can be 

measured and quantified with the available lab equipment.  The effect of changing 

lighting conditions is a very important design parameter.  This is a very practical 

disturbance that may be encountered in MV applications on UAVs. 

As a result of using a controlled laboratory setting for this research effort there are 

very few lighting conditions available.  Therefore, only two conditions are chosen for the 

performance assessment.  The first lighting condition is the brightest obtainable lighting 

condition, which is created by utilizing a 100% of the florescent lighting.  The second 

lighting condition is obtained by reducing the florescent lighting by 50% and draping a 

net over the model environment to further reduce the light.  Once the proper lighting 

conditions are determined for each condition, the EV value is recorded and calculations 

are made to quantify the different luminance values at each condition, which is shown in 

Table 5.11.  In this table, the luminance value for the second test condition displays a 

70% decrease when compared to the first test condition.  The luminance value is also 

measured for a cloudy day to give a better idea of the amount of light that each 

experiment is subjected to.  This value shows that natural light conditions are accounted 

for by a much larger luminance measurement; approximately 100% larger then the first 

test condition.  It is believed that this increase in luminance would make it easier to detect 

the target by making it more distinguishable from the background.  Finally, once the 

luminance values are recorded a detailed performance analysis is performed to assess the 

results obtained at each condition.  This analysis includes a visual assessment of the 

software output for the position estimation performed for three tests.       

Table 5.11:  Luminance Measurements Obtained From the Canon EOS 400D 

Luminance Measurements 

Lighting Test Condition f-number k EV100 L (cd/m2) 

#1 4 1/50 9.64 99.73 

#2 4 1/13 7.70 29.86 

Cloudy day at 11:35 A.M.  

on 11/18/2007 
4 1/100  10.64 200.00  
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 To visually interpret the difference between the two lighting conditions, Figure 

5.11 displays two arbitrary images captured under each lighting condition with their 

respective luminance histogram diagram.  Each histogram diagram displays the pixel 

intensity distribution throughout each image.  After analyzing the diagrams, it is evident 

that the amount of luminance is reduced shown from the pixel intensity distributions.  

The distribution for the image captured under the first test condition is represented by an 

overexposed histogram plot where a large portion of the pixel intensity values are 

focused near the bright side of the contrast spectrum.  In the other situation, the image 

captured under the second test condition represents a pixel intensity distribution that is 

focused near the middle of the contrast spectrum.  The result of the second test condition 

will make it more difficult to detect the train in each simulation.      
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Figure 5.11:  Luminance Histograms for Lighting Test Conditions 

 After performing several experiments under the second test condition there are a 

few parameter adjustments that are essential in order to produce acceptable results.  It is 

necessary to adjust the contrast-stretching function that is used during the first lighting 

condition.  Each function is shown in Figure 5.12, in which the blue line represents the 

contrast-stretching function used in the simulations under the first lighting condition and 
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the red line represents the function used under the second lighting condition.  The 

function representations are obtained by altering the intensity threshold value, m.  An 

understanding of the procedures for this method is provided in Section 3.3.2.  To produce 

acceptable results under the second lighting condition, it is necessary to alter the contrast-

stretching function and increase the threshold value for Sobel edge detection.    
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Figure 5.12:  Contrast-Stretching Functions Used in Each Condition 

The data used from the software to analyze its performance under different 

lighting conditions is based solely on the train position estimation results.  The results 

shown in this section are obtained under the second test condition.  It is not necessary to 

perform any other tests under the first lighting condition since these results are previously 

displayed in Section 5.1.2.  The tests performed in this section consist of a 25 second 

simulation where a frame is captured once per second; this is performed for three tests.  

The results of each of these tests are shown in Figure 5.13, Figure 5.14, and Figure 5.15, 

respectively.  The red line in each plot indicates the estimated position of the train 

detected from the software and the blue represents the “actual” position of the train.  The 

first two figures include the error results during each test experiment.  This is not 

necessary for the third test since it detected a target at every frame location.     
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Figure 5.13:  Position Estimation Results for Test 1 for Lighting Condition #2 
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Figure 5.14:  Position Estimation Results for Test 2 for Lighting Condition #2 

 As seen from the figures above, the positions estimation error did increase at 

arbitrary locations during each simulation.  The result of this is evident from the error 

plots in each figure.  Apparently the detection software is unable to detect the train at the 

frame number shown in each figure when the flag is equal to 0.  However, this is not a 

huge issue due to the fact that the train is re-detected in the next frame.  A combination of 

camera vibrations and reduced lighting is the leading cause of this error, making it harder 

to detect the edges of the train in each image.  With the exception of this error, the data 

appears fairly consistent to the data obtained under the first lighting condition.   

 One last characteristic is determined while analyzing the results obtained from the 

third test, which is shown in Figure 5.15.  After assessing the data obtained from the 

software the last captured frame in Test 3 resulted in a false detection, which is evident 

by the point offset from the train track.  At this instance in the simulation the train entered 

the tunnel system and left the camera’s FOV.  In a normal situation the MV software 
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should not detect and label any other features in the image as the target.  However, since 

it is necessary to enlarge the threshold to account for the different lighting condition, it 

increased the chances of false detections.     
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Figure 5.15:  Position Estimation Result for Test 3 for Lighting Condition #2 

 Although more error is introduced when the lighting conditions are altered, it is 

not a significant amount and the detection software is still able to produce satisfactory 

results.  If harsher lighting conditions are encountered it may be required to further 

enhance the detection software.  To accomplish this, it may be necessary to add another 

constraint to the feature detection software, such as the Euclidean distance.  In this case, a 

constraint would be placed on the distance between the estimated train position and the 

track.  This would require more accurate position estimation to produce satisfactory 

results.  

5.2. Target Detection and Tracking Using the HT Algorithm 

To assess the performance of the HT for the circle detection procedure, normally 

there would be data obtained through a sensor, such as GPS, to compare the estimated 

position of the train against.  However, in this research, the availability of such data is not 

obtainable.  As a result, the analysis of this method is limited to the scope of tests that can 

be performed.  This does not exclude a visual assessment of the performance of this 

software method, although it may be somewhat subjective.  In the visual means of 
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evaluation the output of the target detection and tracking software will be analyzed to 

determine if the software is working to the best of its capability.  This form of evaluation 

will be covered in Section 5.2.1.  One other aspect of this explored software method is its 

execution speed.  This is always an important form of evaluation when dealing with MV 

applications.  Therefore, a complete computational workload analysis is performed and 

discussed in Section 5.2.2.  Table 5.12 displays the experimental breakdown for the 

computational workload of this software.  Each test a 25 second simulation using a 1 Hz 

update frequency.   

Table 5.12:  Computational Workload Test Breakdown Used for Evaluation 

Computational Workload Evaluation Via Matlab® Profiler 

Test 1:  25 second simulation at 1 Hz. 

Test 2: 25 second simulation at 1 Hz. 

Test 3:  25 second simulation at 1 Hz. 

 

Table 5.13 represents the experimental breakdown for the position estimation analysis.  

The first three tests are the results of a 25 second simulation while Test 4 is performed 

using a 50 second simulation.   

Table 5.13:  Position Estimation Analysis Breakdown Using the HT Method 

Visual Analysis of Position Estimation 

Test 1:  25 second simulation at 1 Hz; train travels CW. 

Test 2:  25 second simulation at 1 Hz.; train travels CCW. 

Test 3:  25 second simulation at 1 Hz; train travels CW then CCW 

Test 4:  50 second simulation at 1 Hz; train travels CCW 

5.2.1. Computational Workload Analysis 

 To evaluate the computational workload for this software method the Matlab®  

Profiler tool is utilized.  The profiler is used to break down the time spent on each section 

of the software scheme.  The section breakdown and their respective computation times 

are shown in Table 5.14.  The description of each section is previously explained in 

Section 5.1.1. 
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Table 5.14:  Timing Profile While Using the HT Method 

Target Detection/Tracking 
Speed Comparison using 

Matlab®  Profiler 

Modified Detection and 
Tracking Algorithm 

Machine Vision Process Time (s) Executions 
Capturing the Image Frame 2.30 26 
Pre-processing 5.34 26 
Circle Detection Method 15.05 26 
Motor Control 11.77 26 
Other Lines and Overhead 4.31 N/A 
Total Time 38.78 N/A 

 

 The target detection and tracking simulations are performed for 25 seconds with a 

1 Hz sampling rate, which is why the software is only executed 26 times.  These tests are 

performed with the same sampling rate as the profiler test previously explained in Table 

5.5.  This is necessary to properly compare the two methods for circle detection in the 

MV software design.   

 The timing profile is broken down into the major subsystems of the Simulink® 

model.  It is easy to see that the HT subsystem, taking 15.05 seconds, uses the most 

computation time compared to the other subsystems.  This accounts for 38.8% of the total 

time required to perform the simulation.  This characteristic is not surprising considering 

the number of calculations the HT method performs for a given simulation.  It should be 

noted that this timing test is performed using the modified detection and tracking 

algorithm.  If this test is performed using the enhanced software version the computation 

time for the HT subsystem would drastically increase since it is significantly affected by 

the number of edge pixels in the input image.  Therefore, it is crucial to design an 

efficient pre-preprocessing stage to obtain the best possible signal to noise ratio. 

Comparing the results of this profiler test with the previous test, the other software 

sections are not affected by using the HT method. Computation time is approximately the 

same for these profiler tests.  Therefore, since the rest of the subsystems have already 

been analyzed in the previous profiler test it is not necessary to further discuss their 

performance characteristics.  Considering the results obtained in this profiler test, the 

frame rate is approximately 0.5 Hz.  This frame rate would not be adequate enough to be 

utilized in a UAV for a real time application.  
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5.2.2. Performance Analysis 

 The estimated data obtained from the MV software is compared to the location of 

the train track within the model environment, which is obtained by measuring the 

location of the track.  The following figures display the output of the target detection and 

tracking scheme using the HT method for circle detection.  In each figure the red line 

indicates the estimated position measured through the MV process and the blue line 

represents the train track or the “actual” position of the train during the simulation.  It is 

obvious that the software is working well as it detects and tracks the train at each location 

around the track during the simulation.  This trend is displayed through each of the 4 

trials shown below.  It should be noted that the train is set at its lowest velocity setting to 

account for the increased processing time while using the HT method.  Figure 5.16 

represents the results obtained through three 25 second simulations while Figure 5.17 

represents the result obtained through a 50 second simulation.  The description of each 

test is provided below: 

1. The train travels clockwise around the track; 

2. The train travels counterclockwise around the track; 

3. The train initially travels clockwise around the track, then stops and changes 

direction; 

4. The train travels counterclockwise around the track. 
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Figure 5.16:  Position Estimation Result Using HT Method for 25 Second Simulation 

The final representation of the position estimation is displayed in Figure 5.17.  

Similar to the previous representation, the red line represents the estimated train location 

and the blue line represents the “actual” train location.  The simulation in Trial 4 differs 

from the other trials shown in Figure 5.16 for the fact that this simulation is performed 

for 50 seconds.  This trial is used to analyze the error correction portion of the software, 

or display the actions of the camera positioning system when the train exits the cameras 

FOV, while using the HT method.  In Figure 5.17 the starting and ending points for the 

simulation are labeled and the box represents the tunnel system in the model 

environment.  As shown in the figure, the HT method successfully detects the train as it 

enters and exits the tunnel system. 
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Figure 5.17:  Position Estimation Result Using HT Method for 50 Second Simulation 

These results obtained through this evaluation show a near flawless performance 

in detecting and tracking the train throughout each simulation.  There are only three 

instances where the HT detection method falsely detects a “target,” as shown in the 

results for Trial 1 and 4.  With the results obtained using the HT method, ultimately, a 

UAV equipped with a control system would have no problem detecting the train, but the 

scheme would have to execute fast enough to properly track the target along its path.  It is 

evident that when using this software method, accuracy would probably not be the cause 

of error.  The source of error lies within its execution speed.  Therefore, methods to 

increase the efficiency of the HT must be further researched before this MV technique 

can be utilized within a real time application for UAVs.   
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Chapter 6. Conclusion and Recommendations 

6.1. Conclusion 

The capability to shield a human pilot from extremely long or dangerous missions 

has significantly increased with the widespread deployment of UAVs.  Traditionally, 

these platforms are used for intelligence, surveillance, and reconnaissance missions in 

military settings that pose high human risk.  The trend of limiting human intervention 

within these applications has now become appealing to civil and commercial users as 

well.  The popularity of these unmanned systems will continue to grow for a multitude of 

reasons as they not only eliminate the risk to humans, but reduce the error of direct 

human intervention, have the ability to cooperate with other UAVs, and are more cost 

effective.  With these key concepts in mind, the goal of this research effort is to 

investigate the application of MV on UAV platforms.  The application in this research 

consisted of the design, development, and the experimental validation of a prototype 

“UAV” surveillance system with MV capabilities for the purpose of target detection and 

tracking.  At the completion of this research, the MV problems presented are satisfied.  

The mock “UAV” environment designed for this research, with its ability to test different 

MV algorithms, is consequential in meeting the need to show that this MV application is 

feasible and this type of technology is important to future UAV missions.           

At the completion of performing a wide range of experiments within the prototype 

surveillance system, under different test conditions, the target detection and tracking 

software is shown to work very well.  This is evident after analyzing the experimental 

results which show that the algorithms used for target detection exhibited a satisfactory 

behavior, having a 90% detection rate.  However, after testing the two different 

approaches for circle detection, the FFF circle detection algorithm clearly outperforms 

the HT method as it repeatedly yields a much faster computation time.  The RMS error is 

slightly better as well.  The computation time of the software can be further reduced by 

performing a cropping routine on the input image to reduce the image size by 44%.  

Therefore, if further research is performed dealing with this application of MV it is 

suggested to utilize the FFF algorithm based on its speed and robustness.     
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During the tests performed in this research the target detection and tracking 

software managed to successfully detect and track the target in every case.  The results of 

the position and velocity estimations are proven to be fairly accurate with the estimated 

RMS error being less then 0.0559 meters in the worst case scenario.  The detection rate 

and accuracy of this software suggests that it can be reliable in much more diverse 

situations.  An attempt to simulate these situations is made by assessing the software 

performance in two different lighting conditions.  The lighting conditions are obtained by 

altering the amount of florescent lighting in the laboratory.  The first lighting condition 

can be characterized by a luminance measurement of 99.73 cd/m2 and the second 

condition recorded a measurement of 29.86 cd/m2.  This accounts for a luminance 

difference of approximately 70%.  In both test conditions, the target is continuously 

detected and tracked, without significantly sacrificing its detection sensitivity at the lower 

luminance measurement.  This is proven by analyzing the position estimation results 

where the detection rate is reduced from approximately 95% to 90%.  The effect of 

altering the lighting condition is an indicator of the robustness of the software.  This is 

important for the fact that this type of disturbance is almost guaranteed in a real life 

situation.     

The target detection and tracking scheme exhibited satisfactory results at an 

update rate of [1-2] Hz.  This value proved to be adequate within a laboratory 

environment and is currently believed to be satisfactory for operational effectiveness in 

UAV platforms.  However, the update rate is based on the performance characteristics of 

the target and UAV; higher operational speeds require higher update rates to ensure the 

target stays within the camera’s FOV.  In these situations where higher update 

frequencies are necessary, further evaluation is required to decrease the computation time 

of the current software.  Nevertheless, with increasing popularity of this MV application, 

powerful embedded systems are likely to be available in the near future.  This could offer 

the ability to implement the methods presented in this research for target detection and 

tracking, at higher update rates. 
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6.2. Recommendations 

The future of the prototype “UAV” surveillance system is certainly appealing for 

the analysis and implementation of different MV applications.  If further research is 

envisioned regarding the topic of target detection and tracking, it is recommended to 

design a six DoF positioning system to better emulate the motions of a real aircraft.  If 

this is accomplished, the first step would be to design a lateral controller to control the 

“UAVs” airspeed and turning rates, which is directly related to the aircraft’s orientation.  

Lateral control of the “UAV” could be achieved by commanding the vehicle’s turning 

rate to minimize the error between the desired heading angle and the current heading 

angle.  The desired heading angle is directly related to the location of the target within the 

captured image frame.  It is recommended to design a PID controller as a first attempt to 

accomplish this task.  

In regards to the current software design, additional efforts could be made to 

increase the overall robustness of the software to make it more suitable for real life 

situations.  Currently it is necessary to manually adjust the software parameters to obtain 

satisfactory results at different lighting conditions.  Additional experiments could be 

performed to obtain a relationship between the measured luminance and the input 

parameters for the contrast-stretching function.  Using this relationship, a mathematical 

model could be used to automatically determine the parameter inputs at each measured 

lighting condition.  In addition, software could be written to enhance the error detection 

portion to better address the situation when the target leaves the camera’s FOV or when 

there is a false detection.  In regards to this problem, it is recommended to form a 

relationship between the estimated target velocity and position to predict the location of 

the target within the environment.  This prediction can be compared to the estimated 

values acquired through the MV camera.  If there is a large amount of error between the 

two values then the estimated location could be the result of a false detection.  This 

would further enhance the overall effectiveness of the target detection and tracking 

software.   

Another issue that should be addressed, within the software design, is the situation 

when the target’s orientation is changed during the identification process.  This can occur 

when either the train changes elevation or MV camera changes altitude.  The current 
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software design does not address this problem; the circle detection algorithms only search 

for features with a specific size and representation when the MV is positioned at a 

specific altitude.  To resolve the problem, when the MV camera changes altitude, it is 

necessary to measure the amount of change through a sensor.  With this information 

known the target representation can be scaled for the detection process.  Therefore, if the 

MV camera is elevated further above the “ground” level then the software training data 

must be decreased in size.  When the MV camera is lowered towards the “ground” level 

then the training data must be scaled larger.  The other situation that can occur is when 

the target changes elevation.  This is a more difficult problem to address because in a real 

situation it is highly unlikely that the actual position of the target will be known.  

Therefore, one solution would be to acquire the geographic elevation changes prior to the 

target detection and tracking process.  If this information is known then the elevation of 

the target can be estimated based on the known location of the “UAV,” or MV camera, 

within the model environment.  If the elevation of the target can be estimated then the 

training data for the target can be scaled accordingly.   

Another problem that could occur is when the shape of the train’s chimney stack 

is not represented by a circle.  This could happen when the MV camera is not directly 

over the target, which could cause the chimney stack to be represented by an ellipse.  The 

current software does an adequate job of detecting the chimney stack when it is not 

directly over the target.  However, the orientation of the train is not significantly altered 

during the detection process and the software allows for some error to be accounted for.  

If the orientation of the chimney stack is significantly altered, a possible solution to this 

problem would be to use an ellipse detection algorithm rather then a circle detection 

algorithm.  This could then be used to detect the chimney stack when it is represented by 

an ellipse or a circle where a circle is a special case of an ellipse.  Additional research 

should be completed for different ellipse detection methods if this approach is necessary.  

Real-time target detection and tracking is an essential part of the vision based 

control of UAVs.  The current software design is capable of operating at approximately 1 

Hz, which is achieved using a high powered desktop computer.  This is not sufficient 

enough to implement on-board a real UAV.  In order to perform vision processing on-

board a UAV, real-time capabilities must be achieved.  To obtain this capability, the first 
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recommendation would be to implement the software design in a different programming 

language.  It is recommended to use a higher level programming language such as C or 

C++ for real-time system development.  Another concerning issue involves the current 

operating software.  For real-time computing, it is recommended to use a different 

operating system; Microsoft Windows operating system is not suitable for this task.  For 

example, many delays in the software computation time are accounted for by accessing 

the MV camera through Windows.  A possible solution to this is to use operating 

software that is more capable of real-time computing, such as the Linux operating 

environment.  Real-time capabilities can lead to future experimental tests of this vision-

based tracking system onboard an actual UAV.                       
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