3,517 research outputs found

    Generalising symbolic knowledge in online classification and prediction

    Get PDF
    Increasingly, researchers and developers of knowledge based systems (KBS) have been incorporating the notion of context. For instance, Repertory Grids, Formal Concept Analysis (FCA) and Ripple-Down Rules (RDR) all integrate either implicit or explicit contextual information. However, these methodologies treat context as a static entity, neglecting many connectionists' work in learning hidden and dynamic contexts, which aid their ability to generalize. This paper presents a method that models hidden context within a symbolic domain in order to achieve a level of generalisation. The method developed builds on the already established Multiple Classification Ripple-Down Rules (MCRDR) approach and is referred to as Rated MCRDR (RM). RM retains a symbolic core, while using a connection based approach to learn a deeper understanding of the captured knowledge. This method is applied to a number of classification and prediction environments and results indicate that the method can learn the information that experts have difficulty providing. © Springer-Verlag Berlin Heidelberg 2009

    Inductive machine learning of optimal modular structures: Estimating solutions using support vector machines

    Get PDF
    Structural optimization is usually handled by iterative methods requiring repeated samples of a physics-based model, but this process can be computationally demanding. Given a set of previously optimized structures of the same topology, this paper uses inductive learning to replace this optimization process entirely by deriving a function that directly maps any given load to an optimal geometry. A support vector machine is trained to determine the optimal geometry of individual modules of a space frame structure given a specified load condition. Structures produced by learning are compared against those found by a standard gradient descent optimization, both as individual modules and then as a composite structure. The primary motivation for this is speed, and results show the process is highly efficient for cases in which similar optimizations must be performed repeatedly. The function learned by the algorithm can approximate the result of optimization very closely after sufficient training, and has also been found effective at generalizing the underlying optima to produce structures that perform better than those found by standard iterative methods

    Inductive learning spatial attention

    Get PDF
    This paper investigates the automatic induction of spatial attention from the visual observation of objects manipulated on a table top. In this work, space is represented in terms of a novel observer-object relative reference system, named Local Cardinal System, defined upon the local neighbourhood of objects on the table. We present results of applying the proposed methodology on five distinct scenarios involving the construction of spatial patterns of coloured blocks

    Linear Regression and Unsupervised Learning For Tracking and Embodied Robot Control.

    Get PDF
    Computer vision problems, such as tracking and robot navigation, tend to be solved using models of the objects of interest to the problem. These models are often either hard-coded, or learned in a supervised manner. In either case, an engineer is required to identify the visual information that is important to the task, which is both time consuming and problematic. Issues with these engineered systems relate to the ungrounded nature of the knowledge imparted by the engineer, where the systems have no meaning attached to the representations. This leads to systems that are brittle and are prone to failure when expected to act in environments not envisaged by the engineer. The work presented in this thesis removes the need for hard-coded or engineered models of either visual information representations or behaviour. This is achieved by developing novel approaches for learning from example, in both input (percept) and output (action) spaces. This approach leads to the development of novel feature tracking algorithms, and methods for robot control. Applying this approach to feature tracking, unsupervised learning is employed, in real time, to build appearance models of the target that represent the input space structure, and this structure is exploited to partition banks of computationally efficient, linear regression based target displacement estimators. This thesis presents the first application of regression based methods to the problem of simultaneously modeling and tracking a target object. The computationally efficient Linear Predictor (LP) tracker is investigated, along with methods for combining and weighting flocks of LP’s. The tracking algorithms developed operate with accuracy comparable to other state of the art online approaches and with a significant gain in computational efficiency. This is achieved as a result of two specific contributions. First, novel online approaches for the unsupervised learning of modes of target appearance that identify aspects of the target are introduced. Second, a general tracking framework is developed within which the identified aspects of the target are adaptively associated to subsets of a bank of LP trackers. This results in the partitioning of LP’s and the online creation of aspect specific LP flocks that facilitate tracking through significant appearance changes. Applying the approach to the percept action domain, unsupervised learning is employed to discover the structure of the action space, and this structure is used in the formation of meaningful perceptual categories, and to facilitate the use of localised input-output (percept-action) mappings. This approach provides a realisation of an embodied and embedded agent that organises its perceptual space and hence its cognitive process based on interactions with its environment. Central to the proposed approach is the technique of clustering an input-output exemplar set, based on output similarity, and using the resultant input exemplar groupings to characterise a perceptual category. All input exemplars that are coupled to a certain class of outputs form a category - the category of a given affordance, action or function. In this sense the formed perceptual categories have meaning and are grounded in the embodiment of the agent. The approach is shown to identify the relative importance of perceptual features and is able to solve percept-action tasks, defined only by demonstration, in previously unseen situations. Within this percept-action learning framework, two alternative approaches are developed. The first approach employs hierarchical output space clustering of point-to-point mappings, to achieve search efficiency and input and output space generalisation as well as a mechanism for identifying the important variance and invariance in the input space. The exemplar hierarchy provides, in a single structure, a mechanism for classifying previously unseen inputs and generating appropriate outputs. The second approach to a percept-action learning framework integrates the regression mappings used in the feature tracking domain, with the action space clustering and imitation learning techniques developed in the percept-action domain. These components are utilised within a novel percept-action data mining methodology, that is able to discover the visual entities that are important to a specific problem, and to map from these entities onto the action space. Applied to the robot control task, this approach allows for real-time generation of continuous action signals, without the use of any supervision or definition of representations or rules of behaviour

    Analysing the limitations of deep learning for developmental robotics

    Get PDF
    Deep learning is a powerful approach to machine learning however its inherent disadvantages leave much to be desired in the pursuit of the perfect learning machine. This paper outlines the multiple disadvantages of deep learning and offers a view into the implications to solving these problems and how this would affect the state of the art not only in developmental learning but also in real world applications

    Multitask Learning on Graph Neural Networks: Learning Multiple Graph Centrality Measures with a Unified Network

    Full text link
    The application of deep learning to symbolic domains remains an active research endeavour. Graph neural networks (GNN), consisting of trained neural modules which can be arranged in different topologies at run time, are sound alternatives to tackle relational problems which lend themselves to graph representations. In this paper, we show that GNNs are capable of multitask learning, which can be naturally enforced by training the model to refine a single set of multidimensional embeddings Rd\in \mathbb{R}^d and decode them into multiple outputs by connecting MLPs at the end of the pipeline. We demonstrate the multitask learning capability of the model in the relevant relational problem of estimating network centrality measures, focusing primarily on producing rankings based on these measures, i.e. is vertex v1v_1 more central than vertex v2v_2 given centrality cc?. We then show that a GNN can be trained to develop a \emph{lingua franca} of vertex embeddings from which all relevant information about any of the trained centrality measures can be decoded. The proposed model achieves 89%89\% accuracy on a test dataset of random instances with up to 128 vertices and is shown to generalise to larger problem sizes. The model is also shown to obtain reasonable accuracy on a dataset of real world instances with up to 4k vertices, vastly surpassing the sizes of the largest instances with which the model was trained (n=128n=128). Finally, we believe that our contributions attest to the potential of GNNs in symbolic domains in general and in relational learning in particular.Comment: Published at ICANN2019. 10 pages, 3 Figure

    A generic optimising feature extraction method using multiobjective genetic programming

    Get PDF
    In this paper, we present a generic, optimising feature extraction method using multiobjective genetic programming. We re-examine the feature extraction problem and show that effective feature extraction can significantly enhance the performance of pattern recognition systems with simple classifiers. A framework is presented to evolve optimised feature extractors that transform an input pattern space into a decision space in which maximal class separability is obtained. We have applied this method to real world datasets from the UCI Machine Learning and StatLog databases to verify our approach and compare our proposed method with other reported results. We conclude that our algorithm is able to produce classifiers of superior (or equivalent) performance to the conventional classifiers examined, suggesting removal of the need to exhaustively evaluate a large family of conventional classifiers on any new problem. (C) 2010 Elsevier B.V. All rights reserved
    corecore