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Abstract. Increasingly, researchers and developers of knowledge based systems 

(KBS) have been incorporating the notion of context. For instance, Repertory 

Grids, Formal Concept Analysis (FCA) and Ripple-Down Rules (RDR) all 

integrate either implicit or explicit contextual information. However, these 

methodologies treat context as a static entity, neglecting many connectionists’ 

work in learning hidden and dynamic contexts, which aid their ability to 

generalize. This paper presents a method that models hidden context within a 

symbolic domain in order to achieve a level of generalisation. The method 

developed builds on the already established Multiple Classification Ripple-

Down Rules (MCRDR) approach and is referred to as Rated MCRDR (RM). 

RM retains a symbolic core, while using a connection based approach to learn a 

deeper understanding of the captured knowledge. This method is applied to a 

number of classification and prediction environments and results indicate that 

the method can learn the information that experts have difficulty providing. 

Keywords. hidden context, knowledge based systems, knowledge 

representation, ripple-down rules, situation cognition 

1   Introduction 

Traditionally, knowledge based approaches have been based on the physical symbol 

hypothesis [1] which is built around the idea that knowledge is a substance that exists. 

However, after numerous failed systems some researchers have revised these concepts 

of knowledge and moved towards a situation-cognition (SC) based view. The SC 

view revolves around the premise that knowledge is generated at the time of its use. 

This implies that the existence of knowledge is based on the context of a given 

situation [2, 3]. A few methodologies, such as Formal Concept Analysis (FCA) [4], 

Repertory Grids [5] and Ripple-Down Rules (RDR) [6], have adopted a weak SC 

position by including contextual information. These approaches either incorporated 
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the context directly in the knowledge itself or in the structure the knowledge was 

represented. These methods have been reasonably successful, however, they assume 

that the context is a priori, and therefore, deductive [7]. This assumption leads to 

static representations of contextual based knowledge. However, context in certain 

situations could be considered a posteriori, and therefore, inductive [7]. 

The aim of this paper is to present an algorithm that moves away from these 

contextually static representations and instead heads towards an intermediate SC [8] 

view by handling hidden and dynamic contexts. This involves incorporation similar 

behaviour to the traditional strengths of connection based approaches while still being 

able to acquire and retain knowledge quickly. The result is a system that learns 

quickly and is still able to generalise effectively. The results in this paper investigates 

the method’s ability to classify cases quickly in an online environment and to predict 

continuous values. This notion of a symbolic based system capable of finding hidden 

contextual information through the generalisation of captured knowledge, led to the 

notion of combining a Knowledge Based System (KBS) with an Artificial Neural 

Network (ANN). The KBS selected for use in this paper was MCRDR, as this is 

currently one of the methodologies most capable of modelling multiple contexts [9].  

This paper is broken into three main sections. The first section will provide a 

background on MCRDR. This is followed by a discussion of the algorithm developed. 

Lastly, extensive results will be given, detailing the systems ability to discover more 

knowledge than that provided by the expert in both an online environment and in 

predicting continuous values.  

2   Multiple Classification Ripple-Down Rules (MCRDR) 

Ripple-Down Rules is a maintenance centred methodology for a KBS based approach 

using the concept of fault patching [10] and was first proposed by Compton and 

Jansen in 1988 [6]. It utilises a binary tree as a simple exception structure aimed at 

partially capturing the context that knowledge is obtained from an expert. It was 

assumed that the context was the sequence of rules that had evaluated to provide the 

given conclusion [6, 11-15]. Therefore, if the expert disagrees with a conclusion made 

by the system they can change it by adding a new rule. However, the new rule will 

only fire if the same path of rules is evaluated [13]. 

Ripple-Down Rules has been shown to be a highly effective tool for knowledge 

acquisition (KA) and knowledge maintenance (KM). However, it lacks the ability to 

handle tasks with multiple possible conclusions. Multiple Classification Ripple-Down 

Rules (MCRDR) aim was to redevelop the RDR methodology to provide a general 

approach to building and maintaining a Knowledge Base (KB) for multiple 

classification domains, while maintaining all the advantages from RDR. Such a 

system would be able to add fully validated knowledge in a simple incremental 

contextually dependant manner without the need of a knowledge engineer [16, 17]. 

The new methodology developed by [16] is based on the proposed solution by [12, 

13]. The primary shift was to switch from the binary tree to an n-ary tree 

representation. The context is still captured within the structure of the KB and 

explanation can still be derived from the path followed to the concluding node. The 



main difference between the systems is that RDR has both an exception (true) branch 

and an if-not (false) branch, whereas MCRDR only has exception branches. The false 

branch instead simply cancels a path of evaluation. Like with RDR, MCRDR nodes 

each contain a rule and a conclusion if the rule is satisfied. Each, however, can have 

any number of child branches.  

Inference occurs by first evaluating the root and then moving down level by level. 

This continues until either a leaf node is reached or until none of the child rules 

evaluate to true. Each node tests the given case against its rule. If false it simply 

returns, X (no classification). However, if this node’s rule evaluates to true then it will 

pass the case to all the child nodes. Each child, if true, will then return a list of 

classifications. Each list of classifications is collated with those sent back from the 

other children and returned. However, if none of the children evaluate to true, and 

thus they all return X, then this node will instead return its classification. Like with 

RDR the root node’s rule always evaluates to true, ensuring that if no other 

classification is found then a default classification will be returned. 

Knowledge is acquired by inserting new rules into the MCRDR tree when a 

misclassification has occurred. The new rule must allow for the incorrectly classified 

case, identified by the expert, to be distinguished from the existing stored cases that 

could reach the new rule [18]. This is accomplished by the user identifying key 

differences between the current case and each of the rules’ cornerstone cases. A 

cornerstone case is a case that was used to create a rule and was also classified in the 

parent’s node, or one of its child branches, of the new node being created. This is 

continued for all stored cornerstone cases, until there is a composite rule created that 

uniquely identifies the current case from all of the previous cases that could reach the 

new rule. The idea here is that the user will select differences that are representative 

of the new class they are trying to create [18]. 

3   Methodology 

The approach developed in this paper is a hybrid methodology, referred to as Rated 

MCRDR (RM), combining MCRDR with a function fitting technique, namely an 

artificial neural network (ANN). This hybridisation was performed in such a way that 

the function fitting algorithm learns patterns of fired rules found during the 

inferencing process. The position of rules and conclusions in the MCRDR structure 

represents the context of the knowledge, while the network adjusts its function over 

time as a means of capturing hidden relationships. It is these relationships that 

represent the methodology’s hidden contexts. 

This amalgamation appears simplistic but is by no means trivial. The fundamental 

difficulty was finding a means for taking the inferenced results from MCRDR and 

coding an input sequence for the network. The problem is caused by MCRDR’s 

structure constantly expanding. Therefore, the network’s input space must also grow 

to match. However, previous work in the function-fitting literature has not attempted 

to develop a network capable of increasing its input space. The problem arises from 

the internal structure of neural networks where, as the input space is altered, the 

interconnections between neurons and the associated weights are also changed.  



 

1. Pre-process Case 

Initialise Case c 

c ←  Identify all useful data elements. 

2. Classification 

Initialize list to store classifications 

Loop 

If child’s rule evaluates Case c to true 

list ←  goto step 2 (generate all classifications in child’s branch). 

Until no more children 

If no children evaluated to true then 

 list ←  Add this nodes classification. 

Return list. 

3. Evaluate Case 

x       ←   Generate input vector from list. 

ANN  ←  x  

v       ←   ANN output value. 

4. Return RM evaluation 

Return list of classifications for case c and 

Value v  of case c. 

 

Fig. 1. Pseudo code algorithm for RM.  

Basically, the system discussed in this paper is designed to recognise patterns of 

rules for particular cases and to attach weightings to these observed patterns. These 

patterns exist because there is either a conscious or subconscious relationship between 

these classes in the expert’s mind. Therefore, the captured pattern of rules in their 

static context is effectively a type of hidden or unknown context. This now discovered 

context can be given a value representing its contribution to a particular task.  

The full RM algorithm, given in pseudo-code in Fig 1 and shown diagrammatically 

in Fig 2, consists of two primary components. Firstly, a case is pre-processed to 

identify all of the usable data elements, such as stemmed words or a patient’s pulse. 

The data elements are presented to the standard MCRDR engine, which classifies 

them according to the rules previously provided by the user. Secondly, for each 

attribute, rule or class identified, an associated input neuron in the neural network will 

fire. The network produces a vector of output values, v , for the case presented. The 

system, therefore, essentially provides two separate outputs; the case’s classifications 

and the associated set of values for those classifications. 

Fig 2 shows a document classification and storage system where documents are 

also rated to judge their immediate importance. In this example a document with the 

tokens {a b b a c f i} has been pre-processed to a set of unique tokens {a, b, c, f, i}. 

The case is then presented to the MCRDR component of the RM system, which 

ripples the case down the rule tree finding three classifications: Z, Y, and U; from the 

terminating rules: 1, 5, and 8. In this example, which is using the Terminating Rule 

Association (TRA) method (section 3.3), the terminating rules then cause the three 

associated neurons to fire. The input pattern then feeds forward through the neural 

network producing a single value of 0.126. Thus, this document has been allocated a 

set of classifications that can be used to store the document appropriately, plus a 

rating indicating the importance of the document. 



List of classifications. 

l = Z, Y, U 

Tokens: 

a, b, c, f, i 

Document: 

a b b a c f i 

Value of case. 

v = 0.126 

Rule 5: 

If f then class Y 

Rule 6: 

If e then class W 

Rule 4: 

If c,!h then class V 
Rule 8: 

If a then class U 

Rule 7: 

If c,g then class Y 

Rule 3: 

If !b then class X 

Rule 1: 

If a then class Z 

Rule 2: 

If d then class Y 

Rule 0: 

If true then … 

MCRDR Neural Network 

Pre-Process 

Case / Document 

RM - case 

evaluation 
 

Fig. 2. RM illustrated diagrammatically.  

3.1   Learning in RM 
Learning in RM is achieved in two ways. Firstly, the value for each corresponding 

value for   receives feedback from the environment concerning its accuracy. Thus, a 

system using RM must provide some means of either directly gathering or indirectly 

estimating each elements value. For example, in an email application where the 

system was required to order the documents in the order of importance, the amount of 

reward given to the network could be based on the order the articles are read by the 

user or whether the user prints, saves, replies, forwards or deletes the email. How the 

network actually learns is either using the standard backpropagation approach using a 

sigmoid thresholding function, or, using the RM specific algorithm described in 

section 3.4. The MCRDR component still acquires knowledge in the usual way 

(section 2). Therefore, in the basic RM implementation the expert must still review 

cases and check classifications are correct. 

3.2   Artificial Neural Network Component 

The ANN used is based on the backpropagation algorithm and was designed to be 

plugged on to the end of the MCRDR component. Integration of the MCRDR and 

ANN components is carried out by codifying the relevant features taken from 

MCRDR and converting these into a single input array of values, x , which is to be 

provided to the ANN for processing. Two methods were used in this paper referred to 

as the Rule Path and Terminating Rule Association methods. The rule path method 

provided an input for every rule that fired while the terminating method only fired 

input nodes associated with the final rule that was reached by the inferencing process. 



3.3   Adding Neurons 

As the input space grows new input nodes need to be added to the network in such a 

way that does not damage already learnt information. A number of methods were 

developed for altering the input space, such as backpropagation and radial basis 

function networks, as well as non neural network methods such as Kernel based 

methods. This paper will discuss the most stable and effective method found. This 

particular method allows for non-linear relationships while being able to learn quickly 

when new inputs are added.  

RM captures the initial information by directly calculating the required weight to 

provide us with the correct weighted-sum using a new learning rule referred to as the 

single-step-∆-initialisation-rule (3.4.1). When applying this weight it must be done in 

so that does not affect any of the already learnt weights. Therefore, the network 

structure needed to be altered by adding shortcut connections (Fig 3) from any newly 

created input node directly to each output node and using these connections to carry 

the entire weight adjustment. When a new input node is added, additional hidden 

nodes also may be added. Therefore, connections must be added in the following 

places: 

• From the new input node to all of the old hidden nodes.  

• From all input nodes, new and old, to each of the new hidden nodes, if any.  

• From each of the new hidden nodes, if any, to all of the output nodes.  

• The shortcut connections from the new input node to all of the output nodes.  

The process for adding nodes and connections is illustrated in Fig 4. Each of these 

different groups of new connections requires particular start up values. First, the new 

connections from the new input node to all the old hidden nodes should be set to zero 

so that they have no immediate affect on current relationships. Occasionally, new 

hidden nodes are also required. These were added at a rate that maintained a number 

equivalent to half the amount of input nodes. If new hidden nodes were added then 

the connections from them to the output nodes should also be set to zero for the same 

reason as with the input nodes. In order for these connections to be trained, the output 

from the new hidden nodes must be non-zero.  Thus, the new connections from all the 

input nodes to the new hidden nodes, and their biases, are given random values. 

Finally, the new shortcut connections are given a value calculated using the single-

step-∆-initialisation-rule. 

 

 

Shortcut 

connections 
 

Fig. 3. Network structure of RM showing a single hidden layer network with shortcut 

connections directly connecting the input nodes to the output nodes. 

 



Original connections (not changed) 

New connections (set to zero) 

New connections (given random values) 

New connections (calculated using the Single-step-∆-initialisation-rule) 

a) Adding input node only. b) Adding both input and hidden node. 

Connections key 

    bias 

New Input Nodes New Hidden Node 

 

Fig. 4. Process used for adding new input and hidden nodes in RM. (a) shows how inputs are 

added by themselves. (b) shows how input and hidden nodes are added simultaneously 

3.3.1   The Single-Step-∆-Initialisation-Rule 
The single-step-∆-initialisation-rule directly calculates the required weight for the 

network to step to the correct solution immediately. This is accomplished by reversing 

the feedforward process back through the inverse of the symmetric sigmoid. This 

calculation is performed by finding the weight needed, using equation (1), for the new 

input connection, wno. This has the requirement that the system does not attempt to set 

the value of the output outside the range -0.5 > (f(net) + δ) > 0.5  as this will cause an 

error. The value for net for each output node, o, was previously calculated by the 

network during the feedforward operation where there are n>1 input nodes and the n
th

 

input node is our new input. Function f is the asymmetric sigmoid and δ is the amount 

of error. This is then divided by the input at the newly created input node, xn, which is 

always 1 in this implementation, where there are n>0 input nodes and o>0 output 

nodes. Additionally, it is possible for the expert to add multiple new rules for the one 

case. In these situations the calculated weight is divided by the number of new 

features (attribute, rule or class), m. Finally, the equation is multiplied by the step-

distance modifier, Zeta (ζ).  
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(1) 

The Zeta (ζ) modifier should always be set in the range 10 ≤≤ ζ . It is included 

to allow adjustments to whether a full step or partial steps should be taken for the new 

features. For instance, if ζ is 1 then the new weights will provide a full step and any 

future identical cases will give the exact correct answer. A lesser value for ζ causes 

new features to only receive a portion of their value. It was found in testing that the 

inclusion of the ζ modifier allows better performances in some situations.  



 

Fig. 5. Example of the single-step-∆-initialisation-rule shown diagrammatically.  

This updating method is best understood by seeing what is occurring 

diagrammatically. Fig 6 shows an input pattern that had a weighted sum of 3.0 at the 

output node. This was passed through the symmetric sigmoid function, finding the 

output value 0.47. The correct output after a rule was added is -0.358. The correct 

weight for the new input node is calculated by feeding this target back through the 

inverse of the sigmoid function finding the value -1.8. Therefore, the new node’s 

weight is the difference between these two values, giving -4.8. 

4   Experiments and Results 

This section’s results are in two parts. First RM compares against the two underlying 

methodologies, MCRDR and a backpropagation neural network, in an online 

classification task. The second collection of results illustrates how RM compares 

against a backpropagation neural network in both on and off-line prediction. The aim 

of these results is to show how RM learns as fast as MCRDR, yet maintains the 

generalisation of a neural network. This section also contains a discussion of the 

simulated experts used for the experiments, along with the datasets used.  

4.1   Experimental Method  

In the first group of experiments the aim is to test RMs classification ability in an 

online environment compared to the underlying approaches. Therefore, the output 

from RMs ANN will consist of a vector, v , of outputs. Each output will relate to one 

possible classification. There will be an equal number of outputs to the number of 

class types in the dataset being tested. If the output is positive then it will be regarded 

as providing that classification. The same output method is used for the 

backpropagation method being compared against. In the first collection of results 



presented in this paper each test used 10 different randomisations of the relevant 

datasets. The test investigates how the methods can correctly classify cases over time. 

In this test the entire dataset is broken up into small blocks, each 1/50
th

 of the original 

dataset, and passed through the system one group at a time. The system’s performance 

is recorded after each group, showing how fast the system learns for each new batch 

of cases. 

In the prediction domain RM and the ANN must output a single value, which must 

be as close to the expected value as possible. In the second collection of results 

presented in this paper each test used 10 different randomisations of the dataset. The 

first, generalisation test, divides each dataset into ten equal sized groups. Results are 

presented where 9/10
ths

 of the dataset are used for training and 1/10
th

 for testing. The 

size of the training set is then reduced incrementally in steps of 1/10
th

, down to 1/10
th

. 

The same 1/10
th

 set is always used as the test set. The online prediction test 

investigates how the methods can correctly predict values over time. Similar to the 

online classification test, the entire dataset is broken up into smaller blocks, each 

1/50
th

 of the original dataset, and passed through the system one group at a time. The 

system’s performance is recorded after each group. The value returned is then 

compared to the simulated expert’s correct value. The absolute difference between 

these two values (error) is then averaged over all the cases in the data segment and 

logged. 

4.2   Simulated Expertise 

One of the greatest difficulties in KA and KBSs research is how to evaluate the 

methodologies developed [19]. The method used by the majority of RDR based 

research has been to build a simulated expert, from which knowledge can be acquired 

[19]. It is this approach that has been taken in this paper. This section will discuss the 

three simulated experts created for the tests performed in this paper. 

4.2.1   C4.5 Simulated Expert 
The only purpose of the simulated expert is to select which differences in a difference 

list are the primary ones. It uses its own KB to select the symbols that will make up 

the new KB. C4.5 [20] is used to generate the simulated expert’s knowledge base. The 

resulting tree then classifies each case presented, just like our KB under development. 

If the KB being constructed, incorrectly classifies a case then the simulated expert’s 

decision tree is used to find attributes within rules that led to the correct classification. 

This is similar to the ‘smartest’ expert created by Compton et al [21]. 

4.2.2   Non-Linear Multi-Class Simulated Expert 
The fundamental problem with the above simulated expert is that it requires an 

induction system, such as C4.5, to generate a complete KB prior to its use. This is a 

problem because no suitable system is available that can create such a tree for a 

multiple classification domain. However, the system being developed in this paper is 

primarily targeting domains with multiple classification domains. Therefore, a second 



simulated expert was created specifically designed for handling a particular multiple 

classification based dataset (4.3).  

This heuristic based simulated expert has two stages in calculating classifications 

based on a cases attributes. The first stage uses a randomly generated table of values, 

representing the level that each attribute, Aa ∈ , contributes to each class, Cc ∈ . An 

example of an expert’s attribute table used is shown in Table 1.  

 

 A b c d e f g h i j k l 

C1 0 0 -1 3 0 0 0 0 0 0 -1 3 

C2 0 0 0 -2 2 0 0 -2 0 0 1 0 

C3 0 -2 1 0 0 0 0 0 0 1 0 -1 

C4 -1 3 0 0 0 0 1 0 -1 0 0 0 

C5 0 0 0 0 -2 2 -2 0 2 0 0 0 

C6 2 0 0 0 0 -2 0 1 0 -2 0 0 

Table 1. Example of a randomly generated table used by the non-linear multi-class simulated 

expert. Attributes a - l are identified across the top, and the classes C1 – C6 down the left.  

To make the task sufficiently difficult for the systems to learn a second stage of the 

expert’s classification process is to provide a non-linearity.  A non-linear expert needs 

the attributes’ contribution to classifications to vary according to what other attributes 

were in the case. This was achieved by selecting an even number of attributes and 

pairing them together for each of the classes. Once paired, they were given an 

increasing absolute value. Additionally, alternate pairs had their sign changed. This 

can best be understood by investigating the example shown in Table 2. Here it can be 

seen that for the class C1, the attribute pairs {b, j}, {f, h} and {d, j} have a positive 

influence, while {a, l}, {h, i} and {a, k} have a negative influence.  

 

 1 -1 2 -2 3 -3 

C1 b j a l f h h i d j a k 

C2 g b c f e h a b k d g k 

C3 i d e b g i k l j a c f 

C4 l a c i j a i l f h j a 

C5 k g b f d g j f b c a e 

C6 c l h j a c j b g k d e 

Table 2. Example of a randomly generated table of attribute pairs. The top numbers represent 

the positive or negative values for the pairs. Each class in this example has six pairs. 

When a case is presented to the expert the class it belongs to is calculated by 

adding all the attribute values and there attribute pairs. The expert will then classify 

the case according to which classes provided a positive, > 0, total. When creating a 

new rule, the expert selects the attribute or attribute-pair from the difference list that 

distinguishes the new case from the cornerstone case to the greatest degree. Table 3, 

gives two example cases where each case has 4 attributes. 



 

Case A = {a, b, c, d} Case B = {a, c, e, g} 

Classifications Classifications Attributes 

1 2 3 4 5 6 

Attributes 

1 2 3 4 5 6 

a 0 0 0 -1 0 2 a 0 0 0 -1 0 2 

b 0 0 -2 3 0 0 c -1 0 1 0 0 0 

c -1 0 1 0 0 0 e 0 2 0 0 -2 0 

d 3 -2 0 0 0 0 g 0 0 0 1 -2 0 

{a, c}      2 {a, c}      2 

{a, b}  -2     {e, a}     -3  

{b, c}     3         

Total 2 -4 -1 2 3 4 Total -1 2 1 0 -7 4 

Classified � � � � � � Classified � � � � � � 

Table 3. Two example cases being evaluated by the non-linear multi-class simulated expert. 

4.2.3   Multi-Class-Prediction Simulated Expert 
Testing RM using simulation has an added difficulty in the prediction domain. This 

is because available datasets do not give both symbolic knowledge and a target value 

instead of a classification. This could be partially resolved by assigning each 

classification a value. However, fundamentally this would still be a classification type 

problem. The approach taken in this paper was to develop a third simulated expert, 

which has two stages in calculating a value for a case based on a set of randomly 

generated attributes. The first stage uses a randomly generated table of values, in the 

same way as the first stage of the non-linear simulated expert described above. This 

classification stage is merely an intermediate step to finding a rating for the case. It is 

also used during knowledge acquisition for identifying relevant attributes in the 

difference lists. When creating a new rule, the expert selects the attribute from the 

difference list that distinguishes the new case from the cornerstone case to the greatest 

degree. This was achieved by locating the most significant attribute, either positively 

or negatively, that appeared in the difference list (see example in Table 1).  

To fully push the system’s abilities, the rating calculated by the simulated expert 

needs to generate a non-linear value across the possible classifications. The 

implementation used for prediction generates an energy space across the level of class 

activations, giving an energy dimensionality the same as the number of classes 

possible. Each case is then plotted on to the energy space in order to retrieve the 

case’s value. First, the strength of each classification found is calculated. As 

previously discussed a case was regarded as being a member of a class if its attribute 

value was greater than 0. However, no consideration was made to what was the 

degree of membership. In this expert the degree of the case’s membership is 

calculated as a percentage, p, of membership using Equation 2.  
mt/a

tp =  (2) 

This is simply the actual calculated total, t
a
, divided by the maximum possible 

total, t
m
, for that particular class. Extending the example from Table 3 for case A, 

classification C1, the total 2 is divided by the best possible degree of membership 6, 

max value from row C1 in table 1, thereby, giving a percentage, p, membership of 



33%. This calculation is performed for each class. Each class then has a randomly 

selected point of highest value, or centre, c, which is subtracted from the percentage 

and squared, Equation 3. This provides a value which can be regarded as a distance 

measure, d, from the centre. This distance measure can be stretched or squeezed, 

widening or contracting the energy patterns around a centre, by the inclusion of a 

width modifier, w. 
2)(d cpw −=  (3) 

The classes’ centres are combined to represent the point of highest activation for 

the expert, referred to as a peak. Therefore, if the square root of the sum of distances 

is taken then the distance from this combined centre can be found. This distance can 

then be used to calculate a lesser value for the case’s actual rating. Therefore, as a 

case moves away from a peak its value decreases. Any function can be used to 

calculate the degree of reduction in relation to distance. In this paper a Gaussian 

function was used. Equation 4 gives the combined function for calculating a value for 

each possible peak, v
p
, where n is the number of classes in the dataset. 
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Finally, it is possible to have multiple peaks in the energy space. In such a situation 

each class has a centre for each peak. Each peak is then calculated in the same fashion 

as above, resulting in a number of values, one for each peak. The expert then simply 

selects the highest value as the case’s actual rating. This rating method is best 

understood by looking at a three dimensional representation shown in Fig 6.  

The third dimension, shown by the height, illustrates the value at any particular 

point in the energy space. This figure shows a dataset with only two possible classes, 

C1 and C2, and two peaks. A three class dataset cannot be represented pictorially. The 

advantage of this approach is that it generates an energy pattern that is nonlinear. At 

no location can a straight line be drawn where values are all identical. 

 

Fig. 6. Example of a randomly generated energy pattern used in the MCP simulated expert. 



 

4.3   Datasets 

The method was tested using six datasets. The first five are standard datasets retrieved 

from the University of California Irvine Data Repository [22]. These five datasets 

were tested using the C4.5 based simulated expert. The sixth dataset is a purpose 

designed randomised set and is used with the non-linear multi-class and multi-class-

prediction simulated experts. Below is a list describing each of the five dataset used 

from the University of California Irvine Data Repository [22].  

• Chess – has 36 attributes with a binary classification over 3196 cases. In 

each 1/50
th

 group there are 63 cases. 

• Tic-Tac-Toe (TTT) –has 9 attributes with a binary classification over 958 

cases. In each 1/50
th

 group there are 19 cases. 

• Nursery Database – has 8 nominal attributes with 5 classifications over 

12960 cases. In each 1/50
th

 group there are 259 cases. 

• Audiology – has 70 nominal-valued attributes with 17 classifications over 

only 200 cases. In each 1/50
th

 group there are 4 cases. 

• Car Evaluation –  has 6 attributes with 4 classifications over 1728 cases. In 

each 1/50
th

 group there are 34 cases. 

The multi-class dataset builds cases by randomly selecting attributes from the 

environment. For instance, an environment setup for the example simulated experts 

used in section 4.2.2 would allow for 12 possible attributes. For the tests in this paper 

each case selected 6 attributes, giving a possible 924 different cases. There were also 

6 possible conclusions. Therefore, in each 1/10
th

 group used in the offline prediction 

there are 92 cases and 18 cases in each 1/50
th

 group. 

4.4   Online Classification 

One of the main features RM was aiming to achieve from the use of the ANN was the 

ability to learn quickly and generalise well in an online environment. The results in 

this section investigate how RM compares with its two underlying methodologies in 

the online environment. Fig 7 (a) - (f) shows how RM, MCRDR and the ANN 

perform on the six datasets. Each point on the charts is an average of the previous 10 

data segments (except 2 data segments for the Audiology dataset) which are then 

further averaged over the ten randomised runs. Each segment contains a random 

selection of cases, each 1/50
th

 the size of the whole dataset. Error bars have been 

omitted to allow for greater readability. 

These comparisons are powerful indicators of the advantages of RM over a 

standard backpropagation neural network when being applied in an online 

environment. On the chess, TTT and audiology datasets it can be seen that RM has 

learned as fast or nearly as fast as MCRDR. On the nursery and car evaluation 

datasets it was only between 3% and 6% below MCRDRs performance and overtime 

was narrowing this gap. This meets our original goal of gaining the speed of 

MCRDR’s instantaneous learning as soon as a rule is added. In the multi-class results 

this same result can be observed, except it can also be seen how RM continued to 

learn after MCRDR had accrued all its possible knowledge.  

 



a) Multi-class dataset 
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b) Chess dataset 
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c) Tic-Tac-Toe dataset 
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d) Nursery dataset 
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e) Audiology dataset 
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f) Car evaluation dataset 
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Fig. 7. (a) – (f) shows charts comparing the performance of RM, an ANN and MCRDR using 

different datasets. The x-axis shows the amount of 1/50th data segments that have been seen. 

The y-axis shows the average accuracy over the last 10 data segments. 

MCRDR’s failure to continue to learn after its initial gains was a point of concern 

in the multi-class test. However, after investigation, it was found to be caused by two 

main factors. Firstly, for a case to be correctly classified it must get all six classes 

correct. Therefore, MCRDR’s performance was not as poor as it first appears. 

Secondly, there is one unusual problem in the MCRDR rule creation and validation 

phase. It is possible that when an expert attempts to create a rule there may be no 

suitable attributes available. This generally only occurs on the later difference lists 

generated when there are multiple cornerstone cases.  



The complexity of the multi-class dataset, especially the use of attribute pairs 

highlights this problem. This caused the simulated expert to be unable to create 

required rules on some occasions. Therefore, for the purposes of this test, failed rules 

were not added to the knowledge base. However, these lost rules can now be treated 

as a form of hidden context. Therefore, RM’s ability to significantly outperform the 

MCRDR’s performance shows its ability to capture that hidden information even 

when it is unavailable to the knowledge base. The performance of RM appears to 

essentially learn exactly like any standard learning curve but rather than start from 

scratch it began from where MCRDR had finished learning. 

4.5   Prediction Generalisation 

Traditionally, MCRDR and other KBSs can usually only be applied to classification 

problems. Even when used for prediction they usually still use the same basic 

classification style but each classification gives a predictive value instead. One 

advantage found with RM is that it can also be applied in a prediction environment. 

This can be achieved by the network being setup to output just a single value, 

representing the system’s prediction for the task at hand.  

The ability of a method to generalise is measured by how well it can correctly rate 

cases during testing that it did not see during training. The value returned by RM and 

the ANN is then compared to the simulated expert’s correct value. The absolute 

difference between these two values (error) is then averaged over all the cases in the 

data segment and logged. The results shown in Fig 8 show they each performed. Each 

point on the charts is the average error for the test data segment averaged over ten 

randomised runs of the experiment, for each of the nine tests. To reduce the 

complexity of the charts shown, error bars have been omitted. 

These results show that the RM hybrid system has done exceptionally well both 

initially as well as after training is complete when generalising. Additionally, it can be 

observed that the neural network was unable to significantly improve with more 

training data. This problem is caused by the network having consistently fallen into
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b) After Training Complete 
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Fig. 8. (a) – (b) Two charts comparing how RM and ANN. Chart a) shows how the methods 

compare after only one viewing of the training set. Chart b) shows how the methods compare 

after training was completed. The x-axis shows how many tenths of the dataset were used for 

training. All results used the last tenth for testing. The y-axis shows the average error. 



local minimum, a problem common to neural networks especially in prediction 

domains. RM is less likely to encounter this learning problem as the knowledge base 

provides an extra boost, similar to a momentum factor, which propels it over any local 

minima and closer to the true solution. Therefore, not only does RM introduce KBSs 

into potential applications in the prediction domain, as well as, allow for greater 

generalisation similar to an ANN, but it also helps solve the local minima problem.  

4.6   Prediction Online 

The process of RM being able to predict an accurate value in an online environment 

could potentially allow the use of RM in a number of environments that have 

previously been problematic. For instance, KBSs in information filtering (IF) have 

difficulties due to their problems in prediction, while neural networks are far too slow. 

RM allows for the inclusion of expert knowledge with the associated speed but also 

provides a means of value prediction. Fig 9 shows a comparison between RM and an 

ANN in an online environment. Here it can once again be observed that RM has 

performed outstandingly well from the outset and was able to maintain this 

performance. This fast initial learning can be vital in many applications as it is what 

users usually expect.  
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Fig. 9. This chart compares how RM and an ANN, perform in an online environment.  The x-

axis shows the amount of 1/50th data segments that have been seen. The y-axis shows the 

average error over the last 10 data segments, also averaged over 10 trials.  

 



5.   Conclusion 

This paper presented an algorithm that detects and models hidden contexts within a 

symbolic domain. The method developed builds on the already established Multiple 

Classification Ripple-Down Rules (MCRDR) approach and was referred to as Rated 

MCRDR (RM). RM retains a symbolic core that acts as a contextually static memory, 

while using a connection based approach to learn a deeper understanding of the 

knowledge captured.  

A number of results were presented in this paper, which have shown how RM is 

able to acquire knowledge and learn. RM’s ability to perform well can be put down to 

two features of the system. First, is that the flattening out of the dimensionality of the 

problem domain by the MCRDR component allows the system to learn a problem that 

is mostly linear even if the original problem domain was non-linear. This allows the 

network component to learn significantly faster. Second, the network gets an 

additional boost through the single-step-∆-initialisation rule, allowing the network to 

start closer to the correct solution when knowledge is added. 
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