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Sum m ary

Computer vision problems, such as tracking and robot navigation, tend to be solved 
using models of the objects of interest to the problem. These models are often either 
hard-coded, or learned in a supervised manner. In either case, an engineer is required 
to identify the visual information that is important to the task, which is both time con­
suming and problematic. Issues with these engineered systems relate to the ungrounded 
nature of the knowledge imparted by the engineer, where the systems have no meaning 
attached to the representations. This leads to systems that are brittle and are prone to 
failure when expected to act in environments not envisaged by the engineer. The work 
presented in this thesis removes the need for hard-coded or engineered models of either 
visual information representations or behaviour. This is achieved by developing novel 
approaches for learning from example, in both input (percept) and output (action) 
spaces. This approach leads to the development of novel feature tracking algorithms, 
and methods for robot control.

Applying this approach to feature tracking, unsupervised learning is employed, in real 
time, to build appearance models of the target that represent the input space structure, 
and this structure is exploited to partition banks of computationally efficient, linear 
regression based target displacement estimators.

This thesis presents the first application of regression based methods to the problem of 
simultaneously modeling and tracking a target object. The computationally efficient 
Linear Predictor (LP) tracker is investigated, along with methods for combining and 
weighting flocks of LP’s. The tracking algorithms developed operate with accuracy 
comparable to other state of the art online approaches and with a signiflcant gain in 
computational efficiency. This is achieved as a result of two speciflc contributions. First, 
novel online approaches for the unsupervised learning of modes of target appearance 
that identify aspects of the target are introduced. Second, a general tracking framework 
is developed within which the identifled aspects of the target are adaptively associated 
to subsets of a bank of LP trackers. This results in the partitioning of LP’s and the 
online creation of aspect speciflc LP flocks that facilitate tracking through significant 
appearance changes.

Applying the approach to the percept action domain, unsupervised learning is employed 
to discover the structure of the action space, and this structure is used in the formation 
of meaningful perceptual categories, and to facilitate the use of localised input-output 
(percept-action) mappings. This approach provides a realisation of an embodied and 
embedded agent that organises its perceptual space and hence its cognitive process 
based on interactions with its environment.

Central to the proposed approach is the technique of clustering an input-output exem­
plar set, based on output similarity, and using the resultant input exemplar groupings 
to characterise a perceptual category. All input exemplars that are coupled to a certain 
class of outputs form a category - the category of a given affordance, action or func­
tion. In this sense the formed perceptual categories have meaning and are grounded in 
the embodiment of the agent. The approach is shown to identify the relative impor­
tance of perceptual features and is able to solve percept-action tasks, defined only by 
demonstration, in previously unseen situations.



Within this percept-action learning framework, two alternative approaches are devel­
oped. The first approach employs hierarchical output space clustering of point-to-point 
mappings, to achieve search efficiency and input and output space generalisation as 
well as a mechanism for identifying the important variance and invariance in the in­
put space. The exemplar hierarchy provides, in a single structure, a mechanism for 
classifying previously unseen inputs and generating appropriate outputs.

The second approach to a percept-action learning framework integrates the regression 
mappings used in the feature tracking domain, with the action space clustering and 
imitation learning techniques developed in the percept-action domain. These compo­
nents are utilised within a novel percept-action data mining methodology, that is able 
to discover the visual entities that are important to a specific problem, and to map 
from these entities onto the action space. Applied to the robot control task, this ap­
proach allows for real-time generation of continuous action signals, without the use of 
any supervision or definition of representations or rules of behaviour.

K ey w ords: Tracking, Adaptive Appearance Models, Embodiment, Robot Control, 
Unsupervised learning

Email: L.Ellis@surrey.ac.uk

WWW: http: / / www.eps.surrey.ac.uk/
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Chapter 1

Introduction

Everyone takes the limits of their own vision for the limits of the world.

-  Arthur Schopenhauer

The work in this thesis in general lies within the research field of computer vision; 

the problem of interpreting images with a computer in order to achieve some goal. 

The field of computer vision research has received significant levels of interest from 

scientists, funding bodies and industry alike, refiecting the perceived advantages and 

scope of applications of such technology.

Despite the significant successes of many computer vision techniques there are major 

challenges still remaining especially concerning robust adaptivity and higher cognitive 

processes such as scene interpretation. Having historically diverged from Artificial In­

telligence (AI), the image processing, pattern recognition and computer vision commu­

nities are once again converging with the AI and Machine Leaning (ML) communities 

and forming the research field of cognitive vision which aims to tackle these issues of 

robust adaptivity and cognitive processes. Of particular interest is the move from en­

gineered, hard-coded or rule based systems to more adaptive systems that learn from 

experience and improve in performance over time as well as adapt to and deal with 

unanticipated events or scenarios. The techniques presented in this thesis are devel­

oped with the objectives of generality and adaptivity as well as efficiency and robustness 

in mind; a central mechanism being learning from experience.
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INPUTS
(PERCEPTS)

Percept
Action
Cycle
(PAC)

INPUT-TO-OUTPUT
MAPPING

WORLD

OUTPUTS
(ACTIONS)

Figure 1.1: Problem Overview: This thesis is, in general, concerned with learning 

mappings from inputs (or percepts) to outputs (or actions). The causal relationships 

that make up the Percept Action Cycle (PAC) must be learnt and exploited in order 

to facilitate appropriate behaviour.

This thesis is concerned with learning mappings that map directly from input (image or 

percept) space to output (action) space without referring to intermediate, high-level, 

symbolic or top-down representations imposed by an engineer. An overview of this 

problem is illustrated in figure 1.1. The Percept-Action Cycle (PAC) models the bi­

directional causality of an agent interacting with the world. This interaction can entail 

either the focusing of attention of the perceptual system, the manipulation of objects in 

the world or the navigation of the agent within the world. In each of these interactions, 

actions cause a change of percepts and percepts stimulate actions. Within this work 

the PAC is represented by examples of inputs and outputs. The task then, is for 

the system to learn the relationships implicit in a set of input-output (percept-action) 

training examples. Formally, given a set of coupled percept-action training exemplars 

E  — {(lA, Ai), (p 2 , A2 ), ...(Pn, ^n)}j where {Pi...P„} represent percepts and are drawn 

from vector space (real numbered vectors with i dimensions) and {A \...A n \ represent 

actions and are drawn from vector space W  (j dimensions), the task is to obtain a



mapping that best approximates the relationships inherent in the examples.

The vision as regression paradigm adopted by many researchers provides a tangible 

mechanism for learning mappings between the input and output parameters. Linear 

regression functions are utilised within this work to map from input to output space 

and efficient methods for learning and adapting the regression functions are exploited 

to achieve real-time, robust performance at both tracking and servo control tasks.

In general, the dimensionality of the input vector space will be higher than the 

dimensionality of the output space i »  j .  This observation motivates a central 

theme of the proposed approaches, that the organisation of experiences should be based 

on the structure of the output space. In fact, an important postulate from the emergent 

paradigm, that has considerable influence on this work, is that of Granlund where he 

states:

“Related points in the response domain exhibit a much larger continuity, 

simplicity and closeness than related points in the input domain. For that 

reason, the organisation process has to be driven by the response domain 

signals. ” [33]

Unsupervised learning methods are employed to discover structure, first in the input 

space as in chapter 4, and later in output space as in chapters 5 and 6. The dis­

covered structure is exploited to both facilitate the formation of perceptual categories 

and as part of a novel percept-action data mining approach that is able to discover 

visual entities that are important to a given task, and to associate these entities to ac­

tion generation models, resulting in the unsupervised formation of an affordance based 

representation of the world.

The application domains used to illustrate the developed approaches are visual feature 

tracking and visual servo control for autonomous navigation. These problems share, like 

many computer vision problems, the need to generate a set of output parameters (i.e. 

target pose update parameters or servo control signals) from a set of input parameters 

(e.g. image pixel intensities) and hence are potential applications for the proposed 

generic input-to-output mapping architecture.
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1.1 M otivation

The development of systems or agents capable of learning to respond appropriately to 

their environment in multiple problem domains is a crucial task to Artificial Intelligence 

(AI), cognitive sciences, machine learning and computer vision. For many applications, 

it is not practical or even possible for an engineer to explicitly define the relationships 

between the input or perceptual space of the agent - it’s sensors e.g. cameras or propri­

oceptive capacities - and it’s response or action space. Approaches that allow systems 

to learn by example and identify and utilise the relationships implicit in examples of 

appropriate behaviour will widen the scope of applicability of such systems in real world 

applications. Autonomous systems such as these need to learn via a combination of 

supervision - which should be minimal and ideally be provided by demonstration rather 

than hard-coding - exploration and exploitation.

Many conventional approaches to mapping from images to actions require extensive 

camera calibration and geometric modeling of both objects of interest and the image 

formation process. These requirements, as well as the requirement for the explicit 

definition of desired behaviour in a formal language, are often prohibitive. Approaches 

that require no camera calibration, parameter tuning or explicit definition are therefore 

desirable. It can also be argued that the very process of over engineering a solution to 

act effectively in real, complex and dynamic environments will tend to lead to brittle 

systems that break as soon as reality strays too far from the idealised world envisaged by 

the engineer. This argument is typical of the case for emergent systems over cognitivist 

systems and is central to the design philosophy adopted throughout this thesis. Chapter 

2 gives an overview of the contemporary arguments for the emergent paradigm for the 

design of cognitive agents.

The emergent systems paradigm is closely coupled with the the philosophy of em­

bodiment and the philosophical theoretical position in cognitive science of Embodied 

Embedded Cognition (EEC). The philosophy of embodiment, supported by evidence 

from cognitive science and neuropsychology, is a radical departure from centuries of 

western philosophical thought and has considerable implications to our conception of 

the nature of cognition and so it follows that a reappraisal of cognitive systems engi-
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neering is necessary. This provides motivation for the approaches developed in chapters 

5 and 6. These approaches require an embodied agent that uses interaction with its 

environment.to organise its cognitive process and shape its perception. This is charac­

teristic of an embodied and embedded (situated in an environment) agent. A review of 

the philosophy of embodiment and its implications to the development of autonomous 

agents is presented as part of chapter 2.

Visual feature tracking is a widely researched subject that, while remaining a chal­

lenging topic, is a prerequisite to computer vision applications that need to model or 

respond to the dynamics of the observed environment. Given the significant range of 

tracking approaches developed, each with different strengths and weaknesses, each de­

veloped with different user requirements, the development of generic feature trackers 

that can be applicable to a wide variety of problems is desirable, especially from the 

end users point of view. For a tracker to be generic it should be capable of learning 

the appearance of the target object on-the-fly as well as being robust to changes in ap­

pearance over time. Furthermore, efficiency or low computational cost is of particular 

importance to trackers expected to operate in real time as high computational cost, 

meaning more time spent processing each frame, results in larger inter-frame displace­

ments and significant inter-frame appearance changes. This is especially problematic 

where the target changes pose quickly or where appearance changes are rapid. The 

desire for computationally efficient visual feature trackers, that require no offline learn­

ing, parameter tuning or hard-coding motivates the work presented in chapters 3 and

4. Chapter 3 focuses on efficient displacement estimation functions and the techniques 

used to learn these functions online.

Besides finding appropriate mappings from input image space to some output parame­

ter space, computer vision is concerned with building representations of the two spaces 

that are suitable for discriminating inputs and generating outputs. In general, the out­

put space representation is less of an issue, partly due to the fact that the output space 

generally has fewer dimensions but also because it’s structure is more easily interpreted. 

The higher dimensional image space has a less obvious structure, often with highly un­

correlated and unrelated regions. Whilst this thesis is in part concerned with exploiting 

the structure discovered in a particular problem output space in order to learn/impose
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some structure on the input (image) space, this is not seen as the complete solution. 

A great deal of computer vision research focuses on the learning, with varying degrees 

of supervision, and modeling (discriminatory or generative) of perceptual categories. 

Many of these approaches implicitly employ output space supervision - the categories 

are specified - as well as varying degrees of input space supervision i.e. labeling of 

input exemplars (e.g. hand labeling the location of cars for training a car detector 

or, less supervised, simply stating the presence/absence of the car in a set of images). 

The development of methods for the unsupervised learning of appearance models to 

facilitate efficient, robust model free tracking is the focus of chapter 4.

Developing cognitive architectures capable of associating noisy, high dimensional input 

spaces to appropriate responses in an agents action space is a crucially important task 

for researches in cognitive sciences, machine learning, AI and computer vision. Cen­

tral to this problem is the problem of what features of the input space are important 

to a given task. Systems that are able to autonomously identify the relative impor­

tance of different features of the input space, and to use this information to respond 

appropriately to their environments, will not only remove the need for the explicit defi­

nition of perceptual representations, but are likely to be less brittle and more adaptive 

to changes in the environment not foreseen by the engineer. The work presented in 

chapter 5 develops an approach that uses input-output exemplars to build generalised 

input-to-response mappings, allowing the system to learn to respond to previously un­

seen inputs by identifying the important variance and invariance of the input space.

The formation of perceptual representations that are meaningful to a given task is in 

fact a fundamental characteristic of all cognitive systems. As mentioned above, the term 

embodiment, used within psychology, philosophy, robotics and artificial intelligence, is 

based on the premise that the nature of the mind, and in particular the categories of 

perception, are determined by the embodiment of the cognitive agent [48] [13]. Related 

to this is affordance theory, that states that the world is perceived not only in terms 

of object shapes and spatial relationships but also in terms of object possibilities for 

action [29]. The work presented in chapter 6 demonstrates an embodied approach to 

constructing, in an entirely unsupervised manner, an affordance based representation 

of the world.



1.2. Objectives

Both chapters 5 and 6 focus on agents that physically interact with their environ­

ments. This is achieved through novel visual servo control strategies. Visual servo 

control is a fundamental problem for all vision systems expected to physically act in 

the world. Conventional visual servo control techniques rely on strict geometric and 

projective models and tend to involve extensive and highly sensitive calibration proce­

dures. Furthermore, highly calibrated visual servo control systems have conventionally 

been driven by hard coded event sequencers or in some cases logical deductive and 

inductive processes. The desirability of an accurate visual servo control strategy that 

requires no camera calibration or modeling of scene objects and requires no explicit 

definition of desired behaviour, provides additional motivation for the work presented 

in chapter 6. ’

1.2 Objectives

There are a number of objectives of the research presented in this thesis. Some are 

broad objectives that specify design methodology and others are more specific and 

based on the performance requirements of a given task. The objectives are:

1. Develop efficient grouping and mapping strategies.

2. Avoid the explicit definition of representations or rules determining system be­

haviour.

3. Avoid the reliance on parameter tuning to get algorithms to work on different 

data sets.

4. Minimise the level of supervision required by learning approaches - i.e. favour 

unsupervised over supervised.

5. Minimise computationally complexity.

The first objective is the principle objective of the thesis. Efficient mapping strategies 

provide a means of generating outputs/actions given inputs/percepts. The development 

of efficient grouping strategies is important for discovering structure in the problem
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domain input and output spaces. This structure can be exploited to improve the 

mapping strategies in terms of the range of inputs and outputs for which the mappings 

will be effective.

There are two reasons for objectives 2-4. Firstly, each of these objectives reduces the 

work required of an engineer in order to apply the approaches to a particular problem 

domain. Secondly it is proposed that approaches that meet these objectives will be more 

flexible, adaptive and robust and be applicable to a broader set of problem domains.

The fifth objective, although widely adopted in most computer science endeavors, has 

particular relevance to this work. Both the feature tracking and servo control tasks need 

to respond to changes in appearance caused by the motion of objects in the world, which 

may move very quickly. Therefore the response time of the system, proportional to the 

computational complexity, is an important factor in determining the suitability of the 

approach to a given problem.

Two key application areas are selected to demonstrate the proposed methodologies. The 

first is a simultaneous modeling and tracking application that achieves fast, accurate 

feature tracking with no prior modeling or offline learning. The second application is a 

computationally efficient visual servo control strategy that requires minimal calibration 

and no explicit definition of behaviours, but instead learns by example.

1.3 Contribution

This thesis makes a number of contributions to the research fields of computer vision, 

cognitive vision and robotics.

An example of a linear regression based input-output mapping, the Linear Predictor 

(LP) tracker, is investigated in order to characterise i t ’s prediction performance and how 

this performance is affected by various parameterisations (e.g. displacement training 

range) and conditions (e.g. test displacement ranges). Furthermore the explicit trade 

off between computational complexity and positional accuracy is characterised.

An approach to combining constellations of LPs into an LP flock is introduced and 

the improvements in accuracy and stability gained are quantified. Mechanisms for
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evaluating LP performance and controlling the contribution each LP makes to the 

overall flock output are tested and show improvements over regular unweighted flocks.

The relationship between regression and registration techniques is explored and the rel­

ative strengths of the two approaches are evaluated with illustrative results highlighting 

the pitfalls of the registration techniques.

This thesis presents the first application of regression based methods to the problem 

of simultaneously modeling and tracking a target object. The resulting tracking algo­

rithms operate with accuracy comparable to other state of the art online approaches 

and with a significant gain in computational efficiency. This is achieved as a result of 

two specific contributions. First, novel online approaches for the unsupervised learning 

of modes of target appearance that identify aspects of the target are introduced. Sec­

ond, a general tracking framework is developed within which the identified aspects of 

the target are adaptively associated to subsets of a bank of LP trackers. This results 

in the partitioning of LP’s and the online creation of aspect specific LP flocks that 

facilitate tracking through significant appearance changes.

Another contribution of this work is the development of a generic approach for learning 

from experience in the perception-action domain. This work introduces a novel realisa­

tion of an embodied and embedded agent that organises its perceptual space and hence 

its cognitive process based on interactions with its environment. This is achieved by the 

use of an imitation training framework and by the development of a novel hierarchical 

representation of a set of input-output exemplars. The exemplar hierarchy facilitates 

fast searching, generalises over the exemplars, identifies important variance and invari­

ance in the input space and provides, in a single structure, a mechanism for classifying 

unseen inputs and generating appropriate outputs. The organisation of the hierarchy is 

driven by the structure of the output space and supports Granlunds postulate quoted 

in the introduction to this chapter.

The novel percept-action data mining methodology proposed in chapter 6 combines 

the mechanism of organising the percept space using the structure of the action space 

with efficient data mining algorithms and feature configuration encoding schemes. The 

approach is able to discover the visual entities that are important to a specific problem,
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and to map from these entities onto the action space. This is achieved by finding strong 

associations between modes of the action space and configurations of features in the 

percept space. The system requires no explicit definition of behaviour, uses no prior 

model of the objects of interest to the task and no supervision, other than the provision 

of input-output exemplars in the form of images and actions i.e. recorded experiences 

that exhibit the desired behaviour.

This thesis also contributes a strengthened case for embodiment. The self organising, 

action driven processes of perceptual category generation and exploitation developed in 

chapters 5 and 6 demonstrate an applicability for a number of the tenets of the theory 

of embodied cognition.

1.4 Thesis Overview

In chapter 2, the historically changing objectives and scope of the fields of Computer 

Vision are reviewed. Motivations behind a paradigmatic shift from Cognitivism to 

Emergent Systems are presented and related to the emergence of the field of Cogni­

tive Vision. Relevant subfields of Machine Learning: reinforcement, supervised, semi­

supervised, weakly supervised and unsupervised learning as well as case based reasoning 

are reviewed in section 2.1.3. In section 2.2 the philosophy and neuropsychology of em­

bodiment are briefly reviewed, along with reviews of artificial intelligence approaches 

adopting an embodied paradigm. A literature review of visual tracking approaches 

is presented in section 2.4, with particular focus on registration and regression ap­

proaches and appearance modeling techniques. Chapter 2 ends with a review of visual 

servo control strategies in section 2.5.

Chapters 3 and 4 are concerned with the development of fast visual feature tracking al­

gorithms that utilise no prior model (hard coded or learned) of the target appearance. 

Chapter 3 focuses on efficient displacement estimation functions and the techniques 

used to learn these functions online. In section 3.1 the registration and regression ap­

proaches to displacement estimation are detailed and compared and a Linear Predictor 

is developed that provides an efficient and powerful learning mechanism. Also the be­

haviour of flocks of LPs are investigated. Experimental results that characterise and
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evaluate the proposed displacement estimator are presented in section 3.2. Section 3.3 

concludes the chapter.

The development of methods for the unsupervised learning of appearance models to fa­

cilitate efficient, robust model free tracking is the focus of chapter 4. An overview of the 

proposed Simultaneous Modeling and Tracking framework is presented in section 4.1. 

Various configurations of a generic tracking framework are presented that incorporate 

methods for identifying aspects of the target and associating them to the displacement 

estimators for which they work best. The proposed trackers are evaluated, in terms 

of positional accuracy, efficiency and robustness, on a number of challenging video se­

quences. Comparisons are made with other state of the art simultaneous modeling and 

tracking approaches.

Chapter 5 introduces a generic problem solving architecture for the percept-action 

domain. An overview of the proposed approach to modeling the Percept Action Cycle 

(PAC) is given in section 5.1. The PAC model essentially organises experiences - 

examples of instances of percept-action interaction - in such a way as to reuse a previous 

experience in order to solve the current problem. This is achieved by hierarchically 

partitioning the search space, as detailed in section 5.1.1, and generalising over the 

exemplars, as in section 5.1.2. This constitutes a mapping from the percept to the action 

space. The Exemplar Mapping approach is developed in section 5.2. Experimental 

setup and results are presented in section 5.3.

Chapter 6 presents a novel percept-action data mining methodology for discovering the 

visual entities that are important to a given robotics task and utilising these perceptual 

representations to imitate the behaviour that is demonstrated by a teacher. Section

6.1 provides details of the robotic platform used to collect the training data and test 

the system and then presents an analysis of the collected training data. Section 6.3 

describes the central mechanism of action space clustering and how this identifies classes 

of actions and percept groupings. Section 6.4 presents a complete overview of the 

proposed system, identifying the key processing stages involved, which are presented in 

detail in sections 6.5 and 6.6. Section 6.5.1 details the approach used to encode visual 

information as feature configurations and sections 6.5.2 and 6.5.3 detail the method of
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finding associations between classes of actions and these feature configurations. Section 

6.6 details how mappings are learnt between associated percept and action data and 

how these mappings are exploited to generate responses to novel image data. Section 6.7 

presents the experimental evaluation of the system and section 6.8 contains a discussion 

and conclusions for this chapter.

Chapter 7 presents discussion and conclusions from the thesis and various avenues of 

future work are discussed in section 7.2.



Chapter 2

Background

This chapter provides the relevant background and context to the work carried out 

in this thesis. The field of computer vision is introduced and some of the perceived 

shortcomings of the earlier problem definitions and approaches are detailed, in particu­

lar focusing on problems associated with the cognitivist paradigm, such as the symbol 

grounding problem. The shift towards the emergent systems paradigm is then detailed 

with a review of the research field. Machine learning algorithms have been widely 

adopted by computer vision researchers and so a number of relevant subfields are re­

viewed including reinforcement learning, supervised and unsupervised learning, case 

based reasoning and also association rule mining. Concepts relating to embodiment 

are reviewed in section 2.2. Other related areas such as visual tracking and visual servo 

control are given in sections 2.4 and 2.5 respectively.

2.1 Classical and Cognitive Computer Vision

Computer vision has always been strongly related to, and infiuenced by. Artificial In­

telligence (AI) and Cognitive Science. Early definitions of computer vision, therefore, 

adhered to the prevalent paradigm of cognitive science, cognitivism. Over the past cou­

ple of decades alternative approaches to cognition have appeared leading to a paradig­

matic shift from cognitivism to emergent systems. This shift has been reflected by a

13
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shift in the definition of the problem of computer vision and so motivates new research 

directions.

2.1.1 T he C ognitivist paradigm

In the introduction to this thesis, computer vision was broadly defined as ’the problem 

of interpreting images with a computer in order to achieve some goal’. Almost 30 years 

ago Ballard and Brown presented a widely accepted definition of computer vision:

“Computer Vision is the construction of explicit, meaningful descrip­

tions of physical objects from images. Image processing, which studies 

image-to-image transformations, is the basis for explicit description build­

ing. The challenge of Computer Vision is one of explicitness. Explicit 

descriptions are a prerequisite for recognising, manipulating, and thinking 

about objects. ” [6]

Ten years after this definition was given - and after the computer vision community had 

been heavily infiuenced by research into Artificial Intelligence advocating an approach 

to reasoning, based on explicit representation of common sense and application-specific 

knowledge, Haralick and Shapiro put forward the following definition:

“Computer Vision is the combination of image processing, pattern recog­

nition, and artificial intelligence technologies which focuses on the computer 

analysis of one or more images, taken with a singleband/multiband sen­

sor, or taken in time sequence. The analysis recognises and locates the 

position and orientation, and provides a sufficiently detailed symbolic de­

scription or recognition of those image objects deemed to be of interest in 

the three-dimensional environment. The Computer Vision process often 

uses geometric modeling and complex knowledge representations in an ex­

pectation or model-based matching or searching methodology. The searching 

can include bottom-up, top-down, blackboard, hierarchical, and heterarchical 

control strategies. ” [36]
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W ithin each of these definitions there are the requirements for the construction of 

m eaningfu l descriptions of objects deem ed  to  b e  o f in te res t. The questions then 

arises, to whom must these descriptions be meaningful, and who decides what is of 

interest? For many practical applications it is possible for the engineer to define a 

symbol set representing the objects that are of interest and to select the features that 

describe those objects satisfactorily for the task at hand - this approach to computer 

vision is consistent with the Symbol System Hypothesis [12].

The symbol system hypotheses states that intelligence operates on a system of symbols 

[12]. In a symbolic system the reasoning engine operates domain independently on sets 

of symbols representing inputs (perception) and outputs (actions). In such a system, 

where the symbolic representations, and hence semantics, are defined by the engineer, 

the agent itself will not necessarily (or perhaps, will never) understand the symbol set 

- this is commonly referred to as the symbol grounding problem [37].

In [72] Taddeo and Floridi review fifteen years of research concerned with solving the 

symbol grounding problem (SGP). They introduce the zero semantical commitment 

condition - that the semantic interpretation of the symbols must be intrinsic to the 

system i.e. do not rely on symbols having meaning to an observer - as a necessary 

requirement for any hypothesis seeking to solve the SGP. Three broad approaches to 

solving the SGP are identified: representationalism, semi-representationalism and non- 

representationalism. In conclusion, the authors use the zero semantical commitment 

condition to argue that no solution to the SGP currently exists. However, when dis­

cussing the non-representationalist approaches such as the Physical Grounding Hypoth­

esis proposed by Brooks [12], the authors indicate that the SGP is avoided rather than 

solved. The argument being that physical grounding systems do not initially need to 

solve the SGP in order to deal with their environment; but if it is to develop any form 

of language or logical reasoning capabilities, then symbol manipulation will become 

necessary and the question of the symbols semantic grounding presents itself anew. 

This argument is countered by the emergent systems paradigm by a restating of what 

cognition entails. From the cognitivist perspective, cognition comprises computational 

operations defined over symbolic representations. Cognition from the emergent systems 

perspective is the process leading to an autonomous system operating effectively within
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its environment [77].

Whilst much of this discussion may seem esoteric or even irrelevant to an engineer 

attempting to construct a cognitive agent, there is a practical reason for it’s inclusion 

here.

“It comes down to a simple choice of axioms upon which to build a cogni­

tive vision system. Is the role of cognition to abstract objective structure and 

meaning through perception and reasoning? Or, is it to uncover unspecified 

regularity and order that can then be construed as meaningful because they 

facilitate the continuing operation and evolution of the cognitive system?”

[77]

2.1.2 T he Em ergent System s paradigm

In philosophical terms, emergence is the way complex systems and patterns arise out of 

a multiplicity of relatively simple interactions. That is to say the system is more than 

the sum of its parts and is therefore in contrast with the reductionist perspective. There 

are a number of psychological theories that adhere to the emergent systems view, that 

complex behaviours emerge out of interactions with their environment, these include 

enactivism [76] and embodied cognition [48]. Within artificial intelligence, the emergent 

paradigm encompasses, amongst others, connectionist systems [43], dynamical systems 

[75, 73] and enactive systems [76]. A common characteristic of emergent systems is 

their ability both to model the world and to organize themselves by interacting with 

their environment.

Sloman and Chappell argue that not all behaviours must be emergent, that in biological 

systems there exists a continuum from precocial (innate) to altrical (learnt) skills, and 

relating to artificial systems, that it may be useful to combine hard-coded, innate skills 

with mechanisms to develop new behaviours by interaction with the environment when 

designing cognitive systems [69]. In a general treatise on cognitive vision and the 

cognitivist/ emergent debate, Vernon talks of the phylogeny/ontogeny trade-off [77]. 

Ontogenic development (learning through co-determination with environment) being
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allied with the emergent, altrical behaviours and phylogénie configuration (hard-wired 

knowledge or capabilities) describing precocial skills and associated with cognitivist or 

knowledge based AI approaches. The work in this thesis tends towards ontogeny rather 

than phylogeny as a design philosophy.

A potential downside to the emergent paradigm is the need for continuous exploratory 

activity that can result in unpredictable or unwanted behaviour. It should also be noted 

that in cognitivist approaches, the knowledge with which the agent makes its decisions 

can be easily understood by the engineer, whereas, in emergent systems it can be 

difficult to interpret the learnt knowledge and/or mappings as they are grounded in the 

agents own experiences as opposed to the experiences of the engineer.

2.1.3 M achine learning

A key component of any cognitive approach is that of learning. Dictionary definitions 

of learning include “A change in behaviour as a result of experience” and “the cognitive 

process of acquiring skill or knowledge” . For a definition of machine learning, Nilsson 

broadly states that “a machine leams whenever it changes its structure, program, or 

data (based on its inputs or in response to external information) in such a manner that 

its expected future performance improves.” [bS].

Nilsson puts forward a strong case for the usefulness of machine learning in which it is 

stated:

“Some tasks cannot be defined well except by example; that is, we might 

be able to specify input/output pairs but not a concise relationship between 

inputs and desired outputs. We would like machines to be able to adjust 

their internal structure to produce correct outputs for a large number of 

sample inputs and thus suitably constrain their input/output function to 

approximate the relationship implicit in the examples” [58]

The approach of using input/output exemplars to aid approximation of input/output 

mappings is a central theme of this thesis and can be achieved in a variety of ways.
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Given some general relationship is already known (phylogeny) that delineates the space 

of possible mappings, the best mapping may be learnt by some form of parameter 

tuning or optimisation procedure. To achieve this, some form of reward (or cost) 

function must be available to the system. In reinforcement learning approaches, the 

aim is to determine the best actions to take so as to maximize some long-term reward. 

Reinforcement learning algorithms attempt to find a policy that maps inputs (states of 

the world) to actions. Jodogne and Piater inroduced a method for learning from visual 

percepts to actions that combined a reinforcement learning strategy with a method of 

discretizing the perceptual space by isolating aliased perceptual classes [42]. Perceptual 

aliasing ([80]) occurs when percepts requiring different actions are classified as being 

the same.

Machine learning approaches can be sub-categorised based on the nature and level of 

supervision to the learning process. For reinforcement learning strategies, the super­

vision is in the design of the reward function. Unlike reinforcement learning, other 

common machine learning approaches provide a number of training examples. In a 

supervised learning approach, the learning algorithm aims to reason from input-output 

examples supplied to the system in order to produce general hypotheses, which can be 

used to generate outputs given unseen inputs [47]. For classification tasks, the output 

space is a class label. If the output is a continuous value or vector space, the supervised 

learning task is called regression.

For unsupervised learning or clustering approaches, no output examples are given in 

the training data and the task is to discover the structure of the input space i.e. to 

form clusters that identify “natural groupings of the input data” [22]. Unsupervised 

learning tasks tend to make some assumptions about the nature of the distribution 

density of the input data, for example, assuming a Gaussian distribution of the data 

means that the task can be reduced to that of identifying the mean and variance of 

the data. Other examples are found in some clustering algorithms where the number 

of modes in the data is assumed to be known [52].

The exemplar approach to machine learning as suggested by Nilsson in the above quote 

[58], is analogous to the Case Based Reasoning (GBR) approach where the expertise
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and knowledge base of the system are provided by a memory of cases recording specific 

prior episodes. In [49], Leake provides a good introduction to the key principles of 

CBR. The basic general algorithm for CBR methods is:

1. Retrieve the most similar case(s) comparing current case to past cases.

2. Reuse the retrieved case to try to solve the current problem.

3. Revise and adapt the proposed solution if necessary.

4. Retain the final solution as part of a new case.

When CBR is used for problem solving [46], the goal is to use a prior solution to a 

previous problem (a stored case) in order to generate a new solution to the current 

problem (current case). A case is “a contextualised piece of knowledge representing 

an experience that teaches a lesson fundamental to achieving the goal of the reasoner” 

[46]. How a case is actually represented in a CBR system can depend on the problem 

context, though there are generally three main parts: A problem description (the state 

of the world and the associated problem), a solution (the response or action taken to 

overcome problem) and an outcome (the world state, post application of the solution) 

[1]. Aamodt and Plaza describe the above algorithm as the CBR cycle and define the 

five core problenl areas that must be resolved in order to develop a CBR method [1]. 

These are knowledge representation, retrieval methods, reuse methods, revise methods 

and retain methods.

Data mining - the process of extracting patterns from data - is a term used to describe 

a number of data analysis techniques and has a large overlap with the fields of pattern 

recognition and machine learning. Typical data mining tasks include clustering (unsu­

pervised learning), classification, regression and association rule mining. Association 

rule learning is a method for discovering interesting relations between variables in large 

databases.
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2.2 Embodiment

Embodiment, a term used within psychology, philosophy, computer science, robotics 

and artificial intelligence, is based on the premise that the nature of the mind is deter­

mined by the physical body of the cognitive agent. The theory of embodied cognition 

(or the embodied mind theory) states that all aspects of cognition, from perceptual 

and motor control systems to categorisation, thought and imagination, are shaped by 

the body.

2.2.1 Philosophy o f em bodim ent

In ‘Philosophy in the Flesh: The Embodied Mind and its Challenge to Western Thought’, 

Lakoff and Johnson present a complete philosophy of embodiment based on the findings 

of cognitive science [48]. The argument being, that the nature of all human cognitive 

processes are determined by the form of the human body. These cognitive processes 

include categorisation and it is argued that aspects of the human body such as the 

perceptual system and the motor control system directly determine the nature of the 

categories, thoughts and ideas that a human being is capable of producing [48].

The implications of this argument are that thoughts and categories can no longer be 

thought of as as a purely intellectual matter, occurring after the fact of experience. 

Rather that the formation and use of categories is what constitutes experience. This 

brings into question many assumptions made by mainstream western philosophy. Three 

of these challenged assumptions are of immediate interest to this work: Firstly, that 

the categorisation of reality as perceived by a human is a reflection of a true external 

reality in which those categories exist, independently of the human. Secondly that 

there is a universal reason or structure to reality that defines the relationships between 

the human-independent categories. Finally that human reason is defined by universal 

reason and therefore the structure of human reason is disembodied. These three as­

sumptions are consistent with Cartesian dualism that claim that mental phenomena 

are non-physical.

This dualistic stance is reflected in the cognitivist approach to AI in which reasoning
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is carried out in some abstracted, disembodied symbolic domain. The embodied mind 

theory refutes the existence (or at least human capacity to conceptualize) of a true 

external reality. Instead it proposes that categories and the relationships between them 

are all dependent on the human body and that cognition is the process of forming and 

using those embodied categories.

2.2.2 N europsychology o f em bodim ent

The subject of how actions are executed and represented has been the focus of much 

recent experimental research from within the fields of cognitive psychology and cognitive 

neuroscience. Experimental cognitive psychology has developed experimental methods 

that involve measuring response times for perceptual motor tasks in order to analyse the 

underlying cognitive processes and has applied these to both overt (executed) and covert 

(not executed) actions [10]. These experiments demonstrate that action and perception 

are coded in the same cortical system. Cognitive neuroscience has introduce functional 

brain imaging techniques, such as functional Magnetic Resonance Imaging (fMRI) as 

well as brain simulation techniques that both yield descriptions of the neural structures 

involved in representing actions [15]. This experimental paradigm has resulted in the 

discovery of mirror neurons [19, 63] which appear to be involved in both the execution 

of actions and perception of actions performed by others.

An important result drawn from these experimental paradigms, pointed out by Marc 

Jeanerod in ‘Motor Cognition: W hat Actions Tell the Self’, is that ‘the observation 

of actions performed by other agents generates in the brain of the observer repre­

sentations similar to those of the agents’ [40]. This is termed in some literature the 

‘direct-matching hypothesis’ and is facilitated by mirror neurons [26]. This result is im­

portant to this thesis in two respects. Firstly it motivates an imitation based behaviour 

learning process. If it is possible to map the actions of others onto ones own action 

representation, then mimicking actions becomes possible and may provide a foundation 

for general imitation and eventually autonomous behaviour. The second reason why 

this result is relevant concerns the process of perception itself. When discussing the 

perception of biological motion, Jeanerod points out that ‘not only executing, but also
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perceiving biological movements is influenced by in-built features of motion generation. 

In other words, perception seems to obey motor rules’.

2.2.3 Em bodim ent in artificial cognitive system s

In [14] Brooks presents a number of papers introducing what he terms behaviour-based 

robotics in which he argues the case for the symbol grounding hypothesis over the 

symbol system hypothesis. Brooks promotes the study of intelligence from the bot­

tom up, concentrating on physical systems (e.g., mobile robots), situated in the world, 

autonomously carrying out tasks of various sorts. Embodiment is critical, he argues, 

because only through a physical grounding can any internal symbolic or other system 

give ‘meaning’ to the processing going on within the system [13]. In [12], he puts 

forward an argument for embodied, bottom up intelligence - the physical grounding 

hypothesis - based on observations from evolutionary biology. He states that evolution 

has devoted the vast majority of time in developing the ability to move around in a 

dynamic environment, sensing the surroundings to a degree sufficient to achieve the 

necessary maintenance of life and reproduction. By contrast, language, expert knowl­

edge and reason should, in terms of the time spent in evolving such capabilities, be 

an easier task. A number of physically grounded agents have been developed using 

the subsumption architecture, an architecture constructed from layers of finite state 

machines augmented with timing elements that connect perception to action. Many of 

these are reviewed in [12].

Related to embodiment and physical grounding is affordance theory - introduced by 

Gibson [29]. Affordance theory states that the world is perceived not only in terms 

of object shapes and spatial relationships but also in terms of object possibilities for 

action (affordances). Relating this to embodiment, it can be argued that agents with 

different physical embodiments will perceive the world differently, as the affordances 

are determined by the agents possibilities for action - it’s embodiment. Amongst the 

many researchers to explore affordance-based robotic systems, Paletta & Fritz have 

recently demonstrated an affordance-based reinforcement learning approach for learning 

of causal relationships between visual cues and associated anticipated interactions [60].
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Another concept being explored by AI researches, that relates to the theory of affor­

dances, is that of learning functional object-categories. That is developing systems that 

learn to recognise objects based on the role they play in carrying out activities. Work 

based on object recognition is almost exclusively based on learning categories based on 

perceptual features. Sridhar et al. recently presented a method for learning categories 

from function. Object-categories are learnt from relational spatio-temporal activity 

graphs extracted from video sequences displaying activities involving a toy kitchen set. 

In this work, object discovery is performed by clustering in a candidate object space, 

where the similarity function is based on similarity of the objects interactions [71].

2.3 Im itation Learning

Imitation plays a strong role in the development of cognitive systems. As mentioned 

above, recent neurophysiological research has shown strong evidence supporting the 

existence of a mechanism, in both primate and human brains, known in the literature 

as the direct-matching hypothesis. The mirror-neuron system essentially provides the 

system (human/ primate brain) with the capability “to recognise actions performed by 

others by mapping the observed action on his/her own motor representation of the 

observed action” [16]. An agent that can recreate, in its own action representation, 

physical tasks carried out by another agent can mimic those tasks simply by overtly 

carrying out actions that have been obtained through the direct-matching process. 

Mimicry provides a fundamental starting point to achieving more complex imitation, 

for which some comprehension of purpose or goal state is required.

In the work of Siskind, an attempt is made to analyse from visual data the force 

dynamics of a sequence and hence deduce the action performed [68]. Alternatively, 

Fitzpatrick have shown that it is possible for an agent to learn to mimic a human 

supervisor by first observing simple tasks and then, through experimentation, learning 

to perform the actions that make up the tasks [25]. Both these approaches deal only 

with exact mimicry.

The machine learning approach of learning from a set of training examples can also 

be interpreted as imitative. Given a set of training examples of inputs and associ­
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ated decisions/ outputs the objective is to imitate the process behind generating those 

decisions /  outputs,

Related to learning by imitation, is Learning from Demonstration (LfD). In [4], Argali 

et al. present a comprehensive survey of robot LfD, a technique that develops policies 

from example state-to-action mappings. This work included an analysis and categori­

sation of the multiple ways in which examples are gathered, ranging from teleoperation 

to imitation, as well as the various techniques for policy derivation, including classifi­

cation, regression and reward function. W ithin this framework, the work presented in 

this thesis uses teleoperation - where the robot is operated by the teacher while record­

ing both the control signals and the sensor readings - to gather the examples. Both 

classification and regression approaches are employed for policy derivation, in chapters 

5 and 6 respectively.

2.4 Visual Tracking

Visual tracking is the process of consistently locating a desired feature in each of a 

sequence of images. The problem is typically complicated by noise from the sensor, 

motion in the scene, motion on the part of the observer, (partial) occlusions and ap­

pearance changes of the target feature and real-time constraints. Yilmaz et. al in­

troduced a taxonomy of tracking methods [82]. Within this taxonomy, the tracking 

approach proposed in this thesis falls into the class of methods identified as multi-view 

kernel methods. However, unlike the methods reviewed, this approach learns the views 

of the target online.

2.4.1 Tracking v ia  registration

Lucas and Kanade made one of the earliest practical attempts to efficiently align a 

template image to a reference image [51], minimising the Sum of Squared Difference 

similarity function. Efficiency was achieved by using a Newton-Raphson method to 

traverse the space of warp parameters. In Newton-Raphson optimisation, iterative 

parameter updates to alignment parameters are obtained by multiplying the Jacobian
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by the inverse Hessian of the similarity function. Lucas and Kanade mainly considered 

translations, but they demonstrated that any linear transformation could be used.

Later research considered more complex transformations and attempted to reformulate 

the similarity function allowing pre-computation of some terms. In particular, Hager 

& Belhumeur proposed inverting the roles of the reference and template at a strategic 

point in the derivation [34], and Shum et al. constructed the warp as a composition of 

two nested warps [67]. In a general treatise on Lucas-Kanade (LK) techniques. Baker 

& Matthews combined these methods to formulate the inverse-compositional method 

[5] . Dowson & Bowden derived an inverse compositional formulation for aligning a 

template and a reference image using mutual information and Levenberg-Marquardt 

optimisation [21].

2.4.2 Tracking v ia  regression

Cootes et al. [18] proposed a method for pre-learning a linear mapping between the 

image intensity difference vector and the error (or required correction) in AAM model 

parameters. Jurie & Dhome employed similar Linear Predictor (LP) functions to track 

rigid objects [44]. The work of Matas et al. again uses linear regression for displacement 

prediction [55], similar to the LP functions in [44] and [18]. They extend the approach 

by introducing the Sequential Linear Predictor (SLP) [83]. Williams et al. [81] pre­

sented a sparse probabilistic tracker for real-time tracking that uses an Relevance Vector 

Machine (RVM) to classify motion directly from a vectorised image patch. The RVM 

extends the method of forming a regression between image intensity difference vectors 

and the error/correction to non-linear regression.

A key issue for LP trackers is the selection of its reference point, i.e. its location in the 

image. In the work of Marchand et al. [53], predictors are placed at regions of high 

intensity gradient but Matas et al. have shown that a low predictor error does not nec­

essarily coincide with high image intensity gradients [55]. In order to increase efficiency 

of the predictors, a subset of pixels from the template can be selected as support pixels 

used for prediction. Matas et al. present a comparison of various methods for learning 

predictor support, including randomised sampling and normalised reprojection, and
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found that randomised sampling is efficient with minimal and controllable tradeoff in 

terms of accuracy [55].

Ong & Bowden recently proposed a real-time facial feature tracker based on the biased 

linear predictor, that includes a bias term in the regression function that improves 

performance especially when using multiple training images [59]. Multiple linear pre­

dictors are grouped into a rigid flock to increase robustness and a probabilistic selection 

method is used to identify tracking reference points. The model in [59] also extends 

the LP tracker to a multi-resolution model.

2.4.3 Online appearance m odel learning

Tracking approaches typically employ appearance models in order to optimise warp 

parameters (e.g. translation or affine) according to some criterion function. Linear 

predictor trackers typically rely upon hard coded models of object geometry [55, 53]. 

This requires significant effort in hand crafting the models and like simple template 

models [51, 5, 56], are susceptible to drift and failure if the target appearance changes 

sufficiently. Systems that use a priori data to build the model [18] or train the tracker 

offline [81] can be more robust to appearance changes but still suffer when confronted 

with appearance changes not represented in the training data. Incremental appearance 

models built online such as the WSL tracker of [41] have shown increased robustness 

by adapting the model to variations encountered during tracking, but the overhead of 

maintaining and updating the model can prevent real-time operation.

Two recent approaches that achieve real-time tracking, and have adopted an entirely 

online learning paradigm, are the discriminative tracker of [31] that uses an online 

boosting algorithm to learn a discriminative appearance model on the fly and Dowson 

Sz Bowden’s SMAT algorithm. Dowson & Bowden present the Simultaneous Modeling 

And Tracking algorithm, SMAT, and show the benefits of online learning of a multiple 

component appearance model when employing alignment-based tracking [20].
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2.5 Visual servo control

Sanderson and Weiss have introduced a taxonomy of visual servo control architectures 

[65]. From this taxonomy we can draw four major categories formed by two modes of 

distinction. The first distinction is between dynamic look-and-move and direct visual 

servo control mechanisms. This distinguishes between systems that use joint feedback 

to help with stability (dynamic look-and-move) and systems that directly compute 

servo positions (direct visual servo) using vision. The second distinction is between 

position-based and image-based methods. In position-based control strategies the pose 

of the target is estimated by matching extracted image features to a geometric model 

of the target using a known (calibrated) camera model. The error between desired and 

estimated pose drives the control signals. In image-based servo control, the control 

signal is computed directly from the image features. A third distinction between visual 

servo control approaches concerns the placement of the camera. Generally the camera 

is either mounted on the end-effector - eye-in-hand - or with both the end-effector and 

the target in view [38].

Whilst much of the visual servo control literature focuses on manipulating a robot arm 

or end effector positioning, much of the theory relates equally to other applications, such 

as autonomous navigation. The visual servo control approach developed in chapter 6 is 

applied to the task of autonomous navigation of a robotic vehicle. The strategy can be 

classified as an eye-in-hand image-based visual servo (IBVS) control strategy. That is 

to say the signals that control the vehicles motion are computed directly from features 

extracted from images captured by a camera mounted on the vehicle.

Commonly eye-in-hand position-based (PBVS) and image-based visual servo control 

(IBVS) strategies utilise a priori knowledge of the 3D model of the target. ([79]; [38]). 

This is transparent in position-based methods that by definition require a perfect ge­

ometric 3D model of the target. For image-based methods this knowledge is generally 

employed in the estimation image Jacobian, sometimes called the interaction matrix. 

This matrix defines the relationship between motion of 2D image features and the 3D 

motion of the camera. Generally pose estimation algorithms that require knowledge of 

the 3D geometry of the target are used to estimate the interaction matrix [24].
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The term target has been used throughout this background to visual servo control. 

For many applications the target is a single object to which the end-effector should 

be in some way aligned. For example a robotic arm moves to grasp/ inspect/ deflect a 

cup/ unknown-object/ball. Another example would be a visual servo controlled auto­

pilot undergoing a landing. In this case the target is a more abstract combination of 

features e.g. the runway and the line of the horizon.

2.6 R obotic system s for autonomous navigation

The development of robotic systems for autonomous navigation has become a major 

research area in recent years. Interest in the topic has been stimulated, in particular, 

by the well publicised DARPA Grand Challenge. The DARPA Grand Challenge is 

a competition for autonomous vehicles, funded by the Defense Advanced Research 

Projects Agency. To date there have been three competitions, in 2004, 2005 and 2007. 

Many of the competition entries use multiple sensor inputs, often relying heavily on 

laser perception and GPS navigation. One of the entries that is of particular interest 

to this work is the winner of the 2005 challenge - Stanley [74].

Stanley (the winner of the 2005 DARPA grand challenge) was designed to achieve 

high-speed desert driving without manual intervention. Interestingly, the robot relied 

heavily on state-of-the-art machine learning and probabilistic reasoning technologies. 

Of particular relevance to this work is the use of labeled training data, obtained from 

a human driver, for learning a laser terrain mapping. The vehicle is equipped with five 

single-scan laser range finders. This sensor data is then used to label the terrain in front 

of the vehicle as either drivable, occupied or unknown. The mapping from laser data to 

a terrain labeling is achieved using a labeled training data, provided by a human driver. 

A human driver is instructed to only drive over obstacle-free terrain. Regions traversed 

by the vehicle are then labeled as drivable, and regions either side of the traversed 

regions are labeled as containing obstacles. Although not all the regions labeled as 

containing obstacles by this method are actually occupied by obstacles, training with 

this approximate labeling was found to be achieve sufficient accuracy [74]. A similar 

approach of using human driver data is also used for learning the velocity control. To
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further extend the range of the drivable surface classification, an adaptive computer 

vision algorithm is employed. This algorithm extends the range from approximately 

22m in front of the vehicle (from the laser data) to around 70m. Drivable surfaces are 

found by projecting the drivable area from the laser analysis into the camera image. 

Pixels in the camera image that are labeled as drivable by the laser analysis are used 

to train a Gaussian Mixture Model (GMM) in the red/green/blue colour space, to 

classify the surface in front of the vehicle as either drivable or non-drivable. The GMM 

adapts to the data online, by both adjusting the parameters of the Gaussian models and 

by introducing new Gaussian models. This allows for adaptation to slowly changing 

lighting conditions as well as rapid changes to surface colour (e.g. when the vehicle 

moves from paved to unpaved road).

Another autonomous navigation system worth mentioning is Trinity Colleges ALVIN 

robot, an autonomous ground vehicle that has participated in the Association for Un­

manned Vehicle Systems International Intelligent Ground Vehicle Competition (IGVC) 

since 2000 [9]. The vehicle was developed to be able to navigate along a path (two white 

lines marking the path boundaries) and to avoid obstacles. Essentially this was achieved 

by using image thresholding to identify the white lines immediately in front of the vehi­

cle. The lines were then projected to the horizon. Moving parallel to both lines meant 

the centerline of the robot had to meet both lines at the horizon, i.e., the intersection 

of two lines had to be at the center of camera view. Obstacles were detected using an 

ultrasonic sensor array. The design evolution of ALVIN is interesting, not so much due 

to successes, but more as it highlights the many and varied difficulties with developing 

autonomous navigation systems. Over the five generations of ALVIN, significant fail­

ures have occurred due to: short circuit in the motor control system, lack of ability to 

adapt to varying lighting conditions, insufficient obstacle representations, overheating 

computers and programming bugs. In developing the autonomous navigation system 

proposed in this thesis, many of these problems were also encountered, and effective 

solutions are developed.
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2.7 M otivating discussion

This chapter provides a background to the approaches presented within this thesis. This 

concluding discussion highlights aspects of this background discussion that motivate 

particular aspects of the proposed approaches.

In the section reviewing machine learning, various strategies for supervising the learning 

tasks are reviewed. In chapter 3, a supervised machine learning technique is used 

to form regression functions from image pixel intensities to target pose parameters, 

however the supervision to the learning process is provided autonomously by the system.

In chapter 4, another machine learning approach, incremental unsupervised learning, 

is applied to the problem of discovering aspects of a target object during tracking. In 

chapters 5 and 6 unsupervised learning approaches are applied to the response space 

and the resulting clustering is used to organise the perceptual space.

Although not initially motivated by the CBR approach, the system presented in chapter 

5 has many characteristics in common with a CBR system. Also, the problems faced 

when attempting to construct the system can be viewed as direct analogies to those 

stated by Aamodt and Plaza above.

Chapter 6 uses association rule mining in order to discover feature configurations that 

frequently co-occur with a particular action-type, and not all other action-types.

It is the objective of chapters 5 and 6 to develop mechanisms that allow the systems 

to organise the process of cognition - demonstrated by operating effectively within its 

environment. This is consistent with the emergent systems definition of cognition. 

Chapters 5 and 6 also demonstrate novel ways in which the experience - process of 

forming and using categories - of the agent is determined by the embodiment of the 

agent and by the interactions the agent has with its environment. This is consistent 

with the theory of embodiment. The neuropsychological findings reviewed highlight 

the concept of perception being determined to a certain extent by the structure of the 

motor space and this further motivates the action space clustering approach developed 

in chapters 5 and 6.

The perceptual categorising and response generation systems developed in chapters 5
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and 6 can be related to affordance theory and the functional object category learning 

approach reviewed. The use of a similarity function based on similarity of the objects 

interactions rather than appearance being similar to the use of a similarity function 

applied in the action rather the the percept domain.

The final two sections of this chapter (sections 2.4 and 2.5) review related work con­

cerning the two application domains for the proposed approaches. As shall be shown, 

the proposed visual tracking approach avoids the need for costly reference point and 

support selection strategies employed by the linear predictor approaches reviewed. This 

is achieved by evaluating the performance of a predictor online and allowing poor per­

formers to be replaced as opposed to minimising a learning error offline. Each of the 

displacement prediction trackers detailed in [55, 53, 81, 59] require either an offline 

learning stage or the construction of a hard coded model or both. The work presented 

in this thesis does not require either hard coded models or offline learning.

The approach presented in chapter 6 differs significantly from conventional visual servo 

control systems, even from most eye-in-hand IBVS approaches. As shall be shown no 3D 

representation of the target is used and the interaction matrix is not computed. Instead, 

visual feature configurations that are strongly associated to modes of the control space 

are discovered and linear functions are learnt for each of these discovered configurations, 

that map from feature space to control space.
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Chapter 3

Linear R egression for Fast 

D isplacem ent E stim ation

The work in this chapter and in the next chapter of this thesis is concerned with the 

development of fast visual feature tracking algorithms that utilise no prior model (hard 

coded or learned) of the target appearance. The approach presented operates at high 

frame rates, tracks fast moving objects and is adaptable to variations in appearance 

brought about by occlusions or changes in pose and lighting. This is achieved by 

employing a novel, flexible and adaptive object representation comprised of sets of 

spatially localised linear displacement predictors associated to various modes of a multi 

modal template based appearance model learnt on-the-fly. This chapter focuses on the 

displacement prediction methods.

Many problems in computer vision have been expressed as the task of learning a 

mapping between image space and a parameter space [57]. The vision as regression 

paradigm has been widely adopted by a number of researchers [2, 81], as regression 

naturally lends itself to the task of learning input-to-output mappings. This chapter 

explores the use of linear regression models for tracking image features i.e. mapping 

from image space to target pose parameter space. The linear regression tracker, or Lin­

ear Predictor (LP), is an example of an input-output mapping that forms part of the 

Percept Action Cycle (PAC) framework introduced in chapter 1. Figure 3.1 illustrates 

this regression based approach. The outputs in this instance are target pose parameters

33
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INPUTS 
(IMAGE INTENSITY VALUES)

WORLD

OUTPUT
LINEAR REGRESSION

OUTPUTS
(TARGET POSE)

Figure 3.1: Regression Approach to input-output mapping: This figure represents the 

tracking approach proposed in this chapter within the PAG framework introduced in 

chapter 1.

which essentially shift the attention of the tracker i.e. determine where in the input 

image the pixel intensities will be sampled in the next frame.

Conventional alignment based tracking approaches aim to estimate the position of the 

target in each frame by aligning an image template of the target with the new frame; the 

template (or input frame) is warped in order to obtain an optimal alignment. The warp 

parameters are obtained by optimising the registration between the appearance model 

and a region of the input image according to some similarity function {e.g. Tg norm, 

Normalised Correlation, Mutual Information). Optimisation is often carried out using 

gradient descent or Newton methods and hence assumes the presence of a locally convex 

similarity function with a minima at the true position. The basin of convergence of such 

methods is the locally convex region of the cost surface within which a gradient descent 

approach will converge. The size of the basin of convergence determines the range of 

the tracker i.e. the maximum magnitude of inter-frame displacements for which the 

approach will work. Trackers with small range require low inter-frame displacements 

to operate effectively and hence must either operate at high frame rates (with high 

computational cost) or only track slow moving objects. If the target moves a distance
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greater than the range between two consecutive frames then the method will fail. While 

multiscale approaches can be used to address this in registration approaches, regression 

based tracking allows the user to select the optimal range as a trade-off against accuracy 

and will be experimentally shown to have a greater range (not limited by the range 

of convexity or the presence of local minima in the cost surface) than registration 

methods and due to their simplicity are computationally efficient. The computational 

efficiency of the method is a result of learning a simple and general mapping directly 

from patterns of image intensity differences to desired displacements, and applying this 

mapping at each displacement prediction step, rather than performing an optimisation 

process for each prediction step.

The computational efficiency of the LP regression based tracking methods developed 

allows for the use of multiple LPs. The behaviour of constellations or flocks of these LPs 

is investigated along with methods for weighting each LP’s contribution to the overall 

flock output based on i t’s performance. Approaches to evaluating the performance of 

a LP within a flock are introduced.

The rest of the chapter is organised as follows: Section 3.1 formulates the tracking 

problem and compares regression and registration approaches to predicting inter-frame 

displacement of a target object for tracking. The LP regression tracker is introduced 

in section 3.1.2 and the method used for learning the LP regression function is de­

tailed in section 3.1.3. This is followed in section 3.1.4 by a description of methods of 

combining rnultiple LPs into LP-flocks. In section 3.1.5 some illustrative experimental 

results are presented that compare regression and registration techniques on an example 

inter-frame displacement prediction. In section 3.2 experiments that characterise the 

proposed regression method are presented along with experiments evaluating the effect 

of various parameters on the positional accuracy, range and computational complexity 

of the approach. The predictor evaluation and flock weighting mechanisms are also 

evaluated.
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3.1 Displacem ent Estimation; R egistration vs. Regres­

sion

The tracking problem is defined as the task of estimating the change of pose or warp 

parameter, ^x, such that:

I r ( W ( k , S x ) ) ^ I t  (3.1)

where Ip  is the new input image, W  is a warping function (e.g. translation, affine), x  is 

the state vector parameterising the pose of the target and Ip  is a template representing 

the appearance of the target.

For the LK or registration based method this is treated as a minimisation problem such 

that we wish to find 5x that minimises the dissimilarity between Ip  and Ip-

Sx — argmin ||fjz(kF(x,6x)) -  It \\ (3.2)
Sx

For the regression or Linear Prediction (LP) method, the prediction directly estimates 

Sx.

,^x =  P(7^(W (x, dx)) -  7r) (3.3)

Every tracking approach has some representation of the target; tracking output is a 

function of both this representation and new image data. For registration methods the 

representation is a template of pixel intensities. Ip, drawn from the input image at 

the location of the target. Tracking is then the process of aligning template. Ip, with 

the new input reference image. Ip  i.e. finding the warp, W , with parameters Sx that 

minimises (maximises) some distance (similarity) function between Ip  and Ip.

For the linear regression method presented in section 3.1.2 the target representation is 

a vector of image intensities. Additionally, the regression function, P , encodes informa­

tion about the target appearance. Tracking is then the process of multiplying P  with



3.1. Displacement Estimation: Registration vs. Regression 37

the difference between target representation vector and an intensity vector sampled 

from the input image at the current position.

Looking at equations 3.2 and 3.3 it is apparent that both approaches involve some 

operation on the difference between the target representation and the input image 

information. Whilst the registration method explicitly minimises the cost surface to 

obtain an optimal alignment, the regression method directly maps from image inten­

sity difference patterns to required displacements. In fact, as detailed in the following 

section, the iterative optimisation methods used in the registration approaches involve, 

at each iteration, a linear operation on the intensity difference. The difference between 

the two methods is that the parameters of the linear function used in the iterative 

optimisation methods are based on cost surface gradient information, whereas for the 

regression methods, the parameters are learnt from examples of displacement and in­

tensity difference patterns.

3.1.1 Tracking by registration

The registration process aims to locate the region in Ip  (reference image) that most 

resembles Ip  (template image) by minimizing a distance function, / ,  which measures 

the similarity of the two regions. The position of It  relative to Ip  is specified by a 

warp function W  with parameters 6x.

Sx = argmin f[Ip{W {x, Sx)), Ir(x)] (3.4)

Distance function, / ,  can be any similarity measure, e.g., L2 norm or Ml. For com­

parisons of the relative merits of different similarity measures see [21]. The position of 

greatest similarity is found using an optimisation method. LK methods use a group of 

optimization methods, the so-called Newton-type methods, i.e. methods which assume 

locally parabolic shape and proceed with an update as follows:

(3.5)
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Where II, is the Hessian of f ,  and G, is the Jacobian, while k indexes

the iteration number. However, minima in tracking and registration problems are 

frequent which results in erroneous alignment of the template with the target. Multiple 

initializations can improve performance but at an obvious computational cost.

Generally, LK type methods apply Quasi-Newton optimisation, i.e. an approximation 

to the Hessian, Ê ,  is used. In general, Newton and Quasi-Newton only perform well 

when near to the minimum. Steepest Descent methods, which ignore local curvature 

and.instead multiply G by a scalar step-size value A, perform better when further from 

the minimum. The Levenberg-Marquardt [54] method combines these two methods. In 

this work a formulation similar to that presented in [21] (using Levenberg-Marquardt 

and L2 norm) of this registration based tracking is used in comparisons with regres­

sion based techniques. The C++ (or Matlab) warthog library is used as an efficient 

implementation^.

3.1.2 Tracking by regression: T he Linear Predictor

Feature tracking by regression is achieved by predicting inter-frame displacement of the 

target. The displacement predictors explored here use linear models to predict. These 

predictors compute motion at a reference point from a set of pixels sub-sampled from its 

neighbourhood called the support set S =  { s i,..., s^}. The intensities observed at the 

support set S are collected in an observation vector 1(S). The 1q(S) vector contains the 

intensities observed in the initial training image. Here the motion is a 2D translation 

t, we use (S o t) =  {(si +  t ) , ..., (sfc +  t)} to denote the support set transformed by t. 

Translation is sufficient as the multi-modal appearance models developed in chapter 4 

cope with affine deformations of the image templates, also shown in [20].

Predictions are computed according to the expression in Eq. (3.6) where P  is a (2 

X k) matrix that forms a linear mapping from image intensity differences,

d =  1q(S) —1(8 o x), to changes in warp parameters, (5x. The state vector, x, is the 2D 

position of the predictor after prediction in the preceding frame.

^Link to code found at www.cvl.isy.liu.se/research/adaptive-regression-tracking

http://www.cvl.isy.liu.se/research/adaptive-regression-tracking
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Figure 3.2: Intensity difference images for eight translations: Four support pixel lo­

cations illustrate the predictive potential of the difference image. The input image is 

in the center. All images to the left/ right of the input have been translated left/ right 

by 10 pixels. Those images above/below the input have been translated by 10 pixels 

up/down. Under the images, the motion and support vectors are illustrated. Note that 

observations at support locations are grey values.

5x =  P d  =  P ( l o ( S ) - l ( S o x ) ) (3.6)

This efficient prediction only requires k subtractions and a single matrix multiplication, 

the cost of which is proportional to k.

3.1.3 Predictor learning

In order to learn P , the linear regressor or projection matrix, N  training examples of 

{<5x̂ , d j  pairs, (i G [1, N]) arc required. These are obtained from a single training im­
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age by applying synthetic warps and subtracting the deformed image from the original. 

For efficiency, the warp and difference computation is only performed at the support 

pixel locations but, for illustration, the result of performing this operation on the entire 

image is shown in figure 3.2 for eight different translation warps. Also marked on the 

figure are four possible locations for support pixels and the unique observation patterns 

they produce.

In the proposed approach, support pixels are randomly selected from within a range, 

Vsp, of the predictors reference point. This is in contrast to other LP learning strategies 

[84, 59] where the objective is to select an optimal support set. The next step in learning 

the linear mapping P  is to collect the training data, {6x*, d%} into matrices X, (2 x 

N ), and D (k x N )  where N  is the number of training examples. The Least SQuares 

(LSQ) solution, denoted P , is then:

p  =  XD + =  X D ^(D D ^)-^  (3.7)

Where is the pseudo inverse of D.

Clearly there are more sophisticated learning methods, both in the selection of support 

pixels and in the method used to solve the regression problem. However, the methods 

selected provide a computationally efficient solution. As shall be shown here and in 

the next chapter, the use of LPs with low computational cost combined with methods 

to rate the performance (and hence weight the contribution) of each LP allows the 

replacement of poorly performing LPs during tracking. This essentially spreads the 

cost of learning appropriate mappings over a period of time and allows incremental 

learning as opposed to batch (offline) learning.

The LPs have a number of tunable parameters. The parameter, Vsp, defines the range 

from the reference point within which support pixels are selected. Parameter rtr defines 

the range of synthetic displacements used for training the predictor. Figure 3.3 illus­

trates the displacement prediction errors of LPs with rtr — 10, rtr = 50 and rtr — 80. 

The predictor complexity, k, specifies the number of support pixels used and hence the 

dimension of P . The number of synthetic translations used in training is denoted N . 

In section 3.2.2, experimental results are presented to illustrate the effect each of these
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Figure 3.3; LP response for three training ranges: The predicted displacement error 

(vertical axis) versus the true displacement (horizontal axis) of three LPs is shown. The 

response shown in red (or dark grey in black and white) at the bottom is of a predictor 

trained on displacements in the range -40 to 40 pixels. The response shown in green 

(light grey) in the middle is of a predictor trained on displacements in the range -25 

to 25 pixels and the response shown in blue (black) at the top is of a predictor trained 

on displacements in the range -5 to 5 pixels. It can be seen that, within the range of 

displacements used for training, each of the LPs achieve relatively low errors. It can 

also be seen, from the error bars, that whilst increasing the range of displacements 

used for training extends the operational range of the LP, it does so at the cost of 

consistency.
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parameters has on tracker performance. It is sufficient to say, increasing rtr increases 

the maximum inter frame displacement at the expense of alignment accuracy; k models 

the trade off between speed of prediction and accuracy/stability. N  does not affect pre­

diction speeds but instead parameterises a trade off between predictor learning speeds 

and accuracy/ stability.

(a) Displacement (up and (b) Displacement (to the (c) Displacement (up and (d) Displacement (down 

to the left) is accurately right) is accurately pre- to the left) is less accu- and to the left) is larger 

predicted. dieted. rately predicted. than training range and is

not predicted well.

Figure 3.4: LP predictions: Four examples of a LP predieting displacement on a test 

image are shown. In each image the reference point is marked with a blue eircle, 

ten support pixel from the initial support set are marked with red circles, the test 

displacement veetor is indicated by a red line, the support pixels at the displaced 

position are marked with green crosses and the prediction is indicated by the green 

line.

Figure 3.4 presents four examples of a LP predicting displacement on a single test image. 

The point being Tracked' - the reference point, is marked with a blue circle. Ten of 

the support pixel locations that make up the initial support set, lo(S), are marked 

with small red circles. For each of the four images the LP is randomly displaced, the 

displacement veetor indicated by the red line. The support pixels at the displaced 

position are marked with green crosses and the prediction is indicated by the green 

line. The predictions generally match the displacement with reasonable accuracy, as 

shown in figures 3.4(a), 3.4(b) and 3.4(c), although, as shown in figure 3.4(c), the 

accuracy does vary. Figure 3.4(d) shows a prediction with a displacement of -36 pixels 

horizontally and 37 pixels vertically. As the LP is trained for a range of 20 pixels (in
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both horizontal and vertical directions), the prediction error in this case is large.

3 .1 .4  T h e  l in e a r  p r e d ic to r  flock

The displacement predictions made by LPs have limited accuracy; this is especially the 

case where no attempt is made to optimise support pixel selection. A simple approach 

to handling the noise introduced by this inaccuracy is to take the mean prediction from 

a collection of LPs as in equation 3.8.

(3.8)

The state vector, x  for each of the collection of L  LPs is then updated with this mean 

prediction, as in equation 3.9, causing the LPs to flock together.

x[ =  'X-l-i +  5x, I = 1...L (3.9)

The increase in prediction accuracy, as shown by the experiments in section 3.2, is due to 

the noise averaging characteristics of the mean. Similar results are/would be obtained 

using the median but this would complicate the weighting of LP contribution to flock 

output as described below. Another approach is to use the RANSAC algorithm to select 

the subset of LPs who’s prediction gains most consensus within the flock. Although 

the outlier rejection of RANSAC may be better than the mean value, RANSAC has a 

higher computational cost and again is less well suited to weighting LP contributions 

to flock output.

Within a LP flock, it is desirable to down weight poor predictions or even remove/replace 

poorly performing LPs. This is especially the case when using the simple learning 

strategies detailed above. To weight the contribution a single prediction makes to the 

overall flock output, some way of assessing the reliability of the prediction is required 

- a prediction error. As no ground tru th  displacement is available whilst tracking, this 

error function could rely on observation differences at the support pixels, the assump­

tion being that when a predictor performs well, the observations at the support pixels
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- after the trackers state vector, x, has been updated - should be similar to those ob­

served in the initial frame. Alternatively, we can consider flock output to be Truth’ and 

evaluate predictions based on flock agreement, i.e. the error is the difference between 

True’ flock output and the prediction being evaluated. If a LP ‘strays from the flock’ 

it can be relied on less. This approach benefits from its computational simplicity as it 

requires only difference computations in the low dimensional pose space, ||5x—5x^|| (t is 

the current frame) as opposed to in the higher dimensional observation space ||Io — ||. 

The observation difl’erence error also requires additional computation for image bounds 

checking.

There is considerable scope for different LP flock contribution weighting strategies 

using either of the above prediction errors. A simple and cost effective approach is 

linear weighting (see equation 3.11) with normalised errors (see equation 3.10). The 

weighting can be based on the errors computed in the current frame, the previous frame 

or, as investigated in the next chapter, the history of the LP’s performance. In chapter 

4, the weightings are computed in such a way as to control the contribution of predictors 

dependent on its usefulness given the current appearance of the target. Equation 3.10 

shows how a weight is computed and equation 3.11 illustrates the linearly weighted LP 

flock.

= (3.11)
E i = i

The experiments in section 3.2.3 show how this weighting strategy improves the accu­

racy of the LP flock.

The low computational complexity of the LP learning methods results in lower accuracy 

of LPs than highly optimised offline learning procedures. This motivates the need for 

mechanisms to manage the flocks of LP’s, such as this linear weighting mechanism. 

These weighting mechanisms are developed further in chapter 4.
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3.1.5 Inter-fram e m otion  exam ple

Each of the three trackers under investigation (Lucas-Kanade, LP and LP flock) was 

applied to an image sequence, captured from a moving web camera, containing consid­

erable motion blur and large inter-frame displacements caused by vigorous shaking of 

the camera. Figures 3.5(a) and 3.5(b) show frames 374 and 375 respectively.

On figure 3.5(a) the reference point being tracked is indicated by the cross. On figure 

3.5(b), which shows frame 375 as suffering considerable motion blur, the same co­

ordinate is marked in light blue (grey in black and white) cross. Also marked on figure 

3.5(b) is the position each of the trackers believes to be the target. The Lucas-Kanade 

tracker (red circle) has moved a short distance from the position in the previous frame 

and has failed to track the target. The single LP tracker (yellow X) has done better 

and the LP flock (green star) has done better still. The ‘true’ point (white cross) is 

obtained by taking a template of the target and finding the global minimum in the cost 

surface as shown in figure 3.6.

Figure 3.6 is informative as it illustrates the difference between the regression and 

registration processes, specifically highlighting the problems of using gradient descent 

or Newton methods that assume the presence of a locally convex similarity function with 

a minima at the true warp position. Although the global minimum of the similarity 

function, or cost surface, is at the true warp position, the Lucas-Kanade tracker is 

‘caught’ in a local minimum. The inter-frame displacement was larger than the basin 

of convergence of the tracker i.e. it fell outside the area of convexity of the surface 

around the true point. On the other hand, both the regression techniques are able to 

‘leap’ across the cost surface and track successfully despite motion blur and the large 

37 pixel inter-frame displacement. This is because the regression approach learns how 

patterns of image intensity differences relate to displacements. In chapter 4 various 

trackers, including more advanced registration based approaches, are tested on the 

entire 1000 frame video sequence and, due mainly to severe camera shake and hence 

large inter-frame displacement, only the regression methods are successful.
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• g  t  ' Vi* ^

^  '• ' jr;
(a) Frame 374 from video with camera motion. Location of reference point of 

feature being tracked is marked with a cross. The template size (40 by 40 pixels) 

is also marked with a rectangle.

(b) Frame 375. Location of reference point in last frame marked with a light blue 

(grey in black and white) cross. LK point of convergence marked with a red (dark 

grey) circle, single LP with a yellow (white) X, LP flock with a green (black) star 

and the true position marked with a white cross. The search area used to produce 

the cost surface below is marked with a white rectangle.

Figure 3.5: Inter-frame motion example part I: The registration (circle), regression 

(X) and flock (star) displacement estimators are tested on a image sequence featuring 

vigorous camera shake. The regression methods are shown to accurately estimate the 

large (37 pixel) inter-frame displaeement while the registration method fails due to a 

local minimum in the cost surface (shown in figure 3.6).
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Figure 3.6: Inter-frame motion example part / /:  Cost surface of L2 norm distance 

between template drawn from frame 374 and an 80 by 80 pixel region of frame 375 

around reference position in frame 374 (shown in figure 3.5). Light blue (grey in black 

and white) cross indicates position in frame 374, red (black) circle is the location the 

Lucas-Kanade algorithm converges to, yellow (grey) X is the single LP result, green 

(grey) star is the LP flock result and the white cross is the global minimum of the cost 

surface that corresponds to the true position in frame 375.
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Figure 3.7: Convergence error: Convergence error (in pixels) for three tracking ap- 

])roaches over a range of test displacements. The error bars represent the log of the 

varianee of the pixel error over the 3000 tests at each range.

3.2 Experim ental Results

This section details a set of experiments used to characterise, eompare and evaluate 

the various displaeement estimation approaehes. First a convergence test is introduced 

and used to characterise and compare registration and regression approaches for dis­

placement estimation as well as to investigate the effects of some of the parameters for 

these methods. This is followed by an experiment illustrating the benefits of the flock 

weighting strategy.

3.2.1 Convergence testin g

A convergence test is used to test and compare various configurations of the regression 

and registration tracking approaches. For registration, the test involves extracting a 

template at a given point, Xtme — {xpos,ypos], then starting the registration process 

at various displacements xtme +  d l, xtme +  d2,..., xtme +  dn, where d = A x  and n is the
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Figure 3.8: Convergence success rate: Success rate of the Lucas-Kanade, LP and LP 

flock tracker. A test is treated as successful if the tracker converges to within 5 pixels 

of the true point. The error bars represent the the variance of success score over the 

3000 tests at each range.

number of tests carried out. The displacements can be thought of as simulated inter­

frame displacements in the tracking scenario. For the regression tracking approach the 

test is similar - the model is learnt at Ptrue and predictions are made given observations 

at displacements. The convergence test evaluates the accuracy (how close to xtme 

does the tracker get), success rate (how many tests fall within a given accuracy) and 

range (maximum magnitude of displacements for which tracker performs well) of the 

approaches.

The results represented in flgures 3.7 and 3.8 are obtained by performing convergence 

tests using three tracking algorithms (a single LP, a flock of 60 LPs and the Lucas- 

Kanade registration algorithm) on a dataset of three hundred image patches (fifteen 

points selected on a grid from twenty images of different content, qualities and from
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different sources). The displacements (the horizontal axis) range from zero to forty 

with twenty equal steps. At each of the three hundred points, and for each of the 

twenty range steps, the convergence test is performed ten times giving a total of sixty 

thousand tests.

For the results presented in figures 3.7 and 3.8 the LP parameters are: k = 100 (number 

of support pixels), N  = 150 (number of training examples), Vgp — 20 (support pixel 

range) and rtr = 20 (training range). The LP flock is made up of 60 unweighted 

LPs with the same parameters. The Lucas-Kanade tracker uses the L2 norm distance 

metric with a template of 20-by-20 pixels, zero order nearest neighbour interpolation 

and employs the Levenberg-Marquardt optimisation method.

It can be seen in figure 3.7 that, up to a certain range of displacements - that used in 

training the LP - the a,ccuracy of both the regression methods remains fairly constant 

after which it degrades rapidly and linearly. The accuracy gained by the LP flock of 

sixty LPs is around four pixels and can be seen in figure 3.8 to increase the success 

rate by ten percent. The success rate is the proportion of tests at a given range that 

converge to within five pixels of the target. It is shown by the error bars in 3.7 and 

3.8 that, along with accuracy, the stability of the predictions made by the LP flock is 

increased over the single linear prediction.

Figure 3.8 shows that the registration method has a greater success rate up to dis­

placements of around five pixels, after which it degrades rapidly. This suggests the 

registration method has greater alignment accuracy within a certain range, the range 

of the basin of convergence of the alignment cost surface, than the LP flock regression 

approach.

It is evident in figures 3.7 and 3.8 that the regression approaches have a greater range 

than the registration approach. There are methods for increasing the range of regis­

tration approaches such as image blurring and multiscale image registration [35, 61]. 

These methods essentially work by smoothing the registration cost surface thus in­

creasing the range over which alignment can be achieved but at the cost of alignment 

accuracy. Performing these operations hierarchically, from coarse to fine, can achieve 

greater range and increased accuracy but with an obvious increase in computational
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cost. An equivalent course to fine approach has been developed for regression methods 

by Zimmermann et al. [83] and also Ong and Bowden [59]. The Sequential Linear Pre­

dictor (SLP) first predicts displacement using a linear regression function trained on a 

larger range of displacements (and hence with lower accuracy) and then with another 

function trained on a smaller range and so on until the required level of accuracy is 

obtained. The real advantage of regression techniques over registration techniques is 

that the range is defined by the training process as opposed to being dependent purely 

on the shape of the alignment cost surface i.e. it is possible to specify a priori the 

desired operating range as is explored in the following section.

3.2.2 Param eter effects

In order to evaluate the effect of various parameters on the accuracy, stability and 

computational cost of LP trackers, convergence tests are performed with a range of 

parameter configurations. The parameters explored are Vsp (range from reference point 

within which support pixels are selected), rtr (range of synthetic displacements used in 

training), k (complexity of LP i.e. number of support pixels) and N  (learning cost i.e. 

number of synthetic displacements used in training the LP). Rather than performing a 

global optimisation of these parameters (over the image dataset) these tests illustrate 

how the convergence characteristics of the trackers changes with varying parameters.

Figure 3.9(a) and 3.9(b) show how varying rsp (the range from the reference point within 

which support pixels are selected) effects the LP’s convergence test performance. As 

the support range increases, the accuracy increases. There is little or no effect on the 

range of displacements for which the prediction accuracy remains constant (the same 

as rtr)> Given the nature of the convergence tests (the image is static so there is no 

discrepancy between foreground and background) it should be noted that, in a real 

tracking scenario, if rsp is too large it may result in the use of background pixels which 

would result in poor displacement predictions.

Figures 3.9(c) and 3.9(d) show how varying rtr (range of synthetic displacements used 

in training) effects the convergence test performance. As the training range increases, 

the range of displacements for which the prediction accuracy remains constant also
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Figure 3.9: Parameter effects: The effect of varying the support pixel range, rsp, and 

training range, rtr, on pixel errors and success rates. Larger (redder in colour) lines 

indicate greater rsp/rtr- Values for rsp and rtr start at 5 pixels, increasing to 50 pixels 

in steps of 5.
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Figure 3.10: Flock weighting results: Average result of sixty thousand convergence tests 

on weighted flocks of LPs using images with synthetic occlusions. The weighted flock is 

more accurate than the unweighted flock across all displacement ranges. The stability 

of the flock also improves slightly as can be seen by the shorter error bars.

increases. This is as expected - a LP trained for displacements of up to 20 pixels will 

perform consistently for test ranges of 20 pixels or less and poorly for displacements 

greater than 20. The trade-off for this increase in operating range is lower prediction 

accuracy (this result is also illustrated in flgure 3.3).

3.2.3 Prediction  evaluation and flock w eighting

The LP flock weighting strategy introduced in section 3.1.4 provides a mechanism for 

controlling each individual LP’s contribution to the overall flock output. The level 

of contribution a LP makes can be influenced by two factors. Firstly, due to the 

random selection of reference point and support pixels and the inherent weakness of 

the LSQ method, a LP may be consistently poor at predicting displacements. This 

would imply the LP should make a small contribution and that it should have a low 

weight. Secondly a LP’s ability to predict may also be affected by changes to pixel
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intensities on the target. Such intensity changes may be brought about by changes to 

the appearance of the target, occlusions and, in the case of 2D translation LPs, out of 

plane displacements, rotation or alRne deformation. If, for example, part of the target 

being tracked by a LP flock should become occluded, then those LPs whose reference 

point and support pixels are occluded - or indeed close to the occlusion boundary - 

will be considerably less reliable during the occlusion and hence would benefit from 

receiving a low weight.

In chapter 4, appearance models that can handle pixel intensity changes on the target, 

such as those brought about by occlusion, will be developed and section 4.3 extends the 

weighting mechanisms presented here in order to control the contribution of LPs given 

the current estimated appearance of the target. To demonstrate the principle and 

effectiveness of the weighting mechanism presented, an experiment comparing both 

the weighted and unweighted LP flock is presented. Figure 3.10 shows the results of 

running the two methods on a convergence test involving deformation to the target. 

Sixty thousand randomly selected displacements from the 300 image patches are made 

and the prediction/ convergence error is recorded. However, after the LP flock is learnt 

and for each of the 20 test ranges, a 5-by-5 pixel area randomly located within 20 

pixels of the target reference point is masked i.e. the 25 pixels are set to white thus 

synthesising an occlusion on the target.

The flock agreement error, ||5x — x||, computed on the current flock output is used to 

re-weight contributions and hence compute the ultimate flock displacement prediction. 

As can be seen in figure 3.10, the weighted flock is consistently more accurate than 

the unweighted flock. Although there is only marginal improvement of the error, the 

variance of the errors is significantly lower, as can be seen by the shorter error bars in 

figure 3.10.

It should be noted that the results shown in figure 3.10 only demonstrate that the 

flock agreement error can be used to weight poorly performing or occluded LPs. The 

usefulness of the weighting approach is more thoroughly demonstrated in chapter 4 

where the weighting is used to evaluate, remove and replace LPs as well as form aspect 

specific sets of LPs.
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3.3 Evaluation and Conclusion

The Linear Predictor tracker has been introduced and investigated to characterise i t’s 

prediction performance and how this performance is affected by various parameter 

values (e.g. rtr) and conditions (e.g. test displacements ranges). An approach to 

combining constellations of LPs into a LP flock is introduced and the improvements in 

accuracy and stability have been quantified. Mechanisms for evaluating LP performance 

and controlling the contribution each LP makes to the overall flock output have been 

tested and have shown improvements over regular unweighted flocks.

It is the LP’s that perform the task accomplished by an optimisation procedure in 

registration techniques. Both registration and regression methods base their output 

on the same information, image intensity differences. The computational efficiency of 

the regression approach is a result of learning a simple and general mapping directly 

from patterns of image intensity differences to desired displacements, and applying this 

mapping at each displacement prediction step, rather than performing an optimisation 

process for each prediction step.

The inter-frame motion example in section 3.1.5 illustrates the power of regression 

based tracking approaches. The ability to accurately predict large inter-frame dis­

placements regardless of the presence of local minima in the alignment cost surface, 

with relatively low computational cost, provides scope for developing a feature tracker 

capable of tracking very fast moving targets. The trade-off between prediction accuracy 

and stability on one hand and maximum inter-frame displacement (controlled by rtr) 

has been identified and, along with the increase in accuracy and stability gained by 

flocking LPs, provides a framework for defining a tracker in terms of required accuracy 

and range.

The LP allows for the explicit tradeoff between predictor range, accuracy and com­

putational cost as shown by the convergence tests in section 3.2.1. To increase the 

flexibility and accuracy of LPs, mechanisms to evaluate, weight, remove and relearn 

LPs online during tracking are required. A general tracking framework that combines 

online-LP flocks with methods for online appearance model learning is developed in the 

next chapter.
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Figure 3.11: Multi regressor approach to input-output mapping: This figure represents 

the LP flock approach proposed in this chapter within the FAC framework introduced 

in chapter 1.

As stated in chapter 1 this thesis is concerned with learning mappings that map di­

rectly from input space to output space without referring to intermediate, high-level, 

symbolic or top-down representations imposed by an engineer. This chapter has devel­

oped such a mechanism and applied it to the problem of feature tracking. The use of 

multiple regression functions (LP flocks) has shown an improvement over single regres­

sion function mappings. This multi regressor approach is illustrated in figure 3.11. In 

the following chapters this framework is extended further by employing unsupervised 

learning approaches to the input and output spaces.



Chapter 4

A ppearance M odels for Tracking

This chapter introduces methods for unsupervised learning of models of the appearance 

of a target object during tracking. A general Simultaneous Modeling and Tracking 

approach is introduced within which the tracking process provides a mechanism for self 

supervision of the appearance model learning process and, in return, the appearance 

model provides information about the structure of the target appearance space that 

enables the tracker to cope with a high degree of variation in appearance.

Whilst prior models can be used to model target appearance, they place restrictions 

on the scope of applications for which the trackers can be easily used. Furthermore, 

visual tracking approaches that are able to adapt their representation of the target on- 

the-fly show increased robustness over approaches for which the representation is either 

specified (hard coded) or learned from a training set. Single template models, such as 

those employed in the Lucas-Kanade algorithm [51], aim to model the target appear­

ance as one point on the appearance-space manifold. In order to increase robustness to 

appearance changes and minimise alignment drift, various template update strategies 

have been developed. These include naive update [56] where the template is updated 

after every frame and strategic update [56] where the the first template from the first 

frame is retained and used to correct location errors made by the updated template. 

If the size of the correction is too large, the strategic algorithm acts conservatively by 

not updating the template from the current frame. W ith template update methods, 

the template is intended to represent the current single point in the appearance-space

57
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Figure 4.1: Unsupervised learning in problem input space for input-output mappings: 

This figure represents the approach proposed in this chapter within the PAC framework 

introduced in chapter 1. Unsupervised learning is applied to input images to discover 

aspects of the target that can be used to classify new inputs.

manifold. Approaches that use some or all templates [20, 23], drawn from all frames, 

represent a larger part of this manifold. In this work, all stored templates are incre­

mentally clustered to discover modes or aspects of the target appearance.

Tracking methods that adapt the representation of the target during tracking are prone 

to drift, as the appearance model may adapt to the background or occluding objects. 

The approaches proposed here address this problem by maintaining modes of an ap­

pearance model that correspond to past appearances. Whilst this approach reduces 

the impact of drift, as erroneous appearance samples do not contaminate all modes of 

the appearance model, the method does not address the drift verses adaptation trade­

off directly. The work of Kalal et al. [45] explicitly addresses the trade-off between 

adaptation and drift.
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This chapter builds on the multiple regressor approach to input-output mapping intro­

duced in the previous chapter. By applying efficient unsupervised learning methods to 

the input images, aspects of the target are identified. This approach is represented, in 

terms of the PAC framework introduced in chapter 1, in figure 4.1. The LP weighting 

strategies developed in the previous chapter are also extended to allow adaptable as­

pect specific weightings, producing aspect specific LP flocks. Identifying which aspect a 

new input image belongs to enables the LP weighting to be adjusted to suit the current 

target appearance.

Regression tracking techniques tend to require offline learning to learn suitable regres­

sion functions. The computationally efficient LP learning strategies introduced in the 

previous chapter mean that it is feasible to learn LPs online, during tracking. In com­

parison with approaches that use highly optimised offline learning procedures, the LPs 

introduced in the previous chapter have limited accuracy. Therefore, mechanisms to 

manage the flocks of LP’s, such as the linear weighting mechanism introduced in the 

previous chapter, are required. The weighting mechanisms developed in this chapter 

facilitate the use of the online-LP, and so the approach benefits from the efficient learn­

ing procedures without loss of accuracy. Removing the need for offline learning greatly 

increases the applicability of the regression approach. The online-LP tracker can sim­

ply be seeded with an initial target location, akin to the ubiquitous Lucas-Kanade 

algorithm [51].

It is clear that reducing the level of supervision required to learn effective models is 

desirable from the point of view of the engineer (reducing the time spent hand labeling 

data). However, it is also true that semi-supervised or unsupervised methods can, in 

some cases, discover representations that are both more efficient and more grounded in 

the data than those obtained from highly supervised systems.

The methods developed in this and the previous chapter are designed to operate at high 

frame rates and as such need to be computationally efficient. The overarching design 

paradigm has been to use fast/simple methods: linear regression (for displacement pre­

diction), random sampling (for learning displacement predictors and template extrac­

tion), incremental template clustering (for appearance modeling) and linear weighting
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Table 4.1: Table of abbreviations used throughout text.
Abbreviations Full meaning

LK Lucas-Kanade: tracking by registration.

LP Linear Predictor: tracking by linear regression.

SMAT Simultaneous Modelling And Tracking: Adaptive multi­

modal template based appearance model [20].

LK-SMAT Tracking approach that combines LK displacement estima­

tion with SMAT appearance modelling.

LP-SMAT Tracking approach that combines LP displacement estima­

tion with SMAT appearance modelling.

LP-MED Tracking approach that combines LP displacement estima­

tion with a medoidshift based appearance model.

(for associating displacement predictors with appearance modes). The use of simple 

regression methods is offset by an evaluation mechanism that allows both the weight­

ing of the contribution of each displacement predictor and the continual disposal and 

replacement of poorly performing displacement predictors.

There are many different formulations of the tracking problem that lead to many and 

varied solutions: tracking by detection [78], tracking using graph cut algorithms to 

iteratively segment the target [11] and condensation algorithms [39] to name but a 

few. Each approach is thought to have a certain scope of applications for which it will 

work best. It has been established that a significant class of tracking problems can be 

solved using the Linear Predictor and this work aims to extend this class to problems 

requiring online feature tracking with appearance variation and real time operation. 

The experiments in section 4.4 go some way to delimiting the class of problems for 

which the proposed approach is suitable.

Table 4.1 lists the abbreviations used throughout this chapter. This includes the two 

displacement estimation methods used, LK (Lucas-Kanade: tracking by registration) 

and LP (Linear Predictor: tracking by linear regression) as well as the three configu­

rations of the tracking framework developed: LK-SMAT (LK displacement estimation 

with the SMAT template based appearance model), LP-SMAT (LP displacement esti-
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mation with the SMAT appearance model) and LP-MED (LP’s with the medoidshift 

based appearance model).

The rest of this chapter is organised as follows: First, in section 4.1, an overview of 

the proposed tracking framework is presented. In section 4.2 the key motivation and 

fundamental approach to aspect learning for tracking is presented. In section 4.2.1 a 

variant of the SMAT model, first introduced by Dowson &: Bowden [20], is described.

The SMAT model provides a comparison with the medoidshift template clustering 

approach to appearance model learning that is introduced in section 4.2.2. Section

4.2.3 contains a discussion on appearance modeling methods. Section 4.3 details three 

configurations of the general tracking framework, namely: LK-SMAT, LP-SMAT and 

LP-MED. The LK-SMAT model, detailed in section 4.3.1, is essentially the SMAT 

model presented by Dowson & Bowden [20] cast in the tracking framework presented 

here. In section 4.3.2 the LP-SMAT tracker, that utilises the SMAT model to partition 

a bank of online-LP displacement estimators, is introduced and in section 4.3.3 the LP- 

MED tracker is introduced. The LP-MED model maintains a constantly updated bank 

of online-LP displacement estimators and adaptively associates these to aspects of the 

target appearance discovered by medoidshift template clustering. Section 4.4 presents 

an evaluation of each of the presented tracking approaches, and provides comparison 

with other state of the art approaches based on both computational efficiency, tracking 

accuracy and robustness. Section 4.5 contains an evaluation and conclusions regarding 

online appearance modeling and the proposed tracking approaches.

4.1 Simultaneous M odeling and Tracking Approach Overview

At the most general level the proposed tracking approach can be described by the 

following process:

1. E s tim a te  the current target appearance using an appearance model

2. A d a p t the displacement estimation mechanism to suit current estimate of ap­

pearance
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3. E s tim a te  inter-frame displacement of the target

4. A d a p t the appearance model given new appearance data

5. R e p e a t steps 1-4

These stages are achieved by the interaction of two components, namely the d isplace­

m en t e s tim a to r  and the a p p earan ce  e s tim a to r. The displacement estimator, as 

well as generating the tracking output, provides a mechanism for supervision of the 

appearance model learning process i. e. it provides new examples of the target appear­

ance that are added to the appearance model. In return, the appearance estimator 

provides information about the structure of the target appearance space that enables 

the tracker to cope with a high degree of variation in appearance. This basic method­

ology is represented in figure 4.2.

The target appearance samples - templates drawn from the image at the targets esti­

mated location - will change during tracking. This is caused by all appearance variations 

that are not modeled by the pose parameters e.g. rotation (if translation transforma­

tions only are considered), lighting change, occlusion or changes of expression (when 

tracking faces) as well as frame-to-frame inaccuracies in displacement estimation. In 

the proposed appearance modelling approach, all stored templates are incrementally 

clustered to discover modes or aspects of the target appearance. Identifying the current 

aspect of the target appearance is the role of the appearance model, as shown in figure 

4.3. By identifying aspects of the target, it becomes possible to adapt the displacement 

estimation mechanisms to suit the current appearance.

The proposed tracking framework associates these aspects to banks of displacement 

estimators - trackers - via an association matrix, see figure 4.3. The values in the 

association matrix reflect the suitability of each tracker to each aspect of the target. 

This provides a flexible way of controlling the influence of each tracker to the overall 

pose estimation.

Within this architecture there are many possible approaches to implementing the ap­

pearance model, association strategy, displacement estimation and final pose estima­

tion processes. In section 4.2 two methods for on-the-fly appearance modelling are
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^yXAdapt representation of target 
for displacement estimator, 

given current estimate of 
appearance

APPEARANCE
ESTIMATOR

DISPLACEMENT
ESTIMATOR

Update appearance model for 
appearance estimator, given 

appearance exemplar

Figure 4.2: Simultanious Modeling and Tracking methodology: The displacement esti­

mator, as well as generating the tracking output, provides a mechanism for supervision 

of the appearance model learning process i.e. it provides new examples of the target 

appearance that are added to the appearance model. In return, the appearance esti­

mator provides information about the structure of the target appearance space that 

enables the tracker to cope with a high degree of variation in appearance.

introduced. Two displacement estimation methods - template registration and linear 

regression - were investigated in chapter 3. In section 4.3 various configurations of the 

complete tracking framework are detailed.

4.2 A spect learning for tracking

Aside from the intrinsic requirement of a representation of the target appearance for 

all tracking methods, appearance models can additionally help cope with appearance 

changes not parameterised by the pose parameters. Provided a perfect geometric model 

of the target and environment was available, it would be possible to parameterise ev­

ery possible change to the target appearance. Such a model would have to include 

parameterisations of not only all degrees of freedom (DOF) of the target object but
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ASSOCIATION MATRIX

APPEARANCE 
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IMAGE

TRACKER BAh
TEMPLATE

TRACKER

Figure 4.3: Generic system architecture: The appearance model stores all target tem­

plates and identifies aspects of the target. Aspects are associated to feature trackers by 

an association matrix. Each feature tracker contributes to the overall pose estimation, 

the level of contribution is determined by the strength of association to the current 

aspect i.e. the association matrix value.

also other objects in the environment that may occlude the target along with envi­

ronmental effects such as changes in lighting. This is simply not feasible in any real 

scenario. In addition, the estimation of the huge number of parameters required by 

such a model would be intractable. Tracking approaches, therefore, tend to model 

only a subset of pose parameters, commonly translation (2 DOF) or affine (6 DOF). 

Any changes not represented by the selected pose parameters will often cause tracking 

failure. An appearance model can provide a means of compensating for this partial 

parameterisation.

The appearance modeling methods developed here model the variations in appearance 

not accounted for by translation pose transformations. First the displacement estimator
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identifies the location of the target in the 2D image space then an appearance sample - 

image template at target location - is extracted. If the target has, for example, moved 

closer to the camera thus causing a scale increase in image space, the new appearance 

sample is likely to capture the appearance of only a sub-region of the target at the new 

scale (as the image template size will not change). Likewise, if the target moves away 

from the camera, causing a target scale decrease, the appearance sample template is 

likely to include some background around the target as the target is reduced in size 

and the template size remains constant. Another example of an appearance change not 

accounted for by a 2 DOF parameterisation is brought about by partial occlusion of the 

target. If another object moves between the camera and the target, occluding part of 

the target, the appearance sample template will feature this occluding object. All these 

(and more) appearance variations are considered part of the appearance space. The 

approaches introduced below model the appearance space manifold, created from the 

appearance sample templates extracted at each frame of tracking, in order to facilitate 

the efficient tracking of image patches undergoing arbitrary deformations.

Trackers with no prior model of the target appearance ([51, 41, 20, 31], that are intended 

to track a 3D object such as, for example, a cube, are initialised by identifying the 

region in the first frame that contains the cube. If the cube then starts to rotate, 

perhaps exposing a new face of the cube and hence presenting a new aspect of the 

target, the initial target representation may no longer be adequate. It would therefore 

be advantageous to identify that a new aspect of the target had been presented and to 

adapt the target representation used for tracking accordingly. Eventually the cube may 

rotate back to its original orientation and thus present the initial aspect of the target 

again. In this case it would be advantageous to recall the representation associated 

to that aspect. This is the function of the appearance models developed here: to 

identify different aspects of the target - clusters of appearance samples - such that the 

target representation used in estimating inter-frame displacement can be partitioned 

and associated with the aspects for which they perform well.

The term ‘aspect’ is used to describe some mode or cluster of the appearance mani­

fold. As discussed above, the appearance manifold may include regions associated with 

all appearance variations not modeled by the pose parameters e.g. rotation, lighting
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change, occlusion or changes of object appearance itself.

If a single template appearance of an object is considered as one point on the appearance- 

space manifold (as in the Lucas-Kanade method), the manifold can be represented by 

storing the set T  of all templates, T  =  {G®...G*} drawn from all frames {F^...F^}. In 

order to identify aspects of the target, the set of templates, T, should be clustered or 

partitioned, T  =  {T ^ ...T ^}  where C T.

For a subset of templates, T"^ C T, to represent a real aspect of the target appearance, 

the templates that make up an aspect should be similar to one another and different 

to the templates in all other aspects. Similarity is determined by a distance metric. 

The L2 norm distance is used in the methods below due to its computational efficiency 

but others, such as Mutual Information or Normalised Correlation could also be used. 

Both of the clustering methods detailed below compute and maintain a matrix of L2 

norm distances between templates and use this to determine each templates aspect 

membership i.e. to which aspect that template belongs.

4.2.1 SMAT: G reedy tem plate clustering

The SMAT model presented here is a variant of the SMAT model presented by Dowson 

Sz Bowden [20] cast in the tracking framework presented in this thesis. In order to 

identify different aspects of the target, modes or clusters of the appearance manifold 

must be discovered. The method presented here components the appearance manifold, 

assigning templates to components with a greedy incremental algorithm.

Each of the M  aspects, T"^ C T, m =  1...M of the appearance manifold are represented 

by; a group of templates, the median template a threshold and a weighting w'^. 

Use of the median rather than the mean avoids pixel blurring caused by the averaging 

of multiple intensity values of templates that are not perfectly aligned. Weight 

represents the estimated a priori likelihood that the component best resembles the 

current appearance of the target. During tracking, a template is drawn from the new 

frame at the location determined by the displacement estimator. To identify the best 

matching component to the new template, a greedy search is performed starting with 

the component with the highest weight and terminating when a component, T™*, is
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Figure 4.4: Appearance model medians for head tracking sequence: Two examples of the 

median templates of the four components of the appearance space are shown, ordered 

with decreasing weight from left to right. It is clear that the modes identify aspects of 

the target such as side/ front/ occluded views. The matched component for the current 

frame is marked with the bullseye.

found whose L2 norm distance to the image patch is less than the threshold r . The 

input image patch is then added to component T"^* and the median, //"**, threshold, 

r ’̂ *, and weights, w '^ ,m  =  1...M, are updated. See Eq. 4.1 for the component weight 

update strategy. If no match is made, a new component is created with the new 

template and the template from the previous frame. The learning rate, a, sets the rate 

at which component rankings change and is set to 0=0.2 for all experiments. This 

value was found through experimentation.

lU =
ifm  =  m*;

l+a
(4.1)

To facilitate the efficient update of an appearance model component, a matrix 

maintains the L2 norm distances between each pair of templates in the component. 

Adding a new template to the component then requires only the computation of a single 

row of i.e. the distances between the new template and all other templates. The 

median template index, j*, is calculated using Eq. 4.2 and the component threshold
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is computed using Eq. 4.3 which assumes an approximately Gaussian distribution 

of distances and sets the threshold to three standard deviations of the distribution.

f  =  a r g m i n ^ Q ^ J  =  l....n  (4.2)

=  3
^  i=0

The dimensions of depend on the number, n, of templates in the model but can 

be limited to bound memory requirements and computational complexity. In prac­

tice, new templates replace the worst template from the component. It is also pos­

sible to limit the number of components, M. When creating a new component the 

new component replaces the worst existing component identified by the lowest weight 

"mworst = argmin {m  = 1...M}.
m

For all the experiments presented in section 4.4 a maximum of n=60 templates are 

maintained in each of a maximum of M =4  components of the model. This is found 

to be sufficient to model a stable distribution whilst preventing computational costs 

becoming too high for real-time tracking. Figure 4.4 illustrates the SMAT model being 

used to identify aspects of a head during a head tracking sequence. It can be seen that 

the modes identify aspects of the target such as side, front or occluded views.

4.2.2 M edoidshift tem p late clustering

The second appearance model presented is again constructed online by incrementally 

clustering image patches to identify various modes of the target appearance manifold. 

Here, the clustering is performed by the medoidshift algorithm introduced by Sheikh 

et al. [66]. Medoidshift is a nonparametric clustering approach that performs mode- 

seeking by computing shifts toward areas of greater data density using local weighted 

medoids. As Sheikh et al. [66] show, the procedure can be performed incrementally, 

meaning the clustering can be updated at the inclusion of new data samples and the 

removal of some existing data samples.
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Figure 4.5: Appearance model clustering for head tracking sequence: The distance ma­

trix pre and post clustering is shown with three subsets of exemplars A, B and C. Sets 

A and C are temporally separated but have the same appearance. Templates from 

each subset are also shown.

During tracking the appearance templates are collected into vectors {G®...G^} and, 

as for the greedy clustering approach, a distance matrix, Q is populated with the L2 

norm distances. Where the SMAT model maintains a Q matrix for each model compo­

nent, this model maintains one Q matrix recording the distance between each stored 

frame. The medoidshift algorithm uses Q to obtain a clustering^ The clustering is 

incrementally updated given a new G vector and hence (by computing L2 norm values) 

a new row/column of Q. In order to constrain the memory requirements and com­

putational complexity of maintaining the appearance model, the number of templates 

retained, and hence the number of data points clustered, is limited. Once the limit has 

been reached the oldest template is removed and replaced with the new template. The 

cluster update must accommodate both the introduction and removal of data points. 

The incremental update is achieved in a computationally efficient manner exactly as 

described in [66].

The effect of this clustering is illustrated in figure 4.5 that shows the distance matrix 

at frame 275 of a head tracking sequence before and after matrix indices are sorted 

according to the cluster label. As can be seen, two temporally separated subsets, A  

and C, of templates are assigned to the same cluster, A U C C T, identifying the front 

view aspect whilst a third subset, C T, is partitioned and identifies a side view 

aspect of the face. It is obvious that a displacement estimator that represents the 

target appearance of the hidden side of the face will be less reliable while the viewable

^As no meaningful partitioning is possible with small sample sets, the clustering procedure is not 

carried out until frame 11 of tracking
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side aspect is presented.

4.2 .3  A ppearance m odel discussion

While the greedy approach provides a computationally efficient method of partition­

ing the templates T  = {G°...G^} into aspects, T  = {T ^ ...T ^ }  where c  T, the 

algorithm lacks some flexibility. Rather than the number of aspects being a predefined 

value, M  should ideally be data dependent and reflect (rather than determine) the 

number of modes, present in the data’s distribution. Also once a template is assigned 

to a certain component it will never become part of another component. This rigidity 

in terms of template-to-cluster assignment and fixed number of modes is likely to cause 

problems as the target appearance manifold evolves during tracking.

The data driven, mode seeking medoidshift incremental clustering algorithm offers 

greater flexibility to the appearance modelling process. The number of aspects, M, 

are not predefined and, as the appearance manifold grows and changes over time, so 

too can the aspect membership of each template.

Whilst the flexibility of the medoidshift approach allows a representation that is more 

reflective of the real underlying appearance distribution, the resulting representation of 

the aspects are less straightforward to interpret than the SMAT model. As the SMAT 

model has a fixed number of aspects, it is straightforward to construct an association 

matrix that associates a set of displacement predictors to each of the models aspects. 

W ith the medoidshift approach however, the varying number of aspects discovered 

and the adaptive cluster membership of templates necessitates a less straightforward 

association mechanism. Section 4.3 gives details of how both the appearance models 

are used within the tracking framework.

A significant factor in the computational overhead of these appearance models is the 

maintenance of the distance matrix, Q. As stated, this can be controlled by limiting the 

number of templates stored by the model. Another way to control the computational 

cost is to reduce the dimensionality of the distance function i. e. to subsample the image 

templates prior to computation of L2 norm distances.
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4.3 Tracking Framework

This section details three configurations of the tracking framework: LK-SMAT, LP- 

SMAT and LP-MED. The first method uses the appearance model to identify different 

aspects of the target appearance and to provide a template - the median template 

of the best matching model component - for use in the registration process. For the 

LP methods, the function of the appearance models developed is to identify different 

aspects of the target such that the set of LPs can be partitioned and associated with 

the aspects for which they perform well.

Details of the mechanisms used to associate fiocks of LPs with appearance modes 

identified by each of the appearance models are presented. Due to differences in the 

clustering approaches used - greedy and medoidshift clustering - different strategies 

for this partitioning and association are required. Specifically, with the medoidshift 

approach, there is not a fixed number of modes and an appearance template may 

change the cluster to which it belongs, whereas with the SMAT approach, there is a 

fixed number of modes and a template is assigned to just one mode for the duration of 

tracking.

4.3.1 LK-SM AT: R egistration  based Sim ultaneous M odeling and Track­

ing

This configuration of the tracking framework is a variant of the SMAT tracker presented 

by Dowson Sz Bowden [20].

The LK-SMAT tracker uses the SMAT appearance model to identify different aspects 

of the target appearance and thus provide a template - the median template of the best 

matching model component - for use in the registration process.

There is a one-to-one association between the target aspect and the templates used for 

tracking, this is illustrated by the identity association m atrix in figure 4.6. Only one 

template, the median of the matched component, is associated to an aspect.

Tracking is the process of registering new image data with the median template from 

the estimated best aspect, extracting a template from the estimated location, updating
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Figure 4.6: LK-SM AT system architecture: The SMAT appearance model identifies 

aspects by partitioning templates using a greedy clustering algorithm. Identifying the 

current aspect selects the template for use in registration process. The association 

matrix in this formulation is simply an identity matrix.

the appearance model (with the greedy algorithm), selecting the best component and 

hence medium template for registering with the next frame and so on.

The complete tracking procedure is detailed in Algorithm 1

4.3.2 LP-SM AT: Linear Predictors for Sim ultaneous M odeling and 

Tracking

The LP-SMAT tracker learns LPs specific to a particular aspect of the target object 

in order to continue to track through significant appearance changes. This association 

between aspects and LPs is achieved by an association matrix. A, as illustrated in 

figure 4.7. Given a bank of L linear predictors and M appearance model components, 

the association matrix A has dimension {L x M ). A zero value at Aim indicates 

that predictor I is not associated to component m  and therefore is deactivated when



4.3. Tracking Framework 73

A lgo rithm  1 LK-SMAT tracking procedure 
-(—first image

Initialise target position x^, height h and width w from user input 

Extract first appearance template 

Set initial component weight w'^ = 1 

G* G°

w hile F* ^  NULL do

Register currently selected appearance template G* with new frame F^ as in eq. 

3.4

Extract new appearance template G* at estimated target location 

Assign new template to component m* using greedy search algorithm 

Compute 7/2 norm distances for a single row of Q"**

Compute median template index, j*, and component threshold, r ” *̂, using Eq.

4.2 and Eq. 4.3

Update component weights, w ^ ,m  = 1...M, as in Eq. 4.1. 

t  i—  ̂-j- 1 

end  w hile

component m  is active i.e. m  = m*. Each of the M  components are associated to 

L /M  LPs. For all the experiments, M  = 4 and L=160 meaning 40 LPs are associated 

to each component and hence that 40 linear predictions are computed each frame.

An error function is used to continually evaluate each LP’s performance over time. 

Rather than assigning a single error value to predictor I, error values are instead as­

signed to the association between each of the L  predictors and each of the M  appearance 

model components. The error values are stored in the association matrix A  and can 

also be interpreted as a measure of the strength of association between a predictor and 

an appearance model component. The performance value used is a running average of 

prediction error with exponential forgetting; meaning that high values indicate poor 

performance. The error function used is the L2 norm distance between predictor output 

5xi and the overall tracker output 5x, ||5x/ — 6x||. Equation 4.4 details how the asso­
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Figure 4.7: LP-SM AT system architecture: LPs associated to the active SMAT ap­

pearance model component through association matrix are activated for tracking. The 

contribution each LP makes is determined by its strength of association with the cur­

rent aspect. Association strengths are updated to reflect the LPs performance for the 

current aspect each frame.

ciation matrix is updated with these error values. The rate of forgetting is determined 

by parameter ,5=0.1, set experimentally and unchanged in all experiments.

— ((1 ~  '  ^\m) +  ■ Ŵ'̂ l ~
(4.4)

This record of LP performance provides a method for weighting each LP’s contribution 

to overall tracker output, <5x, defined in Eq. 4.5 and 4.6.

(4.5)
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(4.6)
E f - w r

A  further advantage of maintaining a performance metric on each LP-aspect association 

is that it allows poorly performing LPs to be replaced by LPs learnt online. A new 

predictor is learnt for every frame from synthetic displacements of the previous frame 

and is evaluated on its prediction of the current frame. The worst predictor, is 

identified from the current active component m* using Eq. 4.7.

4> = argmax Aim*, I =  1...L. (4.7)
I

If the prediction error of the new LP is less than the (worst) LP’s error, ||<5x„ew — 

5x|| <  ||6x^ — ^x 11, then the new predictor replaces the (only in the current active 

component). This process serves both to introduce view-specific predictors as well as 

prevent outliers from contributing to the tracker output. Note that a predictor can be 

used by multiple components and is only completely destroyed if it has zero values for 

all components.

Note that when a new component of the appearance model is created all the predictors 

from the previously used component are assigned to the new component by copying a 

column of A.

The complete LP-SMAT tracking algorithm is summarised in Algorithm 2.

4 .3 .3  L P -M E D (o id sh if t) :  O n lin e  p a r t i t io n in g  o f  l in e a r  p r e d ic to r s  fo r 

t r a c k in g

Similarly to the LP-SMAT approach, by learning aspect specific predictor weightings, 

each predictor can be associated to a greater or lesser extent to each aspect. However, 

the medoidshift clustering approach does not have a predetermined number of clusters, 

as in the SMAT model. The flexibility of the model is further enhanced by the pos­

sibility for appearance templates to change their cluster membership as the dataset is 

expanded incrementally. In order to utilise this clustering for partitioning the set of
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A lg o rith m  2 LP-SMAT tracking procedure 
-(—first image

Initialise target position x®, height h and width w from user input 

M ^ 4 ,L - ( - 1 6 0  

for / =  0 to L /M  do 

x  ̂ =  {rand{—h/2  : h /2 ),rnnd (—w/2 : w /2)} {Randomly select reference point} 

Generate {5xj,di} {Training data}

Compute as is Eq. (3.7)

Ai,Tn=i =  1 {Assign all initial predictors to first mode with equal weight} 

m* =  1 {Set first mode as active} 

end  for 

f f -  0

w hile F* ^  N U LL  do 

Compute Sx!' as in Eq. (3.6) VG Ai^m* > 0 1  = {0...L}

Compute 8x as in Eq. (4.6)

Update predictor states x  ̂ =  x  ̂+  5x 

Update association matrix, A, as in Eq. 4.4

Identify the worst predictor, cf), from the current active component m* using Eq. 

4.7.

Extract new appearance template

Obtain m* C {1...M} {Active component obtained by greedy assignment of new 

template to model component}

Assign template G^ to m* component

Update m* component mean and threshold as in Eq. 4.2 and 4.3.

Learn new predictor as in Eq. (3.7)

if new predictor performance > old predictor performance th e n  

Replace worst predictor (f)

Update association matrix. A, as in Eq. (4.4) 

end  if 

t i— t  -J- 1 

end  w hile
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Figure 4.8: LP-MED system architecture: The appearance templates are incrementally 

clustered using the medoidshift modes seeking algorithm. Each LP makes a prediction 

each frame and the level of contribution made is determined by its performance during 

each of the frames that form part of the current appearance aspect.

LPs, a flexible mechanism for associating clusters to LPs is required. This is achieved 

by maintaining a record of the performance of each LP for each template as opposed 

to each component in the SMAT model. A combination of template membership and 

these performance measures arc used to compute a strength of association between each 

LP and any aspect.

The weighting mechanism is achieved by an association matrix. A, as illustrated in 

figure 4.8. Given a bank of L linear predictors and a set, T , of M  appearance templates, 

T  = {G °...G ^}, the association matrix A has dimension (L x M ). Note that M  is 

much larger here than for the SMAT model where M indicates the number of modes 

rather than the number of templates. The value at Aim indicates the strength (or
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weakness) of association between predictor I and template (exemplar) m. The values 

of A  are set and updated using Eq. (4.8) and (4.9). Equation (4.8) shows how the 

prediction error is computed and used to initialise the association values between each 

predictor and the new appearance template mf. The error is the flock agreement error, 

as in the LP-SMAT approach, and as detailed in section 3.1.4.

A;^t =  ||5x —x^ll, /=  1...L (4.8)

The association values for all the other templates in the active aspect, T^* C T, are 

then updated as follows, for all predictors I =

( ( l - /3 ) -A to )  +  ( /3-| |5x-x'| |),  i f G - s T , .
Aim =  i  (4.9)

Aim

This has the eflfect of smoothing the performance measures within a cluster. The values 

are a running average prediction error with exponential forgetting; meaning that low 

values of Aim indicate greater association between predictor I and clusters containing 

exemplar m. As in the LP-SMAT model, the rate of forgetting is determined by

parameter /3=0.1, set experimentally. In all the experiments M  < 200 - meaning

after 200 frames, the oldest template is removed from the model - and L=80. These 

parameters are also set experimentally.

This error function and update strategy are used to continually evaluate predictor 

performance over time. This provides a means for appearance dependent weighting of 

each predictors contribution to overall tracker output, 5x, as defined in Eq. (4.10) and 

Eq. (4.11).

Ŵ  = l  ^Irn (4.10)
max -^Im

5x = £ ^ A M  (4.11)

The continuous evaluation of predictor performance also allows poorly performing pre­

dictors to be replaced by predictors learnt online. The worst predictor. I*, is identified
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Table 4.2: Parameters settings for all methods.
Parameter Meaning Value

sp Range around LP reference point within which sup- 20

port pixels are sampled. 

rtr Maximum magnitude of displacements used for 30

training LP

k LP complexity: number of support pixels. 150

N  Training complexity: number of training examples. 100

L  Max. number of predictors across all modes. 160(LP-SMAT)

80(LP-MED)

M  SMAT: Max. number of modes in model. 4

M  LP-MED: Max. number of appearance templates. 200

a  SMAT model learning rate 0.2

j3 LP-SMAT and LP-MED rate of forgetting for asso- 0.1

ciation updates

as in Eq. (4.12). The LP whose minimum error (over all exemplars) is greatest of all 

minimum errors (over all LPs) is selected.

r  ~  argmax ( min Aim) (4.12)
{Z=1,...,L }

The entries in A  relating to the replaced predictor are updated as in Eq. (4.13).

A ,.„  =  S '= L A îü _ m  =  l...M  (4.13)

The entries in A  relating to the replaced LP are averaged across all LPs for each 

exemplar. The complete tracking algorithm is summarised in Algorithm 3.

4.4 Tracking evaluation

This section presents experiments evaluating the tracking performance in terms of ac­

curacy and efficiency and provides comparison to other state of the art simultaneous
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A lg o rith m  3 LP-MED tracking procedure
F° -(—first image

Initialise target position x°, height h and width w from user input 

for / =  0 to L do

x  ̂ =  {rand(—h/2 : h /2),rand{—w/2  : w/2)} {Randomly select reference point} 

Generate {5xf,di} {Training data}

Compute as is Eq. (3.7)

-(— 1 {Set all initial predictor weights to 1} 

end  for 

t i - 0

w hile F* ^  N U LL  do 

Compute 5x^ as in Eq. (3.6) for 1 =  {0 ... L}

Compute (5x as in Eq. (4.11)

Update predictor states x  ̂ =  x  ̂4- 5x 

Extract new appearance template

Compute new row and column of distance matrix, L2 norm G^ and {G°...G^“ ^} 

Obtain T^* C {G^...G*~^} {Obtained by clustering T  =  {G°...G*“ ^}}

Update association matrix, A, as in Eq. (4.9)

Identify worst predictor as in Eq. (4.12)

Learn new predictor as in Eq. (3.7)

if  new predictor performance > old predictor performance th e n  

Replace worst predictor I*

Update association matrix. A, as in Eq. (4.13) 

en d  if

Compute predictor weightings for next frame as in Eq. (4.10) 

t  i— it 4- 1 

end  w hile
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modelling and tracking approaches. First each of the investigated trackers is reviewed, 

then the datasets used are detailed and tracking performance is evaluated. Videos 

demonstrating each of the trackers on the sequences are available here^.

Trackers^: The trackers under investigation in this section are:

1. LK  - the inverse compositional LK tracker using L2 norm and Levenberg-Marquardt 

optimisation,

2. LK -SM A T - as described in section 4.3.1 and [20],

3. L P -F L O C K  - as in section 3.1.4 with 60 LPs.

4. L P-SM A T  - as in section 4.3.2,

5. L P -M E D  - as in section 4.3.3,

6. O nline-B oost - The tracker introduced by Grabner et al. [31] that tracks by 

online boosting discriminative foreground/background classifiers, and

7. Sem i-O nline-B oost - the online boosting tracker with a semi-supervised classi­

fier update [32].

Results for tracker (7) are only presented if and when tracker (6) is shown to fail where 

other techniques succeed. All parameters for trackers (6) and (7) are default and for 

all other trackers are as detailed in table 4.2 and no parameter tuning is performed.

Datasets'^: The datasets used for evaluation are detailed in table 4.3. The C ar- 

Surveillance is a benchmark sequence in the IEEE International Workshops on Per­

formance Evaluation of Tracking and Surveillance (PETS’2000) featuring a car from a 

surveillance camera. The D udek-Face sequence was presented in [41] to demonstrate 

the trackers handling of appearance changes and un-modeled pose deformations. The

 ̂www.cvl.isy.liu.se/research/adaptive-regression-tracking
^Links to implementations for trackers (1) and (2) available at www.cvl.isy.liu.se/research/adaptive-

regression-tracking and for (6) and (7) at www.vision.ee.ethz.ch/boostingTrackers
■̂ All datasets and ground-truth (where present) available at www.cvl.isy.liu.se/research/adaptive-

regression-tracking

http://www.cvl.isy.liu.se/research/adaptive-regression-tracking
http://www.cvl.isy.liu.se/research/adaptive-
http://www.vision.ee.ethz.ch/boostingTrackers
http://www.cvl.isy.liu.se/research/adaptive-
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R u n n e r  sequence is a typical track athletics sequence. The H ead -M otion  is a se­

quence of a moving head and torso, and the C am era-S hake sequence is taken from a 

moving webcam pointing at a phone and undergoing vigorous shaking causing motion 

blur and large inter-frame displacements.

Name

C ar-S urveillance

D udek-Face

R u n n e r

H ead-M otion

C am era-S hake

Table 4.3: Summary of datasets
Image #  frames Introduced

282 PETS’2000

1144 Jepson et al (2001)

400 Dowson et al (2006)

2350 New

989 New

4.4.1 C ar-Surveillance sequence

For the Car-Surveillance sequence, the target was suceessfully tracked by the LP-SMAT, 

LP-MED and Online-Boost in all 282 frames (as the Online-Boost tracker is successful 

the Semi-Online-Boost tracker is not tested). All other trackers fail to track the target 

through the appearance changes within the first 50 frames. Figure 4.9 shows tracking 

results for the first last and middle frames of the sequence. Only the LP-MED and
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I

#RAME282

Figure 4.9: PETS Car-Surveillance sequence results: Tracking results for LP-MED 

(solid rectangle) and Online-Boost (dashed rectangle) are shown for first, last and 

middle frame of sequence along with the median templates identified by the SMAT 

appearance model during frame 141.

Online-Boost trackers are marked for clarity - the LP-SMAT result is very similar to the 

LP-MED result in this case. Also shown in figure 4.9 are the four SMAT model median 

templates at frame 141. The current aspect median is marked with a bullseye. The 

LP-SMAT tracker operated at an average of 24 frames per second (fps), the LP-MED 

at an average 20 fps and the Online-Boost at 16 fps.

4.4.2 Dudek-Face sequence

The Dudek-Face sequence was not tracked entirely by any of the tracking approaches 

under investigation. Figure 4.10 highlights frames from the sequence with each trackers 

estimated pose marked. At around frame 155 both the LK and the LK-SMAT trackers 

begin to drift. Between frames 203 and 223 the hand is passed over the face causing the 

LP-FLOCK tracker to leave the target. The LP-SMAT, LP-MED and Online-Boost 

trackers are able to track through the hand occlusion. At around frame 364 the glasses 

are removed from the face, this causes a momentary appearance change as well as a 

longer term change. All the remaining three trackers cope with this appearance change. 

At around frame 650 the LP-SMAT tracker begins to drift, tracking only the lower part 

of the face, this is followed around 100 frames later by the LP-MED tracker loosing the
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FRAME 9 5 ' ' '

i

r
FRAME 223. ^ 1 F R A M E 3 6 4 FRAME 6 5 0 ^ ,  .FRAME 800

Figure 4.10: Dudek-Face sequence results: Highlighted frames from the Dudek-Face 

sequence. Tracker key: Dark blue - LK, black - LP-FLOCK, green - LK-SMAT, light 

blue - LP-SMAT, red - LP-MED, yellow - Online-Boost.

target. Around 50 frames after the LP-SMAT tracker has lost track the Online-Boost 

tracker also looses track and begins to adapt to the background. By chance the face 

moves back into the area being tracked and the Online-Boost tracker is able to recover 

for a short while before losing track again for the last 10 frames. The Semi-Online-Boost 

tracker was also tested on this sequence, but produced poorer results than the LP- 

SMAT, LP-MED and Online-Boost trackers. During much of the sequence, the Semi- 

Online-Boost tracker produces no output and a number of false positive detections. It 

should be noted that [31] report results showing another version of the Online-Boost 

boost tracker successfully tracking the Dudek-Face sequence, however these results are 

not achievable with the simpler implementation that is made publicly available.

The tracked region in the Dudek-Face sequence is 130x130 pixels. The Online-Boost 

tracker runs at a fairly constant 4 fps and the LP-SMAT and LP-MED trackers run at 

an average 8 fps and 10 fps respectively. Figure 4.11 compares the computational cost 

of these three methods. As the frame by frame processing time is not available for the 

Online-Boost tracker just the average frames per second is plotted. The Online-Boost
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algorithm has a very consistent computation time per frame. From this figure it can be 

seen that the LP-MED tracker also operates at a stable speed after an initial period. 

This initial high frame rate is due to having few examples in memory and hence a small 

distance matrix and association matrix. Interestingly, the occasional peaks in the LP- 

SMAT frame rate (seen in figure 4.11) coincide with significant events in the sequence 

e.g. the first and second peaks (at around 200 frames and 350 frames) coincide with 

the hand passing over the face and with the glasses being removed respectively. This is 

due to the creation of new modes during these transient appearance changes. As a new 

mode will be represented by very few templates the cost of maintaining the distance 

matrix between each template is low. As the component becomes populated with new 

templates the cost of maintaining the distance matrix rises again as is shown by the 

falling frame rate after each event.

Dudek-Head: Computational cost comparison
""L P -S M A T

Online-Boost
— LP-M ED

V

w 15

100 200 300 400 
Frame #

500 600 800700

Figure 4.11: Frame rate comparison on Dudek-Face sequence: The floating average 

frames per second is shown for LP-SMAT and LP-MED trackers is shown. The average 

speed of the Online-Boost tracker on this sequence is shown for reference.
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Figure 4.12 shows the SMAT model medians for four key frames. The medians are 

sorted with decreasing weight left to right. The four key frames are: during and after 

the hand occlusion, and during and after the removal of the glasses. It can be seen that 

the SMAT model quickly builds a new mode to represent each of the transient changes 

of appearance. After the hand passes away from the face the appearance returns to an 

earlier aspect and so the previously learnt predictor weightings are re-employed. After 

the glasses have been removed a new mode is created to represent the new appearance 

and this mode soon has the highest weight i.e. most resembles the estimated target 

a])j)earance.

Figure 4.12: SM AT model medians for four frames from Dudek-Face sequence: The 

medians are sorted with decreasing weight left to right. The four key frames are: 

during and after the hand occlusion, and during and after the removal of the glasses.
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4.4.3 R unner sequence

The Runner sequence features athletes running through the bend of a race track and 

then down the straight towards the camera. The trackers are initialised in the first 

frame on the only athlete to remain in the scene for the whole sequence. As can be 

seen in figure 4.13, the Online-Boost tracker (yellow dashed rectangle) jumps up to 

start tracking the head and upper torso of the athlete at frame 10 whereas all the 

other trackers stay tracking the central torso area. This is reflected in the positional 

accuracy graph in figure 4.14. As the ground-truth position (obtained by hand labeling) 

is centered on the athlete the Online-Boost tracker accumulates greater area once it 

starts to track the head of the athlete. Result for the Semi-Online-Boost tracker are not 

shown here as the tracker fails early on and, due to the significant appearance changes 

early in the sequence, does not produce any output for most of the sequence. The LK 

tracker (blue rectangle) begins to drift and loses track completely by frame 150 (refer 

to figures 4.13 and 4.14). The LP-FLOCK tracker begins to lose track at around frame 

100. The Online-Boost, LK-SMAT, LP-SMAT and LP-MED continue to track through 

significant appearance changes (even though the Online-Boost is tracking a different 

part of the athlete it does not loose track until around frame 410). The LP-MED 

tracker stays on the target longer than all the other trackers and gives a more stable 

track of the target. All trackers fail by frame 420. The frame rates for each tracker on 

this and all other sequences are given in table 4.4.

4.4 .4  H ead-M otion sequence

The head tracking sequence consists of 2500 frames with the head undergoing large pose 

variations and at one point becoming occluded by a cup for over 100 frames. The LK- 

SMAT, LP-SMAT, LP-MED, Online-Boost and Semi-Online-Boost trackers each track 

the head throughout the whole sequence but the methods with no online appearance 

learning (LK and LP-FLOCK) both fail to track the target. Figure 4.15 shows the 

head being tracked by the LP-MED tracker (top row). On the bottom row of figure 

4.15, the position of the LPs are indicated (black spot) as well as the support pixel 

range, Vsp, (white dashed circles). Also marked on the bottom row are the positions of
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Table 4.4; Average frame rate per second. Template sizes for each sequence are: CAR 

- 40x20, DUDEK - 130x130, RUNNER - 38x126, HEAD - 90x100, CAM-SHAKE - 

25x25. Parameters for all methods are unchanged for each sequence and set as detailed 

in the relevant part of section 4.3.

Tracker C A R D U D E K R U N N E R H E A D SH A I

LK-SMAT 12 2 6 6 12

LP-FLOCK 65 16 24 25 65

LP-SMAT 24 10 15 16 35

LP-MED 20 8 12 12 20

Online-Boost 16 4 7 7 16

the worst predictor from the current frame (red mark) and the predictor learnt in the 

current frame (green mark). As can be seen the worst predictors often lie with most or 

all the support pixels on the background or, in the case of the cup, on the occluding 

object. These predictors are not necessarily removed, they may be re-employed later 

in the sequence when a previous aspect is presented.

4.4.5 Cam era-Shake sequence

The Camera-Shake sequence is captured from a low cost web cam and is of a static 

scene and a moving camera. The camera undergoes considerable shaking causing large 

inter frame displacements as well as translation, rotation and tilting. Figure 4.16 shows 

results on this sequence for the LP-MED (red), Online-Boost (yellow solid) and Semi- 

Online-Boost (yellow dashed) trackers (results for the LP-SMAT tracker are similar to 

the LP-MED tracker on this sequence, though a little less accurate). All trackers except 

LP-SMAT and LP-MED fail on this sequence by frame 280 (the onset of some camera 

shake). The Semi-Online-Boost algorithm is able to re-initialise a number of times 

during the sequence but is never able to track while the camera is being shaken due 

to high inter-frame displacements and image blur. The displacement predicted from 

frame 374 to 375 is 37 pixels (16 vertical and 33 horizontal) and despite the significant
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f t M

FRAME 110- FRAME 2 7 0 5 ^

Frame 374 FRAME 4 2 FRAME 417 FRAME420|^Ug

Figure 4.13: Highlighted frames from the track running sequence: Tracker key: Dark 

blue - LK, black - LP-FLOCK, green - LK-SMAT, light blue - LP-SMAT, red - LP- 

MED, yellow - Online-Boost.

blurring in frame 375, the tracker still succeeds in making a low error prediction. Due to 

online learning of predictors, some are learnt from blurred images allowing for prediction 

during this blur. Figure 4.17 shows the positional accuracy plots generated by the six 

trackers on this sequence. Due to the limited basin of convergence both the alignment 

based trackers fail to deal with the large inter frame displacements and SMAT loses 

track as soon as the camera starts to shake. On this sequence the LP-MED approach 

achieves more accurate results than the other two LP trackers.

4.4.6 R esults sum m ary

Of the six trackers evaluated the LK and LP-FLOCK trackers demonstrate the poorest 

performance. This is due to the significant changes of target appearance in each of the 

sequences, although for the LK method it is also due to the limited basin of convergence. 

The LK-SMAT tracker demonstrates the ability to cope with significant appearance 

changes (as in the Head-Motion sequence) but fails in situations where the target 

moves too quickly in the image. Both the LK-SMAT and the Online-Boost trackers
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Runner: Positional accuracy of trackers
120

— LK
■'■‘•LP-FLOCK 
■■■LK-SMAT 
" '"L P -S M A T  
—  LP-MED  
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C L

350200
Frame #

250 400150 300100

Figure 4.14: Positional error plots for Runner sequence: The positional error (in pixels) 

for each tracker is shown. Gronnd-trnth was obtained by hand labeling the sequence.

fail to handle the large inter-frame displacements present in some of the sequences (e.g. 

Camera-Shake). On most of the sequences the LP-SMAT, LP-MED and Online-Boost 

methods achieve similar results, with the LP-MED achieving slightly higher accuracy 

in the Runner sequence and the Online-Boost achieving marginally better performance 

on the Dudek-Head sequence.

LK-SMAT operates at the lowest frame rate (frames processed per second) followed by 

Online-Boost, LP-MED and LP-SMAT with LP-ELOCK achieving by far the highest 

frame rates. The average frame rate for each method on each sequence is presented 

in table 4.4. The frame rate for each tracker is determined by the size of region being 

tracked.

For all sequences the target patch is identified by hand only in the first frame, all 

algorithm parameters are unchanged between sequences. Ground truth for every frame



4.5. Evaluation and Conclusion 91

r

Figure 4.15: LP replacement result: The medoidshift algorithm tracks the head se­

quence (top row). LP positions (black dots) and support pixel ranges (white dashed 

circles) are shown as well as the worst predictor from the current frame (red) and the 

predictor learnt from this frame (green). It is this process that generates view-specific 

displacement predictors within the model.

of the athletics and camera motion sequences was achieved by hand labeling and was 

used to generate the error plots in figures 4.17 and 4.14.

4.5 E valuation  and  C onclusion

A general tracking framework that combines online-LP flocks with methods for online 

appearance model learning has been developed and various configurations investigated. 

Within this framework, the tracking process provides a mechanism for self supervision 

of the appearance model learning process and, in return, the appearance model provides 

information about the structure of the target appearance space that enables the tracker 

to cope with a high degree of variation in appearance. The only supervision required 

is to identify the location of the target in the first frame.

Two methods for appearance model learning were introduced. The SMAT model com­

ponents the appearance space into a predefined number of modes that represent aspects
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FRAME 1 FRAME 56

I

FRAME 223B

Figure 4.16: Highlighted frames from Camera-Shake sequence: Tracker key: Solid dark 

grey (red) - LP-MED, solid white (yellow) - Online-Boost, dashed white (yellow) Semi- 

Online-Boost.

of the target. While this does limit the flexibility of the model and may lead to poten­

tial misrepresentation of the underlying appearance distribution, the SMAT tracker has 

demonstrated the ability to adapt to large appearance changes very quickly. The abil­

ity to introduce new modes on-the-fly to represent transient target appearance changes 

(e.g. occlusion of face by hand, see figure 4.12), whilst maintaining unchanged the rep­

resentation of other parts of the appearance space, proves highly beneficial for tracking 

many objects.

The medoidshift algorithm on the other hand benefits from the increased flexibility and 

hence greater likelihood to build more representative models of the object appearance 

space, regardless of the temporal evolution of the target appearance. This flexibility 

also extends into the general tracking framework by allowing a more flexible association 

strategy between aspects of the target and the online-LPs.

The tracking approaches investigated in this work model 2D target transformations 

(translation). Any higher order transformations of the target {e.g. scale or rotation) 

are considered as appearance changes, and treated as new aspects within the adaptive
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Camera-Shake: Positional accuracy of trackers
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Figure 4.17: Positional error plots for Camera-Shake sequence: The positional error 

for each tracker is shown. Where the Online-Boost tracker fails and is re-initialised is 

indicated by the vertical yellow lines.

appearance models. Whilst the introduction of higher order transformations is possible, 

and may considerably improve results in some cases {e.g. the Dudek-Face and Runner 

sequence, in which the target undergoes considerable scale changes), it has been found 

that the introduction of more parameters into the warping function can increase the 

risk of drift and the number of local minima [20].

An objective of this work is to delineate the class of problems for which the proposed 

methods are preferential by including examples of partial failure (Dudek-Face) and 

examples where this method outperforms the other approaches (Camera-Shake). The 

success of the LP based techniques on the Camera-Shake sequence highlight the ability 

of regression techniques to cope with large inter-frame displacements in the presence 

of local minima. On the other hand, registration techniques tend to achieve higher 

accuracy provided the displacement is within the basin of convergence.
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Other tracking approaches ([64, 41]) have been shown to track the Dudek-Face se­

quence. Compared to the proposed approach, these methods are slower, but handle 

the significant appearance changes in this sequence more robustly. Given that these 

are affine trackers and the trackers compared here only model translation, direct com­

parison is not included as this would raise issues regarding the DoF used in tracking 

that are not addressed here.

Both the appearance models developed have demonstrated the ability to adapt to large 

variations in appearance in order to manage flocks of online-LPs and to facilitate accu­

rate and efficient tracking. When compared to the online boosting methods, there are 

clearly cases where the discriminative classifiers are better able to represent the target, 

but for a class of tracking problems the LP-MED/LP-SMAT model provides compa­

rable accuracy with an increase in computational efficiency. An example of a class 

of targets for which LP-MED and LP-SMAT would fail is wire frame or transparent 

objects such as a bicycle wheel or a glass of water. The majority of support pixels in a 

region of an image containing such an object would would lie on the background so this 

is what would most likely be tracked. The discriminative approach of the Online-Boost 

method is likely to be able to handle such objects more effectively than the LP based 

methods.

Many applications require tracking that operates at high frame rates and can handle 

high object velocities as well as be robust to significant appearance changes and occlu­

sion. This is achieved here by utilising the computationally efficient technique of least 

squares prediction and online target appearance modeling.

Due to the computational efficiency of the online-LP, the tracker is able to track targets 

in real time (35/20 frames per second for LP-SMAT/LP-MED), even whilst building 

and maintaining the appearance model. It is shown that the approach can handle large 

inter frame displacements and adapt to significant changes in the target appearance 

with low computational cost. The online-LP tracker has been shown to be particularly 

effective at tracking through considerable camera shake.

The ability to control the level of each LP’s contribution to the overall tracking output 

enables a high level of adaptability and flexibility to the feature tracker - LP’s can be
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associated to various aspects of the target feature. Furthermore, evaluating each LP’s 

performance provides the possibility to discard LP’s that consistently perform poorly. 

The process of evaluating, discarding, re-learning and weighting performs a similar 

optimisation process to that performed in offline training approaches or registration 

processes such as the Lucas-Kanade tracker, but it does so incrementally whilst the 

tracker is operating.

The risk of any adaptive system, and specifically trackers that learn about the target 

appearance online, is that adaptations can, in some cases, cause the model to drift and 

fail. This lack of robustness in the learning method is caused by learning from noisy or 

erroneous data. For example, if the LP flock makes an incorrect prediction this would 

result in the inclusion of an erroneous appearance template being added to the model. 

Over time this could result in tracking failure, even on data that would not cause failure 

without the adaptivity.

The advantages of such a simultaneous modeling and tracking approach are clear when 

considering how much hand crafting, offline learning, hand labeling and parameter 

tuning must be done in order to employ many existing object tracking approaches. By 

developing the online-LP and mechanisms to manage LP-flocks, the class of applicable 

tracking problems has been extended to included, amongst others, automatic seeding 

of the tracker. For example, a computer vision application may seed a target tracker - 

such as LP-SMAT or LP-MED - on a region of detected motion, without any prior on 

target appearance.

This chapter employs unsupervised learning to discover structure in the input (appear­

ance) space and identify target aspects. This structure is used both to classify new 

inputs and to form subsets of input-output mappings. Partitioning the input-output 

mappings allows for different categories (or aspects) of the input space to be inter­

preted using category specific mappings. This idea of using category specific mappings 

is taken forward in the next chapter. However, the next chapter applies unsupervised 

learning in the output space, rather than the input space. In the next chapter, the 

structure discovered in the output (action) space is used to organise the input space 

to form perceptual categories that are grounded in the agents interactions with the
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environment.



Chapter 5

O utput Space C lustering for 

Exem plar Learning

In the previous chapter, unsupervised learning is applied to the input space to discover 

structure and to identify target aspects. This structure is used both to classify new 

inputs and to form subsets of input-output mappings. Partitioning the input-output 

mappings allows for different categories (or aspects) of the input space to be interpreted 

using category specific mappings. This chapter takes the idea of partitioning the space 

of mappings to form category specific mappings from the previous chapter. However, 

this chapter presents an alternative approach, whereby the unsupervised learning is 

applied to the output space, rather than input space.

This chapter introduces a novel exemplar learning framework applied to the percept- 

action domain. The system uses minimal hard-coding, favouring learning by example to 

build generalised input-to-response mappings from percept-action exemplars provided 

by a human “teacher”. Generalisation is achieved by applying unsupervised learning 

in the output space exemplars. The structure discovered in the output space is used 

to hierarchically group both input exemplars and output exemplars. This results in 

the formation of meaningful groupings of both input (perceptual) and output (action) 

spaces. The variance and invariance of features of the input space groupings characterise 

the input pattern that predicts its associated class of outputs. Applied to the percept- 

action domain, this Percept-Action (P-A) hierarchy provides a hierarchy of general to

97
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specific perceptual categories and generative action models, as well as an efficient and 

context aware hierarchical coarse to fine search in the percept space.

IMAGES

PERCEPTUAL
CATEGORIES

CONTROL
SIGNAL/

CATEGORISATION
INPUT

UNSUPERVISED
LEARNING

POINT-TO-POINT
GENERALISED

MAPPINGWORLD

Figure 5.1: Unsupervised learning in output space for input-output mappings: This 

figure represents the approach proposed in this chapter within the PAG framework 

introduced in chapter 1 and developed in chapters 3 and 4. Unsupervised learning 

is applied to the problem domain’s output space to discover structure in the output 

space. The structure discovered is used to define perceptual categories that facilitate 

the categorisation of new inputs.

Figure 5.1 represents the approach proposed in this chapter within the FAC framework 

that was introduced in chapter 1 and developed in both chapters 3 and 4. This figure 

illustrates that the discovery of structure in the output space results in the formation of 

perceptual categories that are used to classify new inputs. The mappings developed here 

are generalised point-to-point mappings formed by hierarchically clustering percept- 

action (input-output) exemplars.

The proposed approach is demonstrated in an autonomous navigation task. The agent 

is able to imitate the behaviour of the teacher to complete a demonstrated task. With 

only a set of exemplars and no hard-coding or application specific knowledge, the
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system is able to identify the visual features of importance to the task and to generate 

appropriate responses.

The rest of this chapter is organised as follows: In section 5.1 an overview of the pro­

posed PAG modeling approach is presented. As a starting point, a Nearest Neighbour 

based input-output mapping approach is described. Sections 5.1.1 and 5.1.2 detail 

methods for partitioning, and generalising over, an exemplar set. In section 5.1.3, the 

mechanism, central to the approach, of organising both the input and output space in 

terms of similarity of outputs is detailed. These techniques are then utilised in section

5.2 to build the Percept-Action (P-A) hierarchy, that forms general to specific map­

pings from percepts to actions. The process of constructing the P-A hierarchy from an 

exemplar set is detailed in section 5.2.1. Section 5.2.2 describes the process of searching 

the P-A hierarchy and how outputs are generated in response to new inputs. A discus­

sion of the P-A hierarchy is presented in section 5.2.3. Experiments that evaluate the 

approach in terms of: ability to generalise, the efficiency of the searching procedure, 

the perceptual weighting characteristics, and the ability to complete a demonstrated 

autonomous navigation task, are presented in section 5.3.

5.1 M odelling Percept-A ction Cycle (PAC)

In the approach used throughout this thesis, the Percept-Action Gycle (PAG) is rep­

resented by a set of percept-action exemplar vectors, E  = {(p^, a ^ ),..., (p ^ , a^)} , 

where P  = {p^...p^} is the set of percept vectors, p ” =  [p” ,...,p^] G (real 

numbered vectors with i dimensions) and A = {a^...a^} is the set of action vectors, 

a” =  [fl” ,...,a^] e  W  (j dimensions). The task is to obtain a mapping -4- W  that 

best approximates the relationships implicit in the exemplars.

If the exemplar set, E, accounts for every possible situation the system may encounter, 

then generating an appropriate response becomes a simple case of recall. A function, 

/  : P  —)■ A, that maps the set P  onto set A  will suffice, for example a simple lookup 

table or point-to-point mapping. However, even in some trivial domains, this approach 

is intractable. Obtaining and storing such an exemplar set is infeasible in most practical 

domains. The problem is how to generalise over an incomplete set of exemplars.
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One approach to generalising a point-to-point mapping is to relax the input matching 

criteria. The Nearest Neighbour (NN) search procedure finds the closest exemplar in a 

set P , to a query point p. The NN percept-action mapping (NN-PA) is illustrated in 

figure 5.2. The NN-PA approach selects action a" where,

N
n =  argmin||p” — p|

n = l
(5.1)

INPUT
Generated
R esponse

Exemplar Mapping

Coupled percept 
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New 
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Figure 5.2: NN-PA mapping: A nearest neighbour search in the input space is used to 

identify best matching percept. The generated response is the action coupled to the 

best matching percept.

The NN-PA approach suffers from two significant drawbacks. First, the 0 ( N i )  com­

plexity of naive NN search procedures scales linearly with the size of the exemplar 

set, N,  and the dimensionality of the data, i. Second, there is no generalisation of 

the action space. This means the mapping never generates new outputs and so the 

outputs do not reflect the differences between query percepts and exemplar percepts. 

The latter of these drawbacks is a particular problem for sparse exemplar sets where 

new inputs match to unpopulated regions of the percept exemplar space. Increasing
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the size of the exemplar set goes some way to alleviating this problem but, as a result 

of the first drawback, will incur increased computational cost. Furthermore, as already 

stated, complete population of the exemplar set is infeasible.

5.1.1 P artition ing th e search space

To overcome the drawback of the linear complexity of the naive search, the search 

space can be hierarchically partitioned. This allows for regions of the search space 

to be disregarded early on in the search procedure. A KD-tree provides an efficient 

approach to this partitioning task [28, 7]. The KD-tree iteratively bisects the exemplar 

space into two regions containing half of the points of the parent region. Queries are 

performed, with average complexity 0{logN),  via traversal of the tree from the root 

to a leaf by evaluating the query point at each split. The KD-tree partitioning of six 

data points is illustrated in figure 5.3. The leaf nodes of the tree contain single data 

points whereas branching nodes contain decisions representing partitions of the data.

• p 2

■■■

\ - p 4

• p 1
• p 6

Figure 5.3; KD-tree partitioning: A  recursive subdivision of the search space facilitates 

an efficient nearest neighbour search.

The hierarchical partitioning provides an efficient search structure but does not, in itself, 

provide a solution to generalising over the action exemplars. A mapping using the KD- 

tree to search (rather than the NN search as in the NN-PA mapping) can still only select 

one of the stored exemplars for output. However, the hierarchical structure does offer 

more than just an efficient search procedure. Each decision partitions the complete
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set of exemplars into two subsets and these subsets are partitioned into two further 

subsets and this continues recursively until the new subset has only one member, at 

the leaf node. This hierarchy of general to specific subsets provides a starting point for 

generalising over the exemplars. If the characteristics of a subset can be identified, then 

in the percept space, a new percept can be classified as either belonging to that subset 

or not, based on whether it has similar characteristics. This requires a discriminative 

percept classifier learnt on the subset of percept vectors. Also, the characteristics of 

a subset of actions could be used to generate new actions with similar characteristics. 

This requires a generative action model learnt on the subset of action vectors. A subset 

of percepts forms a perceptual category and a subset of actions forms a class of action.

5.1.2 G eneralising over an exem plar set

To generalise over an exemplar set, E, or any subset of E, some way of characterising 

the set members is required. Additionally, some method of generating new exemplars 

that have the same characteristics is needed, for the generation of new actions.

The multivariate Gaussian Probability Density Function (PDF) provides a tool for 

generalising the exemplar set. It provides a means of characterising the set members, 

in terms of the mean and variance. The PDF can also be used to generate new exemplars 

that have the same characteristics, by drawing values from the distribution. Assuming 

the action exemplar vector, a  =  [ai, ...,aj], to be a random variable with mean vector 

â, and covariance matrix S q, the multivariate Gaussian PDF is as in equation 5.2.

Sa) =  -  â]^S-^[a -  â]) (5.2)

The shorthand notation A/}(a, Sa), is used to state that j-dimensional random vector a  

is a multivariate Gaussian PDF, with mean vector, â, and covariance matrix Sa, which 

are computed from the exemplars as in equations 5.3 and 5.4.

(5.3)
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Building a multivariate Gaussian PDF, A/}(a, Ea) from each of the action exemplar 

subsets identified by the hierarchical partitioning, generates a hierarchy of general to 

specific generative action models. The hierarchy of general to specific subsets of percept 

exemplars also provides a structure for classifying new percepts as belonging to any of 

the general to specific percept categories. The multivariate Gaussian PDF, fitted to 

the perceptual subsets, A/î(p, Ep), can form the basis of a discriminative classifier. 

The Mahalanobis distance function provides a means of determining the similarity, 

•f^M(p,A/î(p, Ep)), of a query sample, p, to a known distribution, A/i(p, Ep). The 

Mahalanobis distance function is given in equation 5.5.

D m (p , M { p , Ep)) =  ^ ( p -  p)^Ep ^(p -  p) (5.5)

The Mahalanobis distance function takes into account the covariance of the data set.

5.1.3 O utput space clustering

An intuitive approach is to apply the hierarchical partitioning to the input or percept 

vector space. Given that the search procedure is carried out in the input space, a con­

ventional hierarchical search structure would subdivide the exemplar set based on the 

parameters being compared to the query. It might also be expected that the subsets of 

outputs formed by the input partitioning, would represent a certain meaningful class of 

outputs or actions. The assumption being that similar problem configurations (inputs) 

will require similar problem solutions (outputs). However this assumption breaks down 

for problems where a small change in the input require significantly different responses 

or conversely when inputs appear quite different but require similar responses. Essen­

tially, implicit in the assumption is that the distance function used for partitioning the 

data, reflects the relative importance of features of the input space in determining the 

response. Such a distance function could in some cases be designed - specified by an 

engineer - but this is a form of hard-coding and is not a generic solution.
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The proposed solution is to partition input and output exemplars in the output vector 

space. In general, related points in the action domain exhibit greater continuity and 

are more similar than related points in the percept domain [33]. Furthermore, the 

dimensionality of the action space 3%-̂ will generally be significantly lower than the 

dimensionality of the percept space W,  i > j .  These observations imply that partitions 

of the action space vectors are more likely to reflect the underlying structure of the 

data than partitions in the percept space.

By basing the partitioning of exemplars on similarity in the action space, the result­

ing action subsets will contain similar members and will therefore result in meaningful 

action models, A/j(a, Ea). In the proposed approach, the percept exemplars are also 

partitioned based on the partitioning of the action exemplar vectors. The resulting 

subsets form groups of percepts that each illicit a similar action. Therefore the subsets 

form meaningful perceptual categories, because they represent the perceptual stimulus 

for a meaningful class of actions. The covariance, Ep, of perceptual features within a 

category reflect the relative importance of each dimension of the percept data to the as­

sociated class of action. Modelling the percept groups as multivariate Gaussian PDFs, 

A/”i(p, Ep), and using the Mahalanobis distance, equation 5.5, to compute the similar­

ity of a query percept to a perceptual category, provides a mechanism of classifying 

perceptual information based on the correlations and covariances of the category.

To illustrate this output space based input-output exemplar clustering approach, a 

synthetic data set of percepts and actions is clustered in both input and output space. 

Figure 5.4 shows the results of these two clustering approaches on the data. The 

data set is constructed to simulate the data that would be obtained from a simple 

percept-action task. The percept exemplars are generated from twelve 3-dimensional 

Gaussian PDFs with means evenly spaced about a cube at equal intervals from each 

other. Dimensions one and two could represent the position of a target object in a 

percept-action task. Dimension three could represent the colour of the target object. 

To generate the output exemplars, all the percept exemplars drawn from PDFs with 

the same mean position (mean of first two dimensions of percept space) are scaled and 

transposed by an arbitrary transform. Thus it is the two dimensions that represent the 

position of the target that determines the output value.
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Figure 5.4(a) shows the result of running a k-means clustering on the percept data, and 

figure 5.4(b) shows the resulting groups formed in the action data. Clearly clustering 

the data set in the percept space does not produce meaningful action groupings. Figure 

5.4(c) shows the result of running the k-means clustering on the action exemplars, and 

figure 5.4(d) shows the resulting groups formed in the percept data. In this case, the 

output space clustering has identified the predictor variables, i.e. the target position, 

and the redundant input variable, the colour of the target. Alternatively, if the same 

action exemplars were generated from percept exemplars with the same mean colour, 

the output clustering would identify the colour was the action predictor variable.

target
target

■*

-i' * •

% 250
X .

(a) Input clustering of percept exemplars. (b) Input clustering of action exemplars.

250
X .

V —

400 target target

(c) Output clustering of action exemplars. (d) Output clustering of percept exemplars.

Figure 5.4: Output space vs. input space clustering: Clustering output exemplars 

based on similarity of inputs results in meaningless groups of actions. Clustering input 

exemplars based on similarity of outputs identifies important variance and invariance 

of perceptual groups.
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This discussion, on percept vs action space partitioning is summarised in figure 5.5. 

The figure illustrates how the structure discovered in the percept space can result in 

the formation of meaningless action models. However when the structure discovered 

in the action space is imposed on the perceptual space, the result is both meaningful 

action models and meaningful perceptual categories. This finding is consistent with 

Granlund’s postulate quoted in the introduction to this thesis, “Related points in the 

response domain exhibit a much larger continuity, simplicity and closeness than related 

points in the input domain. For that reason, the organisation process has to be driven 

by the response domain signals.” [33].

5.2 The Percept-A ct ion (P-A ) Hierarchy

This section details the Percept-Action (P-A) hierarchy, that combines the hierarchical 

partitioning, exemplar set generalisation and output space clustering techniques just 

described. The P-A hierarchy is composed of a hierarchy of general to specific percept 

classifiers that are each associated to a probabilistic action generation model and pro­

vides an efficient mechanism for responding to new percepts. First, the offline process 

of building the P-A hierarchy is detailed in section 5.2.1. In section 5.2.2 the process 

of searching the P-A hierarchy for best matching perceptual categories, and generating 

responses from the associated action models, is described. A discussion of the P-A 

hierarchy is presented in section 5.2.3.

5.2.1 B uilding th e hierarchy

The first process in building the P-A hierarchy is to compute the KD-tree partitioning 

of the set of action vectors, A  = {a^...a^}. The KD-tree algorithm employed  ̂ is 

based on a recursive subdivision of the parameter space into disjoint hyperrectangular 

regions. Any region containing more than one data point (action vector) is split into 

two boxes by an axis-orthogonal hyperplane that intersects the regions hyperrectangle. 

The hyperplane is selected using the ‘sliding midpoint rule’ in which a hyperplane is

 ̂http: /  /  www.cs.umd.edu /  ~mount /  ANN /

http://www.cs.umd.edu
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N ew
Percept

N E W
A C TIO N

(a) Percept space clustering. Although grouping percepts that look similar may 

seem intuitive, the resultant action groupings can be meaningless.

N ew
Percept

N E W
A C TIO N

(b) Action space clustering. Grouping experiences in terms of structure discovered 

in the action space results in the formation of groups of percepts. Analysis of the 

variance of the percept groups allows the definition of classifiers for particular modes 

of action.

Figure 5.5: Percept vs action space clustering: The variances and co-variances of input 

features within groups of inputs associated to action clusters reflect the relative impor­

tance of the features to the matching criteria. This is the process of forming perceptual 

categories by structuring the perceptual space according to structure discovered in the 

action space.

first selected that cuts the current hyper rectangle through its midpoint orthogonal to 

its longest side and then, if the case arises that all the points lie on one side of the 

hyperplane then the hyperplane is translated toward the points until the first data 

point is encountered. The result of performing this partitioning on an exemplar set of 

control signals for navigating a robotic platform, is illustrated in figure 5.6.
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kJ.

Figure 5.6: Action space KD-tree partitioning with action models: The KD-tree parti­

tioning of action exemplars collected in a autonomous navigation task is shown. Also 

marked on the figure are ellipses representing the action model Gaussian PDFs fit­

ted to three of the subsets. The green and blue ellipses represent models of ‘hard- 

left’ and ‘hard-right’ actions. The red ellipse represents a general model representing 

’roughly-straight-ahead’ type actions. The ellipses are not data generated, they are for 

illustration only.

The KD-tree partitioning of the action space is used to construct the hierarchical tree 

data structure, with percept models, A/î(p,Ep), and action models, A/̂  (a, E^) at each 

node. Starting at the root node, the root percept and action models are built from the 

complete exemplar set as in equations 5.3 and 5.4. The percept and action models are 

then learnt for each of the root nodes child nodes, and for these nodes child nodes and 

so on recursively until a leaf node is reached. No model is built at the leaf nodes as they 

only contain one percept vector and one action vector. The P-A hierarchy is illustrated 

in fignre 5.7, where each node contains PDFs representing the distribution of percepts 

and actions. The models nearer the leaf are more specific, the models nearer the root 

at more general. Consider the complete set of percept models:

(5.6)

and action models:
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Figure 5.7: P-A hierarchy construction: The P-A hierarchy is a recursive tree data 

structure with two PDFs at each splitting node, one representing the distribution of 

actions vectors in the region represented by that branch, the other representing the 

percept distributions.

(5.7)

where n is the node index at level h in the hierarchy, as shown in figure 5.7. The only 

node at level h =  0 is the root, containing A/^’° and In general, as h increases,

indicating nodes further from the root, the models become more specific, until at the 

root node the model is a point-to-point mapping.

5 .2 .2  S e a rc h in g  th e  h ie ra rc h y

Given a new percept, p  =  [pi, ...,Pt], as input, the objective is to find the most specific 

matching percept model, A^*, from P , the set of all percept models, and so identify the 

best action model from which to generate a response. This is achieved by recursively 

searching the P-A hierarchy, from the root node down, by comparing p  to the percept
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model at each node. If the matching criteria is met then the child nodes are compared, 

if not met, the search of that part of the hierarchy terminates. If no child nodes exist 

i.e. the node is a leaf, then the leaf model, a single percept vector, is selected as Af^. 

This happens when there is an exact match for p  in the exemplar set.

The criteria for matching percept p  to model is defined in terms of a matching 

function, w,

v . ( p )  =  [ '  « ^ M ( P . A / r b < r  (5.8)
I 0 Otherwise

Where DM(p,Afi)  is the Mahalanobis distance as defined in equation 5.5 and r  is a 

threshold. An investigation of the effects of this threshold is given in section 5.3.

This search procedure is unlike a standard binary search tree, as no hard decision is 

made at each node. Instead, it is possible for the search to continue down a number 

of separate branches, providing the input matches the model representing each branch. 

This means that the search can terminate at more than one node in the hierarchy, 

providing a set of matching models or specific examples. These matches constitute 

a set of hypotheses of how best to react to the current percept. To select the best 

hypothesis, the model with the minimum Mahalanobis distance may be selected.

Having identified the best matching percept model, M*,  new actions can be generated 

by drawing samples from the associated action model, Mj .  If the best match is on a 

leaf node, then there is an exact percept match, so the exact same action is selected.

5 .2 .3  D isc u ss io n  o f  P -A  h ie ra rc h y

There are three interesting, and useful properties of the P-A hierarchy. First, the out­

put space clustering identifies which input features are important to the task and uses 

this to categorise the inputs. Second, the specificity (generality) of the selected action 

model reflects the familiarity (unfamiliarity) of the perceptual input. This property re­

sults in the generation of more exploratory actions, with a higher degree of randomness, 

in unfamiliar situations, and more exploitative actions, with a lower degree of random­

ness, in more familiar situations. This smooth, context aware transitioning between
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exploitative and exploratory behaviour is a desirable property for an emergent agent. 

Finally the hierarchical search process is efficient as only a subset of the exemplar space 

is searched. These three properties, perceptual weighting, generalisation and efficiency, ' 

are each demonstrated and evaluated in the following section.

Figure 5.8 illustrates the intended functionality of the P-A hierarchy for a simple nav­

igation task. The task is for the car to drive toward the circular object. The square 

object is a distractor object, it does not determine the response. The hierarchy is 

built from three exemplars, representing ‘hard-left’, ‘hard-right’, and ‘straight-ahead’ 

actions. The variance in the position of the circle and the square, within a percept 

model, is illustrated by their size and shade in the general models. The input percept 

requires a ‘soft-left’ class of action. The result of the search is the selection of an action 

model that generalises the ‘hard-left’ and ‘straight-ahead’ actions. A sample drawn 

from this model is likely to result in appropriate behaviour. This figure illustrates the 

perceptual weighting, generalisation and efficiency of the P-A hierarchy.

5.3 E xperim en ts

5.3.1 E xperim ental setup

The problem domain used to evaluate the P-A hierarchy is a robotic platform, learning 

to drive towards a target object. The robotic platform is constructed from a standard 

Remote Control (RC) car fitted with a wireless camera. A Graphical User Interface 

(GUI) is used in the training stage that presents the teacher with the current image 

from the camera and allows the user to select appropriate actions to determine the 

control signals sent to the RC car, see figure 5.9. Each action starts and ends with 

the RC car stationary, user selected actions cause the car to move, in the direction 

determined by the position of the mouse click, before stopping. Twenty sequences 

(304 percept-action exemplars) were recorded and used to construct the exemplar set. 

The system is trained to drive toward a red balloon placed in the robots environment. 

There is also a green balloon placed in the environment that represents a distractor or 

background object. If the red balloon is not in the image, the teacher turns the car
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Figure 5.8: P-A hierarchy as percept-action mapping: Illustration of generalising and 

feature importance weighting capabilities of percept-action hierarchy. The car has been 

trained to follow the circular target object, the square object is not important to the 

task. The input percept is first compared to the most general percept model and as it 

fits the matching criteria it is compared to both child models. It fits only the left child 

and is subsequently compared to this models children, both of which it fails to match. 

Therefore the best matching model is one that generalises over two examples. The 

associated general action model is thus selected as the most applicable to the current 

situation.

until it appears.

This imitation training framework facilitates the imparting of knowledge by demonstra­

tion rather than by explanation/ specification. Importantly this knowledge is embodied, 

grounded in the agents own percept-action representations. Thus by allowing a teacher 

to demonstrate appropriate behaviour through the agents control hardware, the agent 

is bootstrapped with a set of embodied experiences. These experiences can be used to 

facilitate exact mimicry, the objective then is to extend this behaviour to more general 

imitative behaviour.
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Figure 5.9: Autonomous navigation hardware and control interface: A standard RC 

car is fitted with a miniature wireless camera and is controlled by clicking on a GUI to 

generate the drive and turn control signals.

5 .3 .2  T h e  e x e m p la r  se t

The set of action vectors A  =  where a^ =  [nY, ^ are 2-dimensional

vectors that represent the turn and drive parameters used to control the robot.

The percept vectors, P  =  where p" — ...,pYs] G 3%̂  ̂ are 18-dimensional

vectors representing the state of the world. As illustrated in figure 5.10, each image is 

processed with a blob feature extraction algorithm [27]. The extracted blob features, 

that represent homogeneous regions in the image, are parametrised by six moments 

(describing shape) and the RGB encoding of the mean colour of the detected region. 

These parameters are concatenated to form a single nine element feature vector for 

each blob. A colour lookup table is used to identify the two balloons (red and green) 

and the percept vector is the ordered concatenation of the two 9-dimensional balloon 

blob features:

P — [Af ..., A705]!ĝ , R red i  G redi  P re d i  - -,

AfOO,n
green ..., A705g,.gĝ j, Rgreeni G  green i Pgreen\

If either of the balloons is not present in the image the corresponding elements in the 

percept vector arc set to zero. The P-A hierarchy is built using these exemplars.
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Figure 5.10: Percept representation for autonomous navigation: Left images are re­

ceived from wireless camera. The middle images represent the output from the blob 

detection algorithm. The right images represent the percept representation.

5 .3 .3  E v a lu a t in g  p e rc e p tu a l  w e ig h tin g  o f  o u tp u t  c lu s te r in g

One of the important properties of the P-A hierarchy is the facility to identify, through 

output space clustering, the relative importance of perceptual parameters to the task 

exemplified by the exemplar set. To evaluate this property, the discriminative percept 

classifiers, learnt through output space clustering, are tested with a set of unseen data.

The complete set of action exemplars used to train the P-A hierarchy are shown in 

figure 5.11. The exemplars are represented both as points in a 2D space and as vectors 

with magnitude representing the drive parameter and direction representing the turn 

parameter. Also shown in figure 5.11 are three subsets of actions. The subsets broadly 

represent turn left, go straight ahead and turn right action modes. Associated to each 

of these action subsets is a percept subset, from which a percept classifier is built, 

based on the Gaussian PDF and the Mahalanobis distance function. The response 

(Mahalanobis distance) of each of these three classifiers to a set of six test images is 

shown in figure 5.12, along with the six test images.

The results presented in figure 5.12 demonstrate the perceptual weighting property of 

output space clustering. The classifier scores for test images 1 and 2, that show the 

target to the left, are considerably lower than all other test images for the turn left
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Figure 5.11: Action exemplars: Top left image is plots of all action vectors as points in 

2D space. The top right image represents the actions as 2D vectors, with magnitude 

representing the drive parameter and direction representing the turn parameter. The 

bottom row represent three subsets of actions, identified by the output space clustering. 

The subsets broadly represent turn left, go straight ahead and turn right action modes 

(from left to right).

class. Furthermore, the test scores for images 1 and 2 are also considerably higher 

in the other two classes. This indicates that for the turn left class of actions, the 

percept classifier is strongly biased towards representations with the target object to 

the left. This is further illustrated by noting the classifier scores for test images 1 and 

5, on the turn left and turn right classes. Despite the similarity of the location of the 

distractor object (green balloon) in the two images, the scores for the two classifiers 

are radically different, reflecting a radical difference in the position of the target object. 

Similar results and comparisons are also evident for images 3 and 4 where the target is 

consistently to the center and the distractor has high positional variance, and for test 

images 5 and 6 likewise.
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(a) Image 1 (b) Image 2 (c) Image 3 (d) Image 4 (e) Image 5 (f) Image 6

Figure 5.12: Perceptual weighting through output space clustering: The top row shows 

six test images selected to evaluate the perceptual weighting properties of the P-A 

hierarchy. The bottom row shows the Mahalanobis distances between each test image 

and the Gaussian PDFs representing the subset of percepts associated to the three 

actions subsets illustrated in figure 5.11.

5 .3 .4  E v a lu a t in g  g e n e ra lis a tio n  a n d  effic iency

To evaluate the generalising capabilities of the P-A hierarchy, unseen test exemplars, 

p^, for [n =  l...{Ntest)] are applied to the P-A hierarchy to generate outputs, a*. The 

prediction error is the L2 norm distance between a* and a"̂ , the expected output, as in 

equation 5.9.

Prediction error = / ( p ” ) =  ||a* — af (5.9)

The Mahalanobis distance threshold, r , used in the pereept matching function u (see 

equation 5.8), is a determining factor in the specificity/generality of the models returned 

by the percept matching process, and therefore has impact on the generalising capabil­

ities of the P-A hierarchy. The test exemplars are tested over a range of Mahalanobis 

threshold values.

The result of this test, for a randomly selected training (70% of exemplars) and test 

(30% of exemplars) set is shown by the dashed black line in figure 5.13. It was noted that 

running this test with different training/test partitioning of the exemplar set results
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in different plots. To characterise the general shape of these plots, the test is run 50 

times, each time with a different random partitioning of the exemplar set into 70% 

training and 30% test. The mean plot over these 50 tests is shown by the blue line 

in figure 5.13. The average prediction error for the NN-PA approach is also computed 

over each of the 50 tests and is 23.6 (constant over all r  as this parameter is not used 

in the NN-PA model).

Single test 
'Mean of 50 tests15.5

o 14.5

13.5

12.5, 100
Mahalanobis threshold (t)

Figure 5.13; Prediction error as a function of Mahalanobis threshold, r ; The mean 

prediction error on the test exemplars for values of tan ranging from 1 to 100, are 

plotted for a single train /test data partition. Also shown is the mean test result over 

50 tests with randomly selected train /test data partitions.

This result demonstrates the ability of the P-A hierarchy to generate appropriate out­

puts given unseen inputs, therefore generalising over the exemplar set. The P-A hierar­

chy also achieves considerably lower prediction errors on unseen data than the NN-PA 

approach. The result shows that, as the percept matching criteria is relaxed, with 

10 < r  < 30, the mean prediction error falls rapidly, this is the result of matching more 

specific models. It is also found that for values of r  above 30, there is little improvement 

in prediction error, at least up to r  =  500.

For the results in figure 5.14 the same set (the training set) is used both to build the
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P-A hierarchy and evaluate the recall rate and efhciency trade off. The recall rate 

indicates the ratio of exact matches found to total number of exemplars, where 100% 

recall implies all exemplars are correctly matched, see equation 5.10. The efficiency of 

the hierarchy reflects the proportion of the search spaced that is searched, see equation 

5.11. The search space includes all exemplars as well as all the general models created 

by the hierarchy.

Recall rate =
#  exact matches 

total #  of exemplars
*  100 (5.10)

Efficiency =  (1
#  nodes searched 

total #  nodes )*100 (5.11)

100

— Recall rate 
— Efficiency

Io
LU
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M ahalanobis threshold (x)

Figure 5.14: Recall and efficiency as a function of t : The P-A hierarchy is built and 

tested using all exemplars and the recall rate is the ratio (number of exact percept 

matches)/ (total number of exemplars) *100. Efficiency is defined as (l-( (number of 

nodes searched)/ (total number of nodes)))*100.

Figure 5.14 shows that, as r  increases in the range 10 < r  < 30, the ability of the 

hierarchy to recall exact exemplar matches increases from zero to 70%. In the same
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range, the efficiency of the hierarchy falls from nearly 100% to approximately 75%. In 

the range 30 < r  < 50, the efficiency falls by approximately 10% and the recall rate 

increases by 30% to achieve 100% recall for values of r  above 50%. It can be seen that 

efficiency falls in large steps at three points in the curve, indicating that large areas of 

the search space are included when r  is raised above the three coresponding thresholds.

The results presented in figures 5.13 and 5.14 not only evaluate the generalising, recall 

and efficiency properties of the P-A hierarchy, but also provide a means of selecting a 

value for r . Given that little improvement is made in the prediction error for values of 

T > 30, and that this value provides a reasonable trade off between recall and efficiency, 

r  is set to be 30, for the autonomous navigation experiments presented in section 5.3.5.

5.3.5 A utonom ous navigation evaluation

These experiments are earried out by plaeing the robot within an environment with 

the two balloons. The experiments are designed to test whether the system has learnt 

a useful mapping from the pereept space to the action space, -4-

Frame 1 Frame 101

»
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ff:
Frame 101

.
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Figure 5.15: Frames of video demonstrating autonomous navigation: Every 100th frame 

from two video sequences showing the agent performing the task of driving towards the 

target object. The top/bottom  row show the agent driving to the right/left in response 

to the position of the target.

Figure 5.15 shows frames from a video sequence of the car reproducing the trained 

behaviour. The car and balloons are placed at many different positions relative to each 

other and the car consistently locates and drives towards the target object. Occasionally 

the system over steers in a certain direction but usually compensates with the next
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action. If the red object is not in the scene, the car turns until it appears, sometimes 

this continues indefinitely, with the car constantly turning and not finding the balloon, 

or with the car encountering an obstacle such as a wall. In these situations, the test 

is restarted. Errors due to vision system occur rarely as the blob detection and colour 

lookup table approaches work well in this relatively constrained environment.

Figure 5.16 illustrates the autonomous navigation system. The KD-tree decomposition 

of the action vector space is presented at the top in figure 5.16(a). Below that in figures 

5.16(b), 5.16(c), 5.16(d) and 5.16(e), four steps from two sequence of the car driving 

toward the target balloon are shown. It can be seen that the actions sampled from 

the hierarchy (right image for each step) reflect the position of the red balloon in the 

perceptual representation. This indicates that the percept matching process is being 

based on the location of the red rather than the green balloon, a result of clustering in 

the action space.

5.4 Conclusion and Discussion

This chapter introduces a novel exemplar learning framework that employs hierarchical 

output space clustering to achieve search efficiency and input and output space general­

isation as well as a mechanism for identifying the important variance and invariance in 

the input space. The exemplar hierarchy provides, in a single structure, a mechanism 

for classifying unseen inputs and generating appropriate outputs. The organisation of 

the hierarchy is driven by the structure of the output space and supports Granlund’s 

postulate quoted in the introduction to this thesis.

Applied to the percept-action domain, this approach provides a realisation of an em­

bodied and embedded agent that organises its perceptual space and hence its cognitive 

process based on interactions with its environment. The exemplar hierarchy also pro­

vides a mechanism that allows the embodied agent to move on a continuum between 

exploratory and exploitative modes of behaviour, depending on the familiarity of the 

situation.

The results demonstrate that the system is capable of learning to respond appropri-
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ately without the need for task specific knowledge, other than knowledge imparted by 

demonstration. Furthermore, it is shown that the hierarchy allows for generalisation of 

experiences that allow it to perform in unseen scenarios.

The integrated perceptual categorisation and motor control mechanism developed demon­

strates the self organizing principle typical of emergent systems. By constructing a 

perceptual system in a bottom up manner, the categories of perception are physically 

grounded in the sensory-motor experience of the agent and so there is no symbol ground­

ing problem. This is achieved by exploiting the fact that structure can be discovered in 

the action space due to its low dimensional representation and the similarity of related 

points. This structure provides, in a sense, the meaning/semantics implicitly linked to 

the formed perceptual categories.

Although it is a feature of emergent systems, the random exploratory behaviour exhib­

ited as a result of the Gaussian action model sampling process is not suitable for all 

application domains. This degree of randomness is due to the probabilistic nature of the 

mappings. There is no mechanism for interpolating between input-output mappings, 

other than increasing the generality of the matched model and therefore increasing the 

randomness of the generated actions. The next chapter extends this work but replaces 

the point-to-point and generalised point-to-point mappings with mappings that explic­

itly model the relationship between inputs and outputs. The mappings employed are 

similar to the regression based mappings introduced in chapter 3.

The relative simplicity of the problem domains selected indicates some limitations of 

the approach. The strict ordering of perceptual features in the percept representation 

relies on a robust feature correspondence matching algorithm. In order to model the 

covariance of features from a group of percepts such a matching is always required. 

One proposal for future work arising from this issue is the development of a feature 

matching algorithm that utilises the statistics captured within the exemplar hierarchy 

to efficiently match image features and hence maintain a consistent perceptual repre­

sentation. Using the statistics used to build the percept classifiers, within a detection 

framework, could be one solution to the problem.
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(a) The KD-Tree decomposition of the action space.

##

(b) First step of two sequences (top and bottom), (c) Second step of sequences. Generated actions 

with target to left and with target to right. reflect change of position of target blob.

#  # #

em #

(d) Forth step of sequences. Target is centered in (e) Final step in sequence. The goal state is 

image. achieved by a number of go-straight-ahead actions.

Figure 5.16: D em onstration of R C  car experiment on two sequences: Left figures: 

input images; right figures: generated actions. The blob feature classifiers interpret 

the perceptual space in order to activate the correct action models for generating a 

response.



Chapter 6

Affordance Mining: 

Forming Perception  Through  

A ction

In the previous chapter, output space clustering is used to organise the input space, 

by forming perceptual groups associated to classes of actions. A simple Gaussian as­

sumption was employed to weight the relevance of features of the input space to the 

discovered classes of action. This approach required a vector representation of the 

percept space, with consistent ordering of the perceptual features i.e. the order of 

the features representing the red and green balloons was fixed. While the approach 

demonstrates the organising principle of output space clustering, the strict ordering of 

the features of the percept vector leads to a requirement for an engineered perceptual 

representation and so limits the scope of application of the approach. This chapter 

focuses on removing this constraint.

This chapter introduces a method for discovering the visual entities that are important 

to a vision system given a specific problem (e.g. a robotics tasks). Mappings are 

learnt from these emergent perceptual entities, onto the agents action space. This 

is achieved by first applying unsupervised learning in the problem output space (e.g. 

the agent’s actions). The structure discovered in the output space is then used to

123
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organise the input space (e.g. the agent’s perceptual representation), in order to form 

meaningful input representations. This organisation process is achieved by finding 

strong associations between modes of the output space and configurations of features 

in the input space. Association rule data mining algorithms are employed to efficiently 

find these associations. Local feature configurations that are strongly associated to a 

particular ‘type’ of action (and not all other action types) are considered as likely to 

be relevant in eliciting that action type. By learning mappings from these relevant 

feature configurations onto the action space, the system is able to generate real-time, 

continuous responses to novel visual stimuli.

This chapter adopts many of the approaches developed throughout this thesis. The 

imitation training framework in which domain specific embodied knowledge is imparted 

by allowing a teacher to demonstrate appropriate behaviour through the agents control 

hardware is adopted from chapter 5. So to is the use of unsupervised learning to 

discover structure in the output space in order to construct exploitable representations 

in the input space. However, rather than the generalised point-to-point mappings used 

in chapter 5 the mappings adopted in this chapter are similar to the linear regression 

functions introduced for displacement estimation in chapter 3.

In chapter 5 it was established that low dimensional action spaces are better suited to 

unsupervised learning than high dimensional percept spaces, allowing for structure to 

be discovered in the action space and imposed on the percept space to form meaningful 

categories. As discussed, this approach relates to the embodied mind theory, that is 

based on the premise that the nature of the mind is determined by the embodiment 

of the cognitive agent [48] [13]. Related to this is affordance theory, that states that 

the world is perceived not only in terms of object shapes and spatial relationships but 

also in terms of object possibilities for action [29]. The work presented in this chapter 

demonstrates an embodied approach to constructing an affordance based representation 

of the world. This is achieved by directly coupling action generation models to each 

discovered visual entity, such that observing the entity directly activates the associated 

action model.

Data mining algorithms are useful for efficiently identifying correlations in large sym­



125

bolic datasets. These methods have begun to be applied to vision tasks such as: identi­

fying features which have high probability of lying on previously unseen instances of an 

object class [62], mining compound spatio-temporal features for scale invariant action 

recognition [30], and finding near duplicate images within a database of photographs 

[17]. These methods benefit from both the scalability and efficiency of the data mining 

methods. This work employs data mining algorithms to the novel domain of percept- 

action association mining. The mechanism of mining frequent and distinctive feature 

configurations employed here is most similar to that of Quack et al. [62], however, here 

the discovered configurations are used directly in an action generation process, rather 

than as a pre-processing step for identifying useful features for other classification tech­

niques. Furthermore, whilst in [62] supervision is required to label the classes of objects 

that are learnt, in this work classes of actions are obtained by an unsupervised learning 

approach.

The exemplar hierarchy, introduced in chapter 5, was shown to be capable of learning 

to respond appropriately with no explicit definition of desired behaviour. This chapter 

addresses the following limitations of the approach proposed in chapter 5:

1. Partially engineered representation of visual information: Although the approach 

presented in chapter 5 was shown to identify the important variance and invari­

ance in the input space, and to weight the relative importance of features to the 

percept matching criteria, this was demonstrated using a percept representation 

that required a certain degree of engineering or hard-coding. The input image 

space was represented as an ordered concatenation of two 9-dimensional blob 

feature vectors, where the two blobs represented were selected based on colour, 

which was chosen by the engineer to match the task specific target and distractor 

objects. The work presented in this chapter builds on the mechanisms presented 

in chapter 5 to develop a system that forms a task specific percept representa­

tion directly from image data with no hard-coded knowledge about the objects 

of interest.

2. Probabilistic action generation: The actions generated by the system presented in 

chapter 5 were drawn from probabilistic generative models. No mechanism was
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proposed for determining the relationship between the percept vectors belonging 

to a class of percepts and the action vectors belonging to the associated action 

model. This chapter draws on the ideas from chapter 3 to learn linear functions 

that encapsulate the relationships implicit in the training data. Using regression 

to learn these functional approximations allows for new actions to be generated 

based on an interpolation between training data examples, thus avoiding the 

introduction of randomness in the response generation process.

3. Discrete action space: In the imitation training framework employed in chapter 5, 

the actions are discrete (in time) impulses, with the vehicle coming to a stop after 

each action. Both the training procedure and the response mechanisms developed 

in this chapter are developed to allow the system to generate continuous signals, 

in real time, in response to dynamic events in the environment.

4. Search space dependent on amount of experience: The exemplar hierarchy relied 

on a potentially large and costly search procedure, thus limiting the system re­

sponse time. The size of the search space being determined by the number and 

distribution of the exemplars representing the systems experience. In the ap­

proach presented in this chapter, inputs are matched to rules discovered within 

the exemplars, and so the search complexity is dependent on the (controllable) 

number of rules discovered, rather than the number of exemplars.

Figure 6.1 represents the approach proposed in this chapter within the PAG framework 

that was introduced in chapter 1 and developed in chapters 3, 4 and 5. The figure 

illustrates that the discovery of structure in the output space is used in a data mining 

process to form perceptual entities that are used to interpret new inputs. Action type 

specific linear mappings are learnt and attached to each discovered perceptual entity. 

The response of the linear mappings attached to the perceptual entities matched in the 

input are combined to generate a system response.

The proposed approach is demonstrated on an autonomous navigation task. The result­

ing visual servo control strategy requires minimal calibration and no explicit definition 

of behaviours but instead is learnt from training data. Conventional visual servo control
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Figure 6.1: Unsupervised learning in output space and percep-action mining fo r  input- 

output mappings-. This figure represents the approach proposed in this chapter within 

the PAC framework introduced in chapter 1 and developed in chapters 3, 4 and 5. 

Unsupervised learning is applied to the problem domain’s output space to discover 

structure in the output space. The structure discovered is used in a percept-action 

mining process to discover task specific visual entities. Matching these entities in 

input images activates linear input-to-output mappings. The response of the mappings 

attached to the matched perceptual entities are combined to generate a system response.

systems employ the use of a priori knowledge in the form of camera calibration models 

and 3D models of the geometry of objects of interest. This conventional top-down ap­

proach is consistent with the cognitivist paradigm. To avoid the problems encountered 

by cognitivist systems the approach presented here concentrates on learning low level 

behavioural models from embodied experiences.

The rest of this chapter is organised as follows: Section 6.1 provides details of the 

robotic platform used to collect the training data and test the system and then presents 

an analysis of the collected training data. Section 6.2 gives details of a supervised
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method of learning a percept-action mapping that provides a baseline performance 

for comparison with the unsupervised approach developed in the rest of the chapter. 

Section 6.3 describes the central mechanism of action space clustering and how this 

identifies classes of actions and percept groupings. Section 6.4 presents a complete 

overview of the proposed system, identifying the key processing stages involved, which 

are presented in detail in sections 6.5 and 6.6. Section 6.5.1 details the approach 

used to encode visual information as feature configurations and sections 6.5.2 and 6.5.3 

detail the method of finding associations between classes of actions and these feature 

configurations. Section 6.6 details how mappings are learnt between associated percept 

and action data and how these mappings are exploited to generate responses to novel 

image data. Section 6.7 presents the experimental evaluation of the system and section 

6.8 contains a discussion and conclusions.

6.1 Em bodied Percept-A ction Experiences

The approach developed in this chapter is based around learning from embodied Percept- 

Action (P-A) exemplars. The system aims to learn how to respond to new inputs in 

a way that imitates the behaviour implicit in a training set of these exemplars. This 

section details the robotic platform used both to collect the training data and to test 

the behaviour imitation capabilities. An analysis of the collected training data is also 

presented, that identifies the type of relationships that should be discovered from the 

data.

6.1.1 E m bodied agent hardware

The robotic platform developed is a relatively inexpensive platform for the investigation 

of embodied artificial cognitive agents. Based on a standard Remote Control (RC) 

model car fitted with a wireless camera, the system allows a teacher to demonstrate the 

desired driving behaviour by viewing the images from the camera on a PC monitor and 

using a standard computer game steering wheel and foot pedal controller to navigate the 

car. This training approach is an adaptation of the mechanism presented in chapter
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Figure 6.2: Mobile agent hardware: A  standard Remote Control (RC) car is fitted 

with a miniature wireless camera. The images are transmitted to a standard PC via 

a wireless USB receiver. During training these images are recorded by the PC and 

displayed to the teacher. The teacher then responds to the images via a standard 

steering wheel game controller, these signals are recorded along with the images and 

are transmitted via a USB-to-PWM converter and RC transmitter to the RC car.

5 that allows for a more intuitive and natural control of the RC car that generates 

continuous control signals. It is important that the teacher is presented with the images 

from the camera rather than viewing the RC car directly. This ensures that the teacher 

is responding to the same inputs the agent will have to respond to.

An overview of the mobile agent hardware is illustrated in figure 6.2. The images 

from the wireless camera are transmitted to the wireless receiver that is connected via 

USB to a PC. During the training stage, these images are displayed on the monitor 

and stored. Also during the training stage a standard steering wheel and foot pedal 

game controller are connected to the PC and the control signals generated by the user 

interaction are transmitted to the car and stored along with the associated image. A 

device called an SC-8000P that converts USB to PWM is used to interface the PC to 

a standard RC transmitter, allowing control signals to be sent from the PC to the car.

The training process involves the teacher driving the agent in order to follow a lead ve-



130 Chapter 6. Affordance Mining: Forming Perception Through Action

hide. This collects a sequence of pairs of images and control parameters - the embodied 

training data - as illustrated in figure 6.3.
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Figure 6.3: Embodied training data: The action data (top) and examples of the image 

data (bottom) are shown. Occasionally the image data is corrupted due to interference 

from the wireless camera (as shown bottom left and bottom center).
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Figure 6.4: Lead vehicle tracking: The waldboost detector is run on every frame of a 

training sequence to provide pose estimates of the lead vehicle. The pose parameters 

are x-position, y-position, height and width.

6.1.2 A nalysis o f em bodied training data

The action data is the log of the actions performed by a teacher, who is responding to the 

motion of the lead vehicle in order to follow it. Therefore, the desired behaviour should 

be implicitly represented by the relationships between the pose of the lead vehicle and 

the associated control signals. To test this, the lead vehicle is tracked over the entire 

sequence, producing a sequence of pose parameters. A version of the LK-SMAT tracker 

presented in chapter 4 was extended [20] to affine deformations and was initially used 

in this tracking application, with good results. However in the experiments presented 

here a waldboost object detector [70] is used instead, as detection recovers well from 

occlusions and image noise. The result of running the walboost detector on a number 

of the training images is illustrated in figure 6.4.

The set of control and pose parameters obtained from the tracker/ detector thus pro­

vides a new data set for the vehicle following behavioural model. This data set is 

constructed with a significant level of supervision, as the detector is trained on hand 

labeled examples of the lead vehicle. Occasionally the detector produces multiple de­

tections (see bottom right image in figure 6.4), this is usually resolved automatically 

by selecting the detection with the highest confidence, but in some cases user interac­

tion is required to ensure the correct detection is selected. This supervised data set
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Figure 6.5: Supervised vehicle following behaviour dataset: The four dimensional pose 

data obtained by tracking the lead vehicle is represented in four 3D plots. The cluster 

of points around the origin are the result of non-detections - resulting in a null pose 

vector. Note the high correlation between the height and width parameters, evident in 

figures 6.5(c) and 6.5(d).

is useful as it provides a way to analyse the relationships implicitly represented in the 

training data. These are the relationships that should be discovered by the proposed, 

unsupervised approach.

Figure 6.5 presents the data obtained as described above. In figures 6.5(a), 6.5(b), 6.5(c) 

and 6.5(d) the four dimensional pose data is represented in four 3D plots. Observe the 

cluster of points, in each plot 6.5(a), 6.5(b), 6.5(c), 6.5(d), around the origin. These 

vectors are the result of non-detections - resulting in a null pose vector. The high 

correlation between the height and width parameters is evident in figures 6.5(c), 6.5(d).

Figure 6.6 shows a plot of horizontal position of the lead vehicle against the turn control 

action parameter. This figure illustrates the strong correlation between the pose of the 

lead vehicle and the teachers actions.
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Figure 6.6: Selected pose parameter to control relationship: The approximately linear 

relationship between the horizontal position of the lead vehicle and the turn control 

action parameter.
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6.2 Supervised Percept-A ction Mapping

As figure 6.6 shows, there is a strong correlation between the lead vehicle pose and 

the associated actions. It should therefore be possible to predict the actions from the 

output of the lead vehicle detector. Whilst such a system relies on a significant level of 

supervision, both in training the detector and in disambiguating multiple detections, it

is described here as it provides a baseline performance for a system expected to predict

actions from percepts on this dataset.

The supervised percept-action mapping approach maps from the 4-dimensional pose 

parameters, p, obtained from the lead vehicle detector, onto the 2-dimensional action 

parameters, a, > 9%̂. The mapping is achieved using a single linear regression 

model, H. A bias term is included in the linear model. So an action, a is computed 

from a pose vector, p, as in equation 6.1.

a =  Hp -f b (6.1)

The training set for learning H is the supervised dataset illustrated in figures 6.3 and 

6.5, i.e. {aj,p^} pairs, {i G [1, A]). All the pose vectors, p, and the associated action 

vectors, a, are stacked into the training matrices, P and A respectively. To learn the 

bias for the linear model an additional column of Is is added to the end of P, giving: 

P =  (P, [1]), where [1] denotes a column vector of N  rows. Using least squares, H 

can now be obtained as follows:

H = AP + =  AP'^(P'P'^)-^ (6.2)

Where P ^  is the pseudo inverse of P and P ^  is the transpose of P .

The result of applying this mapping to an unseen test dataset of pose data (obtained 

from the trained lead vehicle detector) is shown in figure 6.7. It can be seen that 

the signal generated by the approach approximately follows the expected signal. The 

spikes in the generated signal correspond to false detections (not removed in the test 

set), usually these detections are of excessively large scale.
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Figure 6.7: Supervised percept-action mapping: The generated ‘turn-controP action 

signals (red) are shown for the supervised method, along with the expected action 

signal (blue).

The rest of this chapter focuses on removing the supervision inherent in this approach. 

The system should be able to identify the object of interest (the lead vehicle) and to 

identify and exploit the relationship between the state of this object and the desired 

actions, without any supervision.

6.3 A ction  Space C lustering

As was discussed in the previous chapter, unsupervised learning techniques are often 

applied to percept spaces (e.g. image or feature space), but are prone to yielding am­

biguous or erroneous results. This is often due to assumptions about suitable distance 

metrics used to cluster the data. For an embodied agent (e.g. all natural cognitive 

systems and the system proposed in this work), percept data is never obtained in iso­

lation - it is always coupled to action data. This coupling is exploited in this work 

by clustering coupled percept-action exemplars, in the action space. This results in 

the formation of meaningful classes of action or ‘action-types’, as well as meaningful 

perceptual groups. Besides this organising property, action space clustering also pro-
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Figure 6.8: Action clustering: Action clusters are formed along with sets of associated 

images.

vides a means of symbolically representing the action space. Attaching symbols to the 

identified action-types allows symbolic data mining techniques to be applied to the 

continuous action space.

Figure 6.8 illustrates the result of performing this action space clustering on the col­

lected training data. The action data is clustered - using k-means clustering - into 

fc =  6 clusters, and examples of the associated images are shown. In order to obtain 

invariance to displaeement, scale and rotation, the action data is whitened prior to clus­

tering. The data is translated (by the mean sample value), scaled (each dimension by 

the associated eigen values of the sample covariance matrix) and rotated such that the 

features have zero mean, unit variance and the data axis coincide with the eigenvectors 

of the sample covariance matrix.

6.4 Affordance M ining Process Overview

An overview of the proposed approach is illustrated in figure 6.9. First an exemplar 

set, E,  of training data of the form E  =  { (p ^ ,a ^ ) , ..., (p '^ ,a-^ )}, where { p b . .p ^ }  is the 

set of images, and {a^...a-^} is the set of action vectors, aP = [0 1 , 0 2 ] G 3%̂, is collected
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Figure 6.9: System overview: Coupled percept and action data are represented as 

Percept-Action (P-A) transaction vectors by concatenating visual codeword configura­

tion vectors and action-type labels. Data mining is then used to discover P-A associa­

tions that identify feature configurations that are associated to a particular action-type. 

Matching these association rules in training images then provides data for learning P-A 

mappings for each association rule, that map from feature configurations to actions. 

Matching the association rules in novel images then activates the associated P-A map­

pings, thus providing a mechanism for generating appropriate responses to novel image 

data.

(details of this data gathering process are given above). Symbolie representations of 

both the actions, and percepts, are then formed. For the action data, k-means is 

applied directly to action vectors, resulting in k action-types, as detailed above. For 

image data, a visual codebook of local image SIFT features is built using k-means 

clustering, where the k cluster centers make up the codewords. Spatial relationships 

between features are represented by encoding local feature configurations, as described 

in section 6.5.1. The visual information in each image is thus represented as a set of 

codeword configurations.

Links between the symbolic percept and action spaces are then obtained by performing 

data mining on a combined Percept-Action (P-A) representation, named P-A transac­

tions. Each transaction represents an action-type coupled to a codeword configuration.
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where one item in each transaction represents the action-type, and the remaining items 

represent a visual codeword feature configuration, as detailed in section 6.5.2. The data 

mining algorithm then processes these transactions to produce P-A association rules.

The continuous training data, and the mined symbolic association rules are then used 

to learn action-type specific P-A mappings, as in section 6.6.1. These mappings map 

from the continuous (un-quantised) pose of image features that are associated to an 

action-type, onto the continuous action vectors belonging to that action-type. These 

mappings constitute affordances for the mined perceptual entities.

Still referring to figure 6.9, when presented with novel image data, the system constructs 

the visual codeword configurations as before. These configurations are matched to the 

mined association rules and the P-A mappings associated to the rules are applied to 

the features that form the matching configurations, in order to generate a response. 

This process of generating responses to novel image data is detailed in section 6.6.2.

6.5 M ining Percept-A ct ion Associations

The proposed vision system is based on local feature descriptors. A Difference of 

Gaussian (DoG) detector is used to extract regions and the SIFT descriptor [50] is 

used to describe the regions. A prior is placed on the scale and location of the SIFT 

features used in the later stages of the process. This results in a filtering of the set 

of SIFT descriptors extracted from each image. Figures 6.10(b) and 6.10(c) illustrate 

this filtering stage. As the lead vehicle will always remain on the ground plain, and as 

features on the lead vehicle will have a limited scale in the images, features are rejected 

that appear too near the top of an image or have overly large scales.

The 128-dimensional SIFT feature descriptors are clustered to form a visual word vo­

cabulary, using k-means clustering. Additionally, the scale and orientation of the fea­

tures are clustered to form ‘scale words’ and ‘orientation words’. Meaning that each 

SIFT feature can be described using three discrete labels - descriptor, scale and orien­

tation words - and the continuous horizontal and vertical position. For clustering the 

descriptor, k = 50, for scale and orientation, k — b.
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(a) Input image. (b) Sift descriptors. (c) Sift filtering.

m

(d) Feature configurations. (e) Mined configuration.

Figure 6.10: P-A mining process: Four stages of the feature mining process are illus­

trated. Sift descriptors are extracted from the input images. These are then filtered 

to remove features near the top of the image or that have overly large scales. Fea­

ture configurations are then assembled and those configurations that are associated to 

particular action-type are then discovered through data mining.
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6.5.1 Feature configurations
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Figure 6.11: Encoding configurations: This figure illustrates how a configuration of fea­

tures is encoded in a sparse vector representation, and how this sparse vector represen­

tation is used to build the feature configuration vectors used by the mining algorithm. 

The top left of the figure shows a configuration of features found around the central 

(green) feature. The top right of the figure illustrates how the feature configuration 

is represented as a configuration of visual codewords at quantised relative locations, 

scales and orientations. The bottom left part of the figure details how a particular 

feature (marked in red in the top left) is encoded in the sparse vector representation. 

The bottom right of the figure shows the sparse vector representation of the configu­

ration. Also shown is the feature configuration vector that forms the percept part of 

the transaction vectors used in the data mining. The values of the non-zero indices of 

the sparse vectors are the feature indices that identify the feature in the image, these 

are used when mapping from feature pose to action parameters. Note that the center 

feature (green) is not represented.
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Figure 6.11 illustrates the method used to encode the spatial configuration of the ex­

tracted SIFT features. A similar scheme was introduced in [62]. For every feature in 

an image (after filtering) a 3-by-3 grid is placed on the image, centered on the feature, 

and scaled proportionally to the feature scale. Any neighbouring features that fall into 

a tile of the grid are encoded as part of that feature configuration, the encoding reflects 

which tile the feature is in i.e. i t ’s spatial relation, and the visual, scale and orientation 

words representing the feature. A sparse vector representation is employed for which 

the non-zero indices encode the configuration and the values store the feature index 

in the image, so that the continuous feature pose may be recalled for the P-A map­

pings. The feature configuration vector contains the indices of the non-zero elements 

of the sparse vector, and is used to represent the visual information in the data mining 

process.

Examples of feature configurations for two of the training images are shown in figure

6.12. As can be seen, some of the feature configurations lie on or partially on the target 

vehicle, whilst many lie on the background. The full set of configurations for an image 

(as illustrated in figure 6.10(d)) will contain considerable redundancy, where each local 

pairwise spatial relationship will be encoded a number of times within multiple feature 

configurations.

6.5.2 P ercept-A ction  transaction  database

Association rule mining is the process of finding association rules in a database D = 

of transactions, where each transaction is a set of items, and I  is the set 

of all items^. An association rule is an implication of the form X  Y  where X , Y  C I  

and X  C\Y =  0.

A Percept-Action (P-A) transaction represents a feature configuration coupled to the 

associated action-type. The action-type being the cluster label associated to the image 

from which the feature configuration is extracted.

^The terminology tr a n s a c t io n s  and i te m s  comes from the data mining literature, reflecting the 

subjects origins in market basket analysis applications
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Figure 6.12: Feature configurations: Six examples of feature configurations for two 

frames are shown. Some of the configurations contain features on the target, some 

contain features only from the background.

The set of items is /  =  { o i , ..., i?i, ...i?;}, where {o;i,..., Ofc} are the k — 6 action- 

type items and {R i,...R i}  are the I =  540 (9 tiles, 50 visual, 5 orientation and 5 

scale words) unique spatial relationships that form the feature configurations. Each 

transaction vector is the concatenation of the action-type item with the items from the 

feature configuration vector, as illustrated in figure 6.13. Therefore each transaction 

contains a subset of I  with one item always drawn from {ai, ...,ak}.

The transaction database D =  {fi, 2̂, tm} is assembled, as in figure 6.13, by collecting
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Transaction Database

Figure 6.13: Transaction database: Each transaction is the concatenation of an action- 

type label (obtained by k-means clustering the action parameters) with a feature con­

figuration (the indices of the non-zero elements of the sparse vector representation). 

The transaction database is the collection of all transactions from all training images.

together all P-A transactions drawn from all training data, E  = {(p^, a ^ ),..., (p-^, a-^)}. 

In the experiments carried out in section 6.7, the total number of transactions in the 

database, m  =  88810. This database is then processed using the Apriori [8] data mining 

algorithm, in order to find frequent and discriminative feature configurations for each 

action-type.

6.5.3 M ining P -A  association  rules

In association rule mining, rules arc selected from the set of all possible rules based on 

constraints on measures of significance and interest. These constraints are thresholds on 

itemset support and rule confidence. The support, supp{X), of an itcrnsct X  is defined 

as the proportion of transactions in the database which contain X .  The confidence, 

confix  => Y)  of a rule is defined:
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The Apriori algorithm [3] employed here exploits the anti-monotonicity of the support 

threshold constraint - that a subset of a frequent itemset must also be a frequent 

itemset - to efficiently mine association rules. This work uses an efficient existing 

implementation of the Apriori algorithm [8].

Association rule mining is employed to mine the P-A transaction database, in order 

to discover feature configurations that frequently co-occur with a particular action- 

type, and not all other action-types. The algorithm finds subsets of items from the 

transaction vectors that are frequent and discriminative to a given action-type. The 

Apriori algorithm is ran once for each action-type, where it searches for rules including 

that action-type, and treats all other action-types as negative examples.

For the experiments carried out here, the support threshold Tsupp = 0.02 and confidence 

threshold Tconf = 99 are used for all action-types and are selected by experimenta­

tion. These values are chosen as they provide an appropriate size set of rules to allow 

for real time rule matching in novel images (as detailed below in section 6.6.2). Be­

tween 400 and 500 rules are found for each action-type. The rules contain between 3 

and 10 items (including the action-type item). An example of such a rule would be 

{slow-left -4- 114,188,295}, meaning that a particular configuration of three features 

commonly occur and are associated with actions of the type ‘slow-left’.

For the mining, the feature configurations are represented using the indices of the non­

negative elements of the sparse vector representation, as illustrated in figures 6.11 and

6.13. However, when matching configurations found in an image to association rules, 

the sparse vector itself is used, rather than the non-negative indices. The sparse dot 

product is used to efficiently match rules to configurations found in an image. Examples 

of the mined association rules for each action-type are illustrated in figure 6.14.
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Figure 6.14; Association rules: Training vectors for six action-types (from left to right 

on top row: ‘slow-left’, ‘fast-left’, ‘slow-straight’, and on fourth row: ‘fast-straight’, 

‘fast-right’, ‘slow-right’) are shown along with examples of associated configuration 

rules mined for each type. In general, if the lead vehicle is to the left/center/ right, 

then the associated action is left/center/right. However sometimes the pose of the lead 

vehicle, rather than the position is used to associate to the action-type (e.g. far right 

on fifth row, and middle on bottom row).
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6.6 Affordance Based Representation

This section details how the proposed system builds, in an unsupervised manner, an 

affordance based representation of the world, and how this representation is used to 

generate responses to novel percept data. This is achieved by attaching learnt mappings 

to each mined association rule. These mappings map from the pose (horizontal and 

vertical position, scale and orientation) of the features in the rules onto actions. Linear 

regression is used to learn linear mappings from pose space to action space. First 

the mapping learning process is detailed, then the mechanism developed to utilise the 

mappings is described.

6.6.1 Learning action-type specific P -A  m appings

A linear percept-to-action (P-A) mapping, is learnt for each association rule

(mined configuration). U p - a maps from (C * 4)-dimensional feature pose space, to 

2-dimensional action space, -4- 9%̂, where C  is the number of features that make 

up the rule. A bias term is included in the linear model. So an action, a  is computed 

from a {C * 4)-dimensional pose vector, p, as in equation 6.4.

a  =  H p_^p  -f b (6.4)

In order to learn each H p-A , N  training examples of { a i ,p j  pairs, (% G [1, N]) are re­

quired. The training set for each U p - a is obtained by matching rules to configurations 

found in the training images. Whenever a configuration found in a training image is 

matched to a rule, the pose parameters of the features that make up that configuration 

form a new pose vector p. The value of the non-negative elements of the sparse vector 

provide the index to the matched configurations constituent features.

For each rule, all the matched configuration pose vectors, p, and the associated action 

vectors, a, are stacked into the training matrices, P  and A  respectively. Least squares 

is then used to obtain U p - a , as shown previously.
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6 .6 .2  R e s p o n d in g  to  n o v e l d a ta

A new input image is processed to generate a set of visual codeword feature configura­

tions as detailed above. Configurations are then compared to all the mined action-type 

specific configurations (rules). Matching a configuration to a mined rule is achieved by 

computing the dot product of the two sparse vector representations. If the number of 

non-zero elements in the dot product is equal to the number of non-zero elements in 

the sparse vector representation of the association rule, then the rule is matched. If a 

match is found then an action prediction is made as in equation 6.4 using the U p - a 

associated to the matched rule. Once all found configurations have been compared to 

all rules, the output action is computed as the median of all action predictions.

To speed up the generation of actions, only configurations within a search range of the 

previous target location are compared to the rules. The search range is proportional to 

median grid size of the configurations matched in the previous frame, and is centered 

at the median position of the previously matched configurations.

6.7 Evaluation

The two objectives of the work presented in this chapter - to discover the visual entities 

important to the task and to generate appropriate responses to novel data - are evalu­

ated. This is achieved by using the supervised vehicle following dataset introduced in 

section 6.1.2. To recap, this dataset is obtained by learning (in a supervised manner) 

a detector for the lead vehicle. The detector is a Waldboost detector [70] trained on 

hand labeled examples - sufficient examples are used in training to provide a detector 

that achieves very high accuracy on the test dataset. The detected position of the lead 

vehicle is then used to evaluate how well the mined configurations relate to the lead 

vehicle. Additionally, the detected pose data is used as input to a supervised method 

for action generation, detailed in section 6.2, to compare to the proposed unsupervised 

approach.

Figure 6.14 shows examples of mined configurations that lie on the object of interest, 

the lead vehicle. Indeed the majority of mined configurations do lie on the lead vehicle.
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Table 6.1: Hit/miss ratio for mined configurations lying on the lead vehicle.

Action

class

slow-left fast-left slow-straight fast-straight fast-right slow-right

Hit/Miss 

ratio

0.95 0.78 0.83 0.74 0.92 0.87

ini]fiying that the proposed method has discovered the important visual entities. To 

ciuantitativcly evaluate this, the h it/ miss ratio is measured across a test set of unseen 

data. A hit is defined as when at least 50% of the features that make up a configuration 

lie within the bounding box obtained from the detector. Table 6.1 shows the hit/miss 

ratio for each action-type.

Figure 6.14 and table 6.1 both seem to indicate that the mined action-type specific 

feature configurations are highly correlated with the features that lie on the lead vehicle.

The action generation mechanism is evaluated by comparing the actions generated by 

the proposed system on unseen test data with actions generated by the supervised 

approach. The supervised approach maps from the target pose, obtained from the 

waldboost detector, to the action parameters using a single linear regression model.

2 . 1.4

1.2

(a) Supervised method (b) Proposed method

Figure 6.15: Generated action signals: The generated ‘turn-control’ action signals (red) 

are shown for the proposed method and a supervised method, along with the expected 

action signal (blue).

Comparing the action signals generated by the supervised and proposed (unsupervised)
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approaches in figure 6.15, it can be seen that both methods approximately reproduce the 

control signal provided by the teacher. Note that the high accuracy of the supervised 

approach in parts of the signal, reflects the strongly linear relationship between target 

pose and action signals.

The large peaks in the signal generated by the supervised approach correspond to false 

detections. Although there are false detections (incorrect configuration matches) in the 

proposed system, these generally have a minimal effect on the output as the output 

is the median of a number of predictions, therefore these irregularities in the action 

signals are generally avoided.

Certain parts of the signal generated by the proposed approach do not exactly follow 

the expected signal (for example from frame 100 to 150). This is in some cases due 

to the fact that the expected signal, provided by the teacher, includes instances of 

oversteer and compensation, and is therefore not necessarily superior to the generated 

signal.

6.7.1 B ehaviour evaluation

Figures 6.16 and 6.17 demonstrate the approach at imitating the desired behaviour. In 

figure 6.16 the target is placed at three stationary positions and the agent is shown to 

generate actions that drive toward the target. In figure 6.17 the lead vehicle is driven 

around and the agent is shown demonstrating the desired behaviour - following the lead 

vehicle.

Figure 6.16 shows how the agent drives toward the stationary lead vehicle. The correct 

turn parameter is produced in response to the position of the lead vehicle, with occa­

sional oversteer being compensated for in the following time steps, although in these 

experiments oversteer was found to be rare. As the agent approaches the lead vehicle it 

slows down, indicating that the control signal is being determined in part by the scale 

parameters of the Sift features that make up the matched feature configurations. As 

a single linear mapping maps from (C * 4)-dimensional feature pose space (where C is 

the number of features that make up a rule) onto 2-dimensional action space, the cor­

relations between the two control signals are maintained. For example, the same turn



150 Chapter 6. Affordance Mining: Forming Perception Through Action

Figure 6.16; Action generation results: The agent is shown to demonstrate the appro­

priate actions, by driving (to left - top, straight - middle, to right - bottom) toward the 

target and then coming to stop.

control value will produce different turning angles at different speeds. This is captured 

by the model as both the control signals are predicted from all four pose parameters, 

rather than, as might be done in an engineered system, independently predicting turn 

and speed parameters from horizontal position and scale respectively.

In the experiment illustrated in figure 6.17 the lead vehicle is driven freely around 

the environment. As the agent follows the lead vehicle around it is presented with 

many aspects of the lead vehicle as it is viewed from many different directions. For 

example the lead vehicle sometimes appears side on, traveling from left to right (or 

right to loft). In this case it was found that the correct turn control was generated, 

regardless of the horizontal position of the lead vehicle. This behaviour highlights the 

fact that the control signals are generated in response to a higher order pose space than 

the 4-dimensional (horizontal and vertical position, scale and orientation) feature pose 

space. This is achieved through the mined action-type specific feature configurations, 

where each configuration contains information regarding the pose of the lead vehicle, 

as each configuration is drawn from a particular aspect or view. Examples of such 

configurations can be seen in figure 6.14. Observe, in figure 6.14, the position and pose 

of the lead vehicle in the image in the second column on the bottom row. Although the
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Figure 6.17: Behaviour imitation: The behaviour demonstrated by example is repli­

cated by the agent, as it follows the lead vehicle. The sequence runs in raster scan 

starting at the top left and ending at the bottom right.

lead vehicle is to the center of the image, the configuration is associated to the ‘fast-left’ 

action-type due to the side on view. Matching to this configuration will result in the 

activation of the ‘fast-right’ linear p-a mapping.

In the experiment illustrated in figure 6.17 the lead vehicle occasionally left the view of 

the agent. A number of strategies were tested to cope with this occurrence. For the first 

and simplest strategy, if no configurations are matched in the image, the vehicle stops 

and waits until the vehicle is re-detected (through configuration matching). For the 

second strategy, the vehicle continues with the last generated aetion until re-detection. 

A third strategy involved the agent entering a ‘search mode’ in which it turned fully in 

the direction in which the lead vehicle had exited the view. Of the three strategies, the 

first was least problematic and resulted in the most acceptable driving behaviour. The 

second, although occasionally the correet strategy, often resulted in the agent driving 

off into a wall or obstacle, potentially at high speed. The third strategy was successful 

in some instances, but provided no guarantee of finding the lead vehicle and sometimes 

resulted in continuous turning and collision with walls and/or obstacles.
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6.8 Conclusion and Discussion

This chapter presents a method for discovering the visual entities that are important 

to a given autonomous navigation task and utilising these perceptual representations 

to imitate the behaviour that is demonstrated by the teaeher. The system requires no 

explicit definition of behaviour, uses no prior model of the objects of interest to the task 

and no supervision, other than the provision of input-output exemplars in the form of 

images and actions i.e. reeorded experiences that exhibit the desired behaviour.

Partitioning the training exemplars using similarity of actions provides a means of 

organising the perceptual space of the agent in a way that is relevant to the problem 

domain. This allows for the discovery of perceptual representations that are specific 

to a particular class of actions. These representations are discovered using efficient 

association rule mining techniques. The representations are built on a spatially encoded 

visual word representation. The results shown in figure 6.14 and table 6.1 confirm that 

the visual entities discovered do in fact relate to the object in the scene that is important 

to the task.

By attaching action generation models (linear percept-to-action mappings) to each 

discovered visual entity, the system builds, in an entirely unsupervised manner, an 

affordance based representation of the world. This novel representation directly couples 

percepts to actions, resulting in a system that is able to respond to novel percepts in 

real time. The results presented in figures 6.15, 6.16 and 6.17 demonstrate that this 

novel affordance based representation generates the type of actions expected and allows 

the system to imitate the behaviour demonstrated by the teacher, when presented with 

new situations. This is achieved with no explicit definition of the behaviour.

Whilst the developed approaehes performed well in the test scenarios, it is possible to 

construct a number of scenarios in which the approach my prove insufficient to allow 

full behaviour imitation. First, the use of a single rigid lead vehicle as the important 

visual cue is well suited to the feature configuration mining approach. The developed 

approach has not been shown to be capable of generalising to a class of lead vehicles, 

or perhaps other entities such as road lanes or people. In the case of road lanes, the 

mining process would be expected to identify lane markings or drivable surfaee regions
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and to associate properties of these entities to actions e.g. road curvature should be 

associated to turning in a lane following task. In the case of people, the task may 

require the agent to follow people, or maybe to avoid collision with people. In either 

case, both the number and complexity of the mined association rules is likely to be 

considerably higher, due to the considerable variability of the appearance of people. 

One possible way to approach such problems would be to utilise a richer set of visual 

features, allowing for mining of a ‘mixed bag’ of features each representing a different 

facet of the visual environment.

The approach developed in this chapter does not model the dynamics of either the 

perceptual space nor the agents own action space. The approach produces a reactive 

stimulus-response system, in which responses are generated purely based on the current 

state of the discovered visual entities, without taking into account past world states 

or the current state of the agent. Including a representation of the dynamics of the 

discovered entities is likely to improve the quality of the generated actions. Not includ­

ing any representation of the agents previous actions in the action generation process 

can result in large discontinuities in the generated control signals - the generated ac­

tion could transition from a ‘slow-left’ type action to a ‘fast-right’ type action in a 

single time step. Some form of temporal smoothing or dynamic model would avoid the 

occurrence of this undesirable behaviour.

Taking the extremely complex environment of a real driving scenario on public roads 

as an example of a test scenario, it is apparent that the developed method would not 

be sufficient to imitate the desired driving behaviour. Although it may be possible to 

extend the approach to general lane following and perhaps obstacle avoidance (with 

the inclusion of additional feature descriptors and with sufficient training data), the 

approach can not be expected to deal with the complex interactions of multiple road 

entities and the behavioural rules associated with safe and legal driving. In these more 

complex environments, higher level logical reasoning approaches will likely be required 

to achieve fully autonomous behaviour.
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Chapter 7

Concluding D iscussion

7.1 S um m ary

This thesis has focused on solving the simultaneous modeling and tracking problem and 

generic problems in the percept action domain. Novel solutions to these problems have 

been developed by combining unsupervised learning methods with linear regression 

models. Whilst linear regression offers a computationally low cost solution to mapping 

from problem input to problem output spaces, unsupervised learning, which has a rela­

tively high computational overhead, can be used to discover problem specific structure 

in problem input/output exemplars. This discovered structure is used to improve the 

modeling capabilities of the linear models. The approach of learning from example 

and of unsupervised learning is consistent with a fundamental motivation of the work 

in this thesis that is to remove the need for explicit definition of models or rules that 

determine the process of perception and system behaviour.

In chapter 2 relevant literature is reviewed and a discussion is made to provide back­

ground for, and give context to, the work that makes up this thesis. Particular a t­

tention is given to the changing research trends from the cognitivist to the emergent 

paradigm. The importance of embodiment to the process of cognition is developed 

with motivation and evidence drawn from philosophical, neuropsychological and AI 

research backgrounds. Conventional techniques and relevant literature are reviewed to 

the problem domains of visual tracking and visual servo control.

155



156 ' Chapter 7. Concluding Discussion

Chapters 3 and 4 are concerned with the development of fast visual feature tracking 

algorithms that utilise no prior model (hard coded or learned) of the target appearance. 

The approach developed operates at high frame rates, tracks fast moving objects and 

is adaptable to variations in appearance brought about by occlusions or changes in 

pose and lighting. This is achieved by employing a novel, flexible and adaptive object 

representation comprised of sets of spatially localised linear displacement estimators 

associated to various modes of a multi modal template based appearance model learnt 

on-the-fly. Chapter 3 focuses on the displacement estimation methods and chapter 4 de­

velops the general Simultaneous Modeling and Tracking framework as well as methods 

for unsupervised learning of models of the appearance of the target object.

In chapter 3 the relationship between regression and registration techniques for dis­

placement estimation is explored and the relative strengths of the two approaches are 

evaluated with illustrative results highlighting the pitfalls of the registration techniques 

in the presence of multiple local minima in the registration cost surface. A regression 

based displacement estimator, the Linear Predictor (LP), is developed that provides 

an efficient and powerful learning mechanism. LP learning methods that have low com­

putational cost are employed, where costly predictor support selection and regression 

function estimation methods are avoided. Despite the non-optimal learning methods 

used to develop a cost-effective LP, the predictors are shown to have a well defined 

accuracy characteristic up to the range of displacements for which they are trained. 

The LP is found to allow the explicit trade off between predictor range, accuracy and 

computational cost.

Chapter 4 introduces a general Simultaneous Modeling and Tracking framework within 

which the displacement estimation process provides a mechanism for self supervision of 

the appearance model learning process and, in return, the appearance model provides 

information about the structure of the target appearance space that enables the tracker 

to cope with a high degree of variation in appearance. Due to the computationally 

low-cost, sub-optimal learning methods used for learning the LPs, it is essential that 

the use of the online-LP be combined with mechanisms to evaluate, weight, remove 

and relearn LPs online during tracking. This is achieved using an association matrix 

containing performance metrics for each LP within each appearance mode. Three
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general components to the generic architecture are identified: an appearance model, an 

association matrix and a bank of displacement estimators.

Chapter 4 continues by investigating various configurations of the general tracking 

framework. A variation of Dowson &: Bowden’s SMAT algorithm is detailed and this 

model is incorporated into the proposed tracking framework to form the LP-SMAT 

tracker. The medoidshift nonparametric clustering method is also employed to model 

appearance variations and this model in incorporated into the proposed framework. 

Both the appearance models demonstrate the ability to adapt to large variations in 

appearance in order to manage flocks of online-LPs and to facilitate accurate and 

efficient tracking. Due to the flexibility of the medoidshift approach it is able to build 

more representative models of the object appearance space, regardless of the temporal 

evolution of the target appearance. Both the online-LP based methods, LP-SMAT 

and LP-MED, achieved good accuracy compared to other approaches, LK-SMAT and 

online-Boost and with considerable decrease in computational cost.

In chapter 5 a system is developed and demonstrated that is capable of learning to 

respond appropriately in an autonomous navigation problem, without the need for the 

explicit definition of behaviour. This is achieved by exploiting three major techniques. 

First, the imitation training framework in which domain specific embodied knowledge 

is imparted by allowing a teacher to demonstrate appropriate behaviour through the 

agents control hardware. Second the concept of modeling behaviour of the agent via 

the Perception Action Cycle (PAC) using a recall-reuse methodology based on learning 

from example. Third the proposed approach of using unsupervised learning that dis­

covers structure in the action space in order to construct exploitable categories in the 

perceptual space. By facilitating a self-organizing process, this solution ensures that 

the perceptual categories formed by the agent are semantically grounded, where the 

meaning is the categories association with i t’s action models.

Chapter 6 develops a novel percept-action mining methodology, that is able to discover 

the visual entities that are important to a vision system given a specific problem and 

to map from these emergent perceptual entities, onto the agents action space. This 

is achieved by adopting many of the ideas developed throughout this thesis: imitation
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learning, output space clustering and linear regression for input-output mapping. These 

approaches are combined with association rule mining algorithms and methods for 

modelling the spatial configuration of local image features. The system requires no 

explicit definition of behaviour, uses no prior model of the objects of interest to the 

task and no supervision, other than the provision of input-output exemplars in the form 

of images and actions i.e. recorded experiences that exhibit the desired behaviour.

In the wider context of this thesis, the processes described in chapters 3 and 4 can be 

viewed as the use of unsupervised learning to discover structure in a problems input 

space and to use that structure to partition the linear input-output mappings. By 

contrast, the mechanisms developed in chapters 5 and 6 use unsupervised learning to 

discover structure in a problems output space and to use that structure to partition the 

linear input-output mappings. This approach is dependent on the existence of input- 

output examples, a feature also of embodied systems which require interaction with the 

world in order to organise the cognitive process.

Two factors that strongly motivate the work in this thesis are the computational effi­

ciency of linear mappings (both for learning and prediction), and the non-linearity of 

the relationships between percept and action spaces. This second factor being in part 

due to the generally significant non-linearity of percept spaces. The problem then, is 

to apply linear techniques to a non-linear problem. This is achieved here by developing 

novel piecewise linear mappings. A key factor in any piecewise model, is delimiting 

the range and domain of each linear region, or partitioning the mapping space. This 

is achieved in this thesis in two ways. First, in chapter 4 this is achieved by clustering 

the input space to partition the mapping space. In this way the boundaries of each 

linear region are determined by limits in the input space. Secondly, in chapter 6 the 

boundaries of each linear region are determined by limits in the output space. Both 

these approaches impose structure on both input and output space. An interesting 

result is that the structure imposed on the input space by output space clustering is 

generally more meaningful than the structure imposed on the output space by input 

clustering.

In fact the piecewise linear mappings developed in this thesis have another important
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feature. Rather than each linear region being mapped by a single linear function, 

multiple linearly weighted linear functions are used within each region. These ‘parti­

tioned flocks’, or constellations of linear mappings increases robustness of the overall 

mapping. Employing multiple regression functions also provides a means of iteratively 

updating the overall mapping by replacing poorly performing functions from within a 

constellation.

Within the strictest definition of embodiment the agent needs to be situated in the 

real physical world in order to develop cognitive capabilities. However a more relaxed 

definition might require only that the agent needs to be able to observe changes in 

input caused by it’s output. In this sense the LP tracker achieves its mappings by 

simulating an embodied experience. By generating synthetic outputs (displacements) 

and observing the inputs (intensity differences) the tracker is able to learn a mapping 

between the two spaces.

7.2 Future Work

This thesis has focused on solving the simultaneous modeling and tracking problem as 

well as generic problems in the percept action domain. By developing generic solutions, 

the future application of the approaches to multiple domains is increased. The tracking 

approaches proposed can be applied to many tracking problems where no prior model of 

the target appearance is available and where an explicit trade off between computational 

cost and accuracy is desirable. In particular, the approach offers an alternative to the 

ubiquitous Lucas-Kanade tracker. Example applications include structure from motion 

and motion segmentation. Both these problems require many interest points to be 

tracked, with no a priori information about the features to be tracked.

The percept-action learning methods developed could also be extended to alternative 

domains. Current research is focused on using many of the components of these models 

to model the behaviour of drivers in a real driving scenario. By discovering and model­

ing structure in the drivers control space e.g. foot break usage, concepts and categories 

relating to the drivers perceptual space can be discovered, e.g. red traffic lights. Addi­

tionally, the percept-action data mining methodology is currently being employed for
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learning visual servo control. In the context of a robot gardener, the approach is being 

used to learn which features of plant/leaf appearance can be used to guide the control 

of a robotic arm, in tasks such as pruning and inspection.

Although not investigated here, it is believed the exemplar hierarchy could have wider 

applications than the percept-action domain problem. The use of hierarchical output 

space clustering could be used in a number of applications, to discover the important 

variance and invariance of input parameters as well as provide general to specific gen­

erative output models. Such an application could be that of human pose estimation, 

where structure discovered in the pose space can be used to organise the input feature 

classification.

Another interesting aspect of the P-A hierarchy relates to the potential for generating 

multiple hypothesis from the probabilistic action models. By allowing the search to 

traverse multiple branches of the search tree, the system is able to generate a range 

of different solutions to the problem. Some work has been carried out to exploit this 

property of the hierarchy within a probabilistic multiple hypothesis exploration strat­

egy, similar to a particle filter, where the hypothesis generated by the hierarchy can be 

propagated forward in time to discover optimal strategies.

There are many potential avenues of research that arise out of this thesis, but there 

are two specific application areas of interest. Visual tracking and autonomous robot 

control/navigation. Following are plans of future work for each of these two directions.

7.2.1 Future work: tracking

To further increase the range of applications of the proposed tracking approach, the 

incorporation of higher order transformations, e.g. affine deformation, into the linear 

prediction technique should be relatively straightforward. This could be achieved by 

either increasing the dimensionality of the linear mappings or alternatively by having 

flocks of LPs dedicated to each dimension of the transformation. An evaluation of the 

pros and cons of these two approaches would be of interest.

Another interesting extension of the tracking approach could be to apply the output 

space clustering approach to the problem. In the tracking domain, the output space
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is the target pose or pose update parameters. As a first step, the current tracker (e.g. 

LP-MED) could be run on a number of training sequences, collecting the pose update 

data for each predictor at each frame. Clustering this data may reveal a distribution 

of updates, e.g. a cluster of small pose updates when the target is not moving, and 

another cluster of large updates, when the target is moving. Given higher dimensional 

pose updates, the clustering may reveal other pose update classes, relating to e.g. the 

object tilting or the object rotating. New linear predictors could then be trained to 

specifically handle each of the classes of pose update parameters i.e. one bank of 

LPs trained on going left quickely and another for rotating slowly, for example. The 

interesting problem will be projecting this structure back into the input (image) space. 

A discriminative model of the set of image transitions associated to a class of pose 

updates (e.g. rotating slowly), could be used to activate the appropriate subset of LP’s, 

those trained on the ‘rotating slowly’ data. In this way, the output space clustering 

will have formed exploitable categories in the space of image transitions. A simple way 

to represent an image transition is as a vector of image pixel differences.

Continuing with the visual tracking problem, the shape of the target is restricted to 

a rectangle in the image plane under the current model. A dynamic region-growing 

approach based on the local and global coherence of linear displacement estimations 

across the image would enable researchers to model full scene dynamics without labori­

ous model building or hand labeling of regions of interest. A starting point would be to 

initialise an LP-MED (or LP-SMAT) tracker on an object using the current method of 

identifying a rectangle on the object. Then allowing some LPs to be trained on regions 

outside the rectangle, and by modifying the boundaries of the rectangle to identify the 

convex hull of the position of LPs who are on the target. Whether an LP belongs to 

a target could be estimated based on a threshold of the flock agreement error devel­

oped in chapter 3. Ultimately, the research should aim to achieve full scene object and 

motion segmentation, using a combination LP partitioning and appearance modelling.
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7.2.2 Future work: robot control

Taking the approaches of learning from example (from demonstration), output space 

clustering and percept-action association rule mining as a starting point, there are a 

number of potentially interesting avenues of future work. First, applying the approach 

developed in chapter 6 to alternative applications and scenarios will help delineate the 

scope of applications of the approach. Two application areas of interest are object ma­

nipulation with a robotic arm, and autonomous navigation. Within the autonomous 

navigation domain, it is not clear whether the the current visual information repre­

sentation will be sufficient to represent the important characteristics to the task. For 

example, for a path/road/lane following task, the curvature of the lane boundary will 

be an important feature, but may not be captured by the local SIFT feature config­

urations of the existing approach. As the datamining approach allows for discovery 

of patterns of a ‘mixed bag’ of features, it could be well suited to the use of multi­

ple feature representations. Incorporating local, global, texture, colour etc. features 

and feature configurations into the existing percept-action mining methodology should 

allow for a larger range of more complex entities to be discovered.

An important next step for the percept-action mining approach is to allow for temporal 

lag between percepts and actions. Sometimes actions are generated in response to 

percepts observed at some time in the past. Extending the data mining approach to 

find associations within a temporal window is therefore important. On way to achieve 

this may be to attach an additional symbol to the transaction vectors, obtained through 

quantisation of the temporal lag associated with the transaction vector.

It would also be worth investigating how the system could be applied to the task of 

object manipulation through a robotic arm. As a starting point, a teacher could demon­

strate a simple task, e.g. grasping an object, by controlling the robotic arm. The image 

and control data could be processed as in chapter 6, to discover the object of interest 

and the associated affordances. Provided sufficient training data, the system should 

learn to grasp the object. Ultimately, the research should aim to achieve the develop­

ment of robotic systems that could carry out complex manipulations of and interaction 

with complex object, by discovering the affordances associated to the important visual
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entities.

Robotics is currently a technology that is largely restricted to certain manufacturing 

domains or specific scientific disciplines. Getting a robot to perform a particular task 

requires a significant effort on the part of highly specialist technical persons. In the 

future, it may be possible for any person to demonstrate a task to a robotic system, 

and for that system to then behave in the desired manner. For this to happen, the 

robotic system must be able to build perceptual representations that are meaningful 

to the given task and to learn both from experience and from knowledge imparted 

by a teacher. It is hoped that the flexible, generic and adaptive learning approaches 

developed within this thesis take steps toward such systems.
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