
promoting access to White Rose research papers

White Rose Research Online
eprints@whiterose.ac.uk

Universities of Leeds, Sheffield and York
http://eprints.whiterose.ac.uk/

This is an author produced version of a paper published in Applied Soft
Computing.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/11247

Published paper

Zhang, Y., Rockett, P.I. (2011) A generic optimising feature extraction method
using multiobjective genetic programming, Applied Soft Computing, 11 (1),
pp.1087-1097
http://dx.doi.org/10.1016/j.asoc.2010.02.008

http://eprints.whiterose.ac.uk/11247�
http://dx.doi.org/10.1016/j.asoc.2010.02.008�

A Generic Optimising Feature Extraction Method Using

Multiobjective Genetic Programming

Yang Zhanga,1, Peter I. Rocketta

aVision and Information Engineering Group, Department of Electronic and Electrical
Engineering, University of Sheffield, Sheffield, S1 3JD, UK

Abstract

In this paper, we present a generic, optimising feature extraction method
using multiobjective genetic programming.We re-examine the feature extrac-
tion problem and show that effective feature extraction can significantly en-
hance the performance of pattern recognition systems with simple classifiers.
A framework is presented to evolve optimised feature extractors that trans-
form an input pattern space into a decision space in which maximal class
separability is obtained. We have applied this method to real world datasets
from the UCI Machine Learning and StatLog databases to verify our ap-
proach and compare our proposed method with other reported results.We
conclude that our algorithm is able to produce classifiers of superior (or
equivalent)performance to the conventional classifiers examined, suggesting
removal of the need to exhaustively evaluate a large family of conventional
classifiers on any new problem.

Keywords: Feature Extraction, Multiobjective Optimisation, Genetic
Programming, Pattern Recognition

1. Introduction

Despite its prominence in the field of pattern recognition up to the 1970s,
the area of feature extraction also termed feature construction together
with the related area of feature selection, has been largely overtaken by

Email addresses: hegallis@gmail.com (Yang Zhang), p.rockett@shef.ac.uk
(Peter I. Rockett)

1The financial support of a Universities UK Overseas Research Student Award Scheme
(ORSAS) scholarship and the Henry Lester Trust is gratefully acknowledged.

Preprint submitted to Applied Soft Computing February 15, 2010

work on classifier design, principally neural networks. Indeed many elegant
theoretical results have been obtained in the classification domain in the
intervening years. Nonetheless, feature extraction retains a key position in
the field since the performance of a pattern classifier is well-known to be
enhanced by proper preprocessing of the raw measurement data this topic
is the main focus of the present work.

Fig. 1 shows a prototypical pattern recognition system in which a vector
of raw measurements is mapped into a decision space. Often the feature
selection and/or extraction stages are either omitted or are implicit in the
recognition paradigm a multi-layer perceptron (MLP)is a good example of a
classification paradigm where a distinct feature extraction stage is not readily
identifiable. Addison et al. [1] and Park et al. [2] have reviewed existing
feature extraction and selection techniques while Guyon and Elisseeff [3] have
discussed feature extraction in terms of filter and wrapper methods. In this
paper we focus on feature extraction.

Figure 1: Prototypical pattern recognition system

The principal difficulty with designing the feature extraction stage for a
classifier is that it usually requires deep domain-specific knowledge. (Indeed
much of the work in image processing on detecting image cues such as edges
and corners is actually feature extraction.) Even for feature extractors de-
signed by domain experts, the issue of optimality is rarely addressed. Ideally,
we would require some measure of class separability in the transformed de-
cision space to be maximised but with handcrafted methods this is hard to
guarantee.

In general terms, finding the optimal (possibly nonlinear) transformation,
x → y from input vector x to the decision space vector y where y = f(x),
is a challenging task. In the sense that the feature extraction preprocessing
stage is a transformation or mapping from input space to decision space,
for a given classification problem we seek the mapping which maximises the
separability of the classes in decision space. Thus feature extraction can be
regarded as the search for an optimal sequence of operations subject to some

2

criterion.
Genetic programming (GP) is an evolutionary problem solving method

which has been extensively used to evolve programs or sequences of opera-
tions [8]. Typically, a prospective solution in GP is represented as a parse
tree which can be interpreted as a sequence of operations and thus evalu-
ated. Fig. 2 shows example GP trees together with the crossover operation
typically used in the search process; the the output of the tree on the left
(Parent 1), for example, evaluates to the expression:

y = − log(X3 − X4)

where X3,4 are input features from the pattern being processed.

Figure 2: Illustration of the crossover operation in genetic programming

During evolutionary search two parents are selected biassed in their fitness
and these may undergo crossover to produce two new offspring. A crossover
point is selected in each parent and the the two subtrees – shown in the
dashed boxes in Fig. 2. – are exchanged. The two offspring may each be
modified by a mutation operator in which a subtree in an offspring tree is

3

selected and replaced by a new, randomly-generated subtree. See Section 2.2
for details of the selection, crossover and mutation operations used in the
present work. The cycle of selection/crossover/mutation is repeated either
for a fixed number of iterations or until some some pre-specified error target
is attained. (Genetic programming has been comprehensively reviewed in a
recent book by Poli et al. [4]).

GP has been used before to optimise feature extraction and selection.
Ebner [5, 6] has evolved image processing operators using GP. Bot [7] has used
GP to evolve decision space features, adding these one-at-a-time to a kNN
classifier if the newly evolved feature improved the classification performance
by more than a certain amount. Bot’s approach is a greedy algorithm and
therefore almost certainly sub-optimal. In addition, Koza [8] has produced
character detectors using genetic programming while Tackett [9] evolved a
symbolic expression for image classification based on image features.

Harvey et al. [10] evolved pipelined image processing operations to trans-
form multi-spectral input synthetic aperture radar (SAR) image planes into
a new set of image planes and a conventional supervised classifier was used
to label the transformed features. Training data were used to derive a Fisher
linear discriminant and GP was applied to find a threshold to reduce the
output from the discriminant finding phase to a binary image. However, the
discriminability is constrained in the discriminant finding phase and the GP
only used as a one-dimensional search tool to find a threshold.

Sherrah et al. [11] proposed the Evolutionary PreProcessor (EPrep) sys-
tem which used GP to evolve a good feature mapping by minimising misclas-
sification error. Three typical classifiers: generalised linear machine (GLIM),
k-nearest neighbour (kNN) and maximum likelihood classifiers were selected
randomly and trained in conjunction with the search for the optimal fea-
ture extractors. The misclassification errors on the validation set from those
classifiers were used as a fitness value for the individuals in the evolution-
ary population.The same procedure was used in the co-evolution of feature
extraction/classifiers in [12]. This approach, however, makes the feature ex-
traction procedure dependent on the classifier in an opaque way such that
there is a potential risk that the evolved preprocessing can be excellent but
the classifier can be poor giving a poor overall performance, or vice versa.

Kotani et al. [13] used GP to determine the polynomial combination of
raw features to be fed into a kNN classifier and reported an improvement
in classification performance. Krawiec [14] constructed a fixed-length deci-
sion vector using GP proposing an extended method to protect useful blocks

4

during the evolution. This protection method, however, contributes to the
overfitting which is evident from his experiments. Indeed, Krawiec’s results
show that for some datasets, the application of his feature extraction method
actually produces worse classification performance than using the raw input
data alone. Estébanez et al. [15] have followed a similar approach to Kraw-
iec in projecting to a vector decision space of pre-determined dimensionality.
Recently, Guo et al. [16] have evolved features in a condition monitoring
task although it is not clear whether the elements in the vector of decision
variables were evolved at the same time or hand-selected after evolution.
Smith and Bull [17] have used GP together with a GA to perform feature
construction and feature selection.

Broadly, the previous work on GP feature extraction can be categorised
as evolving either: A discrete feature extraction stage which then feeds into a
traditional classifier, or evolving a combined feature extraction/classification
method which directly outputs a class label. Of the two possible routes, we
argue that there is little merit in investing computational effort in evolv-
ing classifiers since this area is well understood and has solid theoretical
underpinnings. We argue that the available computational effort should be
expended on producing good feature extraction; in addition, we question the
speed of convergence when exploring a search space which contains not only
the set of feature extractors but also the set of all classifiers. Consequently,
we adopt the approach here of evolving optimal feature extraction algorithms
and performing the classification task using a standard, simple and fast-to-
train classifier since the classifier has to be included inside the evolutionary
loop to evaluate an individuals fitness in terms of a separability measure in
the decision space. We draw a distinction in the present work between evolv-
ing a feature extraction stage and evolving a classifier since the outcome of
our evolutionary optimisation is a mapping into a real-valued (1D) decision
space, not a mapping into the space of object labels which is what would
result from evolving a classifier. Clearly, our overall system does constitute
a classification system and our feature extraction stages are conditioned on
our choice of classifier, in the present case, a single threshold. As a future
extension to the present framework, we envisage mapping the input patterns
into a multidimensional decision space (see [11], for example) in which case
the choice of classifier is explicitly much more open.

It is noteworthy that all the previous work on evolving feature extrac-
tors/classifiers by GP have used a single objective, typically minimising the
classification error over a training set which is disadvantageous from a number

5

of standpoints. In particular, unless specific measures are taken to prevent
it, the trees in a GP optimisation tend to grow without limit with no corre-
sponding improvement in fitness, a phenomenon which is termed tree bloat.
This is analogous to overfitting in neural networks and can lead to poor
generalisation of the trained classifier as well as excessive computational de-
mands. Various heuristic and indirect techniques have been used to suppress
bloat but Ekárt and Németh [18] have shown that using a multiobjective
fitness function [19] within GP, where one of the objectives is to minimise
tree size, prevents bloat by exerting selective pressure in favour of smaller
trees; also see [20].We have thus used a multiobjective framework with Pareto
optimality [19] in the present work.

Rather than a single solution, the converged output of a multiobjective
optimisation is a set of equivalent solutions whose members are superior to all
the other feasible solutions; the members of this so-called Pareto set are said
to dominate the other possible solutions [19]. Within this set, none can be
considered better than any other from the point of view of the simultaneous
optimisation of multiple objectives and it is left to a Decision Maker (DM) to
select one of the optima according to some utility function which expresses
their preferences. See [19] for a detailed review of multiobjective evolutionary
methods; Jin and Sendhoff [21] have recently presented a review of Pareto-
based multiobjective machine learning with particular emphasis on neural
networks.

Our overall objective in the present work has been to identify the (near-)
optimal series of mathematical transformations of pattern data that produces
the best class separation in the transformed decision space. Further, our aim
has been to produce a generic, domain-independent method such that the
transformed patterns (or extracted features) can then be accurately classified
with a simple and fast classifier.We make no assumptions about the statistical
distributions of the original feature data.

For convenience and without loss of generality, we focus here on two-
class problems. In common with other approaches to multi-class problems,
extension to three or more classes is somewhat more involved and will be the
subject of a future publication.

The rest of this paper is organised as follows: We present our generic
framework to evolve optimal feature extractors in Section 2 and demonstrate
its utility in Section 3 by applying it to eight datasets from the UCI Machine
Learning [22] and StatLog [23] datasets. We make comparison with nine
popular classifiers as well as previous evolutionary results reported by other

6

researchers.We offer conclusions and suggestions for future work in Section 4.

2. Methodology

Over the years much effort has been expended in the pattern recognition
community on finding a best classifier(e.g. [23, 24]), the conclusion of which is
that there is no single classifier which is best for every problem. In the present
work,we focus on the feature preprocessing stage in classification systems. We
propose a generic framework to evolve an optimal feature extraction stage for
a given problem, independent of the dimensionality of the input pattern space
and with optimised discriminability. If the optimisation is effective, patterns
in the transformed space should not only be much easier to separate than
the original pattern data but should also be optimal within the constraints
imposed by the dimensionality of the decision space and the final classifier.
By optimality, we mean here that our algorithm should, in principle, yield
a classification performance which is comparable to the best of the set of
all classifiers, thus doing away with the often lengthy process of determining
which is the best classifier for a specific classification problem. Furthermore,
the framework under discussion is not problem-specific and can be easily
reused in other domains without or with simple modifications to the GP
settings.

We perform the minimisation of vectors of (typically, competing) objec-
tives using Pareto dominance – see [19] for a comprehensive review of evolu-
tionary multiobjective optimisation. Given two objective vectors u,v ∈ RN ,
u is said to dominate v, that is u ≺ v:

u ≺ v iff ∀i : 1 . . . N ui 6 vi ∧ ∃j : 1 . . . N uj < vj

The Pareto dominance relation thus lays the foundation for comparisons
between, and ranking of objective vectors in the evolutionary population.

2.1. Multiple Objectives

In terms of implementation, we map the input space to a 1-dimensional
decision variable since this is a natural and straightforward operation for
GP. Within the multiobjective framework, we have used a three-dimensional
fitness vector of objectives comprising: Tree complexity, misclassification
error and Bayes error, as follows:

7

Tree complexity measurement: As pointed-out above, there is a danger
that trees evolved by GP will become very large due to tree bloat.We
have observed in early experiments without a complexity objective that
huge trees could produce an extremely small error over the training set
but a very poor error estimated over an independent validation set.
Broadly, for a given training error, the simpler individual is preferred,
an observation in accord with Ockham’s Razor. Thus we have used
node count in the tree as a straightforward measure of tree complexity
as one of our fitness vector elements driving the evolution. We thereby
impose a selective pressure that favours small trees, all other things
being equal.

Misclassification error: The second element we use in the fitness vector
is the conventional one of the fraction of misclassified patterns counted
over the training set,the so-called 0/1 loss.Since we are projecting the
input pattern into a one-dimensional decision space we use a straight-
forward, single threshold classifier where the threshold is adapted as
part of the fitness value determination to give the minimum error.
Taken over the whole training set, we find the optimal threshold for
that particular mapping by performing a Golden Section search for the
threshold value which minimises the misclassification rate, bracketed
initially by the two extremal responses. The Golden Section search is
terminated when there is no further improvement in the misclassifica-
tion rate. Thus the training of the classifier is very fast and makes a
negligible contribution to the time of a single iteration. The misclas-
sification objective means we are trying to evolve a feature extractor
which maps the original pattern space into a new feature space where
thresholding is able to yield the smallest possible misclassification.

Bayes error: The use of appropriate fitness functions is critical to the search
performance of all evolutionary algorithms an inappropriate fitness
function can seriously mislead the evolution and this has motivated
our use of the misclassification error above. In addition to the misclas-
sification error, we have also used an estimate of the Bayes error as the
third and final fitness objective. The set of n-dimensional input pat-
terns from each class projects into the 1D decision space forming two
class-conditioned probability density functions (PDFs) in the decision
space which we histogram. We straightforwardly estimate the Bayes

8

error from the overlap of the two histograms of the class-conditioned
PDFs in the projected decision space; this is illustrated in Fig. 3. The
Bayes error is a fundamental lower bound on classification performance
in the decision space, dependent solely on the class-conditioned den-
sities and independent of the classifier – see Fukanaga [25] for further
details.

Figure 3: Illustration of the calculation of the Bayes error in the 1D Decision Space. The
Bayes error is the overlap region between the two class-conditioned histograms (shown
filled in grey).

The use of two measures of classification error the Bayes error estimate
and the fraction of misclassified training set patterns requires further expla-
nation. During our early experiments we found that using only the fraction
of misclassified patterns (and the tree complexity measure) resulted in slow
convergence and some cases, a failure to converge altogether. In the initial
phases of the evolution when all the randomly-generated members of the
population were typically poor performers, the misclassification error was
close to its maximum. Consequently this objective lacked the sensitivity to
identify individuals with slightly more promise than others, hence the poor
convergence. In view of this we experimented with the alternative Bayes
error measure.

The use of the Bayes error estimate alone (with the tree complexity mea-
sure) allowed the evolutions to converge rapidly but the subsequently es-

9

timated validation error was disappointingly high. On closer inspection,it
became clear that although the Bayes error objective was minimised over
the training set, the GP was often opportunistically achieving this goal by
producing two transformed class-conditioned densities in the decision space
with non-coincident comb-like structures rather than the desired end of two
compact densities with widely separated means. Consequently, although the
degree of overlap of the likelihoods from the training set was small, the mis-
classification error calculated over the validation set was large. This led us to
using two error measures: the Bayes error allows the evolutionary search to
make rapid progress in the initial stages of the optimisation while the frac-
tion of misclassified patterns eventually comes to the fore when the evolution
advances to a certain stage of maturity and leads to two well-separated distri-
butions. Overall, we have found experimentally that the combination of the
three objectives is necessary for the algorithm to rapidly generate a Pareto
set of parsimonious solutions which generalise well. Without the complexity
measure the trees bloat and the optimisation tends to stagnate. Without
the Bayes error objective, convergence is slow or non-existent. Each of the
three objectives thus has a key role to play during the evolutionary pro-
cess although since we are ultimately considering the classification domain,
after we have generated a set of non-dominated solutions whose properties
are ‘shaped’ by the multiple objectives,we select the solution which has the
lowest (mean)validation error. This is a critical distinction between the cur-
rent area and most other uses of multiobjective optimisation: The multiple
objectives are vital constraints during the evolutionary process but after con-
vergence, the nature of the problem does not actually form a conventional
multiobjective trade-off.

2.2. MOGP Implementation

A number of multiobjective evolutionary algorithms have been proposed
in the past: e.g. SPEA-2 [20], MOGA [26], NSGA-II [27] and MOGLS [28].
How to make quantitative comparisons between multiobjective stochastic
optimisers is still very much an open research issue [29] with no clear-cut
outcomes. Nonetheless, strength Pareto methods have shown good perfor-
mance when set alongside other multiobjective evolutionary algorithms and
we have used SPEA-2 [30] in the present work to approximate the Pareto-
optimal set for our multiobjective optimisation problem, thereby searching
for the optimal sequence of transformations which map input patterns to
decision space. (Other, more recent work [31], however, suggests that GP, as

10

opposed to GA, methods based on the steady-state Pareto converging genetic
algorithm (PCGA) [32] may confer some benefits for the present application
in that PCGP appears able to produce smaller trees for a given misclassifica-
tion error. The issue of comparisons between multiobjective GP algorithms
is an area for future work.)

The SPEA-2 genetic programming implementation used here is a gen-
erational strategy in which two sets of individuals are maintained during
evolution. One set represents the current population and the second con-
tains the current approximation to the Pareto front. The ranking is done by
calculation of the strength, or fitness of each individual in both sets. When
calculating the strength of an individual, we use the method proposed in
SPEA-2 [20]. Here we make some modifications and reuse some strategies
from SPEA/SPEA-2 to operate with genetic programming although we still
store the non-dominated individuals in an external set, and cluster, if neces-
sary. Using binary tournament selection we randomly select two parent trees
for breeding from the union of the population and the non-dominated set. If
both trees have been drawn from the same set we compare the normalised
fitnesses to determine a winner; if not, we use the raw fitnesses to decide
which should be chosen. We use non-destructive, depth-dependent crossover
[33] and mutation operators in order to avoid the breaking of building blocks.
We choose a subtree biased in its complexity (i.e. the number of nodes) using
the depth-fair operator [33]; one of the subtrees at the chosen depth is then
picked by roulette wheel selection, biased in its complexity. We initiate both
genetic operations by randomly choosing a depth d ∈ [0 . . . dmax] in a tree.
At the given depth d there are Nd subtrees, each comprising M1,M2 . . .MNd

nodes, respectively. The probability of selecting the i-th subtree is given by:

Pr (i|d) =
Mi

∑Nd

j=1 Mj

and we select the target subtree using the standard roulette wheel approach.
In the crossover operation we exchange the selected subtrees between the
parents. In mutation, the selected subtree is replaced by a new, randomly
created subtree attached at the selected mutation point. See [33] for further
details.

We retain only those offspring which dominate either of their parents
and in this way, we were able to maintain diversity in the population while
avoiding being trapped in local minima in the early stages. The parameters

11

used in the GP implementation are listed in Table 1 and the function set
used in the trees is detailed in Table 2.

Table 1: GP Settings
Terminal set Input pattern vector elements

10 floating point numbers ∈ {0.0 . . . 1.0}
Function set See Table 2
Standardised fitness Strength-based fitness
Population size 500
Initial population 50% full-depth trees, 50% random-depth

trees
Initial tree depth 5
Max. number of generations 500
Mutation probability 30%
Crossover probability 70%

The evolution was terminated when one of the following criteria was met:
The misclassification error was zero, meaning all patterns in the training set
are correctly labelled, OR the maximum number of generations was exceeded,
OR the Bayes error of the best individual did not improve for some fraction
of the maximum number of generations; we have used 0.04 as that fraction
on the basis of experience although this number does not appear too critical.

3. Results

In this section we address our guiding issue of producing a generic method-
ology by examining performance across a wide range of two-class classification
problems from the UCI Machine Learning [22] and StatLog [23] databases.
Since GP is able to synthesise a feature extraction stage which is (near-)
optimal with respect to the learning task at hand, we conjecture that the
classification performance of our method should, at worst, be identical to
the very best conventional classifier on any given problem. Koza et al. [34]
have discussed the potential of GP to invent new solutions to established
problems. As part of our conjecture, we suggest that our methodology is
inventing a near-optimal classifier for every dataset to which it is applied; in
some instances these evolved classifiers may be similar to existing classifiers
and in other cases, quite unlike any known classifier paradigm. The key is-
sue is that the generation of the feature extraction stage is being driven by

12

Table 2: Tree Node Types
Function Nodes Type Operation
sqrt UNARY Calculates the square root
log UNARY Calculates the natural logarithm
pow2 UNARY Calculates value raised to power of 2
− UNARY Calculates negative value
sin UNARY Calculates sine of the value
− BINARY Subtracts left value from right value
+ BINARY Adds left value with right value
× BINARY Multiplies left value by right value
÷ BINARY Protected division of left value by

right value
max BINARY Returns the greater of the two values
min BINARY Returns the smaller of the two values
if-then-else TERNARY Returns the 2nd value if 1st value = 0;

otherwise returns the 3rd value

the notion of optimality. We consider an extensive set of comparisons across
eight 2-class learning problems. For each dataset we make a statistical com-
parison of the classification performance between our MOGP algorithm and
a range of established classifiers. If our conjecture about the generic power
of our method is supported, then MOGP should perform at least as well as
any other classifier (and in a number of cases,better).In addition, we com-
pare where possible with previously reported evolutionary feature extraction
techniques.

3.1. UCI and StatLog Datasets

The datasets used in the current work are:

1) Glass – 163 instances with nine attributes -This dataset has been con-
verted to a two-class problem by seeking to distinguish between float
glass and non-float glass.

2) BUPA Liver Disorders (BUPA) – Prediction of whether a patient has a
liver disorder. There are two classes, six numerical attributes and 345
records.

3) Wisconsin Diagnostic Breast Cancer (WDBC) – This dataset has been
discussed before by Mangasarian et al. [35]. 569 examples with thirty
numerical attributes.

13

4) Pima Indians Diabetes (PID) – Records with missing attributes were re-
moved. This dataset comprises 532 complete examples with seven at-
tributes.

5) Wisconsin Breast Cancer (WBC) – Sixteen of the instances with missing
values were removed; 683 out of original 699 instances have been used
here. Each record comprises ten attributes. This dataset has been used
previously in [36].

6) Australian credit approval (AUS) – Credit card applications; comprises
690 instances in 14 attributes. 55.5% instances from positive decisions.
This dataset has previously been investigated by Quinlan using decision
trees [37].

7) Heart disease (HEA) – Contains 13 attributes, 270 samples. 120 samples
present heart disease.

8) German credit (GER) – Classifies people described by 24 attributes as
good or bad credit risks. 1000 instances, 700 of which are in good credit
condition.

For convenience, the details of the datasets used in the current work are
summarised in Table 3.

Table 3: Details of UCI and StatLog Datasets Used in This Study
Name Features Size and Distributions
Glass 9 163 = 87 (Float) + 76 (Non-float)
BUPA 6 345 = 200 (Normal) + 145 (Diseased)
WDBC 30 569 = 357 (Benign) + 212 (Malignant)
PID 7 532 = 355 (Normal) + 177 (Diabetic)
WBC 10 699 = 458 (Benign) + 241 (Malignant)
AUS 14 690 = 383 (Positive) + 307
HEA 13 270 = 150 (Healthy) + 120 (Diseased)
GER 24 1000 = 700 (Good) + 300 (Bad)

3.2. Comparator Classification Algorithms

As a basis for comparison with MOGP, we have used nine existing classi-
fication algorithms. All but one of the the implementations used were taken

14

from the Weka machine learning system2 [38] and we used the default pa-
rameter settings except where noted below. The classifiers used were:

1) Radial Basis Functions (RBF) – A normalised Gaussian radial basis func-
tion network using the k-means clustering algorithm. We estimated the
number of clusters (k) for a given dataset by considering a random split
of the dataset, training the classifier on the first half and calculating a
validation error on the second half. We adopted the value of k which gave
the lowest validation error for each dataset by this method.

2) Logistic – Modified multinomial logistic regression model with a ridge
estimator.

3) NNge – Nearest-neighbour-like algorithm using non-nested generalised ex-
emplars.

4) BayesNet – Bayes Network classifier using the K2 learning algorithm.

5) IB1 – Instance-based learning algorithm. Uses a simple distance measure
to find the training instance closest to the given test instance and predict
the same class as this training instance.

6) ADTree – The alternating decision tree learning algorithm.

7) SMO – Sequential minimal optimisation algorithm for training a support
vector classifier.

8) C4.5 – The well-known decision tree algorithm. (This is referred to as J48
in Weka.)

In addition, we have used the classical Fisher Linear Discriminant (FLD)
since comparative studies [24] show that this classifier is competitive across a
wide range datasets. The version used here calculates the threshold assuming
equal covariance Gaussian classes with a correction for the priors [39]; the
priors were estimated from the dataset in question.

3.3. Comparison Methodology

Conventionally, classifiers have been compared in the literature using
N -fold cross-validation followed by a t-test to gauge the statistical differ-
ence between the results. Dietterich [40], however, has pointed-out this is
unsound due to the implicit assumptions of independence being violated and
has proposed an empirical 5 × 2 cv test. In turn, Alpaydin [41] has modified

2See: http://www.cs.waikato.ac.nz/~ml/weka/. We have used Version 3.4.5 of
Weka in this work.

15

Dietterich’s test to remove the unsatisfactory aspect of the result depending
on the ordering of the folds: it is Alpaydin’s F -test which we use here to
statistically compare classifier performance.

To compute the Alpaydin F -statistic we perform five repetitions of ran-
domly splitting the dataset into two folds, treating one fold as a training
set and the other as the test set. We then compute the F -statistic (see
[41] for full details) and use this figure to decide whether or not to reject
the null hypothesis that the performances of the two classifiers are identi-
cal. Throughout this work we have used a 95% confidence level to infer a
statistical difference which is equivalent to an F -measure > 4.74.

3.4. Comparisons with Conventional Classifiers

The outcome of the multiobjective optimisation is an approximation to
the Pareto set, although as we explain in Section 2.1, the classification do-
main does not constitute a trade-off in the conventional multiobjective sense.
(Alternatively, the utility function which expresses the Decision Maker’s pref-
erence [28] considers only the validation error to the exclusion of the other two
objectives.) Therefore, to effect comparison of the classifier algorithms we
have calculated the mean validation errors over the ten folds of the 5 × 2 cv
test for each classifier, both evolutionary and conventional.

The mean test errors for all ten classification algorithms across the eight
datasets are summarised in Table 4. Reassuringly, the MOGP returns the
lowest mean error for each dataset apart from the LOG/GER pairing. The
results in Table 4 need to be treated with some caution since the statisti-
cal significance of these differences is not clear from this table. In order to
quantitatively compare statistical significance of the cross-validation exper-
iments we have computed the Alpaydin F -statistic as described above for
our MOGP algorithm paired with every other comparator classifier. The
comparisons are summarised in Table 5 where a tick represents superiority
of MOGP over the given classifier on the given dataset whereas a dash de-
notes no statistical difference between MOGP and its comparator. Taken
over the datasets considered here, MOGP is consistently superior to radial
basis function (RBF), C4.5 and Fishers linear discriminant (FLD). At the
other extreme, the logistic regression (LOG) algorithm is only bettered by
MOGP on two datasets (Glass and BUPA) and not statistically different on
the remaining six. Highly significantly, MOGP is not outperformed by any
of the comparator classifiers on any of the examined datasets.

16

T
ab

le
4:

M
ea

n
E

rr
or

C
om

pa
ri

so
ns

of
C

la
ss

ifi
er

s
on

E
ac

h
D

at
as

et
D

at
as

et
C

la
ss

ifi
er

R
B

F
L
O

G
N

N
ge

B
ay

es
N

et
IB

1
A

D
T
re

e
S
M

O
C

4.
5

F
L
D

M
O

G
P

G
la

ss
0.

35
4

0.
36

4
0.

32
2

0.
31

1
0.

30
0

0.
31

7
0.

39
2

0.
33

8
0.

51
0

0.
22

7
B

U
P
A

0.
44

2
0.

38
3

0.
44

9
0.

48
5

0.
42

1
0.

33
5

0.
45

2
0.

39
1

0.
43

4
0.

26
4

P
ID

0.
25

5
0.

23
3

0.
27

9
0.

24
9

0.
29

9
0.

25
8

0.
23

4
0.

31
6

0.
33

6
0.

20
5

W
B

C
0.

04
8

0.
04

5
0.

03
8

0.
02

6
0.

04
2

0.
05

1
0.

03
0

0.
05

7
0.

93
2

0.
02

1
W

D
B

C
0.

06
1

0.
06

8
0.

07
7

0.
05

4
0.

04
6

0.
05

2
0.

03
0

0.
06

7
0.

36
4

0.
02

6
A

U
S

0.
17

1
0.

13
2

0.
16

2
0.

15
1

0.
20

0
0.

14
1

0.
14

5
0.

14
2

0.
14

6
0.

12
6

H
E

A
0.

17
0

0.
15

2
0.

23
3

0.
17

0
0.

24
8

0.
22

2
0.

16
3

0.
23

3
0.

22
2

0.
14

4
G

E
R

0.
26

9
0.

23
1

0.
27

0
0.

27
7

0.
32

2
0.

27
3

0.
23

6
0.

26
1

0.
27

6
0.

24
8

T
ab

le
5:

F
-t

es
t

C
om

pa
ri

so
n

B
et

w
ee

n
A

lg
or

it
hm

s
fo

r
E

ac
h

D
at

as
et

at
95

%
C

on
fid

en
ce

L
ev

el
.

A
T

ic
k

R
ep

re
se

nt
s

Su
p
er

io
ri

ty
of

M
O

G
P

fo
r

T
ha

t
C

om
pa

ra
to

r
C

la
ss

ifi
er

/D
at

as
et

C
om

bi
na

ti
on

;
A

D
as

h
D

en
ot

es
N

o
St

at
is

ti
ca

l
D

iff
er

en
ce

.

D
at

as
et

R
B

F
L
O

G
N

N
ge

B
ay

es
N

et
IB

1
A

D
T
re

e
S
M

O
C

4.
5

F
L
D

G
la

ss
�

�
�

–
–

�
�

�
�

B
U

P
A

�
�

�
�

�
�

�
�

�
P

ID
�

–
–

–
�

�
�

�
�

W
B

C
�

–
–

–
–

–
–

�
�

W
D

B
C

�
–

�
–

–
�

–
�

�
A

U
S

�
–

�
�

�
�

�
�

�
H

E
A

�
–

�
�

�
�

�
�

�
G

E
R

�
–

�
�

�
�

–
–

�

17

At the start of this Section we conjectured that the MOGP optimisations
would yield classifiers which were either better than, or at worst, statistically
identical to the best performing algorithm among the class of all classifiers.
Clearly we are not able to prove such a conjecture as this would involve test-
ing MOGP against the universe of all possible datasets with every possible
classifier (including those as yet undiscovered). Nonetheless, we argue that
the results presented here constitute strong evidence to support our conjec-
ture.

As mentioned in Section 1, a number of other workers have explored
(single objective) genetic programming to evolve either feature detectors or
overall classifier systems. Muni et al. [42] have used GP to produce a c-
class classifier (as distinct from a feature extraction stage) using a multi-
tree representation. Bot [7] evolved new features which he added one-at-a-
time until the improvement in classification performance dropped below a
threshold. Bot and Langdon [43] produced linear classification trees using
strongly typed GP. Loveard and Ciesielski [44] have explored five strategies
for evolving classifiers while Krawiec [14] also constructed features using GP
for subsequent classification with the C4.5 decision tree.

The error rates, where known, from these earlier studies are summarised
in Table 6. Typically, error rates were the means estimated over ten-fold
cross-validation. The results of Bot and Langdon [43] are the mean validation
error of the best individual of 30 runs while those for Smith and Bull [17] are
the best result from twenty repetitions with a 90%–10% partitioning of the
dataset into training and test sets, respectively. In the case of the data of
Loveard and Ciesielski [44], we show the most favourable results from the five
strategies investigated by these authors. In the case of Estébanez et al. [15]
we cite the average test error over five independent runs. Although in every
case our MOGP method yields the lowest error rate, we are unable to assess
the statistical significance of the differences in error rates on the basis of the
published information. Nonetheless, the fact that MOGP records the lowest
error rates is very promising and implies that MOGP is at very worst, equally
good as the comparator evolutionary methods and quite possibly superior.

3.5. Interpretation of the Generated Trees

Figs. 4 to 8 show the trees which display the smallest validation error
on each dataset from a single run; the generation number at which they
were generated (and committed to the SPEA archive) is also shown. (We
are concerned only with the lowest 0/1 loss; the complexity and Bayes error

18

T
ab

le
6:

R
ep

or
te

d
E

rr
or

R
at

es
fo

r
O

th
er

E
vo

lu
ti
on

ar
y

F
ea

tu
re

D
et

ec
ti
on

/C
la

ss
ifi

ca
ti
on

A
lg

or
it
hm

s

T
ra

in
in

g
al

go
ri
th

m
D

at
as

et
A

U
S

G
la

ss
B

U
P
A

P
ID

W
B

C
W

D
B

C
G

E
R

M
u
n
i
[4

2]
–

–
0.

30
07

-
0.

02
81

–
–

B
ot

[7
]

0.
16

9
0.

48
00

0.
41

60
0.

30
50

–
–

0.
37

B
ot

&
L
an

gd
on

[4
3]

–
0.

36
8

–
0.

25
0

–
–

–
K

ra
w

ie
c

[1
4]

–
0.

33
61

–
0.

23
59

–
–

–
L
ov

ea
rd

[4
4]

–
–

0.
30

8
0.

24
2

0.
03

2
–

–
S
m

it
h

&
B

u
ll

[1
7]

–
–

0.
34

03
0.

26
5

0.
04

37
0.

04
38

–
E

st
éb

an
ez

[1
5]

–
–

-
0.

21
88

–
–

–
M

O
G

P
0.

12
6

0.
22

71
0.

26
44

0.
20

57
0.

02
63

4
0.

02
6

0.
24

8

19

objectives are important shaping forces during the evolution but do not form
part of any ultimate design trade-off.) The terminal nodes displayed in the
following tree graphs are labelled Xn where n ∈ [1 . . . N] denotes an element
in the input pattern vector of dimensionality N .

Figure 4: MOGP transformation evolved for the PID dataset at generation 52

It is noteworthy that these optimal feature transformations are all nonlin-
ear which is in contrast to traditional feature extraction methods which tend
to emphasise linear projections. In most cases it is difficult to identify any
underlying rationale the GP is employing for the transformations although
it is interesting to remark on the extreme case of the Pareto set for the WBC
dataset which includes one non-dominated solution comprising a single leaf
node, the Marginal Adhesion attribute [36]. If we examine the values of this
attribute across the dataset, 90.09% of the benign patterns have a Marginal
Adhesion value less than 3. In comparison, 78.24% of the malignant pat-
terns have this attribute set greater than or equal to 3. Thus, if we judge

20

Figure 5: MOGP transformation evolved for the Glass dataset at generation 125

21

Figure 6: MOGP transformation evolved for the BUPA liver disorders dataset at genera-
tion 176

22

Figure 7: MOGP transformation evolved for the WBC dataset at generation 98

23

Figure 8: MOGP transformation evolved for the WDBC dataset at generation 85

24

malignancy based on the Marginal Adhesion attribute alone thresholded at
3, we will obtain an error of 0.1399 assuming equal costs3. This is to be
compared with the error of 0.02634 obtained from the more complex tree
shown in Fig. 7 which has a node count of 37. Nonetheless, it appears that
the GP is eliciting sensible structure from this dataset – when (effectively)
posed with the question of which is the best variable to use if constrained to
just a single leaf, it correctly selects the most discriminatory.

Although one of our multiple objectives has been tree size, used to sup-
press tree bloat, a number of the trees are not of the absolute minimum size
and contain a few redundant subtrees. For example, Fig. 7 contains the sub-
trees: max(0.5, 0.8) which, of course, always returns the value of 0.8 as well
as the subtree if(0.1 > 0) then X6 else X6 which always return the value
of X6. We present the trees in Figs. 4 to 8 unedited since these are what have
been generated by the evolutionary algorithm. It is clear, however, that these
are not completely optimal in that the identical classification performance
could be obtained in some cases with slightly smaller trees. Nonetheless, the
work presented here produces near-optimal trees which are reasonable for a
stochastic search method such as genetic programming and an advance on
previous work on feature extraction. (In practice, any redundant subtrees
could be easily removed from the final solution by hand if greatest model
compactness was required.)

4. Conclusions and Future Work

In this paper we have demonstrated the use of multiobjective genetic pro-
gramming (MOGP) to evolve an optimal feature extractor which transforms
input patterns into a decision space such that class separability is maximised.
In the present work we have projected the input pattern to a one-dimensional
decision space since this transformation naturally arises from a genetic pro-
gramming tree although potentially, superior classification performance could
be obtained by projecting into a multidimensional decision space [11] this is
currently an area of active research. What arises from our method is a fam-
ily of equivalent solutions, the Pareto set, which simultaneously present the
decision maker with the trade-off surface between training error and the com-
plexity of the feature extractor; in the classification domain we will generally

3In medical diagnosis, equal costs are, of course, generally unacceptable; we use them
here solely for convenience of statistical comparison.

25

prefer the solution with the smallest 0/1 loss although this is not a neces-
sary constraint. Although we effectively ignore two of the three objectives in
selecting a final solution, the complexity and Bayes error objectives have a
crucial role in rapidly shaping compact and by implication, well-generalising
solutions.

A major objective in this work has-been to produce a domain-independent
method and we have applied our algorithm to five machine learning tasks
from the UCI database and three StatLog datasets. In comparison with a
number of other representative classifier paradigms, the performance of our
MOGP method turns-out to be better (or at worst, not statistically different).
In no case was MOGP bettered by a conventional classifier which supports
our conjecture that GP is finding the (near-)optimal feature extraction stage
for a given classification problem.

The use of multiple objectives, particularly multiple classification error
objectives has been shown to be effective in guiding and speeding the opti-
misation. It is interesting that when only the Bayes error objective was used,
GP was able to meet its goals of minimising the overlap of the two likelihoods
in a way which was both unintended and unwanted. Clearly the intuitively
straightforward concept of discriminability needs to be very carefully framed
for use in an evolutionary setting to avoid the generation of opportunistic
and unhelpful solutions.

Although we have treated only binary classification problems in this pa-
per, extension to multiple classes is a logical development and is currently
underway. Extension to large datasets is also a key issue where stochastic
sub-sampling [45] may well prove a fruitful avenue.

[1] D. Addison, S. Wermter and G. Arevian, A comparison of feature extrac-
tion and selection techniques, in International Conference on Artificial
Neural Networks Supplementary Proceedings, Istanbul,Turkey (2003)
pp. 212–215

[2] C. H. Park, H. Park and P. Pardalos, A comparative study of linear
and nonlinear feature extraction methods, Technical Report TR 04-042,
Department of Computer Science and Engineering, University of Min-
nesota, Minneapolis, MN, 2004

[3] I. Guyon and A. Elisseeff, An introduction to feature extraction, in
Feature Extraction, Foundations and Applications, I. Guyon, S. Gunn,
M. Nikravesh, and L. Zadeh, eds., Physica-Verlag, Springer, 2006

26

[4] R. Poli, W. B .Langdon and N. F. McPhee, A Field Guide to Genetic
Programming, Published via http://lulu.com and freely available at
http://www.gp-field-guide.org.uk, 2008.

[5] M. Ebner, On the evolution of interest operators using genetic program-
ming, in Late breaking papers in 1st European Workshop on Genetic
Programming, Paris, France (1998) pp. 610

[6] M. Ebner and A. Zell, Evolving a task specific image operator, in Joint
Proceedings of the 1st European Workshop on Evolutionary Image Anal-
ysis, Signal Processing and Telecommunications (EvoIASP’99 and Eu-
roEcTel’99), Goteborg, Sweden (1999) pp. 74–89

[7] M. J. C. Bot, Feature extraction for the k-nearest neighbour classifier
with genetic programming, in EuroGP 2001, Lake Como, Italy, (2001)
pp. 256–267

[8] J. R. Koza, Genetic Programming II: Automatic Discovery of Reusable
Programs, MIT Press, Cambridge, MA, 1994.

[9] W. A. Tackett, Genetic programming for feature discovery and image
discrimination, in 5th International Conference on Genetic Algorithms
(1993) pp. 303–309

[10] N. R. Harvey, J. Theiler, S. P. Brumby, S. Perkins, J. J. Szymanski, J. J.
Bloch, R. B. Porter, G. Mark and A. Young, C, Comparison of GENIE
and conventional supervised classifiers for multispectral image feature
extraction, IEEE Transactions on Geoscience and Remote Sensing 40
(2002) 393–404

[11] J. R. Sherrah, R. E. Bogner and A. Bouzerdoum, The evolutionary
preprocessor: Automatic feature extraction for supervised classification
using genetic programming, in 2nd Annual Conference on Genetic Pro-
gramming, Palo Alto, CA (1997) pp. 304–312

[12] C. Harris, An investigation into the application of genetic programming
techniques to signal analysis and feature detection, Ph.D. Thesis, De-
partment of Computer Science, University College, London, 1997

27

[13] M. Kotani, M. Nakai and K. Azakawa, Feature extraction using evolu-
tionary computation, in Congress on Evolutionary Computation (1999)
pp. 1230–1236

[14] K. Krawiec, Genetic programming-based construction of features for
machine learning and knowledge discovery tasks, Genetic Programming
and Evolvable Machines 3 (2002) 329–343

[15] C.Estébanez, R. Aler and J. M.Valls, A method based on genetic pro-
gramming for improving the quality of datasets in classification prob-
lems, International Journal of Computer Science and Applications 4
(2007) 69–80

[16] H. Guo, L. B. Jack and A. K. Nandi, Feature generation using genetic
programming with application to fault classification, IEEE Transactions
on Systems, Man and Cybernetics – Part B 35 (2005) 89–99

[17] M. G. Smith and L. Bull, Genetic programming with a genetic algo-
rithm for feature construction and selection, Genetic Programming and
Evolvable Machines 6 (2005) 265–281

[18] A. Ekárt and S. Z. Németh, Selection based on the Pareto nondom-
ination criterion for controlling code growth in genetic programming,
Genetic Programming and Evolvable Machines, 2 (2001) 61–73

[19] C. A. C. Coello, An updated survey of GA-based multiobjective opti-
mization techniques, ACM Computing Surveys 32 (2000) 109–143

[20] S. Bleuler, M. Brack, L. Theile and E. Zitzler, Multiobjective genetic
programming: Reducing bloat using SPEA2, in Congress on Evolution-
ary Computation (2001) pp. 536–543

[21] Y. Jin and B. Sendhoff, Pareto-based multiobjective machine learning:
An overview and case studies, IEEE Transactions on Systems, Man and
Cybernetics – Part C 38 (2008) 397–415

[22] C. L. Blake and C. J. Merz, UCI Repository of Machine Learning
Databases [http://www.ics.uci.edu/~mlearn/MLRepository.html],
University of California, Dept of Information Computer Science, Irvine,
CA, 1998.

28

[23] D. Michie, D. J. Spiegelhalter and C. C. Taylor, Machine Learning, Neu-
ral and Statistical Classification, Ellis Horwood, Upper Saddle River,
NJ, 1994

[24] T. Lim, W. Loh and Y. Shih, A comparison of prediction accuracy,
complexity, and training time of thirty-three old and new classification
algorithms, Machine Learning, 40 (2000) 203–228

[25] K. Fukunaga, Introduction to Statistical Pattern Recognition, 2nd ed.,
Academic Press, San Diego, CA, 1990

[26] C. Fonseca and P. J. Fleming, Multiobjective optimization and multiple
constraint handling with evolutionary algorithms –Part I: A unified for-
mulation, IEEE Transactions on Systems, Man and Cybernetics – Part
A 28 (1998) 26–37

[27] K. Deb, A. Pratap, S. Agarawal and T. Meyarivan, A fast and elitist
multiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evo-
lutionary Computing 6 (2002) 182–197

[28] A. Jaszkiewicz, Genetic local search for mullti-objective combinatorial
optimization, European Journal of Operational Research 137 (2002) 50–
71

[29] J. D. Knowles, L. Thiele and E. Zitzler, A tutorial on the performance as-
sessment of stochastic multiobjective optimizers, Technical Report TIK-
214, Computer Engineering and Networks Laboratory, ETH, Zurich,
Switzerland, 2005

[30] E. Zitzler and L. Thiele, An evolutionary algorithm for multiobjective
optimization: The strength Pareto approach, Technical Report 43, Com-
puter Engineering and Communications Networks Lab (TIK), Swiss Fed-
eral Institute of Technology (ETH), Zurich, Switzerland, 1998.

[31] Y. Zhang and P. I. Rockett, A comparison of three evolutionary strate-
gies for multiobjective genetic programming, Artificial Intelligence Re-
views 27 (2007) 149–163

[32] R. Kumar and P. I. Rockett, Improved sampling of the Pareto-front in
multiobjective genetic optimizations by steady-state evolution: a Pareto

29

converging genetic algorithm, Evolutionary Computation 10 (2002) 283–
314

[33] T. Ito, H. Iba and S. Sato, Non-destructive depth-dependent crossover
for genetic programming, in 1st European Workshop on Genetic Pro-
gramming, Paris, France (1998) pp. 14–15

[34] J. R. Koza, F. H. Bennett, D. Andre and M. A. Keane, Genetic Program-
ming III: Darwinian Invention and Problem Solving, Morgan Kaufmann,
San Francisco, CA , 1999

[35] O. L. Mangasarian, W. N. Street, and W. H. Wolberg, Breast cancer
diagnosis and prognosis via linear programming, Operations Research
43 (1995) 570–577

[36] O. L. Mangasarian and W. H. Wolberg, Cancer diagnosis via linear
programming, SIAM News 23 (1990) 1–18

[37] J. R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kauf-
mann, San Mateo, CA, 1993

[38] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning
Tools, 2nd ed., Morgan Kaufmann, San Francisco, CA, 2005

[39] R. O. Duda, P. E. Hart and P. E. Stork, Pattern Recognition, 2nd ed.
John Wiley and Son, New York, 2001

[40] T. Dietterich, Approximate statistical tests for comparing supervised
classification learning algorithms, Neural Computation 10 (1998) 1895–
1923

[41] E. Alpaydin, Combined 5 × 2 cv F test for comparing supervised classi-
fication learning algorithms, Neural Computation, 11 (1999) 1885–1892

[42] D. P. Muni, N. R. Pal and J. Das, A novel approach to design clas-
sifiers using genetic programming, IEEE Transactions on Evolutionary
Computation 8 (2004) 183–196

[43] M. J. C. Bot and W. B. Langdon, Application of genetic programming
to induction of linear classification trees, in 11th Belgium/Netherlands
Conference on Artificial Intelligence (1999) pp. 107–114

30

[44] T. Loveard and V. Ciesielski, Representing classification problems in
genetic programming in Congress on Evolutionary Computation, Seoul,
Korea (2001) pp. 1070–1077

[45] P. Nordin and W. Banzhaf, Genetic programming controlling a minia-
ture robot, in Working Notes for the AAAI Symposium on Genetic Pro-
gramming, MIT, Cambridge, MA (1995) pp. 61–67

31

	1.pdf
	Rockett_Generic

