4,669 research outputs found

    Improving the sensitivity of future GW observatories in the 1-10 Hz band: Newtonian and seismic noise

    Get PDF
    The next generation gravitational wave interferometric detectors will likely be underground detectors to extend the GW detection frequency band to frequencies below the Newtonian noise limit. Newtonian noise originates from the continuous motion of the Earth’s crust driven by human activity, tidal stresses and seismic motion, and from mass density fluctuations in the atmosphere. It is calculated that on Earth’s surface, on a typical day, it will exceed the expected GW signals at frequencies below 10 Hz. The noise will decrease underground by an unknown amount. It is important to investigate and to quantify this expected reduction and its effect on the sensitivity of future detectors, to plan for further improvement strategies. We report about some of these aspects. Analytical models can be used in the simplest scenarios to get a better qualitative and semi-quantitative understanding. As more complete modeling can be done numerically, we will discuss also some results obtained with a finite-element-based modeling tool. The method is verified by comparing its results with the results of analytic calculations for surface detectors. A key point about noise models is their initial parameters and conditions, which require detailed information about seismic motion in a real scenario. We will describe an effort to characterize the seismic activity at the Homestake mine which is currently in progress. This activity is specifically aimed to provide informations and to explore the site as a possible candidate for an underground observatory. Although the only compelling reason to put the interferometer underground is to reduce the Newtonian noise, we expect that the more stable underground environment will have a more general positive impact on the sensitivity.We will end this report with some considerations about seismic and suspension noise

    Robust H8 design for resonant control in a CVCF inverter application over load uncertainties

    Get PDF
    CVCF (constant voltage, constant frequency) inverters are electronic devices used to supply AC loads from DC storage elements such as batteries or photovoltaic cells. These devices are used to feed different kinds of loads; this uncertainty requires that the controller fulfills robust stability conditions while keeping required performance. To address this, a robust H8 design is proposed based on resonant control to track a pure sinusoidal voltage signal and to reject the most common harmonic signals in a wide range of loads. The design is based on the definition of performance bounds in error signal and weighting functions for covering most uncertainty ranges in loads. Experimentally, the H8 controller achieves high-quality output voltage signal with a total harmonic distortion less than 2%Peer ReviewedPostprint (published version

    Minimax frequency domain performance and robustness optimization of linear feedback systems

    Get PDF
    It is shown that feedback system design objectives, such as disturbance attenuation and rejection, power and bandwidth limitation, and robustness, may be expressed in terms of required bounds of the sensitivity function and its complement on the imaginary axis. This leads to a minimax frequency domain optimization problem, whose solution is reduced to the solution of a polynomial equation

    Two-Point Focused Laser Differential Interferometry Second-Mode Measurements at Mach 6

    Get PDF
    A two-point focused laser differential interferometer (FLDI) is used to make measurements of density fluctuations on a 7 degree half-angle cone in a Mach 6 flow. The system was first characterized in the laboratory using laser induced breakdown to provide a well defined density fluctuation. The speed of the shock wave generated by the breakdown is verified using simultaneous high-speed schlieren. The FLDI system is then installed at the NASA Langley 20-Inch Mach 6 air tunnel to make measurements in the boundary layer of the 7 degree half-angle cone model and in the tunnel freestream for a unit Reynolds number range of 3.0 to 8.22 x 10(exp 6)/ft. Second-mode packets are visible in the spectra, with peak frequencies increasing linearly and peak amplitude increasing as a function of unit Reynolds number. The two-point measurement allows for the calculation of the second-mode wavepacket speeds, which propagate between 88% and 92% of the freestream velocity of the tunnel for all Reynolds numbers. The FLDI measurements are compared to surface-mounted fast-response pressure transducer measurements, where second-mode frequencies and wavepacket speeds are in good agreement

    Output-based disturbance rejection control for non-linear uncertain systems with unknown frequency disturbances using an observer backstepping approach

    Get PDF
    This study is concerned with the output feedback control design for a class of non-linear uncertain systems subject to multiple sources of disturbances including model uncertainties, unknown constant disturbances, harmonic disturbances with unknown frequency and amplitude. The total disturbances and uncertainties are delicately represented by a compact exogenous model first. By incorporating the adaptive internal model principle, a set of dynamic estimators are developed for both state and disturbance observations. By means of observer backstepping technique, a composite output feedback controller is constructed based on the disturbance and state estimations. The stability of the closedloop system is rigorously established based on Lyapunov stability criterion. A missile roll stabilisation example is finally investigated to validate the effectiveness of the proposed control approach

    Grid current control for active-front-end electric propulsion systems in AC ship microgrids

    Get PDF
    This article proposes a finite control set (FCS) current controller for grid-tied converters, specifically tailored to meet the characteristics of ac ship microgrids in all-electric ships (AESs). Contrary to a pulsewidth modulator (PWM)- based design, which often employs an LCL filter, the proposal is able to meet applicable harmonic regulations using an L filter with the same total inductance as the LCL filter and the same switching frequency required by PWM-based solutions. Moreover, the proposed design provides a low sensitivity in a wide frequency range from dc to the switching frequency of the power converter. This low sensitivity permits to quickly attenuate low-order disturbances and it is particularly convenient in marine applications with a weak grid, where the frequent connection and disconnection of high power nonlinear loads can significantly affect the voltage waveform qualityXunta de Galicia | Ref. GPC-ED431B 2020/03Agencia Estatal de Investigación | Ref. PID2019-105612RB-I0

    Magnetic Actuators and Suspension for Space Vibration Control

    Get PDF
    The research on microgravity vibration isolation performed at the University of Virginia is summarized. This research on microgravity vibration isolation was focused in three areas: (1) the development of new actuators for use in microgravity isolation; (2) the design of controllers for multiple-degree-of-freedom active isolation; and (3) the construction of a single-degree-of-freedom test rig with umbilicals. Described are the design and testing of a large stroke linear actuator; the conceptual design and analysis of a redundant coarse-fine six-degree-of-freedom actuator; an investigation of the control issues of active microgravity isolation; a methodology for the design of multiple-degree-of-freedom isolation control systems using modern control theory; and the design and testing of a single-degree-of-freedom test rig with umbilicals

    Ofshore Wind Park Control Assessment Methodologies to Assure Robustness

    Get PDF
    corecore