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Abstract: CVCF (constant voltage, constant frequency) inverters are electronic devices used to supply
AC loads from DC storage elements such as batteries or photovoltaic cells. These devices are used
to feed different kinds of loads; this uncertainty requires that the controller fulfills robust stability
conditions while keeping required performance. To address this, a robust H∞ design is proposed
based on resonant control to track a pure sinusoidal voltage signal and to reject the most common
harmonic signals in a wide range of loads. The design is based on the definition of performance
bounds in error signal and weighting functions for covering most uncertainty ranges in loads.
Experimentally, the H∞ controller achieves high-quality output voltage signal with a total harmonic
distortion less than 2%.

Keywords: CVCF inverter; robust control; H∞ design; load uncertainty; power quality

1. Introduction

A VSI (voltage source inverter) consists of a DC–AC converter used to feed loads or generate
energy support in the transportation or distribution stages of a power system grid. In this case,
the CVCF (constant voltage, constant frequency) inverters are considered because the amplitude and
frequency of the output voltage never changes along the time. The main objective of the control
techniques is to maintain optimal conditions over the output voltage signal in parameters such as RMS
(root mean square) value and THD (total harmonic distortion) index. The most common techniques
used for CVCF applications are Repetitive control [1,2] and resonant control [3–6], where the designs
are intended to achieve robustness over different loads, to reach adequate output voltage signal results,
and to guarantee grid current low distortion. The resonant control, which is based on internal model
principle (IMP), uses finite harmonic components. In comparison with the repetitive control, which
demonstrates better performance in tracking, the resonant control technique achieves a better transient
response and less order resulting compensator [7]. For that reason, the resonant control offers a suited
option to design a robust controller in CVCF inverter applications.

There are different methods to design a resonant control for CVCF inverters [8–10].
These strategies try to optimize the closed-loop phase and gain margins, but they rely on the
nominal plant model for this. Therefore, the main drawback of these designs is that the robustness
margins are highly affected when different loads are connected to the CVCF inverter. Connecting and
moving different kinds of loads (linear or nonlinear) generate large dynamic changes in the system.
As a consequence, the plant model uncertainty increases dramatically. This might affect mainly the
performance (tracking the sinusoidal reference without distortion) and robust stability (some loads
might make the closed-loop system unstable).
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Control theory offers options to address this problem, one of these options is the robust control
theory, and the special case of H∞ design [11]. This technique combined with resonant control is used
to improve the robustness of the system in a CVCF inverter. The proposal uses a single resonator on
the current signal fundamental frequency, modeled as an error signal weighting function, and uses
H∞ procedure to synthesize an optimal controller. The proposal presented in [12] tries to design a
robust controller with multiple resonators on the output voltage signal. Subsequently, an augmented
plant with uncertain load consideration is defined, based on an internal model of multiple resonators
and admittance bounds. They also use linear matrix inequalities (LMI) to obtain a robust controller
achieving until 2.7% of THD over a nonlinear load.

The present work proposes a structured and systematic approach for the design of a robust H∞

controller based on resonant control. The load uncertainty is considered in a direct form and the
performance bounds are defined in the design process with weighting transfer functions on the error
and control signals. Consequently, a two input and single output controller is proposed. The inputs
are the error signal, e(t), and the output voltage, Vo(t), because these variables will allow a greater
design flexibility. The proposed control system demonstrates in experimental results that a THD lower
than 2% can be achieved in linear and nonlinear loads.

The study in [11] is clearly related to the proposal presented here, but it is not directly comparable
because their converter approach is the output current control for grid coupled inverters and the single
resonator design does not provide the rejection of harmonic signals. Additionally, the aforementioned
study presents the load uncertainty as a multiplicative model, which is an indirect way to characterize
the uncertain loads in the system.

Proposed scheme presents two key differences in comparison with [12]: here an optimization
problem based on the H∞ classic design is presented such that the solution scheme is simpler than
the LMI formulation in [12]. Also, the controller gains design in [12] is calculated based on the
multiple resonators structure embedded in the Augmented Plant formulation, while our proposal
uses the multiple resonator design on the error weighting function. It allows a convenient controller
frequency response shaping based on the desired robust stability and performance. Therefore, the main
contributions this work are:

• The consideration of the load connected to the CVCF inverter as a direct uncertainty without
using standard uncertainty multiplicative or additive models

• A systematic design of weighting functions into a H∞-mixed sensitivity classic structure
• This design does not require the use of new approaches to optimization problems with

LMI formulation
• This design uses multiple resonators for reference tracking and harmonics rejection

This paper is organized as follows: In Section 2 a system model and mathematical layout for the
CVCF inverter with a LC filter is described. In Section 3 the robust control system design is explained
using a mathematical H∞ problem statement with the systematic design of the weighting functions
used and the augmented plant definition, to the robust stability analysis and description of the
synthesized controller. In Section 4 an experimental validation is performed through the consideration
of several linear and nonlinear loads applied to a digitally controlled CVCF inverter with the robust
design obtained in the previous section. Finally, in Section 5 some conclusions of this research are
presented based on the experimental analysis of results.

2. System Model Description

Figure 1 shows the scheme of a single-phase full bridge DC–AC converter. It is composed of a
DC-link voltage described by Vdc, four power transistors IGBT (isolated gate bipolar transistor) that
are switched in pair through a duty cycle d, an LC filter with the system dynamics (the inductance
current and the capacitor voltage) and an uncertain load that generates a current iL from the output
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inverter voltage Vo. It is necessary to operate in closed-loop form to avoid the voltage, Vo, distortion
caused by the load and being able to compensate the pulse width modulator (PWM) dead time.

From Kirchhoff’s voltage law, the state and output equations of an averaged behavior can be
extracted, as shown in Equations (1) and (2), respectively. The mathematical model can be depicted in
different ways considering more or fewer circuit elements and dynamics as shown in [13,14]. In this
proposal, the system states are i f (t), Vc (t) and correspond to the inductor current and capacitor
voltage, respectively. Vf (t) is the input filter voltage that contains a time delay of τ seconds given by
the PWM generator. The parameter L is the filter inductor and C f is the filter capacitor. R f and Rc

are the parasitic resistances of the inductor and capacitor, respectively. Additionally, the relationship
Vf (t) = [2d(t)− 1]Vdc is given, where Vdc is the DC bus voltage. The average of the switching function
d (t) is defined in the interval (0, 1) and corresponds to the duty cycle imposed in the transistor gates.
The reference sinusoidal voltage is depicted by Vre f .[

˙i f (t)
V̇c (t)

]
= A

[
i f (t)
Vc (t)

]
+ BVf (t− τ) + Eil (t) (1)

Vo = C

[
i f (t)
Vc (t)

]
(2)

where

A =

[
− R f

L − 1
L

1
C f

1
RcC f

]
, B =

[
1
L
0

]
, C =

[
0 1

]
, E =

[
0
− 1

C f

]
.

Now, for design convenience, a transfer function form of the system is proposed in order to
separate the control input Vf (t) and the disturbance input described by iL (t), as depicted in Figure 2.
This Laplace domain model is especially useful to represent the uncertain load without any indirect
uncertainty model, as considered in [12,15].

According to Figure 2, Equations (3)–(5) depict the transfer functions and the relationship between
the system inputs and outputs, where Gp (s) is the converter transfer function with its corresponding
input delay, the function Gd (s) models how the load current affects the output voltage and the
related uncertainty is referred as the parameter ∆Zl (s) = Vo (s) /IL (s) for any linear load. However,
for nonlinear loads, it is not possible to represent the impedance as a Laplace transfer function and
instead there is a completely uncertain system with unknown dynamics.

The uncertain load is represented in a direct way because the real relationship between the output
voltage Vo (t) and the load current IL (t) is featured as shown in Figure 2. With this fact, it is not
necessary the use of standard plant uncertainty models such as multiplicative or additive [16].

Vo(s) = Gp(s)Vf (s)− Gd(s)IL(s) (3)

Gp(s) =
e−sτ Rc

LC f Rcs2 +
(

C f RLRc + 2L
)

s + (RL + Rc)
(4)

Gd(s) =
Ls + RL

LC f Rcs2 +
(

C f RLRc + 2L
)

s + (RL + Rc)
(5)

For controller implementation objectives, the Equations (6) and (7) show a discrete-time model
for the plant that is obtained from Equations (4) and (5) based on the Z Transform and the zero-order
hold method, with Ts as the constant sampling time of the discrete system.

Gp(s) =
z− 1

z
Z
{

Gp(s)
s

}⌋
Ts

(6)

Gd(z) =
z− 1

z
Z
{

Gd(s)
s

}⌋
Ts

(7)
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Figure 1. CVCF inverter with uncertain load circuit diagram.
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Figure 2. Reduced block diagram for CVCF inverter with decoupled inputs.

3. Robust Control System Design

The control objective is to provide a sinusoidal voltage output Vo (t) with low distortion. It implies
a THD index lower than 5%, which is a value accepted in common power quality standards such as
IEEE Std-519 [17] and IEEE Std-1547 [18]. This bound must be achieved despite the kind and value of
the load placed in the output of the CVCF inverter.

The load directly affects the system dynamics and injects harmonic signals, especially in the case
of nonlinear loads. In fact, the load is unknown in real applications. Therefore, a sufficiently robust
controller needs to be considered to deal with the model system uncertainty. Moreover, the controller
must provide the rejection of periodic disturbances originated by the load.

In this way, an H∞ design based on resonant control is proposed for voltage loop control of the
CVCF inverter. The resonant controller-like response of the compensator will guarantee the rejection
of harmonic signal disturbances and sinusoidal voltage signal reference tracking (robust performance).
H∞ tuning method will ensure the robustness needed to maintain the stability against a wide range of
load variations (robust stability). Additionally, the H∞ optimization approach is focused on the control
system design considering the possible uncertainties of the plant in its parameters or non-modeled
dynamics [19].

The H∞ design begins with the generalized plant definition based on weighting transfer functions
which will set the control design criteria [20]. The controller synthesis results from an optimization
problem that consists of the infinity norm minimization from inputs to outputs of the generalized
plant. A two-degree of freedom controller K as depicted in Figure 3 is proposed. The condition of two
degrees of freedom permits enough design flexibility for reaching robust stability and performance.

The augmented plant is defined by the weighting functions assigned to the error signal depicted
by We(z), the filter input voltage or control signal described by Wu(z) , while the load uncertainty is
expressed as a frequency dependent weighting function Wl(z) and an unstructured uncertainty ∆(z),
with ‖∆(z)‖∞ ≤ 1, such that the load uncertainty satisfies ∆L(z) = Wl(s) · ∆(z) [21]. Those weighting
functions are discrete-time transfer functions that are chosen based on determined performance criteria.
Figure 4 shows the representation of the generalized plant as a white box where the weighting transfer
functions are applied in the chosen signals. The controller is dismissed temporally because it will
be the H∞ design result. The load will be considered to be an uncertain system with any impedance
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magnitude, therefore, the weighting function Wl (z) is designed to cover the longest possible interval
of load variations.

The generalized plant P (z) has an input signal vector w which is composed of the load current,

the reference and control signals, i.e., w =
[

w1 w2 w3

]T
=
[

il(k) r(k) v f (k)
]T

(k is the
discrete variable in time domain), while the output vector comprises the outputs of weighting
transfer functions depicted as z1 , z2 , z3 , the error signal and the inverter output voltage, i.e.,

z =
[

z1 z2 z3 z4 z5

]T
=
[

z1(k) z2(k) z3(k) e(k) vo(k)
]T

. These representations
generate a MIMO (Multi Input Multi Output) system that will have a controller with inputs

y =
[

z4 z5

]T
and output u = w3. Figure 5 shows the resulting closed-loop system structure,

with P(z) as the generalized plant, K(z) as the controller discrete transfer function and ∆ the plant
uncertainty. This uncertainty ∆, in our case, is due to the unknown loads that are connected to the
VSI. The main objective of the proposed H∞ optimization is to synthesize a controller K(z) to provide
robust stability to the closed-loop system shown in Figure 5 considering the uncertainty ∆ [16].

According to the approach explained in Figure 4, the generalized plant results in Equation (8).
The MIMO rule is used to find input-output relationships [16] and therefore, the transfer
functions that integrate P(z). The optimization problem is defined by synthesizing the controller
K(z) =

[
K1(z) K2(z)

]
that minimizes the infinity norm of M(z).


z1

z2

z3

z4

z5

 =


WlGd 0 WlGp

0 0 Wu

WeGd We −WeGp

Gd 1 −Gp

−Gd 0 Gp


 w1

w2

w3

 (8)

Equation (9) shows the optimization problem where γ corresponds to the minimum norm
achieved when a controller in the closed loop is used, as illustrated in Figure 5. The H∞ synthesis finds
a controller that guarantees a γ value less than 1 or the robust stability condition accomplishment.
It must be achieved for the three performance indexes that are closely related to a S-KS or mixed
sensitivity problem, as developed in [16,21]:

γ = min

∥∥∥∥∥∥∥
−Wl RGd

WeS
WuS1K1S

∥∥∥∥∥∥∥
∞

< 1 (9)

where the transfer function R =
(
1− Gp (K2 − K1)

)−1, the local sensitivity function related to the

closed loop between Gp and K2 called S1 =
(
1− K2Gp

)−1 and the total sensibility function of the

closed loop S =
(
1 + GpS1K1

)−1. The weighting functions perform an important role in the controller
synthesis and their selection will generate a more or less robust controller for the CVCF inverter.
While γ takes a lower value, the closed-loop M(z) will support higher uncertainty ranges. If the
controller generates a closed-loop norm close to 1, stability could be compromised for some range of
load impedances. Even more, if Equation (9) is achieved and considering that ‖∆‖∞ ≤ 1, the robust
stability of the closed-loop system is guaranteed [16,19].
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Figure 3. Control system block diagram proposed for CVCF inverter.

Figure 4. Generalized plant as a white box model.

P(z)

K(z)

w1

w2

z1

z2
z3

u y

M(z)
z2

z3

w2

Δ

Figure 5. Proposed closed loop for the H∞ design.

3.1. Weighting Functions Design

The weighting functions design is based on the desired performance in the chosen signals.
Their main objective is to penalize the signals in the selected frequencies. In this proposal, the error
signal must be small in the fundamental frequency and its multiples. This condition leads to
high-quality tracking and disturbance rejection characteristics. Additionally, the control signal must be
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weighted to avoid saturation in actuators and high frequency response in the controller. The output
signal acquires a special treatment with a function that covers a wide range of load uncertainties based
on the impedance magnitude parameter.

3.1.1. Error Weighting Function

The error weighting function depicted as We(z) is designed such that the difference between the
reference signal and the output voltage of the CVCF inverter achieves a very little value at desired
frequencies. Therefore, the incorporation of a sinusoidal signal representation in the controller is
needed. This process is reached using a resonator [7] and is defined in Equation (10) as a discrete-time
domain transfer function. The desired resonator frequency is ωl , gl is a positive gain that determines
the resonator response time, ϕl is the phase shift of the resonant element at frequency ωl , and Ts is the
sampling time.

Rl(z) = gl
cos (ϕl) z2 − cos (ωlTs + ϕl) z

z2 − 2 cos (ωlTs) z + 1
(10)

However, pure resonant controllers are not considered because the weighting function We (z)
must be stable. Therefore, a very little damping factor (that limits the resonator gain) is incorporated
in the design for preventing the cancellation. The final expression for the “damped” resonator
Rld(z) is given in Equation (11) where ξ corresponds to the damping factor, αl = cos (ϕl),
βl = (sin ϕl − ξ cos ϕl) /

(
ωl
(
1− ξ2)), θl = ω2

l
(
1− ξ2) and the variable τl = ξωlTs. This equation

is obtained from the step invariance method of discretization of analog controllers illustrated
in [22], based on the analog transfer function of the damped resonator which corresponds to

Rld(s) =
cos ϕl s2+ωl sin ϕl s

s2+2ξωls+ωl
2 .

Rld(z) = gl
αlz2 − [δle−τl + αl ] z + δle−τl

z2 − 2ze−τl cos θlz + e−2τl
(11)

To achieve reference tracking and harmonic rejection, a multiple resonator sum at desired
sinusoidal frequencies is proposed as shown in Equation (13). This equation depicts the general
result of the weighting error function, where l is the resonant element index and m is the number of
resonators considered. In this case, the most common frequencies given by linear and nonlinear loads
are chosen. Specifically, the third, fifth, seventh, ninth, eleventh and fifteenth harmonics are considered
and defined by the angular frequencies given in Equation (12). The harmonic number is n and f0 is the
fundamental frequency that corresponds to the Latin-American power line frequency at 60 Hz.

ωl = 2πn fo (12)

We(z) =
p

∑
l=1

Rld(z) (13)

The tuning procedure seeks the gains gl and the phase shifts ϕl values to reach the desired
performance with enough robustness margin controller. In this case, as the H∞ design procedure
gives the required robustness, the phase shifts will correspond to the phase value of the plant Gp(z) at
frequency ωl . Each resonant element gain is given to provide the best possible performance. While
gl takes a high value, the tracking (at fundamental frequency) or rejection (at harmonics) will have
a better effect, but the stability margin is affected when the variable comes very high. Therefore,
the numerical values obtained for the tuned damped resonant elements shown in Equation (11) are:
ξ = 0.05, θl = 0.9975ω2

l , gl = 150, Ts = 69.44 µs , τl = 3.47× 10−6ωl and the other parameters of the
equation will depend on those values.

The number of resonant elements must be considered in the error weighting function design
because using a high p value might yield a controller of very high order with a complex implementation.
It is important to notice that due to the waterbed effect, as illustrated in [23], it is not possible to
attenuate the error signal for all frequencies.
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The error weighting function frequency response is shown in Figure 6, where it is expected that
the error has the higher attenuation at fundamental and harmonic frequencies. It will reflect a high
gain in the controller at those frequencies, assuring the initial objectives accomplishment.
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Figure 6. Frequency response of the proposed error weighting function, We(z).

3.1.2. Control Signal Weighting Function

A weighting function of low-pass filter shape is proposed. The principal objective of this weighting
function is limiting the amplification of the control signal at high frequencies. This is mainly due to the
tendency of the compensators to adopt the inverse frequency response of the plant. The weighting
function for control signal is defined in Equation (14) while the frequency response is depicted by
Figure 7. This function allows the reaching of a controller gain sufficiently less than 7 dB in high
frequency ranges and less than −4 dB in low ones so that low penalization of the control signal
expected spectra is achieved.

Wu(z) =
1.393z− 0.8013

z + 0.002647
(14)
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Figure 7. Frequency response of the proposed control weighting function, Wu(z).

3.1.3. Output Signal Weighting Function

The output signal weighting function tries to cover the most quantity of load uncertainties based
on their magnitude frequency response. As shown in Figure 2, the relation between Vo(z) and iL(z) is
iL(z)/Vo(z) = 1/∆zl(z), which means that Wl(z) should corresponds to the frequency response of the
load admittance. In addition, as the desired inverter performance consists of feeding the most quantity
of possible loads, the admittance must be as large as possible throughout the frequency range.
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Furthermore, as the transfer function is extracted from the input iL(z) to Vo(z), Vo(z)/iL(z)
corresponds to the converter output impedance and it has to be the smallest possible for all frequencies
to guarantee the maximal power transfer to the load.

Therefore, the weighting function depicted by Wl(z) must be the greatest possible in all the
frequency range. This fact forces to execute some iterative experimental validation to obtain an
adequate transfer function for weighting the load, after which it took the form presented in Figure 8
with some frequency responses of inductive linear loads covered by the weighting function, from an
admittance value of 0.1 Ω−1 in low frequencies to 0.09 Ω−1 in high ones. In this case, the weighting
function takes the expression depicted in Equation (15).

Wl(z) =
0.09033z− 0.08958

z− 0.9991
(15)
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Figure 8. Frequency response of the proposed output weighting function covering some linear
inductive loads, Wl(z).

3.2. Controller Syntesis

Based on the generalized plant, the controller synthesis by H∞ design is performed, where the
optimization problem described in Equation (9) is solved. A 20-second order controller is obtained. Its
frequency response is illustrated in Figure 9 for each component of the controller, where K1(z) handles
the harmonics rejection and K2(z) has effects on the transient and affords flexibility for the design
accomplishment. The general discrete transfer function as zero-pole form is shown in Equation (16),
where pm , c1,m and c2,m are the poles and zeros of the controller respectively. The numerical values are
depicted in Table 1. As expected, the controller has a high gain at the fundamental frequency and its
harmonics.

K(z) =
[

0.4119K1(z) −0.52185K2(z)
]

(16)

where: Ki(z) =
(z+ci,19)(z+ci,18)···(z+ci,1)(z+ci,0)

(z+p19)(z+p18)···(z+p1)(z+p0)
with i =1, 2 and pj; ci,j ∈ C; j =

√
−1 .
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Figure 9. Bode diagram for synthetized H∞ controller.

Table 1. Poles and zeros of the controller discrete transfer function.

Pole/Zero Pole Value Zero Value Zero Value

Number m Controller pm
Controller Controller
K1(z)c1m K2(z)c2m

1 −0.924 −1 −1
2 −0.319 −0.0875 2.758
3 −0.084 −0.00265 4.37×10−8 + 1× 10−8 j
4 −0.00265 0.89 4.37×10−8 − 1× 10−8 j
5 0.143 + 0.556j 0.958 + 0.317j −0.0026
6 0.143 − 0.556j 0.958 − 0.317j −0.0840
7 0.943 + 0.334j 0.982 + 0.268j 0.9426 + 0.3338j
8 0.943 − 0.334j 0.982 − 0.268j 0.9426 − 0.3338j
9 0.959 + 0.248j 0.997 + 0.221j 0.9588 + 0.2840j

10 0.959 − 0.248j 0.997 − 0.221j 0.9588 − 0.2840j
11 0.972 + 0.238j 1.0018 + 0.173j 0.9723 + 0.2334j
12 0.972 − 0.238j 1.0018 − 0.173j 0.9723 − 0.2334j
13 0.983 + 0.182j 1.0037 + 0.12j 0.9832 + 0.1822j
14 0.983 + −0.182j 1.0037 − 0.12j 0.9832 − 0.1822j
15 0.991 + 0.131j 1.0034 + 0.0666j 0.9914 + 0.1305j
16 0.991 − 0.131j 1.0034 − 0.0666j 0.9914 − 0.1305j
17 0.997 + 0.0785j 0.9991 0.9969 + 0.0785j
18 0.997−0.0785j 0.992 + 0.0.007j 0.9969 − 0.0785j
19 1 + 0.0262j 0.992 − 0.0.007j 0.9997 + 0.0262j
20 1 − 0.0262j 0.992 + 0.0.007j 0.9997 − 0.0262j
21 0.999 1.67×10−5 + 2.9× 10−5 j 0.9991
22 0.998 1.67×10−5 + 2.9× 10−5 j 0.9978

The controller poles and zeros are shown in Figure 10 where the common resonant poles for K1(z)
are located in the limit of the unit circle to guarantee the error magnitude minimization at desired
frequencies in steady-state regimen. For the case of K2 (z) the poles and zeros are very close located
such that all the resonant poles can be cancelled by their zero-pairs. This cancellation causes that the
closed-loop system response capabilities can improve in terms of the remaining dominant poles with
real part close to zero.
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Figure 10. Poles and zeros location for the synthesized H∞ controller.

Moreover, this controller does not permit order reduction because the particular form of the
controller frequency response would be lost and the robust performance or even the closed-loop
stability would not be assured.

3.3. Stability and Robustness Analysis

Once the controller has been obtained, the robustness analysis compares the performance bounds
(inverse multiplicative of the weighting transfer functions) and the specific sensitivity closed-loop
transfer functions. Those transfer functions can be extracted from Equation (9) by dividing the
robustness index into the weighting function associated with it.

In any case, for testing the performance for output impedance, the transfer function with input
iL(z) and output Vo(z) is compared with the bound 1/Wl(z). This case is presented in Figure 11
and the desired performance is demonstrated since the frequency response magnitude of the output
impedance never surpasses the performance bound [19].

The peak gain of the output impedance is the minimum value of the load magnitude supportable
by the CVCF inverter. In this case, the bound was fixed to 10 Ω and the H∞ synthesized controller
achieved a minimum value of the load magnitude of 9.3 Ω. Load impedances lower than the peak
value do not assure robust stability in the closed-loop system.

Additionally, the robustness of the closed-loop design for the performance bound is tested in
the error signal. As in the previous case, the sensitivity function S(z) (transfer function from r(k) to
e(k)) is evaluated with the bound given by the inverse multiplicative of the weighting function We(z).
The comparison result is shown in Figure 12, where the error signal takes the lowest magnitude in key
frequencies, as expected. This demonstrates the capabilities of the controller to track the sinusoidal
reference and reject the selected harmonics, according to the design criteria. The design also shows
that the frequency magnitude peak of the sensitivity function reaches values lower or equal than 6 dB,
which prevents considerable noise effects and preserves a good enough modulus margin. In the same
figure, the performance bound given by 1/We(z) has an infinity norm less or equal than 10 (or 20 dB)
because the directly related error weighting function would not fulfill the stability requirement.

The difference between the nominal behavior of the control system and the performance bounds
shows that the designed controller can deal with the important parametric uncertainties into the plant.
The infinity norm achieved by the design with the performance index related to the error signal reaches
a value of 0.996. This value means that the controller can support until 101% of nominal plant variation
before the error performance bound be broken.

For the case of the control signal, the comparison of the performance bound 1/Wu(z) and the
related relation between the control signal and the reference signal (saturation analysis) is shown in
Figure 13 depicting that high frequency signals given by disturbances and switching effects would be
attenuated by the control action, while the interest frequency intervals (fundamental frequency and
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harmonics) will have an appropriate amplification so that the robust stability and performance can
be achieved.

Accordingly, the tuning process and the method for achieving a satisfactory controller is shown in
Figure 14. The method starts with the generalized plant definition through the selection of both the key
signals to be weighted and the control architecture. In this case, as shown, the error, control, and output
signals are chosen for weighting, while a two-degree of freedom control architecture is proposed.
After that, through multivariable block diagram operations [16], the generalized plant P (z) is defined
as shown in Equation (8). Later, with the total number p and per element frequency ωl , the selection
of resonant components is performed and Equation (13) helps to define them. Next, the weighting
functions definitions on the chosen signals are implemented applying the resonant components
statement in We(z) and adequate functions for control signal and load uncertainty. The controller
synthesis is performed through the formulation (with the robustness index statement of Equation (9))
and solution of the H∞ optimization problem. Then, the synthesized controller is verified through
validation of the robustness index γ that most satisfy the small gain theorem [21], the harmonic rejection
objectives (through the THD index according to the standards), and the transient performance so that
neither overshoots nor high response times take place. If either robustness index condition or transient
performance are not satisfied, the weighting functions definitions must be adjusted. In another case,
the selection of resonant controllers must be modified (through tuning the resonators gains, phase shift
values or total number of resonant components) if the harmonic rejection performance condition is
not satisfied.
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4. Experimental Validation

The controller is implemented in a CVCF converter whose parameters are given in Table 2.
The DC–AC Converter of reference Semikron SemiTeach R© is composed of an IGBT bridge, a DC bus
and a diode bridge rectifier. In this case, both the digital control sampling frequency 1/Ts and the
switching frequency of 14.4 kHz is chosen, which is an integer multiple of the operating frequency of
the inverter, fo = 60 Hz. Additionally, the control system is implemented in MATLAB XPC-Target,
which is a rapid control prototyping platform [24]. The experimental setup with the digital control
platform, the power stage, LC filters, and loads is shown in Figure 15.

Table 2. CVCF (constant voltage, constant frequency) inverter parameters.

Parameter Variable ValueRepresentation

Filter Inductor L 900 µH
Inductor Resistance RL 1.5 Ω

Filter Capacitor C f 40 µF
Parasitic Resistance RC 8.2 kΩ

Sampling Time Ts 69.4 µs

The loads chosen to test the CVCF inverter vary from linear to nonlinear nature with different
magnitudes and a wide range of power factor. A pure resistive, high and low inductance RL, and
nonlinear loads are considered. The linear loads are formed with a resistance of 12.8 Ω with several
inductors achieving different power factors. The nonlinear load is based on a diode rectifier with
parallel RC output of values of 51.5 Ω, and 680 µF, respectively. Table 3 depicts the different kinds
of loads tested in the converter and shows the THD index of the current signal obtained with these
loads. Also, the power factor, the apparent power and the voltage THD reached by the control system
in the CVCF converter are shown. This table is the result of a steady-state analysis and corresponds
to a power quality testing. The reference control system signal r(t) is 110 VRMS with 60 Hz pure
sinusoidal signal.

Table 3. Experimental results and tests.

Test Load Power Apparent il(t) Vo(t)
Item Kind Factor Power (W) THD (%) THD (%)

Lin_1 Pure 1 900 1.1 0.3Resistive

Lin_05 Linear RL 0.5 190 9.2 0.4

Lin_067 Lineal RL 0.67 370 4.1 0.4

Lin_076 Lineal RL 0.76 480 1.7 0.5

Lin_086 Lineal RL 0.86 630 2.4 0.5

L_nl Linear and 0.92 1330 29.5 0.9Nonlinear

NLin Nonlinear 0.56 380 49.5 1.4Diode Bridge RC

Op_Loop - - - 0.4

The results show that the robust control system can track the signal reference and rejecting
the distorted current signal of the load with high performance and different power consumption in
all cases.

The results shown in Table 3 for steady-state regimen are compiled in Figures 16–20. Each figure
has three illustrations that correspond to the closed-loop output voltage THD in the harmonic analyzer
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(upper left), load current THD (upper center), power analysis (upper right) and a detailed both voltage
and current waveforms by oscilloscope (below).

The proper results for linear loads are illustrated in Figures 16–18 where different power factor
loads are tested, giving different active and reactive power consumption. In all cases, despite the
power factor and the low nonlinear effects by the inductors, which impose a third and a five current
harmonic, the output voltage maintains a THD less than 0.5% thanks to the resonators tuned at those
disturbance frequencies.

Figure 15. Experimental setup for the robust control of the CVCF Inverter.

Figure 16. Converter results for linear load with PF = 1.
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Figure 17. Converter results for linear load with PF = 0.5.

Figure 18. Converter results for linear load with PF = 0.86.

However, if the bound is not surpassed, the THD output voltage index will not have undesired
percentages beyond 2%. Linear loads with inductive reactance as exposed in Figures 17 and 18 show
that the voltage distortion decreases when the power factor is reduced because the active power of
the impedance becomes lower thanks to the current demand. Then, a good performance of the robust
control is obtained since the total load impedance increases.

For nonlinear loads connection, the disturbance rejection is achieved for the current waveforms
with high harmonic presence near of 80%. The greatest impact is caused by the nonlinear load
connected to the converter because it has the most current harmonic distortion as shown in Figure 19,
despite this event, the output voltage does not reach a THD more than 1% with an appreciable load
power consumption.
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Figure 19. Converter results for nonlinear load.

In contrast, Figure 20 shows that the combination of a linear and nonlinear load, which the current
waveform has less harmonics than in the last case, obtains a better rejection by the control system of
the CVCF converter.

Figure 20. Converter results for parallel linear and nonlinear load.

Regarding the transient regimen, parametric testing is not considered because each load generates
a unique dynamical system change. Therefore, the dominant poles that define the transient regimen will
vary with each experiment. Some results of the transient stage with load connection or disconnection
are shown in this section.

When the nonlinear load is connected and the linear one enters too, as depicted in Figure 21,
the voltage has a decrease in its amplitude that lasts until one cycle. But nevertheless, this effect is little
harmful to the load because the voltage in transient stage does not decrease less than the ten percent of
the peak value, which is within the allowable range for amplitude variations.
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Linear Load Connection

Figure 21. Transient stage for linear load connection when the nonlinear one remains connected.

Also, the transient stage could be shown in the load transitions where disconnections events
take place. Figure 22 shows the transient stage of the parallel connection of the linear load with the
nonlinear one that is disconnected. In Figure 23 a linear load disconnection event (remaining the
nonlinear one) is illustrated. The both cases show that the CVCF converter control system has a
settling time less than two sinusoidal signal periods with non-harmful amplitude variations in the
supplied voltage.

Nonlinear Load disconnection

Figure 22. Nonlinear load disconnection transient stage when linear load remains connected.

Linear Load disconnection

Figure 23. Linear load disconnection transient stage when the nonlinear one remains connected.

5. Conclusions

A robust control design methodology for a CVCF inverter has been presented. This methodology
combines the use of resonant elements that based on the internal model principle guarantees excellent
steady-state behavior and H∞ to guarantee stability against load variations. The design shows that
the converter has the capability to support a wide range of loads with different magnitudes that
are greater than a determined minimum impedance value. The converter output voltage regulation
was achieved with a THD less than 2% for a wide range of linear (with different power factor) and
nonlinear loads. The H∞ synthesized compensator is obtained through an H∞ norm minimization
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procedure. The controller achieved the desired performance bounds throughout all the frequency range.
The time domain performance shows a high-power quality signal, where a high harmonic rejection
is achieved. The weighting functions are selected aimed at having good robustness bounds in the
cases of the error and control signals. The output weighting function represents the maximum possible
admittance for the frequency range, where the highest load uncertainty was included. The obtained
controller satisfies all the robustness bounds, supports different kinds of loads and does not have
critical transient stages or overshoots in load connection or load changing. The achieved robustness is
demonstrated in the capability to maintain a high-quality voltage signal on load uncertainties.
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