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Abstract

This paper is concerned with the output feedback control design for a class of nonlinear uncertain systems subject to multiple

sources of disturbances including model uncertainties, unknown constant disturbances, harmonic disturbances with unknown

frequency and amplitude. The total disturbances and uncertainties are delicately represented by a compact exogenous model

first. By incorporating the adaptive internal model principle, a set of dynamic estimators are developed for both state and

disturbance observations. By means of observer backstepping technique, a composite output feedback controller is constructed

based on the disturbance and state estimations. The stability of the closed-loop system is rigorously established based on

Lyapunov stability criterion. A missile roll stabilization example is finally investigated to validate the effectiveness of the

proposed control approach.

Key words: Output feedback control; Nonlinear uncertain system; Multiple disturbances and uncertainties; Internal model

principle; Missile roll stabilization

1 Introduction

In general, the control performances and even stability of all industrial systems are severely jeopardized by various

sources of disturbances and uncertainties [1–9]. It is not surprised that disturbance rejection and uncertainty atten-

uation is a crucial task in controller design. Due to such an urgent requirement, many advanced control approaches

have been investigated to handle disturbances and uncertainties for nonlinear systems, such as stochastic control

[10], nonlinear H∞ control [11], output regulation control [4,12], and sliding mode control [13], etc. Those control

approaches improve robustness performance or disturbance rejection from different aspects. Among them, robust
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and adaptive control approaches have received a great deal of attentions in both theoretic society and industrial

application sectors [4]. However, the way of robust control handling disturbances/uncertainties is generally recog-

nized as a crude manner since it is a worst-case based design approach, while the adaptive control dealing with the

uncertainties in a refined manner since the structured uncertainties are generally required [1,14]. Sliding mode con-

trol provides an active way to reject disturbances and uncertainties, but the resultant control chattering in practice

restrains its applications in many industrial systems [13].

Recently, disturbance/uncertaity estimation and attenuation (DUEA) methods (including disturbance observer-

based control (DOBC) [1], active disturbance rejection control (ADRC) [15], etc.) have been widely investigated as

an alternative choice to achieve robustness against uncertainties as well as disturbance rejection performance (see

[1,2,5–7,15–23] and the references therein). Due to the two-degree-of-freedom design mechanism, DUEA performs

well in striking a balance between the nominal performance and robustness [1,18]. Consequently, DUEA is generally

regarded as a kind of refined robust control but crude adaptive control method [5]. Furthermore, DUEA method

enable us to design a feedback controller and a disturbance estimator/compensator independently and then integrate

them together. This property provides the flexibility of structure for DUEA as compared with output regulation

control. In view of the promising properties, DUEA methods have considerable applications in various industrial

sectors, such as mechatronic systems [16,22,24,25], aerospace systems [26–28], chemical and process systems [21].

In spite of the above significant advances in DUEA, most of above results aim at dealing with single disturbance or

uncertainty [2,29]. However, in most practical engineering problems, the sources of disturbances and uncertainties

are naturally multiple, and those multiple disturbances may exhibit distinct features and should be represented by

different models and signals [2]. Taking the speed regulation problem of a permanent magnetic synchronous motor

as an example, the unknown load torque would be a constant or bounded time-varying variable, the dead zone

of inverter may cause harmonic speed ripple with unknown amplitude and frequency, and the inertial of moment

could cause nonlinear uncertainties of the dynamics [24,25]. Clearly, those unknown uncertain factors have different

features, and the existing DUEA approaches developed for a single disturbance is not capable of achieving higher

control performances in the presence of multiple distinct disturbances and uncertainties [27].

Pioneered by Guo and his colleagues [2,29–31], a composite hierarchial anti-disturbance control (CHADC) approach

has been proposed to handle multiple sources of disturbances and uncertainties on the basis of DUEA. For instance,

in [30,31], the disturbances and uncertainties are separated into two parts: one part is harmonic ones generated by an

exogenous system while the other part is uncertainties supposed to satisfy the condition of H2 norm-bounded. The

idea behind CHADC approaches is to combine DOBC with H∞ or sliding mode control techniques for disturbance

rejection and uncertainty attenuation. Further results have been proposed to handle the adaptive control problem

for system under mismatched disturbances and uncertainties in [29]. However, most of existing CHADC approaches

focus on state feedback control problem and few provide output feedback control results. In addition, most of

existing CHADC approaches could only handle harmonic disturbances with unknown amplitude but with known

frequency. The harmonic disturbances with unknown frequencies is still a design barrier for CHADC approaches.

On the other hand, the internal model principle has been adopted for output regulation approach to compensate

harmonic disturbances with unknown frequency [32,33]. Robust output regulation is further developed to suppress

model uncertainties using robust control principle [4]. Due to the feature of worst-case-based design of robust control,

the nominal control performance shall be sacrificed for robust output regulation of systems in the absence of model

uncertainties.

In this paper, an output-based disturbance rejection control approach is proposed for nonlinear uncertain system

subject to multiple sources of disturbances and uncertainties, particularly including model uncertainties and harmonic
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disturbances with unknown amplitude and frequency. Firstly, the multiple sources of disturbances are separated

and represented by different models according to their distinct features. By means of adaptive internal model

principle [34,32], adaptive state and disturbance observers are developed for both state and disturbance estimation

design. A new output feedback disturbance rejection control law is then constructed for the nonlinear uncertain

system under consideration by utilizing the observer backstepping design. A delicate stability result is established

to show that the proposed composite control method could effectively attenuate the multiple disturbances including

model uncertainties and external harmonic disturbance with unknown frequencies. An application to a missile roll

stabilization problem is finally considered to demonstrate the effectiveness of the proposed method. The results

validate the elegant robustness and disturbance rejection performance as claimed in the paper. The major properties

of the proposed control approach are summarized as follows:

• The proposed control approach has made great progresses for DUEA to handle multiple disturbances/uncertainties,

in particular, it provides an adequate way to handle both harmonic disturbances with unknown frequency and model

uncertainties via an output feedback manner;

• Similar with ADRC, the proposed control approach does not require extensive model information of the plant;

actually, only the order of the plant is demanded. Consequently, it can be deemed as an almost model free approach

and an enhanced version of ADRC;

• As compared with output regulation approach, the proposed control approach deal with uncertainties via an esti-

mation and compensation way, rather than a robust suppression manner.

The rest of the paper is organized as follows. In Section 2, the problem formulation of the paper is given. The

detailed controller development of this paper is presented in Section 3, followed by the rigorous stability analysis

of the closed-loop system in Section 4. A missile roll stabilization example is provided in Section 5 to validate the

efficiency of the paper. Section 6 concludes the paper.

2 Problem Formulation

In this paper, we consider a class of single-input single-output nonlinear dynamic systems subject to multiple sources

of disturbances and uncertainties, which is depicted as

y(n)(t) = f(y(t), . . . , y(n−1)(t), t) + bu(t) + d1(t), (1)

where y(t) ∈ R is the controlled output, u(t) ∈ R is the control input, d1(t) ∈ R is the external disturbance,

f(y(t), . . . , y(n−1)(t), t) denotes the unknown uncertain dynamics of the system, and b is an unknown constant but

with a known sign. The disturbances and uncertainties concerned here are from multiple sources:

• The external disturbance d1(t) ∈ R is generated by the following exogenous system

σ̇(t) = Sσ(t), d1(t) = V σ(t), (2)

where σ(t) ∈ Rs denotes the internal state of the exogenous system. The external disturbance generated by

exogenous system (2) represents a wide variety of disturbances in practical engineering systems. For instance, the

unknown constant, ramp, harmonic disturbances have different characteristics. However, those signals and also

the combination of them can be represented by the above exogenous system (2).

• The terms f(y(t), . . . , y(n−1)(t), t) and bu(t) in (1) contain uncertain dynamics, which would cause adverse effects

on the control performance and shall be considered in the control design.
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Letting xi(t) = y(i−1)(t) for i = 1, . . . , n, the plant (1) is represented as

ẋi(t) = xi+1(t), ẋn(t) = b0u(t) + d1(t) + d2(t), (3)

with

d2(t) = f(x1(t), . . . , xn(t), t) + (b− b0)u(t),

where b0 is the nominal value of b, and b0 and b have the same sign. The following lemma is important and will be

used in the later stability derivation.

Lemma 1 [35]: Consider a nonlinear system

ẋ = f(x, u) (4)

with the state x ∈ Rn and the input u ∈ R. If the following conditions are satisfied

• system ẋ = f(x, u) is globally Input-to-State Stable (ISS),

• u(t) ∈ L∞ and lim
t→∞

u(t) = 0,

then the state x of the system (4) tends to zero as t goes to infinity, that is, lim
t→∞

x(t) = 0.

3 Design of Output-Based Disturbance Rejection Control

3.1 Design of State and Disturbance Observers

Letting x = [x1, . . . , xn]
T and d = d1 + d2, the nonlinear system (3) with additive disturbance governed by (2) is

rewritten as

ẋ(t) =Ax(t) +B [b0u(t) + d(t)] ,

ẇ(t) =S̄w(t) + W̄ ḋ2(t),

d(t) =V̄ w(t), y(t) = x1(t),

(5)

with

A =



0 1 · · · 0

...
...
. . .

...

0 0 · · · 1

0 0 · · · 0


, B =



0

...

0

1


, W̄ =



1

0

...

0


,

S̄ =

 0 0

0 S

 , V̄ = [1, V ] .

Consider the following state observers

ṗi = pi+1 + ωi
oli(y − p1), i = 1, . . . , n− 1,

ṗn = b0u+ ωn
o ln(y − p1),

(6)
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and

q̇i = qi+1 − ωi
oliq1, i = 1, . . . , n− 1,

q̇n = −V̄ w − ωn
o lnq1,

(7)

where ωo > 0 is the observer bandwidth to be determined [36,37], and li > 0 is the observer gain to be designed

such that the polynomial p0(s) = sn + l1s
n−1 + · · · + ln−1s + ln is Hurwitz. The state qi is not implementable due

to the unknown term of V̄ w.

Define the observer error as εi = (xi − pi + qi)/ω
i−1
o for i = 1, . . . , n. A simple calculation gives

ε̇i = ωo(εi+1 − liε1), i = 1, . . . , n− 1,

ε̇n = −ωolnε1,

(8)

or equivalently

ε̇ = ωoAcε, (9)

with ε = [ε1, . . . , εn]
T and

Ac =



−l1 1 · · · 0

...
...
. . .

...

−ln−1 0 · · · 1

−ln 0 · · · 0


.

It is observed from (7) that the solution of state q = [q1, . . . , qn]
⊤ is in terms of disturbance V̄ w through a stable

filter. The lumped uncertainties contained in d2(t) are generally considered as bounded and even constant signals in

most practical applications [7,15,38]. Consequently, there exists a l ∈ Rs+1 such that the second element of state q

can be represented as

q2 = l⊤w. (10)

The variable in (10) is re-parameterized in a similar manner as [32]. For any known controllable pair {F, G} with

F ∈ R(s+1)×(s+1) being Hurwitz and G ∈ Rs+1, there exists a ψ ∈ Rs+1 and a ϕ ∈ Rs+1 such that

η̇ = (F +Gψ⊤)η + ϕḋ2,

q2 = ψT η.

(11)

The benefit of the parameterization is illustrated as follows. Since the matrices S̄ and F have different eigenvalues, it

can be shown that there exists a nonsingular matrix M ∈ R(s+1)×(s+1) which is the unique solution of the following

Sylvester matrix [34]

MS̄ − FM = Gl⊤. (12)

Combining (11) and (12) we have η =Mw, ψ⊤ = l⊤M−1, ϕ =MW̄ .
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The observer for system (11) is designed as

ξ̇ = Fξ +Gp2 − FGy. (13)

The estimation error is defined as e = ξ− η−Gy. With x2 = p2 −ψ⊤η+ωoε2 in mind, it is obtained from (11) and

(13) that

ė = Fe− ωoGε2 − ϕḋ2. (14)

Since Ac and F are Hurwitz matrices, there exist two positive definite matrices Pε = P⊤
ε and P = P⊤ satisfying

A⊤
c Pε + PεAc = −2I, F⊤P + PF = −2I. (15)

Consider the following Lyapunov function for the observation error dynamics (9) and (14)

V0(ε, e) =
1

2

[
βωoε

⊤Pεε+ e⊤Pe+ ψ̃⊤Γ−1ψ̃
]
, (16)

where Γ is a positive definite matrix, ψ̃ = ψ − ψ̂ and ψ̂ is the estimate of ψ to be designed later. Taking derivative

of (16) along the observer error dynamics (9) and (14) gives

V̇0(ε, e) =− βω2
oε

⊤ε− e⊤e− ωoe
⊤PGε2

− e⊤Pϕḋ2 − ψ̃⊤Γ−1 ˙̂
ψ,

≤− ω2
o

(
β − 1

4κ0
∥PG∥2

)
ε⊤ε

− (1− κ0)e
⊤e− e⊤Pϕḋ2 − ψ̃⊤Γ−1 ˙̂

ψ,

(17)

where κ0 is a real positive constant.

3.2 Construction of Output Feedback Composite Controller

For brief expressions, the following variables are defined

δε,k =β − 1

4κ0
∥PG∥2 −

k∑
j=1

1

4κ1,j
,

δe,k =1− κ0 −
k∑

j=1

κ2,j ,

δ1,k =d1 − ∥ψ⊤G∥ − κ1,1 −
∥ψ∥2

4κ2,1
−

k∑
j=1

κ3,j∥ψ⊤G∥2,

δj,k =dj − κ1,j −
∥ψ∥2

4κ2,j
− 1

4κ3,j
,

(18)

for k = 1, . . . , n and j = 2, . . . , k where we set κ3,1 = 0 and all other parameters including κ0 and κi,j are positive

reals to be determined latter.
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Initial Step: Define ζ1 = p1 − α0, α0 = p1 − y and construct the Lyapunov function

V1(ε, e, ζ1) = V0(ε, e) + ζ21/2 + γ−1
1 d̃21/2, (19)

where d̃1 = d1 − d̂1 and γ1 is a real positive design parameter. Define ζ2 = p2 − α1 with α1 being a virtual control.

A direct calculation gives

V̇1 ≤− ω2
o

(
β − 1

4κ0
∥PG∥2

)
ε⊤ε

− (1− κ0)e
⊤e− e⊤Pϕḋ2 − ψ̃⊤Γ−1 ˙̂

ψ,

+ ζ1(ζ2 + α1 − ψ⊤η + ωoε2)− γ−1
1 d̃1

˙̂
d1.

(20)

Designing the virtual control

α1 = −c1ζ1 − d̂1ζ1 + ψ̂⊤ξ,

˙̂
d1 = γ1ζ

2
1 , τ1 = Γ

∂α0

∂y
ξζ1,

yields

V̇1 ≤− ω2
o

(
β − 1

4κ0
∥PG∥2

)
ε⊤ε− (1− κ0)e

⊤e

− e⊤Pϕḋ2 − ψ̃⊤Γ−1(
˙̂
ψ − τ1) + ζ1ζ2

− c1ζ
2
1 − (d1 − ψ⊤G)ζ21 + ψ⊤eζ1 + ω0ζ1ε2

≤− ω2
oδε,1ε

⊤ε− δe,1e
⊤e− e⊤Pϕḋ2

− ψ̃⊤Γ−1(
˙̂
ψ − τ1) + ζ1ζ2 − c1ζ

2
1 − δ1,1ζ

2
1 .

(21)

The 2nd Step: Define ζ3 = p3 − α2 with α2 being the virtual control and choose the Lyapunov function

V2(ε, e, ζ1, ζ2) = V1(ε, e, ζ1) + ζ22/2 + γ−1
2 d̃22/2.

Continue to design the virtual control α2 as follows

α2 =− c2ζ2 − ζ1 − ω2
ol2(y − p1)− d̂2

(
∂α1

∂y

)2

ζ2

+
∂α1

∂y
(p2 − ψ̂ξ) +

∂α1

∂d̂1

˙̂
d1 +

∂α1

∂ξ
ξ̇ +

∂α1

∂ψ̂
τ2,

(22)

with

˙̂
d2 = γ2

(
∂α1

∂y

)2

ζ22 , τ2 =

2∑
j=1

Γ
∂αj−1

∂y
ξζj
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yields

V̇2 ≤− ωoδε,2ε
⊤ε− δe,2e

⊤e− e⊤Pϕḋ2

− ψ̃⊤Γ−1(
˙̂
ψ − τ2) + ζ2ζ3 − c1ζ

2
1 − c2ζ

2
2

− δ1,2ζ
2
1 − δ2,2

(
∂α1

∂y

)2

ζ22 +
∂α1

∂ψ̂

(
˙̂
ψ − τ2

)
ζ2

(23)

Inductive Step: Suppose at step k, there exist a smooth Lyapunov function Vk(ε, e, ζ1, . . . , ζk) which is positive

definite and proper, and a group of virtual controls α2, . . . , αk defined by

αi =− ciζi − ζi−1 − ωi
oli(y − p1)− d̂i

(
∂αi−1

∂y

)2

ζi

+
∂αi−1

∂y
(p2 − ψ̂ξ) +

i−1∑
j=1

∂αi−1

∂pj
ṗj +

i−1∑
j=1

∂αi−1

∂d̂j

˙̂
dj

+
∂αi−1

∂ξ
ξ̇ +

∂αi−1

∂ψ̂
τi +

i−1∑
j=1

∂αj−1

∂ψ̂
Γ
∂αi−1

∂y
ξζj ,

(24)

where ζi = pi − αi−1, d̃i = di − d̂i and

˙̂
di = γi

(
∂αi−1

∂y

)2

ζ2i , τi =

i∑
j=1

Γ
∂αj−1

∂y
ξζj ,

for i = 2, . . . , k + 1 with ci > 0 being independent of the observer bandwidth ωo, such that

V̇k ≤− ω2
oδε,kε

⊤ε− δe,ke
⊤e− e⊤Pϕḋ2

− ψ̃⊤Γ−1(
˙̂
ψ − τk) + ζkζk+1 −

k∑
j=1

cjζ
2
j

−
k∑

j=1

δj,k

(
∂αj−1

∂y

)2

ζ2j +
k∑

j=1

∂αj−1

∂ψ̂

(
˙̂
ψ − τk

)
ζj

(25)

We consider now the Lyapunov function candidate

Vk+1(ε, e, ζ1, . . . , ζk+1)

= Vk(ε, e, ζ1, . . . , ζk) + ζ2k+1/2 + γ−1
k+1d̃

2
k+1/2,

(26)

where ζk+1 = pk+1 − αk. The following proposition is important for the following construction, and the detailed

proof can be found from the appendix.
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Proposition 1 : The following condition is satisfied

d

dt

(
1

2
ζ2k+1 +

1

2γk+1
d̃2k+1

)
≤ζk+1

[
ζk+2 − ck+1ζk+1 − ζk − ∂αk

∂ψ̂

(
˙̂
ψ − τk+1

)
+

k∑
j=1

∂αj−1

∂ψ̂
Γ
∂αk

∂y
ξζj

+ κ2,k+1e
⊤e

+ ψ̃⊤ ∂αk

∂y
ξζk+1 + κ3,k+1∥ψ⊤G∥2ζ21

+
ω2
o

4κ1,k+1
ε⊤ε− δ1,k+1

(
∂αk

∂y

)2

ζ2k+1,

(27)

for the dynamic systems under consideration.

Putting (25), (26) and (27) together we have

V̇k+1 ≤− ω2
oδε,k+1ε

⊤ε− δe,k+1e
⊤e− e⊤Pϕḋ2

− ψ̃⊤Γ−1(
˙̂
ψ − τk+1) + ζk+1ζk+2

−
k+1∑
j=1

cjζ
2
j −

k+1∑
j=1

δj,k+1

(
∂αj−1

∂y

)2

ζ2j

+
k+1∑
j=1

∂αj−1

∂ψ̂

(
˙̂
ψ − τk+1

)
ζj

(28)

This completes the inductive argument. Continue to apply the inductive argument, and at the nth step the real

controller is designed as

u = αn/b0, (29)

with
˙̂
ψ = τn

resulting in

V̇n ≤− ω2
oδε,nε

⊤ε− δe,ne
⊤e−

n∑
j=1

cjζ
2
j

−
n∑

j=1

δj,n

(
∂αj−1

∂y

)2

ζ2j − e⊤Pϕḋ2.

(30)
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4 Stability Analysis of the Closed-loop System

Observe that it is possible to set the constant positive reals κ0, κi,j , and dj , i = 1, 2, 3 and j = 1, . . . , n such that

δε,n > 0, δe,n > 0, δj,n > 0, j = 1, . . . , n. With those conditions in mind, we have

V̇n ≤ −ω2
oδεε

⊤ε− δee
⊤e−

n∑
j=1

cjζ
2
j − e⊤Pϕḋ2. (31)

Theorem 1 : Suppose that the derivative of disturbance d2(t) is bounded, i.e., ḋ2(t) ∈ L∞. Taking ḋ2(t) as an input

of the the plant (5), the proposed composite control law guarantees the ISS of the closed-loop systems consisting of

the plant (5), the control law (29), and the filters (6) and (13), that is, xi(t) ∈ L∞, i = 1, . . . , n.

Proof : With the observation errors (9) and (14) in mind, calculating the dynamic behaviors of ζi, the closed-loop

system is governed by

ζ̇1 =ζ2 − c1ζ1 − d̂1ζ1 +
(
ωoε2 − ψ⊤η + ψ̂ξ

)
ζ̇i =ζi+1 − ciζi − ζi−1 − d̂i

(
∂αi−1

∂y

)2

ζi

+
∂αi−1

∂y

(
ωoε2 − ψ⊤η + ψ̂ξ

)
−

n∑
j=i+1

∂αi−1

∂ψ̂
Γ
∂αj−1

∂y
ξζj

+

i−1∑
j=2

∂αj−1

∂ψ̂
Γ
∂αi−1

∂y
ξζj , i = 2, . . . , n

ε̇ =ωoAcε

ė =Fe− ωoGε2 − ϕḋ2

(32)

Based on (31), it is straightforward to show that the close-loop system (32) in the absence of perturbation ḋ2(t) is

asymptotically stable. Consequently, the genuine closed-loop system (32) can actually be considered as an asymp-

totically stable system perturbed by a bounded input signal ϕḋ2(t). The conclusion that xi(t) ∈ L∞, i = 1, . . . , n

directly follows from the ISS property.

Theorem 2 : Suppose that the disturbance ḋ2(t) is bounded and tends to zero as t goes to infinity, i.e., ḋ2(t) ∈ L∞ and

lim
t→∞

ḋ2(t) = 0. The proposed composite control law guarantees the asymptotical stability of the closed-loop systems

consisting of the plant (5), the control law (29), and the filters (6) and (13), that is, xi(t) ∈ L∞, i = 1, . . . , n and

lim
t→∞

xi(t) = 0.

Proof : With the assumption on ḋ2(t) in mind, it follows from Lemma 1 and Theorem 1 that

lim
t→∞

ζi(t) = 0, lim
t→∞

ε(t) = 0, lim
t→∞

e(t) = 0

10



In a similar manner with [32], we can derive the results that

lim
t→∞

ψ̂(t) = ψ,

if the external disturbance σ(t) contains components at s/2 distinct frequencies. Define x̂i = (pi − qi)/ω
i−1
o for

i = 1, . . . , n. Combining (6) and (7), we have

˙̂xi(t) = ωo [x̂i+1 + li(y − x̂1)]

Note that the conditions lim
t→∞

x1(t) = 0 and lim
t→∞

ε1(t) = 0 imply that lim
t→∞

x̂1(t) = 0. It follows from the Barbalat

Lemma that lim
t→∞

x̂i(t) = 0 for i = 2, . . . , n. This completes the proof.

Remark 1: The assumption that ḋ2 is bounded is used for rigorous stability analysis. In general, the lumped distur-

bances may contain some state variables, and it is difficult to prove the stability for this general case of d2(t) = f(x, t)

[1,6,7,15]. One may doubt the availability of the proposed method in this case. In many practical engineering systems,

the dominated dynamics can be stabilized by the feedback control, and the state uncertainties contained in the lumped

disturbance d2(t) are relatively weak, which will not affect the system stability. In this case, such uncertainties can

be regarded as part of the lumped disturbance and can be handled by the proposed method. This is possibly the major

reason for the prevalence of using the disturbance estimator-based control to compensate plant uncertainties in real

engineering systems.

For the convenience of the readers, the parameter tuning guidelines of the proposed control approach are summarized

as follows:

• Observer Parameters: 1) Choose a controllable pair {F, G} with F being Hurwitz; 2) Select observer gains li > 0

such that the polynomial p0(s) = sn+ l1s
n−1+ · · ·+ ln−1s+ ln is Hurwitz; and 3) Design a positive definite matrix

Γ and positive parameters γi > 0 for i = 1, . . . , n.

• Control Parameters: The feedback control parameters are designed such that ci > 0 for i = 1, . . . , n.

5 Application to A Missile Roll Stabilization Example

The roll stabilization for a generic PGM (precision guided munitions) missiles is investigated in this section to

demonstrate the performance of the proposed method in this paper. The dynamics of the missile in roll plane,

ignoring the flexible mode, is described as follows [39]

ϕ̈ = Cα sin 4ϕ− wRRϕ̇+Kδδa + d(t), (33)

where ϕ and ϕ̇ are roll angle and roll rate of PGM missiles, δa is fin deflection. Cα, wRR, and Kδ are the disturbance

coefficient, roll rate bandwidth and fin effectiveness, respectively. d(t) is external disturbance possibly caused by wind

gust. The nominal parameters of Cα, wRR and Kδ are taken as Cα0 = 70, wRR0 = 5 and Kδ0 = 1450, respectively.

Note that the roll dynamics would be interrupted by multiple sources of disturbances including external disturbances

and internal model uncertainties. The external disturbance d(t) may be represented by unknown constant, harmonic

signal with unknown frequency and amplitude, and so on. The model uncertainties are largely induced by parameter
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perturbations of Cα and Kδ. The objective of controller design is to achieve robust altitude stabilization of the

missile under various disturbances and uncertainties.

5.1 Controller Development

Letting y(t) = ϕ(t), u(t) = δa(t), b = Kδ, and f(y(t), ẏ(t), t) = Cα sin 4y(t) − wRRẏ(t) the roll dynamics can be

formulated as (1). To facilitate the controller design, the following intermediate variables are defined

z1 = y, α1 = −(c1 + d̂1)z1 + ψ̂⊤ξ, z2 = p2 − α1,

where d̂1, d̂2 and ψ̂ are adaptive variables to be updated.

The observers and adaptive dynamics are designed as

ṗ1 =p2 + k1(y − p1),

ṗ2 =b0u+ k2(y − p1),

ξ̇ =Fξ +Gp2 − FGy,

˙̂
d1 =γ1y

2,
˙̂
d2 = γ2(c1 + d̂1)

2z22 ,

˙̂
ψ =− Γξz1 − Γ(c1 + d̂1)ξz2,

(34)

where b0 = Kδ0. The composite controller is finally designed as

u =
{
−z1 −

[
c2 + d̂2(c1 + d̂1)

2 + ξ⊤Γ(c1 + d̂1)ξ
]
z2

−k2(y − p1)− (c1 + d̂1)(p2 − ψ̂⊤ξ)− γ1z
3
1

+ψ̂⊤(Fξ +Gp2 − FGz1)− ξ⊤Γξz1

}
/b0.

(35)

The controller parameters of (34) and (35) for the roll stabilization problem of (33) are assigned as follows

k1 = 2, k2 = 1, γ1 = 1, γ2 = 1, c1 = 1, c2 = 1,

F =


0 1 0

0 0 1

−3.375 −6.75 −4.5

 , G =


0

1

1

 , Γ =


50 0 0

0 50 0

0 0 50

 .

5.2 Simulation Results

In this part, we will investigate the robustness performance of the proposed composite approach against multiple

sources of disturbances and uncertainties. As shown in Table 5.2, three cases of perturbations on fin effectiveness

Kδ and disturbance coefficient Cα as well as external disturbances d1 are taken into account in this part.

To evaluate the performance of the proposed composite controller, a basic ADRC approach [15] is employed here as

a benchmark disturbance rejection approach for comparison study. The extended state observer of the basic ADRC

12



Table 1
Simulation Scenarios Setting for Performance Test

Simulation Scenarios Kδ Cα d1

Case I 1450 70 1000

Case II 800 35 −400 sin(4πt)− 800

Case III 2000 105 500 sin(5πt) + 1000

is designed as

χ̇1 =χ2 − β1(χ1 − y),

χ̇2 =b0u+ χ3 − β2(χ1 − y),

χ̇3 =− β3(χ1 − y),

(36)

and the control law is designed as

u =
k1χ1 + k2χ2 − χ3

b0
, (37)

where the parameters are chosen as β1 = 120, β2 = 4800, β3 = 64000, k1 = −400 and k2 = −40, respectively.

The response curves of the roll angle, roll rate, and fin deflection under the proposed composite control law (35) and

the basic ADRC (37) in the presence of three cases of multiple disturbances and uncertainties described in Table 5.2

are shown in Figs. 1-3, respectively.

As shown by Fig. 1, the basic ADRC approach could effectively compensate the lumped disturbance effects caused by

model uncertainties and constant external disturbances. However, it is shown by Figs. 2 and 3 that the basic ADRC

fails to precisely compensate the effects of harmonic disturbances. On the contrary, as clearly shown by Figs. 1-3,

the proposed composite control law (35) can effectively attenuation the multiple disturbances including unknown

constant disturbance, harmonic disturbance with unknown amplitude and frequency, model uncertainties caused by

unknown parameters of Kδ and Cα.

6 Conclusions

The output feedback control design problem of a class of nonlinear systems subject to multiple sources of distur-

bances/uncertainties including model uncertainties, constant and harmonic external disturbances has been investi-

gated in the paper. By using adaptive internal model principle and observer backstepping technique, a new composite

output feedback controller has been developed for multiple disturbance estimation and compensation. The proposed

method has inherited many advantages of DUEA, CHADC and output regulation approaches. The effectiveness and

feasibility of the proposed approach has been validated by application to a missile roll stabilization example. The

future work will focus on quantitative robustness analysis and stochastic systems with the proposed control method.
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Fig. 1. Robustness performance test results of roll stabilization problem in the presence of disturbances and uncertainties in
Case I under the proposed method (solid blue) and the basic ADRC method (dashed red): (a) roll angle; (b) roll rate; (c) fin
deflection.
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Appendix: Proof of Proposition 1

The detailed proof of Proposition 1 is presented as follows

d

dt

(
1

2
ζ2k+1 +

1

2γk+1
d̃2k+1

)
=ζk+1

[
ζk+2 + αk+1 + ωk+1

o lk+1(y − p1)− α̇k

]
− γ−1

k+1d̃k+1
˙̂
dk+1

=ζk+1

[
ζk+2 − ck+1ζk+1 − ζk − dk+1

(
∂αk

∂y

)2

ζk+1

−∂αk

∂y

(
ψ⊤e− ψ̃⊤ξ + ψ⊤Gζ1 + ωoε2

)
−∂αk

∂ψ̂

(
˙̂
ψ − τk+1

)
+

k∑
j=1

∂αj−1

∂ψ̂
Γ
∂αk

∂y
ξζj


≤ζk+1

[
ζk+2 − ck+1ζk+1 − ζk − dk+1

(
∂αk

∂y

)2

ζk+1

−∂αk

∂ψ̂

(
˙̂
ψ − τk+1

)
+

k∑
j=1

∂αj−1

∂ψ̂
Γ
∂αk

∂y
ξζj


− ∂αk

∂y

(
ψ⊤e− ψ̃⊤ξ + ψ⊤Gζ1 + ωoε2

)
ζk+1

≤ζk+1

[
ζk+2 − ck+1ζk+1 − ζk − dk+1

(
∂αk

∂y

)2

ζk+1

−∂αk

∂ψ̂

(
˙̂
ψ − τk+1

)
+

k∑
j=1

∂αj−1

∂ψ̂
Γ
∂αk

∂y
ξζj


+ κ2,k+1e

⊤e+
∥ψ∥2

4κ2,k+1

(
∂αk

∂y

)2

ζ2k+1 + ψ̃⊤ ∂αk

∂y
ξζk+1

+ κ3,k+1|ψ⊤G|2ζ21 +
1

4κ3,k+1

(
∂αk

∂y

)2

ζ2k+1

+ κ1,k+1

(
∂αk

∂y

)2

ζ2k+1 +
ω2
o

4κ1,k+1
ε⊤ε

≤ζk+1

[
ζk+2 − ck+1ζk+1 − ζk − ∂αk

∂ψ̂

(
˙̂
ψ − τk+1

)
+

k∑
j=1

∂αj−1

∂ψ̂
Γ
∂αk

∂y
ξζj

+ κ2,k+1e
⊤e+ ψ̃⊤ ∂αk

∂y
ξζk+1

+ κ3,k+1∥ψ⊤G∥2ζ21 +
ω2
o

4κ1,k+1
ε⊤ε− δ1,k+1

(
∂αk

∂y

)2

ζ2k+1.
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