779 research outputs found

    General decay lag anti-synchronization of multi-weighted delayed coupled neural networks with reaction–diffusion terms

    Get PDF
    We propose a new anti-synchronization concept, called general decay lag anti-synchronization, by combining the definitions of decay synchronization and lag synchronization. Novel criteria for the decay lag anti-synchronization of multi-weighted delayed coupled reaction–diffusion neural networks (MWDCRDNNs) with and without bounded distributed delays are derived by constructing an appropriate nonlinear controller and using the Lyapunov functional method. Moreover, the robust decay lag anti-synchronization of MWDCRDNNs with and without bounded distributed delays is considered. Finally, two numerical simulations are performed to validate the obtained results

    Chimera states: Coexistence of coherence and incoherence in networks of coupled oscillators

    Full text link
    A chimera state is a spatio-temporal pattern in a network of identical coupled oscillators in which synchronous and asynchronous oscillation coexist. This state of broken symmetry, which usually coexists with a stable spatially symmetric state, has intrigued the nonlinear dynamics community since its discovery in the early 2000s. Recent experiments have led to increasing interest in the origin and dynamics of these states. Here we review the history of research on chimera states and highlight major advances in understanding their behaviour.Comment: 26 pages, 3 figure

    Amplitude Death: The emergence of stationarity in coupled nonlinear systems

    Full text link
    When nonlinear dynamical systems are coupled, depending on the intrinsic dynamics and the manner in which the coupling is organized, a host of novel phenomena can arise. In this context, an important emergent phenomenon is the complete suppression of oscillations, formally termed amplitude death (AD). Oscillations of the entire system cease as a consequence of the interaction, leading to stationary behavior. The fixed points that the coupling stabilizes can be the otherwise unstable fixed points of the uncoupled system or can correspond to novel stationary points. Such behaviour is of relevance in areas ranging from laser physics to the dynamics of biological systems. In this review we discuss the characteristics of the different coupling strategies and scenarios that lead to AD in a variety of different situations, and draw attention to several open issues and challenging problems for further study.Comment: Physics Reports (2012

    Effect of Distributed Delays in Systems of Coupled Phase Oscillators

    Get PDF
    Communication delays are common in many complex systems. It has been shown that these delays cannot be neglected when they are long enough compared to other timescales in the system. In systems of coupled phase oscillators discrete delays in the coupling give rise to effects such as multistability of steady states. However, variability in the communication times inherent to many processes suggests that the description with discrete delays maybe insufficient to capture all effects of delays. An interesting example of the effects of communication delays is found during embryonic development of vertebrates. A clock based on biochemical reactions inside cells provides the periodicity for the successive and robust formation of somites, the embryonic precursors of vertebrae, ribs and some skeletal muscle. Experiments show that these cellular clocks communicate in order to synchronize their behavior. However, in cellular systems, fluctuations and stochastic processes introduce a variability in the communication times. Here we account for such variability by considering the effects of distributed delays. Our approach takes into account entire intervals of past states, and weights them according to a delay distribution. We find that the stability of the fully synchronized steady state with zero phase lag does not depend on the shape of the delay distribution, but the dynamics when responding to small perturbations about this steady state do. Depending on the mean of the delay distribution, a change in its shape can enhance or reduce the ability of these systems to respond to small perturbations about the phase-locked steady state, as compared to a discrete delay with a value equal to this mean. For synchronized steady states with non-zero phase lag we find that the stability of the steady state can be altered by changing the shape of the delay distribution. We conclude that the response to a perturbation in systems of phase oscillators coupled with discrete delays has a sharper functional dependence on the mean delay than in systems with distributed delays in the coupling. The strong dependence of the coupling on the mean delay time is partially averaged out by distributed delays that take into account intervals of the past.:Abstract i Acknowledgement iii I. INTRODUCTION 1. Coupled Phase Oscillators Enter the Stage 5 1.1. Adjusting rhythms – synchronization . . . . . . . . . . . . . . . . . . 5 1.2. Historical remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3. Reducing variables – phase models . . . . . . . . . . . . . . . . . . . . 9 1.4. The Kuramoto order parameter . . . . . . . . . . . . . . . . . . . . . . 10 1.5. Who talks to whom – coupling topologies . . . . . . . . . . . . . . . . 12 2. Coupled Phase Oscillators with Delay in the Coupling 15 2.1. Communication needs time – coupling delays . . . . . . . . . . . . . . 15 2.1.1. Discrete delays consider one past time . . . . . . . . . . . . . . 16 2.1.2. Distributed delays consider multiple past times . . . . . . . . 17 2.2. Coupled phase oscillators with discrete delay . . . . . . . . . . . . . . 18 2.2.1. Phase locked steady states with no phase lags . . . . . . . . . 18 2.2.2. m-twist solutions: phase-locked steady states with phase lags 21 3. The Vertebrate Segmentation Clock – What Provides the Rhythm? 25 3.1. The clock and wavefront mechanism . . . . . . . . . . . . . . . . . . . 26 3.2. Cyclic gene expression on the cellular and the tissue level . . . . . . 27 3.3. Coupling by Delta-Notch signalling . . . . . . . . . . . . . . . . . . . . 29 3.4. The Delayed Coupling Theory . . . . . . . . . . . . . . . . . . . . . . . 30 3.5. Discrete delay is an approximation – is it sufficient? . . . . . . . . . 32 4. Outline of the Thesis 33 II. DISTRIBUTED DELAYS 5. Setting the Stage for Distributed Delays 37 5.1. Model equations with distributed delays . . . . . . . . . . . . . . . . . 37 5.2. How we include distributed delays . . . . . . . . . . . . . . . . . . . . 38 5.3. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 6. The Phase-Locked Steady State Solution 41 6.1. Global frequency of phase-locked steady states . . . . . . . . . . . . . 41 6.2. Linear stability of the steady state . . . . . . . . . . . . . . . . . . . . 42 6.3. Linear dynamics of the perturbation – the characteristic equation . 43 6.4. Summary and application to the Delayed Coupling Theory . . . . . . 50 7. Dynamics Close to the Phase-Locked Steady State 53 7.1. The response to small perturbations . . . . . . . . . . . . . . . . . . . 53 7.2. Relation between order parameter and perturbation modes . . . . . 54 7.3. Perturbation dynamics in mean-field coupled systems . . . . . . . . 56 7.4. Nearest neighbour coupling with periodic boundary conditions . . . 62 7.4.1. How variance and skewness influence synchrony dynamics . 73 7.4.2. The dependence of synchrony dynamics on the number of oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 7.5. Synchrony dynamics in systems with arbitrary coupling topologies . 88 7.6. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 8. The m-twist Steady State Solution on a Ring 95 8.1. Global frequency of m-twist steady states . . . . . . . . . . . . . . . . 95 8.2. Linear stability of m-twist steady states . . . . . . . . . . . . . . . . . 97 8.3. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 9. Dynamics Approaching the m-twist Steady States 105 9.1. Relation between order parameter and perturbation modes . . . . . 105 9.2. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 10.Conclusions and Outlook 111 vi III. APPENDICES A. 119 A.1. Distribution composed of two adjacent boxcar functions . . . . . . . 119 A.2. The gamma distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 124 A.3. Distribution composed of two Dirac delta peaks . . . . . . . . . . . . 125 A.4. Gerschgorin’s circle theorem . . . . . . . . . . . . . . . . . . . . . . . . 127 A.5. The Lambert W function . . . . . . . . . . . . . . . . . . . . . . . . . . 127 A.6. Roots of unity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 B. Simulation methods 12

    Quantized passive filtering for switched delayed neural networks

    Get PDF
    The issue of quantized passive filtering for switched delayed neural networks with noise interference is studied in this paper. Both arbitrary and semi-Markov switching rules are taken into account. By choosing Lyapunov functionals and applying several inequality techniques, sufficient conditions are proposed to ensure the filter error system to be not only exponentially stable, but also exponentially passive from the noise interference to the output error. The gain matrix for the proposed quantized passive filter is able to be determined through the feasible solution of linear matrix inequalities, which are computationally tractable with the help of some popular convex optimization tools. Finally, two numerical examples are given to illustrate the usefulness of the quantized passive filter design methods

    18th IEEE Workshop on Nonlinear Dynamics of Electronic Systems: Proceedings

    Get PDF
    Proceedings of the 18th IEEE Workshop on Nonlinear Dynamics of Electronic Systems, which took place in Dresden, Germany, 26 – 28 May 2010.:Welcome Address ........................ Page I Table of Contents ........................ Page III Symposium Committees .............. Page IV Special Thanks ............................. Page V Conference program (incl. page numbers of papers) ................... Page VI Conference papers Invited talks ................................ Page 1 Regular Papers ........................... Page 14 Wednesday, May 26th, 2010 ......... Page 15 Thursday, May 27th, 2010 .......... Page 110 Friday, May 28th, 2010 ............... Page 210 Author index ............................... Page XII

    Dynamical Systems

    Get PDF
    Complex systems are pervasive in many areas of science integrated in our daily lives. Examples include financial markets, highway transportation networks, telecommunication networks, world and country economies, social networks, immunological systems, living organisms, computational systems and electrical and mechanical structures. Complex systems are often composed of a large number of interconnected and interacting entities, exhibiting much richer global scale dynamics than the properties and behavior of individual entities. Complex systems are studied in many areas of natural sciences, social sciences, engineering and mathematical sciences. This special issue therefore intends to contribute towards the dissemination of the multifaceted concepts in accepted use by the scientific community. We hope readers enjoy this pertinent selection of papers which represents relevant examples of the state of the art in present day research. [...

    MODELLING AND PROCESSING THE DYNAMICS OF TOPOLOGICAL SIGNALS WITH THE DIRAC OPERATOR

    Get PDF
    Networks provide a powerful description of the complex systems that surround us. These structures support dynamical processes such as diffusion, synchronisation or percolation. The study of networks has remained limited to the pairwise formalism, where interactions take place between two participants. Simplicial complexes capture interactions between any number of elements. They are naturally equipped with a topological description, and support generalised dynamical variables called topological signals. Such signals can be found in many systems, yet have received little interest so far. Where studied, signals supported by structures of different dimension have been typically treated independently. This thesis explores the use of the Dirac operator as a tool rooted in topology to model the coupled dynamics of topological signals, and capture the interplay between signals of different orders. We apply this framework to describe the synchronisation dynamics of coupled phase os- cillators supported by nodes and edges in networks. We show through analytical and numerical investigations that the system undergoes explosive transitions between syn- chronised and incoherent states, while the synchronised state is characterised by coherent emergent oscillations. In the context of reaction-diffusion systems, we demonstrate how the Dirac operator is key to the formation of spatial heterogeneous patterns in topological signals supported by nodes and edges of a network. As a final illustration, we investi- gate two methods to filter and process real topological signals supported by nodes, edges and triangles in a simplicial complex. With the Dirac operator, we capture the interplay between signals of different orders and successfully jointly filter topological signals from artificial noise. This thesis illustrates how the Dirac operator provides a convenient formalism rooted in topology to consider the coupled dynamics of topological signals. This opens many further research avenues at the intersections of applied topology, dynamical systems, simplicial signal processing and higher-order network science
    • …
    corecore