9,730 research outputs found

    Mesh-based 3D Textured Urban Mapping

    Get PDF
    In the era of autonomous driving, urban mapping represents a core step to let vehicles interact with the urban context. Successful mapping algorithms have been proposed in the last decade building the map leveraging on data from a single sensor. The focus of the system presented in this paper is twofold: the joint estimation of a 3D map from lidar data and images, based on a 3D mesh, and its texturing. Indeed, even if most surveying vehicles for mapping are endowed by cameras and lidar, existing mapping algorithms usually rely on either images or lidar data; moreover both image-based and lidar-based systems often represent the map as a point cloud, while a continuous textured mesh representation would be useful for visualization and navigation purposes. In the proposed framework, we join the accuracy of the 3D lidar data, and the dense information and appearance carried by the images, in estimating a visibility consistent map upon the lidar measurements, and refining it photometrically through the acquired images. We evaluate the proposed framework against the KITTI dataset and we show the performance improvement with respect to two state of the art urban mapping algorithms, and two widely used surface reconstruction algorithms in Computer Graphics.Comment: accepted at iros 201

    Augmented Reality for Urban Simulation Visualization

    Get PDF
    Visualizations of large simulations are not only computationally intensive but also difficult for the viewer to interpret, due to the huge amount of data to be processed. The case of urban wind flow simulations proves the benefits of mobile Augmented Reality visualizations, both in terms of selection of data relevant to the user and facilitated and comprehensible access to simulation results

    Immersive GeoDesign: Exploring the Built Environment through the Coupling of GeoDesign, 3D Modeling, and Immersive Geography

    Get PDF
    GeoDesign is a relatively new field that serves as a repurposing of many different disciplines concerned with design decisions about the built environment. More specifically, GeoDesign represents a coupling of urban planning concepts with the analytical capabilities of GIS. While GIS has been used in planning mostly in the two-dimensional realm, the built environment is three-dimensional and challenges GIS in the handling of the vertical dimension, notably in floor-by-floor uses in mixed-use developments, basement-level parking, light capture, and intervisibility between structures. This research advances GeoDesign by addressing these three-dimensional issues through the utilization of highly-detailed 3D models using Trimble SketchUp, the mass-model generation power of ERSI\u27s CityEngine, and the immersive Geo-Virtual CAVE at West Virginia University to explore these issues through an Immersive GeoDesign case study of the city of Morgantown, WV

    Smart Cities: Inverse Design of 3D Urban Procedural Models with Traffic and Weather Simulation

    Get PDF
    Urbanization, the demographic transition from rural to urban, has changed how we envision and share the world. From just one-fourth of the population living in cities one hundred years ago, now more than half of the population does, and this ratio is expected to grow in the near future. Creating more sustainable, accessible, safe, and enjoyable cities has become an imperative

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    Semantically Informed Multiview Surface Refinement

    Full text link
    We present a method to jointly refine the geometry and semantic segmentation of 3D surface meshes. Our method alternates between updating the shape and the semantic labels. In the geometry refinement step, the mesh is deformed with variational energy minimization, such that it simultaneously maximizes photo-consistency and the compatibility of the semantic segmentations across a set of calibrated images. Label-specific shape priors account for interactions between the geometry and the semantic labels in 3D. In the semantic segmentation step, the labels on the mesh are updated with MRF inference, such that they are compatible with the semantic segmentations in the input images. Also, this step includes prior assumptions about the surface shape of different semantic classes. The priors induce a tight coupling, where semantic information influences the shape update and vice versa. Specifically, we introduce priors that favor (i) adaptive smoothing, depending on the class label; (ii) straightness of class boundaries; and (iii) semantic labels that are consistent with the surface orientation. The novel mesh-based reconstruction is evaluated in a series of experiments with real and synthetic data. We compare both to state-of-the-art, voxel-based semantic 3D reconstruction, and to purely geometric mesh refinement, and demonstrate that the proposed scheme yields improved 3D geometry as well as an improved semantic segmentation

    Iterative Prototyping of Urban CoBuilder: Tracking Methods and User Interface of an Outdoor Mobile Augmented Reality Tool for Co‐Designing

    Get PDF
    This research presents results from a study developing a smartphone app, UrbanCoBuilder, in which citizens can collaboratively create designs for urban environments usingaugmented reality technology and game mechanics. Eight prototypes were developed to refineselected design criteria, including tracking strategies, design elements, user experience and theinterface with game mechanics. The prototypes were developed through an iterative design processwith assessments and incremental improvements. The tracking was especially challenging andusing multiple bitonal markers combined with the smartphone’s gyroscope sensor to average theuser position was identified as the most suitable strategy. Still, portability and stability linked totracking need to be improved. Design elements, here building blocks with urban functions textures,were realistic enough to be recognizable and easy to understand for the users. Future studies willfocus on usability tests with larger user groups
    corecore