
Purdue University
Purdue e-Pubs

Open Access Dissertations Theses and Dissertations

January 2015

Smart Cities: Inverse Design of 3D Urban
Procedural Models with Traffic and Weather
Simulation
Ignacio Garcia Dorado
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Recommended Citation
Garcia Dorado, Ignacio, "Smart Cities: Inverse Design of 3D Urban Procedural Models with Traffic and Weather Simulation" (2015).
Open Access Dissertations. 1302.
https://docs.lib.purdue.edu/open_access_dissertations/1302

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1302&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1302&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1302&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1302&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations/1302?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1302&utm_medium=PDF&utm_campaign=PDFCoverPages


Graduate School Form 30
Updated 1/15/2015



SMART CITIES: INVERSE DESIGN OF 3D URBAN PROCEDURAL MODELS

WITH TRAFFIC AND WEATHER SIMULATION

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Ignacio Garcia-Dorado

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2015

Purdue University

West Lafayette, Indiana



ii

ACKNOWLEDGMENTS

I would like to thank all the support provided by my advisor, Prof. Aliaga, without

him this PhD. would not have been possible. I am very grateful that he took me as

his student from my first day at Purdue, for his restless help and guidance. I would

like to thank Prof. Waddell for his encouragement to push on traffic simulation

models, despite we could not finish, and the time I spent at U.C. Berkeley under

his supervision. I would like to thank Prof. Benes with who, I wish I would have

collaborated more extensively. Also, I would like to thank for the help and insight

provided by Prof. Ukkusuri and Prof. Niyogi to develop state of the art simulators

in passionate areas such as urban engineering and weather forecast. I have been very

fortunate I came to Purdue and can develop such exciting work. I would like to

thank Prof. Popescu, Prof. Hoffmann for being part of my dissertation committee,

for helping to improve this dissertation and for the encouragement and ideas through

the process. I would also thank my peers and friends in the CGVLab, starting with

now Dr. Vanegas, he help me to discover what Computer Graphics was about in my

early days at Purdue and raise me to the level of excellence he was use to. Also Gen

Nishida, an excellent researcher and better person. I would also thank the rest of the

members, including Ziang Ding, Jian Cui, Liang Li, Men-Lin Wu for his help the last

years of my research. During my PhD., I have been funded by several agencies. I

would like to especially highlight, Fulbright, they choose me as a scholar, that opened

the door to Purdue and to meet incredible people, the Fulbright Purdue Association

has been a essential pillar and a support all the way. I would also want to thank

the National Science Foundation, the Purdue Research Foundation, U.C. Berkeley.

I am grateful to Dr. David Luebke for his opportunity to work at Nvidia and the

research we did there. I truly learned about computer graphics and grew my interest

in rendering. I am very grateful for all the people I meet at Purdue. They help me



iii

bear the demanding moments that a PhD. requires, to share the fun moments that

the experience should have, and for listening and sharing with me this time that I will

never forget. Specially thanks Aysegul, Alsu, Amina, Baiba, Eric, Gaurav, Gulcin,

Heidi, Jon, Kate, Khalid, Ksenia, Lucie, May, Maricela, Mirisen, Yifei... and many

more (the list does not fit here). Last but not least, I want to thank my family for

everything they have done, their support (despite not being happy about me being

far), their advice, and unbounded love has helped me to become the person I am today.

For this, I thank with all my heart Jose Luis and Maria Jesus, the best parents anyone

could even imagine, for the encouragement to study and to work hard, for opening

the door to the imagination and the notion that everything can be achieved if you

put your heart and soul on it. I also thank my siblings, Jose Luis and Beatriz, they

are part of me even they are very far away.



iv

TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Forward and Inverse Design: Procedural Modeling and Simulation . 1

1.2 Procedural Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Inverse Procedural Modeling . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Our Method and Summary of Results . . . . . . . . . . . . . . . . . 5

1.5 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.6 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . . 13

2 FORWARD DESIGN: PROCEDURAL MODELING AND SIMULATION 14

2.1 Procedural Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Our Procedural Engine and Simulation . . . . . . . . . . . . . . . . 18

2.3 Land Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Urban Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.1 Urban Procedural Parameters . . . . . . . . . . . . . . . . . 23

2.4.2 Urban Forward Design . . . . . . . . . . . . . . . . . . . . . 26

2.5 Traffic Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5.1 Related Work: Traffic Simulation and Roads . . . . . . . . . 27

2.5.2 Traffic Simulation . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6 Weather Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6.2 Weather Model . . . . . . . . . . . . . . . . . . . . . . . . . 37



v

Page

2.6.3 Urban Weather Simulation . . . . . . . . . . . . . . . . . . . 41

2.6.4 Weather Forward Design . . . . . . . . . . . . . . . . . . . . 52

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3 INVERSE DESIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 Our Inverse Procedural Model . . . . . . . . . . . . . . . . . . . . . 56

3.2.1 MCMC-based Approach . . . . . . . . . . . . . . . . . . . . 58

3.2.2 Seeding Initialization . . . . . . . . . . . . . . . . . . . . . . 58

3.2.3 Search Process . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2.4 Acceptance Ratio . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2.5 Error Function . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2.6 Indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3 Inverse Design of Urban Procedural Models . . . . . . . . . . . . . 60

3.3.1 Urban Search Approach . . . . . . . . . . . . . . . . . . . . 62

3.3.2 Urban Indicators . . . . . . . . . . . . . . . . . . . . . . . . 66

3.3.3 Urban Seeding Initialization . . . . . . . . . . . . . . . . . . 67

3.3.4 Urban Solution Selection and Feasibility . . . . . . . . . . . 67

3.4 Inverse Design of Traffic . . . . . . . . . . . . . . . . . . . . . . . . 68

3.4.1 Previous Work: Traffic Design and Animation . . . . . . . . 70

3.4.2 Traffic MCMC-based Approach . . . . . . . . . . . . . . . . 70

3.4.3 Traffic Seeding Initialization . . . . . . . . . . . . . . . . . . 74

3.4.4 Traffic Search Strategies . . . . . . . . . . . . . . . . . . . . 75

3.4.5 Traffic Indicators . . . . . . . . . . . . . . . . . . . . . . . . 76

3.5 Inverse Design of Weather . . . . . . . . . . . . . . . . . . . . . . . 78

3.5.1 Weather Seeding Initialization . . . . . . . . . . . . . . . . . 79

3.5.2 Weather Acceptance Ratio . . . . . . . . . . . . . . . . . . . 81

3.5.3 Towards Global Design . . . . . . . . . . . . . . . . . . . . . 82

3.6 Example-Driven Road Design . . . . . . . . . . . . . . . . . . . . . 83



vi

Page

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4 GEOMETRIC ASSETS AND VISUALIZATION . . . . . . . . . . . . . 88

4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2 Volumetric Reconstruction and Surface Graph-Cuts . . . . . . . . . 92

4.2.1 3D Urban Reconstruction . . . . . . . . . . . . . . . . . . . 93

4.2.2 Voxels and 3D Graph-Cut . . . . . . . . . . . . . . . . . . . 96

4.2.3 Volumetric Building Proxy . . . . . . . . . . . . . . . . . . . 97

4.2.4 Surface Graph-Cuts . . . . . . . . . . . . . . . . . . . . . . . 104

4.3 Automatic Modeling of Planar-Hinged Buildings . . . . . . . . . . . 109

4.3.1 3D Urban Reconstruction . . . . . . . . . . . . . . . . . . . 109

4.3.2 Planar-Hinge Modeling and Reconstruction . . . . . . . . . . 111

4.3.3 Model Reconstruction . . . . . . . . . . . . . . . . . . . . . 114

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5 RESULTS AND ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.1 3D Urban Procedural Modeling . . . . . . . . . . . . . . . . . . . . 115

5.2 Traffic Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.3 Weather Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.3.1 Weather Forward Design . . . . . . . . . . . . . . . . . . . . 125

5.3.2 Weather Inverse Design . . . . . . . . . . . . . . . . . . . . . 126

5.3.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.4 Geometric Assets and Visualization . . . . . . . . . . . . . . . . . . 137

5.4.1 Volumetric Reconstruction and Surface Graphic Cuts . . . . 138

5.4.2 Planer-Hinge Reconstruction . . . . . . . . . . . . . . . . . . 150

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6 CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . . . . . 154

6.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167



vii

LIST OF TABLES

Table Page

5.1 Performance. CPU uses 4 cores while GPU uses 2304 cores. See main
text for additional details. . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.2 Reconstruction Time. Time to compute each step of our method. . 150



viii

LIST OF FIGURES

Figure Page

1.1 Our Inverse Design. The user or an optimization tool controls the
input parameters to create a city and optionally simulate to compute some
output values or indicators. Using an optimization method, Metropolis-
Hasting, we can find the desired behavior or model. . . . . . . . . . . . 6

1.2 3D Urban Modeling. We show the 3D results of our three areas: 3D
urban models, traffic simulation, and weather simulation. . . . . . . . 7

1.3 3D Urban Design Example. We show an example of design using
a high-level indicator, in this case, open/bright vs. compact/dark city.
Using a single slider the user can control it: a) high shadowing or compact,
b) medium shadowing, and c) low shadowing or open. . . . . . . . . . 8

1.4 Traffic Design Example. Given a fragment of central Boston a) and
the distribution of job and people from a GIS source b), the user designs
the traffic (occupancy) a desired area of the city c). Changing just lanes f),
distribution of jobs g) or both h), our system learns the necessary changes
to obtain the desired behavior. . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Weather Design. f) The user draws the land use and designs the urban
model. Then, the user defines a clear sky sunrise morning followed by
afternoon showers (a-e) without providing details about realistic spatio-
temporal behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.6 Urban Reconstruction. Starting from aerial imagery and GIS-style par-
cel/building data (left), we are able to automatically obtain a volumetric
reconstruction (middle) to reconstruct a complex urban area (right). . 12

2.1 Forward Design. The user defines the input parameters to generate the
desired 3D model or create the desired simulation. . . . . . . . . . . . 14

2.2 L-System. (Left) An example of Sierpinski triangles for 2, 4 and 8 itera-
tions. (Right) An example of plant grammar using two colors for styliza-
tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 CGA Shape Grammar. Production of a building with a CGA Shape
Grammar: a) Facade production, b) CGA Grammar, c) final model. . 17



ix

Figure Page

2.4 Procedural Modeling. a) The user draws the land uses and define the
terrain and b-d) uses our procedural engine to define the input parameters.
Our procedural engine generates roads; c) blocks and parcels are extracted
and random vegetation; d) the buildings are created. . . . . . . . . . . 19

2.5 Land Use. (Left) An example of land use textures: bare soil, grass,
mountain, snow, crops, and beach sand. (Right) Several examples of land
use distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 Number of Arms. An example of road generation with different number
of radial departing streets. . . . . . . . . . . . . . . . . . . . . . . . . 23

2.7 Parcel Area. An example of parcel generation with different parcel
area. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.8 Urban Procedural Modeling. Our method uses a) procedural mod-
eling to generate a city and terrain, including b) low-density residential,
c) high-density residential, d) low-density industrial, and e) high-density
industrial. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.9 Traffic Atlas. a) Each road lane is a row in the traffic atlas; b) the traffic
atlas (top right) is sampled into delta segments (bottom right). . . . . 30

2.10 Urban Weather. We present a method which tightly couples procedu-
ral modeling with a super real-time physically-based weather simulation.
With our land use sketching interface (f), a user procedurally generates
a terrain and city. Then, for example, our design tools enable intuitively
choosing clear sky sunrise mornings followed by afternoon showers (a-e)
without providing details about realistic spatio-temporal behavior. . . . 35

2.11 Weather Variables. We show a depiction of the weather variables com-
puted by our simulator. . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.12 Kessler Microphysics. State transitions of water in the clouds . . . . 44

2.13 Force-Restore Slab Model. Radiation gets to the surface and this heats
Tg; a part gets diffused to deeper layers of the ground Tm, and a part heats
the first few cm of air Ta, then Ta heats the bottom layer of our grid Tz. 50

3.1 Our Inverse Design. The user or a optimization tool controls the in-
put parameters to create a city and optionally simulate to compute some
output values or indicators. Using an optimization method, Metropolis
Hasting, we can find the desired behavior or model. . . . . . . . . . . . 57

3.2 Urban Modeling Pipeline. Visual representation of our design model-
ing pipeline of urban models. . . . . . . . . . . . . . . . . . . . . . . . 61



x

Figure Page

3.3 Parameter Searching Overview. a) The chain start on a seed and at-
tempts local or global movements. b) The process is repeated nI steps and
for different temperatures. The best solution are mapped to the parame-
ters space. c) These solutions are clustered and one solution per group is
shown to the user as possible solution. . . . . . . . . . . . . . . . . . . 63

3.4 Indicator Histogram and Clustering. a) Example of a histogram. b)
nβ chains are run and the top 25 best solutions (lowest error) are selected.
c) If we select the top k lowest error, the input parameters are very similar.
d) In contrast, if we use k −means clustering, we find solutions but with
different input parameters that yield visually different models. . . . . . 64

3.5 Artificial Neural Networks. (Left) Example of a NN, the neuron re-
ceives a set of input w and produces an ouput y. The training process
find the weights in the neuron/s function such that the desired output is
generated when the training input is used. (Right) General structure of a
ANN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.6 Indicators. a-c) Sun exposure. a) We compute the sunlight per facade
as the percentage of sun that reaches the building facade averaged during
the course of a day, over all days of the year. b-c) shows two different
models for different levels of sun exposure. d) shows with a color coded
schema the distance to park (blue means close to park, red means far to
park).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.7 Traffic Pipeline. Our approach enables a designer to specify a vehicular
traffic behavior and the system will compute what realistic 3D urban model
yields that behavior. The user defines the job and people distribution
and defines the procedural parameters or load a road network; inputs are
used to simulate traffic and the user draws a desired new traffic behavior
(or traffic optimization). Our system iteratively simulates and alters the
model so as to find solutions that meet the desired goals and/or costs. . 69

3.8 Lane-Changing Operations. a) Initial network occupancy. b) The user
”paints green” so as to reduce traffic. c) After MCMC, new road occu-
pancy values closely match the painted traffic behavior. d-f) An analogous
process but for increasing lane traffic. . . . . . . . . . . . . . . . . . . 72

3.9 People/Jobs Changes. Such changes can impact network topology.
a) Input city. b) City with changed roads and buildings satisfying new
traffic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.10 Traffic Zones. a) The user can ”paint” one or more traffic zones to
specify a traffic behavior. b) Each traffic zone has an area of influence
that may be altered during the traffic manipulation algorithm. . . . . 77



xi

Figure Page

3.11 Weather Pipeline. Our approach enables a designer to specify a weather
behavior and the system will compute what realistic 3D urban model yields
that behavior. The user defines a set of input parameters: land use,
initial weather conditions, and/or procedural parameters; inputs are used
to create the 3D model and simulate weather. Our system iteratively
simulates and alters the land use, model, or weather conditions so as to
find solutions that meet the desired behavior. . . . . . . . . . . . . . . 79

3.12 Acceptance Ratio vs Relative Error. The figure shows the acceptance
ratio for different energy levels. While the temperature decreases, the
acceptance ratio decreases as well, making more unlikely that worse states
get accepted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.13 Road Intersection. Example of a complex intersection generated by our
system. Additional geometry is added for the details such as the sidewalk
and urban amenities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.14 Example-Based Overview. a) The user selects an interesting source
network. b) The arterial roads are extracted. c) A road graph is generated
from the example roads. d-e) Patches are created from intersection and
from detected interesting features. f-k) Example of growth, a patch is
added between the possible ones. . . . . . . . . . . . . . . . . . . . . . 86

3.15 Result of Our Method. 3D model of our example-based method. After
the road network is grown, blocks, parks, parcel, buildings, vegetation,
and urban amenities are generated. . . . . . . . . . . . . . . . . . . . . 87

4.1 Urban Modeling. A complex urban area (left) is automatically ob-
tained using volumetric reconstruction with surface graph-cuts (middle)
computed from aerial imagery and GIS-style parcel/building data (right).
Our methodology uses photo-consistency to robustly recreate 2.5D build-
ing structures and surface graph-cuts to assemble seamless and coherent
textures despite occlusion, geometry, and calibration errors. . . . . . . 93

4.2 System Pipeline. Our system uses (a) aerial images and GIS-like input
data to (b) compute a geometric proxy, (c) generate surface graph-cuts,
and (d) assemble textured 3D building models of large urban areas. . . 95

4.3 Building Volumes. We show the steps of our volumetric building re-
construction. a) An initial model is divided into voxels. b) The per-voxel
variance of our weighted photo-consistency measure is computed. c) The
most consistent voxel per column is chosen, potentially reducing building
height. d) The voxels are clustered by height, e) placed in a height-map,
and filtered. f) The final proxy model is obtained. . . . . . . . . . . . . 98



xii

Figure Page

4.4 Variance Calculation. Using the initial voxel normals ni for a voxel vi,
we determine the variance of our weighted photo-consistency measure of
the subset of cameras, such as cik, that best see the voxel. . . . . . . . 99

4.5 Surface Graph-Cut. a) Voxels, b) voxels showing graph vertices, c)
vertices, d) vertices with edges, e) vertices seen by an image 1, f) vertices
seen by an image 2, g) vertices that see image 1 and image 2 are in green
and are where graph-cut will be applied, and h) a 2D graph-cut. . . . . 103

4.6 Applications of Surface Graph-Cuts. a) We show several patches over
a building surface. Each patch is obtained by grouping adjacent subfaces
best observed by the same camera while taking visibility into account (e.g.,
patch k is best observed by camera pk because pj is occluded. In this step,
patch 3 and k are joined as in Figure 4.5h. b) Another surface graph-cut
is defined and computed at the boundary of the building with the ground
surface. c) Finally, a ground surface graph-cut is also performed so as to
obtain a seamless and free-of-projected-buildings ground texture. . . . 106

4.7 Reconstructed Buildings. We automatically reconstruct buildings from
images by assuming a building consists of arbitrary planar segments inter-
connected by linear (i.e., straight) hinges at any angle. a) Final re-
constructed model, b) with projected texture mapping, and c) processing
pipeline: initial point cloud, initial triangulation, Canny edge points, vi-
sualization of plane/hinge constraints, final model, with projective texture
mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.8 Planes reconstruction. a) Segment point cloud b) RANSAC plane fit-
ting c) Projection of points into plane to define bounding box and create
grid d) For each cell create a prism to define the distribution of the points
inside the likelihood the cell plane exits. . . . . . . . . . . . . . . . . . 112

4.9 Hinge reconstruction. a) Canny point cloud b) Find lines c) Fitted
lines d) Using the lines find the hinges: edge and planes . . . . . . . . . 113

5.1 ANN Error. a-c) Comparison of measured vs. estimated by the ANN for
three different indicators. d-e) Comparison of top 120 target and measured
indicator values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.2 Variability. a-c) We show the three top solutions generated by our sys-
tem, with variability disabled, for a desired sun exposure indicator value.
d-f) Next, we enable our solution to increase solution variability and ob-
tain three clearly non-similar top solutions. g-i) Show the corresponding
models of d-f but using our interactive rendering engine. . . . . . . . . 116



xiii

Figure Page

5.3 Content Design Example. We show an example of design using a high-
level indicator, in this case, an indicator that measures the open/bright
vs. compact/dark of a 3D urban model. Using a single slider the user can
control it: a) high shadowing or compact, b) medium shadowing, and c)
low shadowing or open. . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.4 Global Indicator Control. This example focuses on a global landmark
visibility indicator. a) Top-down view of the city model and user-selected
landmarks. b) Initial 3D city model configuration where the landmarks
are not visible from most buildings (yellow boxes). c-d) User increases
the desired amount of landmark visibility and the system interactively
alters the city model. Below images b-d is a color coded profile of the city
showing how many landmarks are visible. . . . . . . . . . . . . . . . . . 118

5.5 Local Changes for Global Indicator Control. a) One of the nine
neighborhoods of a city is redeveloped so that the average floor-area ratio
of the entire city increases. b) The system proposes a solution that satisfies
the target floor-area ratio but that reduces the sun exposure of the area.
The user then requires the system to find a solution that maintains a high
sun exposure. Three different solutions are produced (c, d, e) that exhibit
different styles but satisfy the constraints on both indicator values. . . 119

5.6 Local design. a) Fragment of central Boston. b) Job and people dis-
tribution from GIS sources. c) Initial road occupancy as per our traffic
simulation. d-e) Close-ups. Three solution options: f) solution by only
changing lane directions, g) similar as previous, but only jobs distribution
changes, and h) using both change types (best solution). . . . . . . . . 121

5.7 Global Design. a) Fragment of Madrid. b) User draws the desired traffic
and c-d) our system first uses the tomo-gravity model and then MCMC
refines it. e-g) Another editing iteration produces the final output. . . 122

5.8 Global Optimization. a) Fragment of New York. It has an average
travel time (TT) of 60min and CO emission of 1012gr. Our system finds
that b) by just changing lanes it is able to achieve the 50min goal. c-d) To
reach 40min and 30min, it is necessary to change people, jobs, and lanes. 122

5.9 Performance. a) Times (in minutes) to perform a 4-hour simulation b)
The number of simulation steps per second. . . . . . . . . . . . . . . . 123

5.10 Occupancy Comparison - SUMO vs. Our System. Traffic flow
measured by our system (a) and SUMO (b); red = complete utilization,
green = empty street; c) Error of occupancy measurements over time. 124



xiv

Figure Page

5.11 Search Strategy Comparison. a) As the iterations pass, goal-driven
optimization is able to find solutions of a lower score, but their cost is
unbounded. b) In contrast, a cost-driven optimization attempts to reach
near the desired score and then it continues but tries to minimize cost. 124

5.12 Forward Design. Two examples of forward design. a) The user draws
the land use distribution and uses our Urban PM to design a city; b) the
simulation runs indefinitely for this procedural model, we display different
days of a year. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.13 Cloud Design. Two examples of cloud design. a) The user interactively
draws a land use distribution; b) the user selects the high-level behavior
of the weather; c) the system finds such weather and the weather sequence
is visualized. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.14 Difference 3D vs 2D simulation. We show the square error of the
cloud coverage of three different scenarios when it is simulated using our
2D and 3D simulator for 50 different initial conditions. . . . . . . . . . 128

5.15 Rain Design. We show the result to optimize the rain levels in a city, to
increase it a); and to decrease it b). We overlap the result for each energy
level and highlight the minimum/maximum value found so far. c) shows
the initial land use distribution of the center cross section. d-e) are the
best solution for each optimization. . . . . . . . . . . . . . . . . . . . . 129

5.16 Temperature Design.a-b) We show the behavior of a biased optimiza-
tion for example e) of this figure; a) if just one mode is used (optimize
temperature); if we use the two models optimization (optimize tempera-
ture and cost); c) the original model; d) altered model that achieves one
degree reduction by introducing more parks; e) alternative model that
achieves the same goal but uses white roofs to increased albedo; and f) a
solution with both parks and white roofs (note the reduction in both). 131

5.17 Global Design. a) The user selects the desired cloud states. b) Our
system is able to simulate the user-selected behavior. . . . . . . . . . . 132

5.18 Cold Bubble. Our evolution of potential temperatures similar to that of
Wicker and Skamarock [146]. Vertical axis is height and horizontal axis is
spatial x-axis location (both in km). Simulation isolines at a) 0 seconds,
b) 450 seconds, and c) 900 seconds. . . . . . . . . . . . . . . . . . . . . 134

5.19 Warm Bubble. Our simulation produces potential temperatures very
similar to Ahmad and Lindeman [147]. Axes and temporal sequence same
as in Figure 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134



xv

Figure Page

5.20 Cloud and Precipitation Comparison. a-b) We show the water vapor
mixing ratios for an urban and rural area using WRFs and our Kessler
Microphysics implementation. c-e) A temporal evolution of a cumulus
cloud with our implementation. . . . . . . . . . . . . . . . . . . . . . . 135

5.21 Radiation Model Comparison. We compare WRFs radiation model to
our radiation model (RM): (a) urban heat island effect as the temperature
difference between an urban and non-urban 1D slice using each model; b-
c) we show the temperature evolution over time for a point in a non-urban
and an urban portion. Our model behaves quite similar to WRFs. . . . 136

5.22 Volumetric Reconstruction Pipeline. We show example images from
a volumetric building reconstruction. a) OpenStreetMap input image. b)
Voxelized-version of the extruded building footprint. c) Per-voxel weighted
photo-consistency variance (white = low variance). d) Selection of per-
column voxel with lowest variance. e) Vertical support added beneath each
per-column selected voxel. f) Final proxy after clustering and filtering. 139

5.23 Building Graph-Cuts and Space Carving. a-d) Aerial picture, initial
voxels, our textured result, and our calculated model with no textures. e)
Ground truth and f-h) show Hausdorff distance (color map: green=0m,
blue=5m, red=10m or more) between ground truth and our proxy, graph-
cut space carving, and manual-segmentation space carving (see text). . 141

5.24 Texture Mapping Comparison. a) Initial model. b) Calculated proxy
model. Mismatch/discontinuities occur due to geometry/calibration errors
that are in general unavoidable in a dense city. Yet, c) our surface graph-
cuts compensate for inaccuracies and produce a continuous/coherent tex-
turing, better than d) standard projective texture mapping. . . . . . . 142

5.25 Graph-cut Space Carving. To perform space carving, as in Figure 5.23g,
we use a) an initial image, b) perform automatic labeling (using the initial
voxels as masks), and c) calculate a graph-cut segmentation. . . . . . . 142

5.26 Building Reconstruction for Various Building Sizes/Complexities.
For a) small building (20m), b) medium size building (90m) and c) large
building (180m), (left) aerial images, (middle) initial voxels, and (right) re-
construction error using Hausdorff distance (green=0m, blue=3.5m, red=7m
or more). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.27 Result Comparison of Different Voxel Sizes. From left to right, we
increase the voxel size. When the size is too large, reconstruction fails.
When the size is small, the reconstruction presents similar results but
excessive processing might occur. Hausdorff distance error: green=0m,
blue= 3.5m, red=7m or more. . . . . . . . . . . . . . . . . . . . . . . . 144



xvi

Figure Page

5.28 Reconstructed Building Height vs. Ground Truth. For 15 build-
ings, red bars represent the difference between the initial model height and
ground truth. The blue bars indicate the difference between our refined
model and ground truth. . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.29 Graph-Cut vs. Projective Texture Mapping. Comparison of our
graph-cut algorithm with projective texture mapping for the original build-
ing and two altered proxies: building expanded +10% in all directions with
random noise in the height map of 5m (left) and collapsed -10% in all di-
rections with random noise in the height map of 5m (right). Our approach
creates a seamless texture transition from facade to roof. In fact, as com-
pared to projective texture mapping, it reduces the ill visual artifacts in
all cases as can be seen by our results in the top row. . . . . . . . . . . 146

5.30 Building-Ground Surface Graph-Cuts. a) We show two close-ups of
this building. b-c) With projective texture mapping, there are discontinu-
ities, missing content, and building projections at the boundary between
the building and the street. d-e) Our building-ground surface graph-cuts
are able to find a smooth transition between the two structures and pro-
duce a coherent and visually plausible appearance. . . . . . . . . . . . 147

5.31 Ground Surface Graph-Cuts. a) A downward looking original aerial
image in our dataset (note occluded roads). b) Visual artifacts of using
a nave graph-cut due to ignored inter-building occlusions. c) The re-
sult when using our ground surface graph-cut method. d) An image of
the ground surface from Google Earth with no building proxies. e) Our
method using building proxies and the ground from c. f) Using Google
Earth imagery in projective texture mapping with buildings yields similar
bad artifacts as in b. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.32 Full Dataset View. We show a birds eye view of the textured 3D model
produced by our system. . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.33 Google Earth Comparisons. We show several comparisons between
Google Earth snapshots (a,c,e) and our result (b,d,f). Our method yields
similar quality results in most cases and thus opens up the door for the
rapid creation of city-scale 3D models. . . . . . . . . . . . . . . . . . . 149

5.34 Triangulation Comparison. a) Poisson reconstruction b) Grid Projec-
tion reconstruction c) RIMLS reconstruction d) Greedy projection trian-
gulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.35 Our Results vs. Poisson Reconstruction. Each row presents a com-
parison: top Poisson reconstruction, bottom our results. . . . . . . . . 151



xvii

Figure Page

5.36 Results after using planes and hinges. a) Actual geometry b) Poisson
reconstruction c) After our plane reconstruction d) After our plane and
hinge reconstruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.37 Surface displacement caused by our method. Hausdorff Distance
between Poisson surface and our final mode. . . . . . . . . . . . . . . . 152



xviii

ABSTRACT

Garcia-Dorado, Ignacio Ph.D., Purdue University, December 2015. Smart Cities:
Inverse Design of 3D Urban Procedural Models with Traffic and Weather Simulation.
Major Professor: Daniel G. Aliaga.

Urbanization, the demographic transition from rural to urban, has changed how

we envision and share the world. From just one-fourth of the population living in

cities one hundred years ago, now more than half of the population does, and this

ratio is expected to grow in the near future. Creating more sustainable, accessible,

safe, and enjoyable cities has become an imperative.

A city cannot longer be seen as a static set of buildings interconnected with roads.

It is both a complex and interdependent dynamic system. Many disciplines, such as

urban planning, traffic engineering, and architecture, have created approaches that try

to design and model different aspects of a city facing challenging problems. However,

due to its massive scale and complexity there has not been any attempt to develop a

framework that addresses all these aspects at the same time. This is our challenge.

We use an incremental approach to improve the realism of simulation and design:

urban reconstruction, procedural generation, inverse procedural modeling, traffic en-

gineering, and weather forecasting. We start with urban reconstruction that allows

us to create detailed models for visualization and planning. Our methods focus on

fast reconstruction and refinement of structures. Procedural modeling permits en-

capsulating the complex inter-dependencies within realistic urban spaces and enables

users, who need not be aware of the internal details of the procedural model, to cre-

ate quickly large complex 3D city models. Using machine-learning techniques, we

can achieve real time interaction of high-level indicators. Vehicular traffic design has

been carried out using aggregated simulations given that per-vehicle-simulation used
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to be too computationally expensive. That is, after observing that each car’s behavior

depends just on its current state and surrounding vehicles, we discretize each lane

in the road network as a set of contiguous memory bytes. At each simulation step

each car concurrently can check its surroundings to define its future state. Finally, we

explore how weather is an essential aspect of a city and how we can use it to improve

its design. We develop a fast but complete weather simulator that allow exploring

interactively how certain city designs exert positive impacts on a city when weather

changes. We also present additional work in generating 3D assets from photographs

for such urban modeling environments.

Initial applications of our work include creating enhanced and optimized 3D cities,

simulating and visualizing urban space, traffic, and weather. Most of these applica-

tions have been developed in collaboration with academic, governmental, and indus-

trial organizations. Our results include city models spanning up to 50 km2, traffic

simulation over 300,000 simultaneous cars, and weather encompassing 2500 km2. We

expect our efforts will ultimately increase the interdisciplinary collaboration in the

development of better and smarter cities.
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1. INTRODUCTION

1.1 Forward and Inverse Design: Procedural Modeling and Simulation

This dissertation presents a new computational approach to improving the real-

ism, visualization, simulation, and design of a 3D urban area. A city is not a static

set of buildings interconnected with roads; rather it is a complex and interdependent

dynamic system. Many disciplines, such as urban planning, traffic engineering, archi-

tecture, and numerical weather prediction, have tried to design and model different

aspects of a city. However, due to its massive scale, complexity, and interdependence

between different parts there is not a current framework that combines these aspects.

In recent years, creating virtual environments has become an extremely important

task for entertainment, urban planning, and training applications. This interest has

sparked to seek new approaches to increase realism and new tools to quickly and

easily design cities. In addition to the detailed modeling of complex urban geometry,

some previous computer graphics work has also focused on the live aspect of the

city. Works have provided methods to incorporate human behavior such as crowds

simulation [1] and traffic simulation [2]. Other works have focused on increasing the

realism through more accurate models and simulations of physical phenomena. For

instance, CGI movies and games no longer rely on rough approximations of lighting

(e.g., Phong lighting). Instead, they use physically based illumination with advances

in ray tracing and global illumination [3]. Liquids are no longer single mock-ups, but

rather complex realistic models [4,5]. This demand has led to unprecedented levels of

realism and interactivity, and the desire to quickly and easily capture existing urban

spaces and to model new ones.

In this dissertation, we explore how urban procedural modeling can be enhanced

with an inverse design of the geometry, traffic, and weather. Procedural modeling
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permits encapsulating the complex inter-dependencies within realistic urban spaces

and enables users, who need not be aware of the internal details of the procedural

model, to quickly create large complex 3D city models. Using machine-learning tech-

niques, we achieve real-time interaction with high-level indicators. We provide a tool

for vehicular traffic design that uses a per-vehicle-simulation. Since each car behav-

ior just depends on its current state and its surrounding vehicles, we discretize each

lane in the road network into a set of contiguous memory bytes. At each simulation

step, every car concurrently checks their surroundings and defines their future state

and position. Moreover, we explore how weather is an essential aspect of a city and

how we can use it to improve its design. We develop a fast but complete weather

simulator for exploring how city designs and weather interrelate. Finally, we perform

urban reconstruction and asset generation to create detailed models for visualization

and planning. This method focuses on fast reconstruction and refinement of urban

structures.

We hope our effort will ultimately help: i) urban planners to develop faster urban

areas, easier to implement and higher control; ii) traffic researchers to create and

optimize models using micro-simulators instead of macro-simulators and enhance its

visualization; iii) weather researchers to explore more systematically and robustly the

space of solutions; iv) all these fields to combine their efforts and create better cities.

We also hope to benefit the development of virtual environments and digital models,

not just within the research community but in entertainment, such as virtual worlds

for video games and movies.

1.2 Procedural Modeling

Procedural modeling and more specifically, urban procedural modeling, has in-

creased its popularity not just in computer graphics but other areas such as enter-

tainment and planning applications. The main strength of procedural modeling is

the detail amplification. Once the complexity of the model is encapsulated in a set
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of rules, the system is capable of generating an infinite variability of complex and

realistic models. Moreover, procedural modeling is starting to be used by the en-

tertainment industry that demands endless realistic worlds for games and movies,

making impractical that the artist can define the details manually. Finally, encoding

the complex details into parameters increases the ability of potential non-expert users

to quickly create large and complex models

In computer graphics, procedural modeling has focused on several domains such

as plant generation [6], plant growth [7], terrain generation [8], and urban modeling.

The seminal work by Paris and Müller [9] was the first in this class to use procedural

modeling to create a forward procedural approach to generating detailed 3D models of

cities. Starting with an L-system to generate the road network, blocks are extracted

(i.e., the polygons formed by the road segments), the blocks are divided into parcels,

and the parcels are filled with buildings. Later work has tried to better capture

the complexity of such models (e.g., [10–12]). Effectively, the detail amplification

inherently provided by procedural modeling is exploited: a small set of compact rules

and parameters can yield very complex and coherent outputs.

However, the codification of the complex inter-dependencies in a small set of rules

and parameters is also its Achilles’ heel: i) controlling the generation of a specific

model is a challenging task that requires in-depth knowledge of the procedural rule

codification; ii) extending the system to generate different outputs, i.e., extend the

set of rules, is very complex and usually requires expert users. Since there is not

explicit control, the user must set the values for the input parameters, implement the

procedural rules in software, and iterate between code and parameters to examine

the output to achieve the desired model. Something that it can be used for few

dozens input parameters but becomes impractical for more complex models defeating

the advantage of detail amplification of procedural modeling. For the later, the user

must explore in which domain the different output lies, one option is to add extra

rules or modify the current ones, another option is to explore the input domain.
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1.3 Inverse Procedural Modeling

Inverse procedural modeling addresses the aforementioned limitations by enhanc-

ing the model generation with inverse design tools. The design usually includes the

control of user-specified values (indicators). These values include static variables (e.g.,

percentage of parks), average values (e.g., road utilization), and temporal variables

(e.g., temporal behavior of clouds). The user selects the desired indicator values for

the model or simulation. The inverse design engine finds the parameter values to

generate such indicators values.

In recent years, there has been an increasing interest in this area. Št́ava et al. [13]

presented an innovative inverse system that focused on 2D content using an L-System.

Bokeloh et al. [14] explored symmetries to complete models. Other works, such Aliaga

et al. [15] and Vanegas et al. [16], focused on determining parameters for pre-specified

classes of procedural building models. Several facade-level works have also proposed

methods to determine procedural parameter values for individual facades (e.g., [17,

18]).

Our inverse engine attempts to control modeling by discovering how to alter the

input parameter values and models to yield a desired set of user-defined target values

while treating the urban procedural model as a black box for the purpose of generality.

Many classical inverse methods are based on regularization theory (e.g., [19]); however

they are designed for a different purpose than ours such as to remove noise and/or

assume unknown formation process. Therefore, since the solution space is large,

and the system is non-linear, our method is based on Markov Chain Monte Carlo

(MCMC ), more specifically on Metropolis-Hastings (MH ) method. MCMC is a group

of stochastic methods that sample probability distributions based on a Markov chain.

We use MH to randomly walk the domain space using a probability distribution

and different energy levels to find a solution. Depending on the design, our MC

based method will have different variations: i) start from one single seed (to find a

solution similar to the original) or from multi-seeds (to explore the solution space);
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ii) optimize one variable (find the minimum) or optimize one variable but minimizing

the cost of the change; iii) alter the model (to find a new combination of land use

or procedural model), alter the initial conditions, or both. In our results, we show

how these different variations can be used to find innovative solutions, designs, and

optimizations.

My thesis statement is

An inverse computational method using a controlled randomized ex-

ploration of a large solution space for a nonlinear underlying system can

be used to perform high-level and realistic design of the procedural gen-

eration of urban models incorporating complex geometry, vehicular traffic

flow, and local weather simulation.

1.4 Our Method and Summary of Results

Figure 1.1 presents the outline of our forward and inverse design. On one hand,

in forward design the user defines a set of parameter values, the procedural engine

generates a 3D model and a simulation is executed. The user can use that data

for real-time rendering or, with our interactive tools, alter the parameter values to

quickly see the model changes. On the other hand, in inverse design, the user defines

a set of goal indicators. Our Metropolis-Hasting based method creates the models

and runs the simulator to compute the indicator values and optimize the values until

it finds the necessary parameter values to generate the desired model. Optionally, we

use an artificial neural network engine (ANN ) to replace the procedural engine and

the indicator compute methods. This allows us to speed up the search process.

The set of desired model or behaviors is defined by a set of high-level indicators.

The concept of indicators is well used by the urban design and planning community

(e.g., [20,21]) but we extend it to encapsulate all outputs that our model or simulation

can generate. Indicators provide an intuitive and often high-level means for the user

to design and evaluate the model and its simulation. Depending on the context and
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Fig. 1.1. Our Inverse Design. The user or an optimization tool controls
the input parameters to create a city and optionally simulate to com-
pute some output values or indicators. Using an optimization method,
Metropolis-Hasting, we can find the desired behavior or model.

the purpose, the indicators can be as simple as a single value (e.g., temperature at

the city center, distance to park) to complex outputs with semantic meaning (e.g.,

landmark visibility, rain intensity). Our MH method efficiently searches the high

dimensional space to find such solutions. To our knowledge, indicators have not been

used to control modeling or simulation because the exact relationship between the

input parameters and target indicators is in general unknown, complex, and highly

non-linear.

Advantages

Our forward and inverse design strategy has these main advantages:

• Abstraction: Procedural model encapsulates the complexity within rules and

parameters. However, it is hard to have true control over the generated model

or simulation. Our system adds a layer of abstraction, defining the goal variables

as indicators that are easy to understand and control.
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• Interactivity: Our approach enables interactively manipulating indicator targets

while regenerating the model or simulating the scenario faster than real-time.

This enables a new way to interact with the model and the simulators that were

not possible before.

• High-level and Detailed design: High-level indicators can be used to control the

model or simulator, this allows the users to quickly design complex models and

simulations that have the desired appearance or behavior. Detailed design and

low-level indicators define specific variables or behaviors. This allows the user

to create customized designs or optimize models for highly control outputs.

• Static and temporal design: Indicators can be static variables that help design

geometry or global variables. Temporal design allows the user define behavior

over time to control it.

We explore three different areas to apply our method (Figure 1.2): 3D Urban

Modeling, Traffic Simulation, and Weather Simulation. The ultimate goal is to design,

control, and optimize an urban model, not just from the geometry perspective but

from innovative areas such as traffic and weather. In this dissertation, we will modify

the parameters and alter the models to present interesting results, this will illustrate

how our technique can be used to allow the user have more control and create complex

models quickly with the desired behavior.

Fig. 1.2. 3D Urban Modeling. We show the 3D results of our three
areas: 3D urban models, traffic simulation, and weather simulation.
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3D Urban Models

We have created a forward and inverse design tool for 3D urban procedural models.

This collaborative work with Carlos Vanegas, a former Purdue PhD student, we

created solutions for forward and inverse design. On forward design, the user selects

the value for a set of sixteen input parameters for each place-types (neighborhoods)

of the model. These parameters define the procedural generation of roads, blocks,

parcels, and buildings. On inverse design, the user controls this generation using high-

level design indicators, for instance, landmark visibility or sun exposure, and geometry

design indicators, for instance, distance to park or buildable area. Figure 1.3 shows

an example we created of 3D urban design. In this case, the user defines an indicator

that measures how dark/bright or compact/open a city is. This variable is computed

as the amount of area in the city that is in shade. Using an ANN engine to speed

up the process, we are able to use our MH based optimization method to find the

necessary combination of input parameters to find the desired behavior at interactive

rates.

Fig. 1.3. 3D Urban Design Example. We show an example of design
using a high-level indicator, in this case, open/bright vs. compact/dark
city. Using a single slider the user can control it: a) high shadowing or
compact, b) medium shadowing, and c) low shadowing or open.

Using our approach, the user just has to define the metrics that wants to control;

then the system learns the necessary changes to control it. This idea is both useful for

non-expert users that might not have the in-depth knowledge to achieve the desired
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design, but also for expert users since our method allows to explore non-obvious and

innovative solutions expanding the solution space.

Traffic Simulation

Designing and optimizing traffic behavior and animation is a challenging problem of

interest to virtual environment content generation and urban planning and design.

We create a super fast traffic micro-simulator to not just animate vehicles, but to

design traffic pattern and optimize the 3D model. Figure 1.4 presents an example

of this design. The user runs the simulation and wants to decrease the traffic of a

specific area. Using our MH based optimization method, we can alter the 3D model,

the distribution of jobs, or both, to generate a 3D model that has the user-defined

behavior.

Fig. 1.4. Traffic Design Example. Given a fragment of central Boston
a) and the distribution of job and people from a GIS source b), the user
designs the traffic (occupancy) a desired area of the city c). Changing just
lanes f), distribution of jobs g) or both h), our system learns the necessary
changes to obtain the desired behavior.

We are able to encapsulate the complexity of a traffic simulation to be used in a

procedural modeled city or a real world road network (from GIS data), design and

control its behavior.
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Weather Simulation

Weather is well recognized to be difficult to simulate and hard to predict due to its

highly non-linear behavior, significant computational requirements, and need for pre-

cisely determined initial conditions (Pielke 2013 [22]). Hence, when designing content

for a virtual environment, or for urban planning, the high input sensitivity, and com-

putational cost make it very hard to simulate a realistic and desired general weather

pattern. Thus, instead solutions in computer graphics typically script the visual ap-

pearance of weather phenomena in a manner similar to key-framing in animations

creating unrealistic behavior patterns (for instance, rain is generated at the flip of

a switch even if prior sky conditions are not indicative of rain); or, tools are used

to automatically change the weather variables to control the shape and evolution of

clouds without considering the actual behavior and state of the scene.

We create a physically based super fast weather simulation that has the necessary

components to realistically model the behavior of weather. We use this weather model

to create a set of tools to control and design the weather behavior. The user can define

the 3D model and the initial conditions and create a simulation unbounded of time.

We also provide tools to control and design the weather, with high-level control such

as cloud coverage, to detailed control such as to control the rain and temperature of

a city.

Figure 1.5 presents an example of our inverse weather design. The user interac-

tively designs the model, selects the desired high-level behavior, and our optimization

method finds the initial weather conditions necessary to generate such a weather pat-

tern. Our system can also be used for the forward design, as well as to improve the

design of an urban model.
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Fig. 1.5. Weather Design. f) The user draws the land use and designs
the urban model. Then, the user defines a clear sky sunrise morning fol-
lowed by afternoon showers (a-e) without providing details about realistic
spatio-temporal behavior.

Reconstruction and Visualization

Finally, we present two methods to reconstruct the geometry of a 3D urban model.

These 3D models are the response to the proliferation of urban planning, city navi-

gation, and virtual reality visualization tools.

Figure 1.6 presents the result from one of our methods. Using GIS data, we are

able to automatically obtain a volumetric reconstruction of the urban models. Using

an innovative graph-cut algorithm, we are able to find the best texture to reconstruct

a complex urban area. The generated models can be used for navigation (as Google

Earth), urban planning, and visualization.

1.5 Main Contributions

The main contributions of this dissertation are:

• Optimization Framework: We present a computational framework to control

and manipulate procedural and simulation models. We present a Metropolis-



12

Fig. 1.6. Urban Reconstruction. Starting from aerial imagery and
GIS-style parcel/building data (left), we are able to automatically obtain
a volumetric reconstruction (middle) to reconstruct a complex urban area
(right).

Hasting MCMC-based method enhance with a two variable optimization and a

time-invariant acceptance ratio.

• Traffic: We present a fast traffic micro-simulation engine including per-vehicle

simulation, lane changing, car following, and intersection modeling. This allows

to create a super fast visualization of traffic but also to create a traffic manipu-

lation engine that enables specifying a desired traffic behavior and optimization.

• Weather: We present a super real-time weather simulation that includes tem-

perature, wind, clouds, and rain. We use our method to visualize weather phe-

nomena as well to provide an inverse design tool to control and design weather

and optimize the 3D model of a city.

• Interactive Design: We create a new way to interact with the 3D model

and the simulators. Our inverse procedural model hides the complexities of the

rules, simulations, and parameters, to offer a clean and simple interface to draw,

design, and control the procedural model and its simulation. Manipulating high-
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level and detail indicators, the user can create complex and realistic virtual

worlds within minutes.

1.6 Dissertation Organization

The remainder of this dissertation is organized as follows. Chapter 2 discusses

the concept of procedural modeling and related work. Chapter 3 discusses our in-

verse design including our inverse procedural model, simulation methods (traffic and

weather), and results. Chapter 4 discusses two approaches on how to reconstruct and

visualize 3D urban models. Lastly, Chapter 6 provides conclusions and presents ideas

for future work.
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2. FORWARD DESIGN: PROCEDURAL MODELING

AND SIMULATION

In this chapter, we describe the concept of forward design. In forward design (Fig-

ure 2.1), the user defines a set of input parameters (land use, procedural and sim-

ulation parameters), then the procedural engine and simulator creates a 3D urban

model and outputs the simulation. There is not explicit control (since the user just

has access to control the input parameters, the user manually tunes these parameters

to generate the desired model and simulation. Note that for a non-expert user this

might be a very complicated task.

Fig. 2.1. Forward Design. The user defines the input parameters to
generate the desired 3D model or create the desired simulation.

In the rest of the chapter, we present an overview of procedural modeling (Sec-

tion 2.1), we describe our forward design tool for 3D urban procedural models (Sec-

tion 2.2), and we describe our traffic (Section 2.5) and weather (Section 2.6) simula-

tors.
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2.1 Procedural Modeling

Procedural modeling is a technique that algorithmically creates a model or texture

using a set of rules. There is a wide range of procedural modeling techniques, ranging

from L-Systems to generative modeling. Depending on the purpose, the user can

control the output with parameter values or adding or manipulating the rule set.

3D models can be created in three main manners: i) interactive modeling, ii)

capturing, and iii) procedural modeling. In this dissertation, we focus on the second

and third method, procedural modeling and capturing. Interactive modeling the user,

usually an artist, use specialized software (e.g. CAD software) to model the 3D object.

This interaction can be in the level of placing vertices and edges, or a higher level with

geometry geometries. For realistic scenes, the models are very complex and contains

millions of primitives. Modeling everything manually allows a complete control of

the output but is extremely laborious and repetitive. Data-driven approaches use

captured data to generate 3D models. These methods can range from aerial images

to 3D laser scans of the objects. The main limitation is the dependence on scanning

more objects to generate more variability for 3D environments.

2.1.1 Related Work

Procedural modeling focuses on generating 3D models algorithmically, typically

using a small set of rules and data, that encapsulates the overall properties and

complexities of the model. In computer graphics, it has been used to generate plants

[6, 7], terrain [8], and urban modeling.

L-Systems

L-Systems was one of the precursors of procedural modeling and the first true pro-

cedural geometry model. Aristid Lindenmayer [6], a biologist, developed L-Systems

to study the growth patterns of algae, but it has been extended to generate a mul-
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titude of 3D objects. The idea is that every biological cell in a plant may divide

simultaneously, so it is not enough to use a sequential model. L-System are defined

with a grammar G = {V, S, ω, P} where V is the alphabet or set of symbols that can

be replaced, S is the set of terminal symbols that are fixed, ω is the axiom, the string

of symbols where the generation starts, and P is the set of production rules, they

define how the variables can be replaced by other variables or by terminal symbols

(note that if two rules can be applied, one will be chosen at random).

Fig. 2.2. L-System. (Left) An example of Sierpinski triangles for 2, 4
and 8 iterations. (Right) An example of plant grammar using two colors
for stylization.

Figure 2.2 presents an illustration of two examples of L-System grammars. Using

the axiom as starting point, the alphabet is replaced with the rules for a the number

of iterations, this produces a string. This string is interpreted to be render. Usually,

this is explained as the movements of a turtle that follow the path. The symbols

meaning is as follow: + the turtle turns left by an angle, − turns right, F moves

forward a d distance and [, ] means to go back one step. On the left, an example of

an L-System to create Sierpinski triangles (a type of fractal). A complex structure

can be created using two rules. On the right, another L-System example to generate

a seaweed like structure.

Paris and Müller [9] created the first procedural approach to generating detailed

3D models of cities using L-Systems. Later works replaced L-system with shape

grammars to generate the buildings.
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Shape Grammars

Shape grammars are an extension of L-Systems where the production rules, instead

of replace symbols, shapes are matched and replaced.

Fig. 2.3. CGA Shape Grammar. Production of a building with a
CGA Shape Grammar: a) Facade production, b) CGA Grammar, c) final
model.

For facades, Wonka et al. [23] presented a new type of parametric shape grammar,

split grammars. These grammars restricted the type of rule to be applied and added

control and attribute matching in 2D, this makes possible to generate a wide variety

of building facades. The idea is to start from the axiom, the whole facade and apply

production rules that take the current shape and replace it (split it) into several

covering shapes. The process repeats hierarchically until all shapes are replaced by

terminal symbols.
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For buildings, Müller et al. [24] for CityEngine [25] extended the idea of split gram-

mars to 3D with a new context-sensitive grammar, CGA Shape grammar. Figure 2.3

presents an example of such a grammar. A CGA grammar consists of an initial shape

(in this case the facade) and a set of production rules. These rules are applied in order

of priority from more general to more detail; this can be used to define different levels

of LOD. A production rule is defined as ID : PredecessorShape(cond) → successor :

(probability). For example, Figure 2.3b, the facade is split in the y axis creating one

1stfloor of 4.5m and as many floors as they fit ∗ of 3.5m ensuring that they are an

integer value . This process is repeated, and the final model (Figure 2.3c) is created

replacing the final rules with textures (or assets).

2.2 Our Procedural Engine and Simulation

We have implemented an urban procedural engine similar to previous city-level

procedural modeling work (e.g., [9, 11, 12]). However, we provide a broad range of

urban geometrical configurations with a reasonable degree of succinctness and high-

level control. Our procedural engine is inspired by urban planners. For instance, our

place-type categories and initial parameter values were obtained with the assistance

of our urban planning collaborators.

Figure 2.4 presents an overview of the procedural generation. The user draws

the terrain 2.4a and defines the input parameters. The procedural engine generates

2.4b the road network. From this network, blocks are extracted and divided into

parcels 2.4c and vegetation is added. Finally, procedural buildings are created 2.4f.

Input Parameters

Our system counts with four sets of initial input parameter values (for the proce-

dural generation and simulation): Ω = {ωl, ωp, ωt, ωw}.

• The ωl parameters (Section 2.3) refer to the percentage distribution of land use

for each grid cell. For example, in the center of the city there is a nearly 100%



19

Fig. 2.4. Procedural Modeling. a) The user draws the land uses and
define the terrain and b-d) uses our procedural engine to define the input
parameters. Our procedural engine generates roads; c) blocks and parcels
are extracted and random vegetation; d) the buildings are created.

likelihood of urban land use. This distribution can be defined with our interac-

tive drawing tool, be loaded from a GIS data (e.g. WRF), or be procedurally

generated.

• The ωp parameters (Section 2.4) refer to the urban procedural parameters that

define the urban geometry (e.g., building height mean, road width, percentage

of white roofs).

• The ωt parameters (Section 2.5) refer to the percentage distribution of peo-

ple/jobs distribution of the urban area, as well to the road network enhanced

with traffic parameters.

• The ωw parameters (Section 2.6) refer to the initial conditions of the weather

simulation. These conditions define the initial values for each grid cell for each
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simulation weather variables. These conditions can be defined explicitly, proce-

durally, or via an observed atmospheric sounding.

Note all these parameters can be spatiotemporally varying. For instance, the atmo-

spheric sounding can vary by either prescribing it from a weather model output and

interpolation to each grid cell, or by using terrain and surface layer similarity/mixed

layer similarity approximations [26] to re-estimate the sounding at each grid cell that

is function of terrain, topography, and land use. In practice, we set the values initially,

and we run the simulation.

2.3 Land Use

Using an interactive tool, the user ‘paints’ a distribution of land use categories

over the terrain surface (ωl), the terrain can be optionally altered. Relevant physical

properties and initial conditions are given to our simulators. The spatial distribution

of land use categories is used as input to our procedural modeling engine.

Our method supports the following twelve categories of urban and non-urban

scenarios (based on typical usage in weather modeling):

• bare ground,

• desert,

• high mountains,

• grass (e.g., grass fields, prairies),

• forest (e.g., tree and dense/tall vegetation)

• snow, (e.g., typically on higher-elevation mountains)

• water (e.g., river, lake),

• crops (e.g., corn, wheat),



21

• low-density residential (e.g., houses),

• high-density residential (e.g., apartment buildings),

• low-density industrial (e.g., small commercial/industrial buildings), and

• high-density industrial (e.g., tall buildings, factories).

The properties of each land use depend on the application, but they contain a texture

to display it and a set of variables that will be used for the simulations.

Fig. 2.5. Land Use. (Left) An example of land use textures: bare soil,
grass, mountain, snow, crops, and beach sand. (Right) Several examples
of land use distribution.

Figure 2.5 visually shows the idea of land use. On the left, several examples of

land use texture. On the right, several examples of land use distribution. To generate

these land uses distributions, the user can use our brush-like tool to draw the land

use and/or elevation (this task never takes longer than one or two minutes) or load

it from a file (we support several GIS data formats including WRF).

2.4 Urban Model

Urban procedural modeling is used to interactively define a set of place-types.

Place-types is a key concept used in urban planning and modeling centers (e.g.,
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[27–29]). The city model consists of several instances of one or more place-type

categories. All instances of the same place-type category are regions – ranging from

a few blocks to an entire neighborhood – that have contained roads, parcels, parks,

and buildings with similar geometric attributes (e.g., road width, parcel area, build-

ing height). Similar to the urban layout editor of [30], place-types allow defining,

moving, rotating, and resizing large subsets of the city at once and can be used to

very quickly produce a sketch of the urban model. The underlying road network,

subdivision into parcels, placement of parks, and definition of building envelopes per

place-type instance is generated with a fully parameterized approach. Note that the

place-type category defines a template that provides specific (initial) values for pa-

rameters but the user can interactively tune them. In our current implementation,

our place-type categories include regional/town/suburban center, low/medium/high-

density industrial, and residential, retail, park, and institutional areas, but the user

can expand them manually tuning the parameters and saving the current parameter

set as a new place-type category.

In weather, land use and place-types are combined in local climate zones (LCZ ).

LCZs describe the land use as well as the urban distribution using high-level descrip-

tors.

The interactive session consists of the user sketching the land use and the global

configuration of the urban area and then directly manipulate the m parameters.

1. a user defines the land uses with a brush-like tool and optionally draws the

elevation (otherwise a random elevation map is creating following the land use

distribution),

2. the specified land use creates a boundary shape for the urban area,

3. the user creates z > 0 place-type instances of one or more categories, each

ranging in size from a few blocks to an entire city. , and
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Fig. 2.6. Number of Arms. An example of road generation with differ-
ent number of radial departing streets.

4. Once an instance of a place-type is positioned by the user, the geometry of the

contained roads, parcels, and buildings is automatically created and joined with

the neighboring geometry.

2.4.1 Urban Procedural Parameters

The entire 3D urban model has m = zmp parameters (ωp) controlling its gener-

ation, with mp = 16 being the number of per place-type instance parameters. The

per-place type parameters generate a road network with two levels of street hierarchy

(i.e., arterials and local), extract city blocks from the road network, subdivide the

resulting blocks into parcels, define parks, and instantiate a 3D building envelope

inside each parcel.

Place-Type. It is the higher order control of our system. It is defined by two

rectangular radii: the main axis (u) and its orthogonal (v). The axes can be rotated

using two handlers

• Center: It defines the origin of the place-type and becomes the origin of the

road generation. It can be placed on any point inside the procedural area.
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Fig. 2.7. Parcel Area. An example of parcel generation with different
parcel area.

• Bounding Box: It is the place-type area of influence. It is defined by a bounding

box with two main axis/directions (u and its orthogonal v) and two main radii.

The main axis is initially aligned with North-South.

Roads. Roads grow radially-outward using the following road parameters (arte-

rial and local roads have independent values):

• Block Size: Distance between two adjacent intersections.

• Length Irregularity: Random variability on the length of the roads segments.

• Angle Irregularity: Random rotation in an intersection respect the main axis.

• Number of Lanes: Number of two-directional lanes of the road.

• Number of Arms: Number of departing radial streets from the an intersection.

Figure 2.6 illustrates the road generation for three different number of arms.

Blocks and Parcels. Blocks are extracted from the area enclosed by roads using

a planar face traversal algorithm. Blocks are subdivided using recursive subdivision

of oriented bounding boxes (OBB) to enforce that the parcels have access to the road.

The OBB is computed for the current area to be subdivided (initially the complete

block) and it is divided into two new parcels, the process repeats recursively until fit

the following parameters:
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Fig. 2.8. Urban Procedural Modeling. Our method uses a) proce-
dural modeling to generate a city and terrain, including b) low-density
residential, c) high-density residential, d) low-density industrial, and e)
high-density industrial.

• Parcel Area Mean and Deviation: Defines when to stop the recursive subdivi-

sion. Figure 2.7 illustrate the parcel generated for three different mean areas.

• Random Split: Offset of the subdivision split.

• Percentage of Parks: This can be done on block or parcel level.
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Building. From the parcel, the building is generated using the following param-

eters:

• Building Type. Figure 2.8b-e presents the four different building types: Low-

dense residential, high-dense residential, low-dense industrial, and high-dense

industrial.

• Number of Stories and Deviation: Used in high-dense residential areas.

• Setbacks: Front setback defines the sidewalk width, side setback defines the

distance between adjacent buildings.

2.4.2 Urban Forward Design

The user defines a set of these input parameter values {ωp}. ωp = {ωp1 , ωp2 . . . ωpm}
is the set of geometric input parameters to feed the procedural engine. Note that each

parameter value must be within a range [ωpmin
, ωpmax ]. The user can alter interactively

the input parameters to quickly generate a 3D urban model.

2.5 Traffic Simulator

Interactive modeling of urban spaces, with high realism and accurate behavior, is

a fundamental challenge in computer graphics. Vehicular traffic is a ubiquitous dy-

namic activity in real-world cities which makes its simulation a necessity for realistic

interactive urban environments. Moreover, with more than half of the world popu-

lation living in cities, there is considerable interest in large-scale traffic simulation,

design, and visualization. Virtual environment applications with a growing need for

realistic vehicle traffic include virtual tourism, games and films, navigation services,

traffic monitoring, eco-routing, and urban planning and re-design.

Traffic simulation and animation for computer graphics has received some recent

attention (e.g., [2, 31–34]) but has also only been investigated in a forward fashion

(i.e., simulate traffic for a given road network).
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2.5.1 Related Work: Traffic Simulation and Roads

Procedural road modeling has received significant interest (e.g., [35–37]). However,

traffic behavior is not simulated during design. Weber et al. [11] simulate traffic flow

to estimate road widths and to improve a land use simulation. Their simulation only

performs a stochastic sampling of a subset of all trips and estimates road occupancy.

A detailed traffic microsimulation is not used. Traffic simulation/flow models can be

categorized into the following three broad categories.

• Microscopic models simulate traffic interaction at an individual vehicle level

including quantifying driver behavior, vehicle spacing, headway, speeds and lane

changing (e.g., [38]SIM, MITSIM [39], [40]O, and [41]SUM). The key drawbacks

are (i) agent-level calibration and (ii) large computational time.

• Macroscopic models provide aggregated representations of traffic (e.g., [42,43]).

Traffic is modeled as a continuum based on hydrodynamic kinematic wave equa-

tions using the fundamental relationships of speed, flow, and occupancy [44].

These models are faster but lack realism (and data) of individual vehicle be-

havior.

• Mesoscopic models simulate individual vehicles, but vehicle movement (or flow)

is governed by macroscopic relationships rather than detailed per-car models.

People and Jobs Distribution

Our system requires storing the distribution of people and jobs over the urban

area. While we could store people/jobs as spatially-located agents, it would be hard

(and inefficient) to sample and relocate them. Instead, we store them as Gaussian

probability distributions over a regular grid of cells – typically 200x200 meter cells. To

sample the people or jobs distribution, we first randomly choose a cell proportional

to its Gaussian probability distribution. Then, we find values within the cell by

performing a 2D sampling of its Gaussian distribution.
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2.5.2 Traffic Simulation

Traffic is simulated over many small time steps (e.g., Δt ∈ [0.1, 0.5] secs). All

our traffic-related models and parameters stem from well-known traffic simulation

literature and are considered important in practice. First, our simulator executes

per-vehicle trip planning. In each simulation step, a car’s trip plan is used to update

its position, velocity, and acceleration while inspecting the network, others cars, and

intersections. Finally, we compute traffic performance metrics.

Trip Planning

If not provided as input, we augment the people/jobs distribution of the urban

model with individualized trip plans consisting of a randomized schedule and desired

route(s). Each person is assigned a home location and a job location. Starting at

different times during the simulation period (e.g., 6 to 10 am), the vehicle departs

its home location to reach the employment location and returns at a later time. To

simulate trip chaining, for some vehicles, additional random destinations are added

during the simulation period. To compute each vehicle’s route, we approximately

solve a time-dependent shortest path (TDSP) problem. Normally, solving the TDSP

problem requires computing the effective travel time of each lane segment during all

time steps within the simulated period. The effective travel time is used to update the

shortest paths for all vehicles. This process repeats until the effective travel time does

not significantly change (i.e., equilibrium). This methodology is very time-consuming

and the update time is not bounded. In contrast, our approximate solution uses

average travel time per lane (instead of a sampling of travel times during the simulated

period), route-source grouping (subsection 2.5.2), and progressively-decaying route

updating (subsection 2.5.2) which bounds the number of passes. The result is a fast

approximate solution to TDSP (subsection 5.2).
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Route-Source Grouping

The first simplification assigns each vehicle to the intersection closest to their source

position (e.g., home, office). Dijkstra’s shortest path algorithm computes the short-

est path from a vertex to all other vertices. Thus, rather than executing Dijkstra

for each vehicle during each update pass, we execute it only for each graph vertex

(i.e., intersection) having at least one vehicle assigned to it. Hence, the number of

executions of Dijkstra’s algorithm is proportional to the number of vertices times

the number of update passes. In practice, it is even less since only a fraction of the

vertices corresponds to home or job locations. As an example, for a graph with 3000

intersections and 200,000 vehicles, we update all vehicles’ shortest paths in only 0.09

milliseconds.

Progressively-Decaying Route Updating

The second simplification progressively reduces the number of vehicles that are up-

dated during each pass of shortest path re-computation. After running the initial

pass, although all vehicles are used in all passes we gradually reduce the percentage

of the vehicles whose shortest paths are updated (e.g., 75%, 50%, 25%, 12%). This

decay reflects that all vehicles do not necessarily follow the ”best” shortest path and it

also typically bounds the number of passes to 5 or less with reasonable trip planning.

Traffic Atlas

A given road network is converted into a compact 2D traffic atlas representing

sampled road locations and an array of intersection records (Figure 2.9). One option

to maintain the per-vehicle data for microsimulation is to maintain a set of lists.

However, this requires sorting and queuing operations that are time-consuming for

crowded roads. Since vehicles can be treated fairly independently, efficient memory

access and easy separation of tasks is crucial for a parallelized implementation, our

approach is to store vehicle data in a compact but parallel-access friendly traffic atlas.
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a) Road Network

b) Traffic Atlas

Fig. 2.9. Traffic Atlas. a) Each road lane is a row in the traffic atlas; b)
the traffic atlas (top right) is sampled into delta segments (bottom right).

Our traffic atlas, akin to a texture atlas, compactly stores sampled road segments.

Each road segment (i.e., graph edge) is stored as a set of rows (one per lane) of bytes

where each byte represents tm meters of a lane. Each byte can at most be occupied

by one vehicle. The byte stores the car’s speed (in m/s) times three (e.g., 55 mils/h

or 88 km/h corresponds to 24.4 m/s and to the value 73). In practice, we found this

quantization to be adequate. Intersections (i.e., graph nodes) are much sparser then

sampled road segments and are stored separately. This data structure can efficiently

store very large road networks (e.g., using tm = 1 we can store 250,000 km of 4 lane

roads in 1 GB of memory - this is roughly the length of all roads in Germany or

Spain).

Simulation Steps

Given a set of per-vehicle trip plans and current traffic condition (traffic atlas),

we update each vehicle’s acceleration value and position, perform mandatory or dis-

cretionary lane changes, and update travel times.
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Car-Following Model

Our simulation model is based on a discretized car-following principle: the current

speed and acceleration depends on the distance to the following car (i.e., the next,

or following, car in the direction of the current lane). As in Sewall et al. [2], we use

the Intelligent Driver Model [45]. The acceleration/breaking function has two main

terms:

• free flow : the vehicle’s acceleration to reach its desired speed in absence of

others (i.e., the speed limit), and

• following-car closeness : this term represents the deceleration when it comes too

close to the one in front of it.

Altogether, we can write a vehicle’s acceleration as

v̇ = a
(
1− (v/vo)

4 − (s∗(v,Δv)/s)2
)

(2.1)

where a is the acceleration ability of the car, v is the current speed of the car, v0 is

the desired speed, s is the distance gap to the following car, and s∗ is

s∗(v,Δv) = s0 + Tv + vΔv/2
√
ab (2.2)

where s0 is the minimum following distance, T is the desired time headway, and b is

a comfortable braking deceleration. We follow the range guidelines from Treiber et

al. [45] to assign random values to a, b, and T .

Lane-Changing Model

This model predicts when and where a vehicle will make a lane change based on two

fundamental behaviors:

• mandatory behavior : the necessity of changing the lane in order to reach an exit

or turn at an intersection.
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• discretionary behavior : the desire to change lane in order to increase speed and

bypass a vehicle.

Our model is based on a combination of the approaches of Yang and Koutsopoulos [39]

and Choudhury et al. [46]. A vehicle always enters a new road in discretionary

behavior and with an exponential probability might change to mandatory behavior.

The probability to enter a mandatory behavior can be written as:

mi =

⎧⎪⎨⎪⎩
e−(xi−x0)2 xi > x0

1 xi ≤ x0

(2.3)

where mi is the probability of vehicle i to be changed to mandatory behavior, xi is

the current distance from the vehicle to an exit/intersection, and x0 is the distance

of a critical location to the exit/intersection (e.g., last exit warning).

Gap-Acceptance Model

Once the vehicle has decided to change lanes, the maneuver is performed if the lead

and lag gaps are acceptable. Using car speeds and distances, we compute the critical

lead gap gDia (i.e., minimum distance to the following car at which a lane change can

be performed) and the critical lag gap gDbi (i.e., minimum distance to the lagging car

at which a lane change can be performed):

gDia = max gDa , g
D
a + αD

a1vi + αD
a2(vi − va) + εia (2.4)

gDbi = max gDb , g
D
b + αD

b1vb + αD
b2(vb − vi) + εbi (2.5)

where gDa is the desired lead gap for a lane change, gDb is the desired lag gap for a

lane change, α is a system parameter (typically α = [0.05, 0.40]) that controls the

gap based on speed, vi is the speed of the vehicle, va is the speed of the lead vehicle,

vb is the speed of the lag vehicle, and εia and εbi are terms that add randomness to

the behavior. We use typical values for these parameters obtained from [46]. If a

vehicle’s actual lead and desired gaps are within the critical and desired range and

the lane changing mode is discretionary, a lane change occurs.
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Simulation Update

During each simulation step, the traffic atlas, traffic lights, and vehicle information

are updated. To avoid synchronization overhead and dependency on update execution

order, we swap between two atlases by simply exchanging atlas pointers. Traffic lights

are updated using round robin logic or using light phases and timings based on real-

world data. The simulator checks if a vehicle is waiting to start a new trip. If there

is room in the first segment of the vehicle’s route, the vehicle is positioned on the

traffic atlas with v = 0. The position and velocity of this now active vehicle, and all

other active vehicles, is updated.

For each active vehicle, the simulator performs several update steps. First, it

checks the distance to the following car. If none is found in the current lane, the

simulator inspects the traffic signaling at the following intersection. If the traffic light

is red, or it is the car’s turn to stop at a stop sign, it corresponds to there being a

following car at the intersection with v = 0. If the traffic light is green or it is not the

car’s turn to stop at the stop sign, our method finds the following car on the next lane

segment of the vehicle’s route. At a stop sign, the intersection tells the car when it can

pass through. Second, given the distance to the following car (if any), the vehicle’s

acceleration, velocity, position and relevant traffic indicators (subsection 3.4.5) are

updated. Third, the simulator considers vehicle lane changes (subsection 2.5.2). If

a lane change is desired, the gap-acceptance model (subsection 2.5.2) is evaluated.

Fourth, if an intersection is reached and it is not the destination, then the vehicle

attempts to move to the next lane segment. If there is no space in the lane, it remains

at the current location (i.e., v = 0).

2.6 Weather Simulator

In recent years, creating virtual environments has become an extremely important

task for entertainment, education, urban planning, and training applications. This

interest has fomented new approaches to increase realism and new tools to quickly
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and easily design such environments. In addition to the detailed modeling of complex

urban geometry, previous computer graphics work has also focused on the living

aspect of the city. Some works have provided methods to incorporate human behavior

such as crowds simulation [1] and traffic simulation [2]. Other works have focused

on increasing the realism through more accurate modeling and simulation of physical

phenomena (e.g., CGI movies and games use ray tracing and global illumination [3],

complex realistic modeling of liquids [4, 5].

However, relatively little attention has been paid to the design and realism of

weather phenomena in computer graphics. Previous works have provided methods

for fog, rain, snow, and clouds. These methods focus only on rendering and not on

the physical behavior of the phenomena. Moreover, todays graphics applications,

including games, are no longer only short temporal sequences of minutes or hours,

rather they can span much longer time horizons. Simulating weather is difficult

because of its highly non-linear behavior, sensitivity to scale-dependent phenomena,

and sensitivity to initial conditions [22]. Typical solutions in computer graphics script

the visual appearance of weather phenomena similar to key-framing in animations

(e.g., tools are used to control the shape and evolution of clouds [47–49] without

considering the current atmospheric conditions). This can lead to unrealistic scenarios

such as clouds and rain appearing at the flip of a switch even if prior sky conditions

are not indicative of rain; clouds forming, at only one height in the atmosphere, even

though there is no source of vertical motion; and a mishandling of the relationship

between the land surface and the clouds (i.e. urban/rural heterogeneities); it also

leads to error in the location of the clouds and that has a feedback error on other

weather variables. These previous solutions are useful for small sequences where the

goal is a complete control of the weather sacrificing realism.
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Fig. 2.10. Urban Weather. We present a method which tightly cou-
ples procedural modeling with a super real-time physically-based weather
simulation. With our land use sketching interface (f), a user procedurally
generates a terrain and city. Then, for example, our design tools en-
able intuitively choosing clear sky sunrise mornings followed by afternoon
showers (a-e) without providing details about realistic spatio-temporal
behavior.

2.6.1 Related Work

Cloud Simulation

The most closely-related simulations to our work in computer graphics are various

forms of cloud simulation over time. Kajiya and Von Herzen [50] present an early

method to solve the scattering equations and present equations which model the

dynamic behavior of clouds. Dobashi et al. [51] present computationally inexpensive

cellular automata to model cloud evolution using several simple transition rules and

offline rendered clouds. Miyazaki et al. [52] use a coupled map lattice to approximate

the formation of various cloud shapes. Overby et al. [53] modify a fluid solver to

simulate clouds based on buoyancy, relative humidity, and condensation. Harris et

al. [54] describe a diagnostic cloud simulation engine. Dobashi et al. [47] enable a

user to draw the contour of a cumuliform cloud from a specific camera position and

their system automatically adjusts parameters so that the simulated result fits in
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the drawn contour. Harris et al. [54] does not have a prognostic simulation of cloud

variables, radiative transfer model, rain variables, nor procedurally generated models

of land use. Dobashi et al. [47] assume constant heat from the ground and do not

take into account wind, radiation, and surface energy balance.

In contrast to and building upon the above methods, our approach is based on a

full weather simulation model that includes surface energy balance, boundary layer

processes, and first order evolution of meteorological forcing equations [55]. Also,

most prior approaches are diagnostic. i.e. weather is static input that does not

change, and the objective is to get the visualization of cloud and other phenomena

are not simulated or interactively responding. This interactivity becomes important

for scenarios where a priori specification or clouds or environment is not an option.

Examples include where the graphics generate as part of a decision system in a serious

game environment, battlefield theater environment or for education modules. In each

of these examples, the decision either by the model or the user is intimately tight

to the interactive graphics that emerges as a result of the environmental and initial

conditions providing such model to the graphics community is one of the goals of this

paper. Moreover, we provide very fast simulation performance.

Weather Forecast Models

Clouds and precipitation events are one of the most difficult features to accurately

simulate in a coupled prognostic model. This is because their simulation and predic-

tion require all other factors to be adequately represented and simulated, and errors

in any of the interacting variables can translate into inaccurately developing clouds

or numeral instability. As a result for most NWP models, rainfall and cloud forecast

verification is considered as integrated performance of the model [56].

There are a very long history and a large body of work attempting to model

and predict weather phenomena. Nebeker [57] and Stull [58] provide a comprehensive

review and history of Numerical Weather Prediction (NWP). Weather forecasting can
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be done at a variety of scales ranging from global-scale simulation (e.g., jet streams)

to micro-scale simulation (e.g., wind effects in urban canyons). For our goal, we seek

a physically-based, interactive local urban-scale simulation that models weather over

a city and a range of land uses.

Implementations of several well-known weather forecast models are available. The

Weather Research and Forecasting (WRF) Model [59, 60] is now the state-of-the-

art NWP system designed to serve both atmospheric research and local operational

forecasting needs. The Regional Atmospheric Modeling System (RAMS) [61] is a

mesoscale simulator (e.g., for horizontal scales of up to 2000km and grid cell sizes of

up to 20km) for weather and climate research and NWP. Though in our tests WRF

is faster than RAMS, both systems are extremely computationally expensive. For

example, a 72-hour WRF simulation for a 50x50km area at 1x1km grid cell size takes

around ten hours using a computer server of 48 cores.

2.6.2 Weather Model

According to Stull [58] and Durran [62], a weather model at urban scale must

account for multiscale feedbacks that span turbulent energy exchange, to micro and

mesoscale energetics and dynamics. Thus, the model needs to consider modules to

simulate features such as advection, diffusion, buoyancy, moisture processes (e.g.,

evaporation, condensation, auto-conversion, accretion) and radiation and surface en-

ergy balance processes. The physical properties of the land use categories, such as

albedo, the Bowen ratio, and roughness, dictate the nature of radiative and turbulent

surface fluxes that define the land-atmosphere convection interactions. Changes in

the surface energy balance due to land surface heterogeneity produce micro/mesoscale

circulations and a zone of local convergence. This heterogeneity induces conver-

gence/divergence, this can create non-classical circulations akin to a land-sea breeze

that produces vertical motion to lift the air directly or create local zones of conver-

gence and divergence, which act to drive the air upward at the surface. To simulate



38

Fig. 2.11. Weather Variables. We show a depiction of the weather
variables computed by our simulator.

these processes, the weather model makes use of the aforementioned physical proper-

ties and a set of weather variables stored in grid cells. This information is then passed

on to a nonlinear system of dynamical equations evaluated over space and time.

Variables and Grids

Our approach uses the following variables stored within a 3D grid structure over the

simulated region (Figure 2.11):

• Wind velocity (U = {u, v, w}): These are the wind components (measured in

m/s) in the west-east, north-south, and vertical direction, respectively.

• Potential temperature (θ): The potential temperature of a grid cell of air is

the final temperature the cell would have attained if it were moved adiabatically

(i.e., without heat transfer) from pressure p and temperature T (in Kelvin) to
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a standard pressure p0 = 100kPa (i.e., approximately sea level pressure). Its

definition can be written as

θ =
T

Π
(2.6)

• Exner function (Π): The Exner function is a non-dimensional pressure quan-

tity designed to simplify pressure-related computations in atmospheric model-

ing. It is written as

Π =

(
p

p0

)Rd/cpd

(2.7)

where Rd is the specific gas constant of dry air (Rd = 287.058J/(kg ·K)) and

cpd is the heat capacity of dry air at constant pressure (cpd = 1004.5J/(kg ·K)).

• Moisture variables (qv,qc, qr): These are mixing ratios of water vapor (non-

dimensional quantities of mass-of-air per mass-of-air).

Our method uses the Arakawa C-Grid [63], commonly used in the weather community,

to offset mass and energy variables in vertical and horizontal directions. A C-Grid is

preferred for weather models because it prevents physically unrealistic waves of non-

wave variables (i.e., temperature) from forming in the model, and performs better

for second order differentiation [64]. In such a grid, the scalar variables are defined

in the center of each grid cell, and the vector variables are prescribed in the faces.

In the horizontal plane, the ground is split into evenly spaced grid cells typically of

1x1 kilometer. In the vertical direction, the grid spacing is log-linear with higher

resolution closer to the surface within the boundary layer and then gradually. Thus,

the user defines the first grid cell height dz and the rest is calculated following the

power law

z[k] = min(dz · skr , dmax) (2.8)

where dz is typically 50m, stretching ratio sr is usually 1.025, and the maximum

height dmax is 1000m. This approximation was based on several realizations of the

Monin-Obukhov similarity theory based profile estimation. For each horizontal grid,
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this creates 12 grid cells under 3km (i.e., in the region that is expected to be influenced

by the boundary layer) and the vertical extent of the topmost grid cell is about 25km.

The model can be initialized using a realistic sounding at each grid location from

an external source from reanalyses [65] or through a single sounding that can be in-

terpolated to each grid location based on surface characteristics. These soundings

are representations of the model variables converted from an observed atmospheric

profile of temperature, moisture, and wind and are specified by our design tool. The

lateral boundaries of the grid are assumed periodic (i.e., toroidal in 3D). The bot-

tom boundary conditions are determined from the land surface model, and the top

boundary conditions are described in Section 2.6.3.

Dynamical Equations

Our nonlinear dynamical equations consist of three components (expanded upon in

Section 2.6.3):

• fundamental modeling: accounts for advection, diffusion, and buoyancy of wind,

potential temperature, and Exner function.

• cloud and precipitation modeling: accounts for evaporation, condensation, auto-

conversion, accretion of water, and potential temperature.

• radiation modeling: accounts for short-wave and long-wave radiation onto the

ground and urban surfaces, and the resulting potential temperature changes.

These three components are the minimum set needed to create a physically-based

simulation that models temperature, wind, clouds, and rain. Note that without the

radiation model, the system would reach an equilibrium after which there would not

be weather changes during the day and night, and there would not be buoyancy (e.g.,

water vapor movement) and consequently no clouds. Without the cloud and precipi-

tation model, there would not be clouds nor rain. Further, although the temperature,

pressure, and wind might change, the effect on weather would not be very noticeable.
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Finally, the equations of the fundamental model are crucial to tie the components

together. Thus, each of the model components feeds into and build off the energetics

of the different model components and are completely interactive. Indeed, this is the

nature of the weather processes seen in nature as well.

2.6.3 Urban Weather Simulation

Given a set of initial values either calculated or provided, our weather simulator

updates grid cell variables during each time step integrating finite difference partial

differential equations described in this section.

Fundamental Component

Our set of fundamental equations are derived from the laws of motion and ther-

modynamics and refined using scale-analysis for our desired urban-scale weather sim-

ulation. The equations are as simple as possible to reduce computational expense

yet still yield relevant weather phenomena. The fundamental equations model the

motion of the wind (U), temperature via potential temperature (θ), and atmospheric

pressure and density via the Exner function (Π). The equations simulate advection,

diffusion, mass and energy balance, and buoyancy [55]. Advection (e.g., U · ∇) is the

transport mechanism of a substance by a fluid due to the mean flow motion. For

instance, liquid water that forms the cloud droplets is diffusion/turbulent exchange

and advection together cause the vertical and lateral exchanges. Diffusion (e.g., κ∇2)

represents molecular and turbulent exchange of a substance from a region of high

concentration to a region of low concentration. For a parcel of air in hydrostatic

balance, there is a balance between gravity and the pressure gradient force and hence

air does not move vertically. However, if there is a change in density (e.g., in ideal

gasses due to a change in temperature or pressure) a buoyant force is exerted. If the

parcel is less dense (than the surroundings) the parcel exerts an upward force; if it

is denser, then the net force is downwards. As a first test, we will show that a cold
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bubble sinks and a warm parcel of air rises (until it reaches a state of equilibrium),

and have hydrostatic and dynamical equilibrium built-in.

For brevity, the material derivative is defined as the sum of the local change in a

variable with the advected portion of that variable: D
∂t

≡ ∂
∂t

+ (U · ∇). To improve

numerical stability, each variable is decomposed into its base value and a time-varying

perturbation value (e.g., φ = φ0+φ′ where φ is the instantaneous value of a vector or

scalar variable, φ0 is the base value, and φ′ is the perturbation as a result of external

forces). This allows us to simplify some formulas to save computational cost. To

illustrate the conversion of the equations to actual code, we have added an example

of a complete equation with its discretization is provided in Supplemental Material

A.

Wind. The equations modeling the change of the horizontal wind velocities u

and v are
Du

∂t
= −cpdθρ

∂Π′

∂x
+ κ∇2ut−1, (2.9)

Dv

∂t
= −cpdθρ

∂Π′

∂y
+ κ∇2vt−1, (2.10)

The right-hand side of Equations (2.9) and (2.10) include two terms:

• The first term represents acceleration due to the pressure gradient force ex-

pressed by the Exner function and θρ is the density potential temperature which

accounts for both liquid and vapor water in air density.

• The second term represents wind diffusion based on the winds values in the

previous time step and by a constant factor κ.

The equation modeling the change of the w wind velocity (i.e., vertical wind) at

time t is

Dw

∂t
= −cpdθρ

∂Π′

∂z
+ g

(
θ′

θ0
+ 0.61 · q′v − q′c − q′r

)
+ κ∇2wt−1, (2.11)

where the right-hand side includes a first and third term similar to the u and v wind

velocities. The second term is the computation of vertical buoyancy as a potential
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temperature of a parcel (perturbation) compared to its surroundings (mean state)

with moisture added to represent acceleration from falling liquid water.

Pressure. The Exner function value is updated using the following prognostic

equation
DΠ′

∂t
=

c2s
cpdρθ2ρ

∇ · (ρθρU) + κ∇2Π′t−1, (2.12)

where cs = 100m/s is the artificially lowered inelastic speed of sound and ρ is air

density (in kg/m3). The first term computes advection limited by the speed of sound.

The second term computes pressure diffusion. Note that while mathematically valid

but physically unrealistic, a solution to an atmospheric wave equation is sound waves.

However, since sound waves do not propagate energy on the same scale as wind

advection, they are artificially eliminated to preserve model compressibility and also

reduce computational cost.

Temperature. The potential temperature perturbation values are updated using

Dθ′

∂t
= −ρw

∂θ′

∂z
+ κ∇2θ′t−1. (2.13)

The first term represents the change in temperature due to non-adiabatic vertical

advection and the second term represents its diffusion.

Clouds and Precipitation Component

To simulate clouds and precipitation at urban scale, we build off the conceptual

approach use previously in Pielke et al. 2007. In our current implementation, we

focus on convection and warm rain process. We use the classic equations derived

from Kesslers microphysics scheme [66] and the mesoscale implementation framework

of Soong and Ogura [67].

Microphysics Scheme

Kesslers is a warm (liquid-only) cloud scheme that includes water vapor, cloud wa-

ter, and rain. The equations use a variety of constants determined experimentally.
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Fig. 2.12. Kessler Microphysics. State transitions of water in the
clouds

Kesslers scheme is a popular option for representing cloud physics. In this schema

cloud formation and dissipation are estimated through condensation and evapora-

tion, and rain drop growth via the growth of cloud droplets (autoconversion) and

the collection of droplets from falling rain (accretion). Figure 2.12 depicts the model

framework.

Condensation. This is the process by which water vapor in the air is changed

into liquid water and handles cloud formation and precipitation. The expression for

condensation from vapor (qv) to liquid (qc) is implemented based on Tetens [68] as

Cv �→c = min

⎧⎨⎩qv,
qv − qvs

1.0 + qvs
a(273−36)Llv/cpd

(Πθ)2

⎫⎬⎭ (2.14)

where a = 7.5ln(10) and the constant term Llv = 2.501 · 106Jkg−1 corresponds to the

latent heat of vaporization. The use of the minimum operator ensures mass balance

between water vapor (qv) and liquid water (qc). The equation also makes use of the

theoretical maximum amount of water vapor that air at a specific temperature and

pressure can hold. This is known as the saturation mixing ratio and is implemented

in our model as

qvs = b exp

(
a
Πθ − 273

Πθ − 36

)
(2.15)

where b = 380.16/pe, and pe = p0Π
cpd/Rd .
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Evaporation. This can be considered as an inverse process of condensation:

liquid water (qc and qr) turns into water vapor (qv). The model considers the air

saturation potential and when the air becomes unsaturated, cloud droplets (qc) evap-

orate to maintain a balance between liquid water in the atmosphere and water vapor.

Thus, the rate of evaporation is self-regulated so as to keep the air at the saturation

mixing ratio until the cloud droplets are totally evaporated. Raindrops (qr) evaporate

after cloud droplets are condensed by the moisture deficit. Evaporation is calculated

as

Ec,r �→v =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
qr

−Cv �→c − qc

Vc
qvs−qv
ρqvs

(ρqr)0.525

5.4·105+2.55·108/(p̄qvs)

(2.16)

The top term constraints evaporation does not exceed the rain, the middle term en-

sures the newly available vapor is not exceeded, and the third empirically determined

term ensures the rate maintains the saturation mixing ratio. The third term also uses

the ventilation coefficient Vc which is used in determining air pollution concentration

near the surface ground. It is calculated by the experimentally-determined equation

Vc = 1.6 + 124.9ρq0.2046c . (2.17)

Autoconversion. This process computes rain droplets to be formed if cloud

water exceeds a critical value. Its equation is

Ac �→r =

⎧⎪⎨⎪⎩
0.0 if qv ≤ qc0

max (0.0, k1(q
′
c − qc0)) if qv > qc0

(2.18)

where conversion factors k1 = 10−3s−1 and qc0 = 10−3gkg−1.

Accretion. This last process represents when rain collects the small cloud droplets

while falling. It can be approximated by

Bc �→r = max
(
0.0, k2 · q′c · q′0.875r

)
, (2.19)

where k2 = 2.2 according to Kessler [66].
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Model Implementation

Finally, we put together the previously described different microphysics concepts to

write a set of per-grid cell water equations, representing clouds and precipitation,

which conserve total net mass as well:

Dqv
∂t

= −ρw
∂qv
∂z

+ κ∇2qv − Cv �→c + Ec,r �→v, (2.20)

Dqc
∂t

= κ∇2qc + Cv �→c − Ac�→r − Bc �→r, (2.21)

Dqr
∂t

= κ∇2qr +
1

ρ

∂ρVtqr
∂z

+ Ac �→r +Bc �→r − Ec,r �→v, (2.22)

where Vt = 36.34
√

ρ0
ρ
(ρqr)

0.1364 is the rain water terminal velocity and ρ0 is the den-

sity of the lowest grid cell per column. These equations also make use of the material

derivative (as in Section 2.6.3). Considering the energy change associated with wa-

ter phase change (evaporative cooling, condensation heating), the thermodynamic

equation is updated (instead of Equation (2.13)) as

Dθ′

∂t
= −ρw

∂θ′

∂z
+ κ∇2θ′t−1 +

Llv

cpdΠ
(Cv �→c − Ec,r �→v), (2.23)

where on the right-hand side the first term and second term are the same as in

Equation (2.13) and the third term is the non-adiabatic heating or cooling due to

phase change.

Radiative Energy Flux Component

The third set of equations models how solar radiative flux is estimated, partitioned,

and interacts with the surface and atmosphere causing a change in temperature as

well as additional weather dynamics. Our radiation model is based on Stull [69] but

adapted to urban scale and with a few additional simplifications to reduce compu-

tational cost. The predominating shortwave incoming solar radiation passes through

the atmosphere, a part is reflected or absorbed by clouds, greenhouse gasses, and par-

ticles, and the rest is transmitted to the surface. On reaching the Earths surface the
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radiative energy is partitioned into components that are used for water vapor/liquid

phase change or latent heating; another part is used towards sensible heating and

storage within the surface (Section 2.6.3). The outgoing radiation is predominantly

longwave following Weins Law. The radiative flux heats the surface non-uniformly

as a function of longitude and mostly the latitude of the simulated area. At a more

local scale, the land scape and urban areas are significantly warmer (especially at

night) than surrounding rural areas. The main factor behind such urban heat islands

(UHI) is the distribution of land use as well as the use of man-made materials that

effectively store long-wave radiation [70].

We use a force-restore method to compute the impact of the radiation on ground

temperature, and the transfer of temperature from ground to air.

The objective of our radiation model is to compute a spatially and temporally

changing value for the temperature T of each of the bottommost grid cells we refer

to such temperatures as Tz. The radiation model defines constants, variables, and

equations that are effectively below the bottom layer of the grid. Note that at ground

level, θ ∼= Tz because pressure is p0. Once Tz is computed, changes are propagated

upwards by buoyancy, and the energy, mass, dynamics-based prognostic equations.

Radiation budget

The radiation flux corresponding to one ground-level grid cell is split into four parts

of a two-stream model,

Q∗ = K ↑ +K ↓ +I ↑ +I ↓, (2.24)

where the shortwave solar radiation is reflected (K ↑) and transmitted (K ↓) and the

longwave radiation is emitted (I ↑) up and diffusively radiated down (I ↓).
Shortwave radiation. The visible light transmitted by the sun can be quantized

by

K ↓= ScTK sin (Ψ) (2.25)

where the solar constant Sc = −1.127Kms−1 is the intensity of incoming solar radi-

ation at the top of the atmosphere, and TK is the radiation attenuated by the depth
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of atmosphere it has to travel (e.g., at sunset the radiation has a longer path to reach

the surface) and by the amount of clouds, aerosols and other absorption/reflection

components within the atmospheric layer.

To compute TK , the model discretizes clouds into three different heights as low-

level cumulus, mid-level altu and high-level stratus (i.e., low 0-2km, medium 2-6km,

and high ¿6km clouds; with the fraction at each height being σCL
, σCM

, and σCH
,

respectively. To compute this in our model, for each bottom-level grid cell, we use

a 3D ray marching method setting the origin of the ray as the center of the grid

cell, the step to sample each vertical grid cell, and as direction the sun direction.

We accumulate the result of a cloud transfer function of each sample for each of the

three height ranges, yielding σCL
, σCM

, and σCH
. The contribution (or weight) by

the amount of clouds at each of the three heights, and other weights are based on

simplifications introduced in Stull [69]. Hence,

TK = (0.6 + 0.2 sin (Ψ))(1− 0.4σCL
)(1− 0.7σCM

)(1− 0.4σCH
). (2.26)

The solar elevation angle Ψ is determined by the longitude/latitude of the urban

space, time of day, day, and year:

sin (Ψ) = sin(glat) sin (ds)− cos(glat) cos (δs)

cos [(πtUTC)/12− glong] (2.27)

where glat and glong are geographic latitude and longitude of the middle of the simu-

lated region, tUTC is the time in UTC, and δs is the solar declination angle:

δs = 0.409 cos

(
2π(d− 173)

365.25

)
(2.28)

where d is the Julian day in the simulated year (and 173 represents the summer

solstice day and 365.25 the number of days in a year).

The reflected shortwave radiation K ↑ is the fraction of K ↓ that is reflected by

the surface as defined by its albedo (a):

K ↑= −aK ↓ . (2.29)
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Longwave radiation. Earth re-emits the solar energy as radiation in the form

of longwave infrared rays. The net longwave radiation is based on StefanBoltzmanns

equation σεT 4. I∗ = I ↑ +I ↓ is modeled by the empirically determined equation [69]:

I∗ = 0.08(1− 0.1σCH
− 0.3σCM

− 0.1σCL
). (2.30)

Force-Restore Slap Model

Figure 2.13 pictorially represents the multiple temperature layers and the model vari-

ables of the force-restore method [71, 72]. As stated, the surface energy balance is

performed by splitting the radiation (Q∗) into sensible heat flux (QH), latent heat

flux (QL) and ground heat flux (QG). The division of surface energy defines four

layers in the radiation model:

• Two atmospheric layers consist of (a) the bottom of the model grid with tem-

perature Tz and (b) a layer near the surface with temperature Ta.

• Two ground layers consist of (c) a shallow layer of ds cm thickness and tem-

perature Tg where most of the soil temperature changes occur because of the

suns radiation and thermal diffusivity (d) a deeper thick layer with seasonally

varying mean temperature Tm. The depth ds can be computed as

ds =
√

vgP/4π (2.31)

where vg is the thermal diffusivity of the soil and P is the period of simulation

in seconds.

To compute the temperature Tz at height z, we start using a diurnal empiric

environmental lapse rate value γ (which is true slope of variation of temperature

with height) and the temperature of air closest to the surface, Ta. The empirical

formulation of γ is given by

γ = 1.07 · 10−8t5l + 8.18 · 10−7t4l − 6.05 · 10−5t3l + 7.72 · 10−4t2l

+ 1.4 · 10−3tl − 0.0184. (2.32)
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Fig. 2.13. Force-Restore Slab Model. Radiation gets to the surface
and this heats Tg; a part gets diffused to deeper layers of the ground Tm,
and a part heats the first few cm of air Ta, then Ta heats the bottom layer
of our grid Tz.

Thus, Tz is computed as

Tz(z) = Ta + γz. (2.33)

In order to compute Ta, we first compute the ground heat flux

−QG = CGA
∂Tg

∂t
+ 2π

CGA

P
(Tg − Tm) (2.34)

where CGA is the soil heat capacity per unit area computed as

CGA = Cgds (2.35)

and Cg is the soil heat capacity per unit volume (in Jm−3K−1) and it is a function

of soil types and is available in standard textbooks (Noilhan Planito 1989).

To compute the change of Tg, we make use of the aforementioned radiation budget

Q∗ and the heat fluxes out of its layer interfaces as

∂Tg

∂t
=

−Q∗

CGA

+
2π

P
(Tm − Tg)− aFR(Tg − Ta). (2.36)

On the right-hand side, the first term is the force term quantifying the amount of

radiation that reaches the surfaces and is transformed into heat depending on the soil
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heat capacity CGA; the second term is the restoration term measuring the conduction

of temperature Tg to the deeper layer of temperature Tm; the third term represents

thermal convection of the ground layer of temperature Tg to the first layer of air with

temperature Ta, where aFR is the conductivity between the ground and the air (note:

aFR = 3 · 10−4 when Tg > Ta and aFR = 1.1 · 10−4 when Tg ≤ Ta).

Having computed the radiation Q∗ and the ground heat flux QG, the sensible heat

flux is computed by radiative balance. Instead of computing QH and QL directly,

we use the ratio of sensible heat flux to latent heat flux, called Bowens ratio β that

depends on the land use to compute QH directly:

QH = (−Q∗ +Qg)
1

1 + β
. (2.37)

Next, we estimate the change in Ta using a linear temporal function of sensible heat

flux. Assuming heating from the surface is the sole source of increasing or decreasing

air temperature and a constant boundary layer height (e.g., zi ≈ 1km at noon and

zi ≈ 200m at night), we compute it as:

∂Ta

∂t
= z−1

i QH . (2.38)

Numerical Stability

To improve the numerical stability and computational robustness during the sim-

ulation, we make several optimizations for time and space integration. For space inte-

gration, we use second-order central differentiation with the aforementioned Arakawa

C-Grid. For time integration, we use Leapfrog integration and Robert-Asselin time

filter [62]. Leapfrog numerical techniques, among other benefits, enables larger time

steps (which leads to a faster runtime). Robert-Asselin time filter increases stability

by updating any simulation variable φ at step n in the following fashion:

φ̄n = φn + 0.1(φn+1 − 2φn + φ̄n−1). (2.39)

Intuitively, using the former time step filters changes over time and creates a more

smoothly varying solution. Combining Leapfrog integration and Robert-Asselin filter-
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ing (i.e., using φ̄n) increases the maximum time step s to approximately four seconds.

From Durran [62], Leapfrog and Robert-Asselin are stable for s = 1 second. There-

fore, it can be calculated that it will be stable if

Δt

(
umax

Δx
+

vmax

Δy
+

wmax

Δz

)
≤ 1. (2.40)

Giving that umax, vmax < 50m/s in our simulation (i.e., higher winds are only found

in tornados) and wmax < 30m/s, the maximum time step for Δx = Δy = 1000m and

Δz ≥ 200m is Δt ≤ 4 seconds. The model is tested for stability through the CFL

criteria in terms of the time step, variables, and grid spacing constraints.

Boundary Conditions

For top and bottom boundaries, we set zero wind and moisture variables. Potential

temperature, Exner function, and pressure are defined as the boundary value stretched

out through the vertical domain:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
φ(z < 0) = φ(z ≥ gridz) = 0 for φ = {u, v, w, q∗}

φ(z < 0) = φ(z = 0) for φ = {θ,Π, ρ}

φ(z ≥ gridz) = φ(z = (gridz − 1)) for φ = {θ,Π, ρ}.

(2.41)

2.6.4 Weather Forward Design

The user wants to quickly design a city model and simulate realistic weather for

any length of time (e.g., days, months, or even years). This approach is useful to

virtual environments, modern games, education, and decision tools where the goal

is realism by taking advantage of the detailed amplification of procedural modeling.

The user defines the desired input parameters.

Usually, this means drawing the land use distribution (ωl), define the urban pro-

cedural parameters (ωp), and choosing some initial weather conditions (ωw). Given

these initial conditions, our weather simulator is then executed for the desired time
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period. Note that the simulation varies from one to the next day because i) the

initial conditions are altered through the former day, ii) the radiation model that

directly affect the wind and buoyancy changes with the day of the year due to the

sun trajectory, iii) the potential of rain also changes depending on the season.

2.7 Summary

In this chapter, we have presented our forward procedural engine to generate 3D

urban models. We have also presented our traffic and weather simulators and how we

can couple them with the urban model to create a forward design tool for the user.
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3. INVERSE DESIGN

Inverse Procedural Modeling is a set of techniques that provides control to the user

over the output procedural models, i.e., tries to solve the limitations of procedural

modeling (Chapter 2). This is achieved adding an extra layer to the procedural model

to automatically infer the input parameters or rules to generate the desired procedural

model. Inverse Design includes inverse procedural modeling but extends the idea to

any system that has a set of input values and has as output a set of indicators and

output values. The system is represented as a ‘black box’, such that the user does

not have to know how internally works. We use this idea to control the procedural

generation of urban models as well as to control the simulation of traffic and weather.

We propose coupling a forward procedural urban modeling process with an inverse

design technique that optimizes the input parameters to satisfy user-specified goals.

We are closing the loop between forward and inverse modeling strategies (as depicted

in Figure 3.2) and provide both increased control and higher flexibility, enabling the

user to be much more efficient in generating a model that satisfies their requirements.

Both forward and inverse modeling strategies can be applied during an interactive

editing session for either local or global model modifications. The key advantage

of supporting an inverse modeling methodology is that the procedural model and

simulation can be controlled in new ways without having to re-program the forward

engine or change the simulator. Our work abstracts the urban procedural model into

a general parameterized form and adds a component that is able to discover how

to control the procedural model so as to obtain the desired values for user-specified

indicator values derived from the resulting model.
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3.1 Related Work

In recent years, there has been an increasing interest in this area. Št́ava et al. [13]

presented an innovative procedural modeling of rules and parameter values. The

authors focus on L-Systems on a 2D content. The terminal symbols are known, and

they generate context-free rules for linear structures. Bokeloh et al. [14] explored

partial symmetries to complete the geometry of ill-specified input models exhibiting

certain symmetries. They modify the model from shape rules extracted from the

partial symmetries in the model. Lipp et al. [30] presented a method to control locally

the 3D output of a procedural model to produce a desired model. They provide local

editing, combining layouts using graph-cuts and providing persistence and layering.

Beneš et al. [73] presented the idea of guided procedural models, where the model

geometry is divided into guides. This approach allows to control the overall shape of

the model by manipulating these guides.

Park et al. [74] computes a grammar from animated sequences to provide a tool to

generate new animations. Aliaga et al. [15] created a grammar from a manually seg-

mented building polygons to model new ones. Other works have focused on individual

facades [17, 18] and furniture layouts [75, 76], they proposed methods to determine

procedural parameter values.

More close to our work, Talton et al. [77] described a enhanced MCMCMetropolis-

Hasting approach for learning a varying set of parameters of a procedural model

so as to obtain an output following a desired global shape. The results were very

interesting but not fast enough for interactive modeling tools (e.g., a multi-building

example takes about 14 min) and requires the grammar to be context-free. Št́ava et

al. [78] presented an MCMC-based optimization method that use 3D polygons of trees

as input to estimate the parameters of an L-System so that to produce procedural

models similar to the inputs. Recently, Ritchie2015 et al. [79] presented a method

to control a procedural model using a stochastically-ordered sequential Monte Carlo

method (SOSMC). In their system, each thread is executed with an independent
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order and use it to control the shape of the final model. In summary, unlike previous

systems using MCMC within the context of architectural or procedural modeling

(e.g., [75–77]), i) we support complex indicators, thus enabling control beyond global

shape, such as by high-level semantics and indicators, ii) we consider the procedural

model as a black box and thus support context-free and context-sensitive stochastic

grammars, and simulators, and iii) our system is interactive and able to alter models

to control and design new models.

3.2 Our Inverse Procedural Model

Figure 3.1 presents the outline of our forward and inverse design. In inverse de-

sign, the user defines a set of target indicators to control the model. Depending on

the context and the purpose, the indicators can be as simple as a single value (e.g.,

temperature at the city center, distance to park) to complex outputs with seman-

tic meaning (e.g., landmark visibility, rain intensity). Our MH method efficiently

searches the high dimensional space to find such solutions. Altering the input pa-

rameters, the optimization is able to find the necessary values to generate the desired

model. We call this process inverse design. Users, unaware of the rules of the un-

derlying urban procedural model, can alternatively specify arbitrary target indicators

to control the modeling process. The system itself will discover how to alter the pa-

rameters of the urban procedural model so as to produce the desired 3D output. We

label this process inverse design.

Since the solution space is large and the system is non-linear, our method is based

on Markov Chain Monte Carlo (MCMC ), more specifically on Metropolis-Hastings

(MH ) method. MCMC is a group of stochastic methods that sample probability

distributions based on a Markov chain. We use MH to randomly walk the domain

space using a probability distribution and different energy levels in order to find a

solution.
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MH

Fig. 3.1. Our Inverse Design. The user or a optimization tool controls
the input parameters to create a city and optionally simulate to com-
pute some output values or indicators. Using an optimization method,
Metropolis Hasting, we can find the desired behavior or model.

Depending on the design and purpose, our MH based method will have different

variations:

• Objective optimization: The user defines some high-level indicators, and

the system optimize a set of parameters to find those that yield the desired

behavior. For example, the user defines the cloud coverage throughout a day,

the optimization runs and finds the initial conditions necessary for such weather

behavior.

• Cost minimization: The user defines an indicator goal but, at the same time,

wants to find the solution that is as similar as possible to the original model.

For instance, we want to reduce the traffic in the center of a city, we could alter

all the road network, however, we can optimize the traffic making the minimum

changes to the road network.

• Constraint optimization: The user can define extra constraints to the do-

main space as well as the number of changes made to the parameters. For
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instance, the user defines that the possible change for the optimization is the

land use distribution, but the user defines that the distribution can just be

altered in a 10%.

Using these three methods, we get control on the design and allow us to create a

wide variety of results for urban procedural models as well as to control traffic and

weather.

3.2.1 MCMC-based Approach

The user wants to find a 3D model that exhibits a set of target indicator values

Γ∗ = {γ̄∗, γ̌∗} where γ̄∗ is the mean and γ̌∗ its standard deviation. Our system runs

the inverse design (MCMC-based optimization) to interactively find a set of input

parameters Ω that better satisfies the user-specified target indicator values.

We use an MCMC-based approach, more specifically based on the Metropolis-

Hasting (MH) algorithm [80], [81], to find a set of input parameter values Ω that

generates a 3D model such that the computed indicator values are a good approx-

imation to the user-specified indicator values Γ∗. Our method proposes new states

Ωt+1 and tries to minimize the current measured indicator values (Γ) with respect to

the user-specified one such as |Γ∗ − Γ| → 0.

3.2.2 Seeding Initialization

Our method starts from one or more initial parameter values or seeds Ω0. The

user can choose whether to use a single seed consisting of the parameter values of the

original model or multiple seeds.

In general, the initial seeds are chosen uniformly and separately sampling each

parameter within its extents (ωmin, ωmax). If the user defined the desired range of

target input parameters, they are also sampled to generate the initial seeds. Our

system uses nβ different temperatures, with np initial seeds, for ni.
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3.2.3 Search Process

Given the current state Ωt, a new candidate state change Ωt+1 is proposed by

adding to each parameter ω a value sampled from a Gaussian distributionN (0, α|ωmax−
ωmin|) where α is the perturbation change, typically set to 5%. Since the distribution

of sampling is symmetric (mean 0), it follows the Metropolis-Hasting algorithm and

the acceptance ration can be computed as

a(Ωt → Ωt+1) = min

(
p(Ωt+1)

p(Ωt)

)
= min

(
1,

exp (−βE (Ωt+1))

exp (−βE (Ωt))

)
where β is the chain’s temperature, when β is small is more likely that candidates

with bigger error will be accepted, in contrast, when β is big, it will be more likely

that just improvement candidates will be selected. This helps to avoid local minima

and find better solutions.

3.2.4 Acceptance Ratio

Once a candidate state Ωt+1 has been sampled, we run the procedural engine

and/or re-simulate and use a modified Metropolis ratio to compute the probability to

accept this new candidate state. Note that if the candidate state Ωt+1 is not accepted,

the transition Ωt → Ωt+1 does not occur and the next state is Ωt again.

A standard Metropolis-Hasting acceptance ratio when the proposed sampling dis-

tribution is symmetric is defined as

amin(Ωt → Ωt+1) = min
{
e−β[E(Ωt+1)−E(Ωt)], 1.0

}
. (3.1)

3.2.5 Error Function

The function to minimize is |Γ∗ − Γ| → 0, however, we just can alter the input

parameter Γ to find the solution. Therefore, we define the error function as

E (Ωt,Γ
∗) =

1

n

∑
γ∈Γ

( |γ − γ∗|
γ̌∗(γmax − γmin)

)
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Optionally, the user can add an additional term to the error function such that the

solution is close the preferred input parameter values.

3.2.6 Indicators

To illustrate our inverse design, we have implemented several indicator values. For

urban modeling, we have implemented: floor-to-area ratio, distance to park, visibility,

sun exposure, and interior light. For traffic design, we have design traffic zone and

emissions indicator. For weather design, we have implemented: rain intensity, cloud

coverage, and temperature.

In the rest of this chapter, we will describe the specific behavior and sampling for

urban models, traffic, and weather simulators.

3.3 Inverse Design of Urban Procedural Models

Urban procedural modeling is becoming increasingly popular in computer graph-

ics and urban planning applications. A key basis for the popularity of city-scale urban

procedural modeling is that once the procedural model is defined, it encapsulates the

complex interdependencies within realistic urban spaces [82] and enables users, who

need not be aware of the internal details of the procedural model, to quickly create

large complex 3D city models (e.g., [9–12]). Effectively, the detail amplification in-

herently provided by procedural modeling is exploited: a small set of succinct input

rules and input parameters can yield very complex and coherent outputs. However,

the succinctness of urban procedural modeling is also its Achilles’ heel: obtaining a

3D urban model with complex user requirements is a challenging task that requires

experience and in-depth knowledge of the underlying procedural model. An expert

user with programming skill must set the values for the input parameters, implement

the procedural rules in software, and iterate between code, parameters and examina-

tion of the output to achieve the desired model. In short, what is needed is a means

to efficiently learn the parameters and rules required to produce a desired 3D urban
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model, without requiring the end user to write complex software programs. Urban

planners and content designers often have a clear vision for the target urban model,

but lack the computational tools to rapidly create models that meet their design

requirements.

Fig. 3.2. Urban Modeling Pipeline. Visual representation of our de-
sign modeling pipeline of urban models.

To achieve interactive rates and still find the desired model that produces the

target indicator, we use Artificial Neural Networks [83, 84] (ANN) to speed up the

process. If it typically takes 250ms to generate one procedural instance and to com-

pute the indicators, we would just be able to check very few instances to maintain

interactivity. However, our inverse computation needs to run many chains with dif-

ferent temperatures for many steps (O(104)) to be able to find the solution. Instead,

we train our ANN to learn how the target indicators behave for different input pa-

rameters. Then, our MCMC-based approach instead of having to explicitly produce

a 3D model and compute the target indicators for each candidate state, we use our

ANN to predict the behavior. Note that since not all target indicators are feasible,

we additionally provide an analysis tool that informs the user if a particular indicator

value is feasible.
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Using our system, we can interactively modify 3D models for urban areas spanning

over 100 km2 and containing up to 10,000 parcels. Our typical frame rate while

changing indicator values interactively and generating new 3D models is 2.5 to 10

frames per second. The back-propagation engine is able to compute indicator values

that are typically within 5% of using the actual procedural model and require only a

small fraction of the compute time (e.g., < 0.01 ms as opposed to a typical 250 ms

using a procedural modeling engine, thus an effective speedup of over 25,000x). The

user can choose from a proposed best set of 3D models. Subsequently, more edits can

be made, the model can be saved to disk, or the geometry exported to commercial

rendering engines.

3.3.1 Urban Search Approach

We present two modes to search: local and global moves. Local moves are as

described in Section 3.2.3. Additionally, we use a precomputed frequency distribution

of the indicators to do global moves. Global moves jump to areas where it is more

likely to find the target indicator values as per previous executions. After the proposed

state is generated, an acceptance ratio is evaluated. If the ratio is satisfied, the new

state Ωt+1 is accepted and the next step start from it, otherwise, the transition does

not occur and the following proposed step will be based on the old Ωt instead of Ωt+1.

Global Moves

Global moves are computed using a histogram of the frequency of the indicators. The

parameter space is sampled homogeneously (O(105)) and the indicators computed.

Then, for each indicator we compute a histogram with nf bins that spans (ωmin, ωmax).

When a global move is performed, a single indicator γ is selected randomly then with

probability hm the highest count bin of that indicator is selected and with (1 − hm)

the bin that contains the target indicator is selected (Figure 3.4a). Finally, from the

selected bin, one of the samples states is selected and used as Ωt+1. Global moves
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Fig. 3.3. Parameter Searching Overview. a) The chain start on a
seed and attempts local or global movements. b) The process is repeated
nI steps and for different temperatures. The best solution are mapped to
the parameters space. c) These solutions are clustered and one solution
per group is shown to the user as possible solution.

tend to move to areas with likely values of the indicator and areas where the target

indicator is.

Artificial Neural Networks

We have described that our MCMC based approach needs O(104) samplings to find

the desired solution. Since the complexity of the procedural engine and the indicator

computation is high (e.g., 250-500ms computation time), it would not be feasible

to achieve interactively and keep the same sampling rating. Reducing the sampling

is not possible since the best solution found with few samplings would be very far

from the user-user specified indicators. In contrast, we propose to use ANN [83,84] to
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Fig. 3.4. Indicator Histogram and Clustering. a) Example of a his-
togram. b) nβ chains are run and the top 25 best solutions (lowest error)
are selected. c) If we select the top k lowest error, the input parameters
are very similar. d) In contrast, if we use k −means clustering, we find
solutions but with different input parameters that yield visually different
models.

replace the procedural engine and indicator computation to achieve interactivity. This

approach allows us avoid creating for each proposed state the scenario and indicator

computation. Instead we use the ANN to predict the indicators directly from the

input parameters in a fraction of a millisecond.

ANN is an adaptive system (Figure 3.5) that changes its structure (weights) based

on a training set. Each neuron (Left Figure 3.5) has a set of inputs, one output, and

a set of weights. The training process modifies the weights of each neuron such

that for the given training inputs it generates the given training output. After the

training is done, the ANN can predict new indicator values using the new input

parameters. One neuron is not usually enough to learn the complexity of the system

behavior. Therefore, more layers of neurons are added (hidden layers). The neurons

are then interconnected to form a multi-layer perceptrons, i.e., a neural network

(Right Figure 3.5). In our case, to define the number of hidden layers, we test

different number of hidden layers to find the one with best accuracy.
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Fig. 3.5. Artificial Neural Networks. (Left) Example of a NN, the
neuron receives a set of input w and produces an ouput y. The training
process find the weights in the neuron/s function such that the desired
output is generated when the training input is used. (Right) General
structure of a ANN.

Our ANN training process wants to learn how to predict the output indicators

from the set of input parameters. Since the indicator values behavior depends on the

number and the distribution of place types, we need to train the neural network for

each scenario. In practice, static indicators (i.e., those that do not depend directly on

the existence of different place-types) do not require any re-training. Local indicators

(e.g., landmark visibility) do need to be retrained when major city changes are made.

Nevertheless, in all of our shown examples, we train the neural network only once.

The ANN training receives as input: i) the set of parameters that the user allows to

change, in general, it will be m = zmp (i.e., number of place-types times the number

of parameters), ii) their feasible ranges, iii) the distribution of place types over the

target area, iv) the set of indicators that the user wants to control n. The number

of necessary training samples depends on the target and the number of place-types.

However, we found empirically that using 200-500 samples was enough. Finally,

we optimize the number of hidden layers running different configurations around

(m− n− 1) to achieve the best accuracy.
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Fig. 3.6. Indicators. a-c) Sun exposure. a) We compute the sunlight per
facade as the percentage of sun that reaches the building facade averaged
during the course of a day, over all days of the year. b-c) shows two
different models for different levels of sun exposure. d) shows with a color
coded schema the distance to park (blue means close to park, red means
far to park)..

After the training phase is complete, the ANN is ready to predict the output in-

dicators just using the values of the input parameters. The parameter input values

are feed to the first layer, then the values retrieved from the previous layer are trans-

formed using the function weighted by the training until reach the last layer, those

values are the predicted indicator values. This approach avoids the need to compute

the 3D model and indicators, increasing the performance 25000x.

3.3.2 Urban Indicators

The implemented indicator values (Figure 3.6) are:
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• Floor-to-Area Ratio: It is the total area of the building divided by the total

area of the footprint/lot the building is located on.

• Distance to Park: Distance from a parcel center to the closest park.

• Landmark Visibility: Percentage of buildings that can see a designated build-

ing or landmark. It is consider that it is seen if there are not complete occlusion

from the current building to the landmark.

• Sun Exposure: We compute the sun exposure as the percentage of sun that

reaches the building facade averaged during the course of a day, over all days

of the year.

• Interior Light: The natural interior light ratio is the sun sun exposure of

the facades divided by the average minimum distance from an interior building

point to a facade.

Since each indicator is calculated for each place-type, each scenario counts with

n = znt total indicator values where nt = 7 is the number of indicators per place-type.

3.3.3 Urban Seeding Initialization

We use the seed initialization described in Section 3.2.2 and we set the values

experimentally to nβ = 4, np = 2, and ni = 5000. Local or global move with

probability ql and (1− ql), respectively.

3.3.4 Urban Solution Selection and Feasibility

Figure 3.4b-c shows an overview of the solution selection. Our method explores

the domain space through nβ temperatures, nP initial seeds, and nI moves (Fig-

ure 3.4b). For each state, the indicator values are computed and compared with the

user-specified values. If the user wants to see k different alternative solutions, we

could select the k best solutions (Figure 3.4c top). With this approach, it is very



68

likely that those solutions have very similar input parameters, yielding very similar

models. In contrast, if we perform k −means algorithm to the top 25 best solutions

per chain, we can find solutions close to the user-specified indicator values but with

different input parameters.

Note that not all target indicator values are possible. For this task we provide an

interactive tool based on the global moves histograms 3.3.1. Each indicator variable

histogram contains the distribution of feasible indicator values, if the target indicator

values are outside this range, that indicator cannot be achieved for that conditions.

3.4 Inverse Design of Traffic

Traffic is well recognized to be difficult to simulate and control due to its highly

nonlinear behavior, inherent complexity, and emergent behavior. For example, a local

change to the network might have an adverse effect elsewhere in the network (e.g.,

blocking an important avenue in one neighborhood might cause a long traffic delay

in another part of the city due to traffic redirection, or increasing the speed limit of a

road segment might, in fact, seem like it will improve travel time, but it might in fact

attract more vehicles and ultimately slow down transit in the area). Trial-and-error

and keyframe-based control techniques might work for a small number of intersections

but not for interactively designing large-scale traffic animations. Therefore, to create

an inverse traffic tool, we face the following challenges i) simulating realistic traffic

flows at interactive rates, and ii) controlling traffic in an easy and intuitive manner.

Our methodology automatically creates a 3D urban model (e.g., an interconnected

network of roads, parcels, and buildings) that exhibits a desired and realistic vehicular

traffic behavior (Figure 3.7). Our method provides an interactive virtual paintbrush

tool whereby the user can specify i) the desired traffic for a new urban model (e.g.,

for games and films, navigation services, or virtual environments in general), or ii)

can improve or alter traffic in a provided urban model to assist traffic planners in

obtaining desired values for standard metrics such as road occupancy (i.e., percentage
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Fig. 3.7. Traffic Pipeline. Our approach enables a designer to specify a
vehicular traffic behavior and the system will compute what realistic 3D
urban model yields that behavior. The user defines the job and people
distribution and defines the procedural parameters or load a road network;
inputs are used to simulate traffic and the user draws a desired new traffic
behavior (or traffic optimization). Our system iteratively simulates and
alters the model so as to find solutions that meet the desired goals and/or
costs.

of the segment that is occupied), travel time, or CO emission level. Our solution

includes a novel traffic microsimulation engine and an algorithm to manipulate traffic

behavior. To the best of our knowledge, our framework is the first interactive method

to automatically generate a realistic 3D urban model that yields a specified traffic

behavior.

Our traffic microsimulation engine yields both the detailed per-vehicle data needed

for traffic animation and the fast performance needed for our design strategy. The

system we create achieves its significant speedup by extending microsimulation with

a novel traffic atlas concept, a new approximate solution to a time-dependent shortest

path problem, and an efficient adaptation of car-following, lane changing, and gap-

acceptance models.

Our traffic manipulation strategy explores which set of urban model changes brings

the simulated traffic behavior closer to the interactively specified behavior.
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3.4.1 Previous Work: Traffic Design and Animation

Network (re)design to satisfy a set of traffic objectives is studied in the trans-

portation community (e.g., [85]). Often solutions are formulated as bi-level leader-

follower games typically known as Stackelberg games [86]. However, it is well known

that these types of problems are NP-hard. Approximations are typically analyti-

cal optimizations at non real-time speeds. Recently, within the computer graphics

community, Go et al. [31] animate vehicles using control and motion planning. Van

den Berg et al. [32] reconstruct and visualize continuous traffic flows from discrete

data provided by traffic sensors. Sewall et al. [33] extend a continuum based (i.e.,

macroscopic) approach to including some lane and speed limit changes. Sewall et

al. [2] extend the method to include microsimulation in selected parts of the road

network while obtaining roughly similar performance. Similar to Subsection 2.5.2,

all these methods are also forward-generating. In contrast, our method supports our

novel traffic design concept. Further, Sewall et al. [33] claims a performance of about

100x over real time; our method yields a microsimulation at 9000x improvement over

real-time.

3.4.2 Traffic MCMC-based Approach

We describe our traffic manipulation methodology and its use of the traffic simu-

lation engine. During our MCMC process, the probability of a road network change is

computed as a product of a change-type probability and a location probability. Each

proposed change is evaluated for acceptance and the search continues until satisfying

an objective function (or reaching a maximum ”cost”).

When so desired, the aforementioned traffic painting can be used to constrain

areas of the road network and ensure only local road network changes. However, due

to the global and complex nature of traffic flow, a closer to the optimum solution for

a locally specified objective might involve a global set of changes – thus stability can

be enforced but is not always beneficial.



71

Change-Type Probability

The following topology-preserving and topology-changing operations worked well

with our examples. For a lane i or person/job grid cell k, we define four change types

and their probabilities.

• Lane direction change. With probability di this topology-preserving change

alters the directionality of a road segment’s lane (Figure 3.8). To decrease

traffic in a zone, we switch the lane direction to direct vehicles away from the

zone middle. Conversely, to increase traffic, we swap the lane direction so that

vehicles pour into the zone.

• Number of lanes change. With probability ni this topology-preserving change

alters the number of lanes per direction of a road segment. To decrease traffic

in the zone, a lane is added to a road segment inside or outgoing from the traffic

zone. Conversely, to increase traffic a lane is removed from a road segment.

• People change. With probability pk this topology-changing operation relocates

the people within the urban space and potentially triggers a significantly dif-

ferent procedural urban model (Figure 3.9). To reduce traffic, we need to know

the cells that generated people who passed through the traffic zone and then

relocate their distribution energy to elsewhere in the urban space. To increase

traffic, we move the distribution energy from a random area to the most com-

mon people distribution area with vehicles passing through the traffic zone.

Whenever possible, we transfer people from a zone wishing to decrease traffic

to another zone seeking to increase traffic.

• Job change. With probability jk this topology-changing operation is analogous

to the previous category but moves job distributions instead.

These four types of changes may alter the cityscape. In particular, people/job

distribution may alter buildings (e.g., dense areas will have smaller setbacks and
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a) b) c)

d) e) f)

Fig. 3.8. Lane-Changing Operations. a) Initial network occupancy.
b) The user ”paints green” so as to reduce traffic. c) After MCMC, new
road occupancy values closely match the painted traffic behavior. d-f) An
analogous process but for increasing lane traffic.

bigger buildings) and the road network (e.g., MCMC adds roads to fill a dense area

– even to OSM networks).

To avoid excessively altering lane directions/number of lanes, changes are done

to a neighborhood of lanes. Further, to find origin-destination link pairs that pass

through the traffic zone for people/jobs changes, we create a hash table to lookup

the vehicles used by each edge. Then, we create a histogram of origin-destination

link pairs of those roads and find which were the most common edges that made the

vehicles cross the traffic zone.

Location Probability

The probability of changing all lanes, people, and jobs inside a zone is related to

their location relative to the zone. The location probability xi of a lane changing
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a)

b)

Fig. 3.9. People/Jobs Changes. Such changes can impact network
topology. a) Input city. b) City with changed roads and buildings satis-
fying new traffic.

direction, or the corresponding road segment having a number of lanes change, is

inversely proportional to the distance from the lane’s midpoint to the exterior border

of the traffic zone. Our function is setup so that a lane inside a zone has probability

one and those outside the zone are computed using a Gaussian weighting function;

i.e.,

xi =

⎧⎪⎨⎪⎩
1
wZ

φ ti
wZ

if outside zone

1 if inside zone

(3.2)
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where ti is the distance of lane i to the zone perimeter and wZ is the width of a zone’s

area of influence on the surrounding urban space. In our system, ti is computed as

number of graph edges links (e.g., breadth-first search).

The location probability qk of a people change, or job change, is proportional to

its usage as an origin, or destination, for a route passing through the traffic zone.

Thus, its location probability does not depend on whether the cell is near the traffic

zone but on whether the cell is used by a route that passes through, or near, the

traffic zone. The aforementioned histogram of origin-destination pairs is sorted and

top candidates are given the highest probability. Thus,

qk =

⎧⎪⎨⎪⎩
1
wS

φ sk
wZ

if outside zone

1 if inside zone

(3.3)

where sk is the histogram count for cell k and wS is a normalization constant. To

instill some additional randomness in the solution exploration process for people and

job changes, we add an additional probability r. The term r mimics behaviors in a city

where people, or jobs, periodically change due to a variety of reasons. In predictive

agent-based urban simulations (e.g., [87]), such periodic random change of people or

jobs is modeled by allowing a small percentage (e.g., 10%) of changes per year.

3.4.3 Traffic Seeding Initialization

To improve performance when the desired traffic behavior is significantly different

from the current one, we make an initial guess of the desired distribution of people

and jobs. This task is related to the networking problem of computing a traffic matrix

which specifies the amount of traffic between source-destination pairs (i.e., person-job

pairs). We adapt the tomo-gravity model [88] which is one such well-known method

to infer the traffic matrix from the link loads (i.e., road segments). Once such initial

locations are computed, we use MCMC optimization to refine the result.

Each thread starts using a different random seed and a different temperature β

with values that were empirically found to range from 4 to 256.
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3.4.4 Traffic Search Strategies

Our optimization process includes two objective functions: goal-driven and cost-

driven.

A candidate state change Ωt+1 is obtained by sampling over a subset of the possible

lanes. The probability is equal to the product of the corresponding change-type

probability and location probability: for each lane dixi or nixi; whereas for each grid

cell pk(qk+r) or jk(qk+r). Starting with the lanes nearest to or inside a zone and the

people/job cells highest in the origin-destination histogram, we randomly select lane

direction changes, number of lanes changes, people relocation, and/or jobs relocation.

We grow the subset until H changes occur amongst all change types. The collection

of lanes, people, and jobs changes define a candidate state change Ωt+1.

We use the acceptance ratio as described in Section 3.2.4. Once c = n, we have

reached the final state and the best solution over all threads and states is selected.

Goal-Driven Optimization

Our goal-driven optimization drives the simulated traffic behavior to the road oc-

cupancy specified by the traffic zone set. Road segment s’s occupancy is defined

as

us =
cs

Lsns/bv
(3.4)

where cs is the average of the number of vehicles on the road segment over the

simulated period and the denominator is the maximum number of vehicles per road

segment (also known as the ”jam density”). The maximum vehicles per road segment

is computed using Ls= length of the road segment, ns= number of lanes in the

road segment, and bv= minimum distance between vehicles (e.g., 5m). The objective

function can be then written

F (Xn, {Z1, Z2, ..., ZK}) =
∑
S

‖us − ûs‖ (3.5)
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where S is the set of roads inside the traffic zones and ûs is the desired per road

segment occupancy value.

Cost-Driven Optimization

Our second strategy minimizes the cost of the network changes once traffic behavior

is sufficiently similar to the one specified by the traffic zones. For traffic design, this

enables finding a low-cost solution satisfying the behavior. To measure cost C, we

quantify the cost of all changes:

C = (wL/NL)
∑
NL

‖ei − ēi‖+ (wS/NS)
∑
NS

‖ns − n̄s‖+

(wP/NP )
∑
NP

∥∥P − P̄
∥∥+ (wJ/NJ)

∑
NJ

∥∥J − J̄
∥∥ (3.6)

where (wL, wS, wP , wJ) and (NL, NS, NP , NJ) are the cost weights and number of

entries for lane direction changes, number of lane changes, people moving changes,

and jobs moving changes, respectively; ei = {0, 1} refers to the current lane direction

and ēi is the initial lane direction; similarly for number of lanes ns, 2D distribution

of people P , and 2D distribution of jobs J .

A proposed state change is considered to be accepted only if Equation (3.5) is

beneath a threshold value. Then F (Xn, {Z1, Z2, ..., ZK}) = C is used as the objective

function. While this might not yield the quickest convergence it works well in prac-

tice. This score function can be defined as the average travel time, CO emissions, or

distance to desire traffic pattern.

3.4.5 Traffic Indicators

As an overview, we summarize our interactive traffic editing system, and highlight

how the road network can be automatically changed.
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a) b) Area of Influence

Traffic Zone

Fig. 3.10. Traffic Zones. a) The user can ”paint” one or more traffic
zones to specify a traffic behavior. b) Each traffic zone has an area of
influence that may be altered during the traffic manipulation algorithm.

Traffic Zone Indicator

The designer uses a virtual paint brush to specify a set of K traffic zones (Z =

{Z1, Z2, . . . , ZK}) each with desired constraints or objectives for its contained traffic

(Figure 3.10). Each traffic zone is modeled as a union and/or difference of user-

drawn circles (or polygons). Further, individual streets can be added/removed from

traffic zones. The zone can be specified as constrained (black) or unconstrained. If

unconstrained, the paint color indicates whether the traffic is to increase (red) or

decrease (green).

Emissions Indicator

Our simulator calculates several indicators which are important for decision-making

and policy setting. We measure metrics such as average travel time, distance traveled,

and emissions. For example, to report total or per-vehicle CO emission, our system

uses the following equation [89]

Λ = −0.064 + 0.0056vm + 0.00026(vm − 50)2 (3.7)
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where Λ is the emission rate (in grams of CO per vehicle per second) and vm is speed

of the vehicle in mph.

3.5 Inverse Design of Weather

Our goal is to create 3D urban models where we can simulate realistic weather

behavior over a long time horizon (i.e., days, months, years) and at the same time

control the weather. For this, we need to create a weather model with the minimum

computational cost that would allow us to i) have realistic and interactive weather

simulation, ii) design the high-level behavior of the weather during a day, iii) optimize

weather and urban-modeling variables (e.g., for urban planning and design), and iv)

simulate weather indefinitely. The weather model requires the ability to handle het-

erogeneity in landscape and the atmosphere, which forms the atmospheric energetics

through buoyancy and vertical motion which contributes to clouds formation from

differential heating. Further, the simulation must tightly couple 3D urban procedural

modeling with super real-time physically-based weather simulation (e.g., computing

a day of weather in significantly less time) (Figure 2.10). In addition, the weather

model should provide multiple ways to design weather patterns including using ini-

tial conditions specified by users, employing example-based data to generate desired

weather conditions (e.g., sunny, overcast, stormy, cloudy), and automatically deter-

mining the initial conditions and 3D urban model yielding a desired weather pattern.

In other words, our system has to be fast, interactive, realistic, and of value to both

the graphics and the urban weather community.

Given a procedurally-generated model, we discover how to alter the model or the

initial conditions so as to produce a desired weather. Since weather simulation is a

very nonlinear and complex process, it is very hard to predict and/or control weather

phenomena. Therefore, we propose an MCMC-based method, in particular, based

on the Metropolis-Hasting algorithm [80, 81], to explore the search space to find a

solution that exhibits the desired weather behavior. Note that while we use the term
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Fig. 3.11. Weather Pipeline. Our approach enables a designer to spec-
ify a weather behavior and the system will compute what realistic 3D
urban model yields that behavior. The user defines a set of input param-
eters: land use, initial weather conditions, and/or procedural parameters;
inputs are used to create the 3D model and simulate weather. Our system
iteratively simulates and alters the land use, model, or weather conditions
so as to find solutions that meet the desired behavior.

weather the likelihood of desired is more correctly referred to as climate. However,

we will continue using the term weather as a colloquial usage of the meteorological

term.

3.5.1 Weather Seeding Initialization

The user can choose whether to use a single seed consisting of the parameter values

of the original model or multiple seeds that consist of physically-based valid parameter

sets. In practice, a useful configuration to control the weather without changing the

3D model is to fix {ωl, ωp} and alter the initial weather conditions ωw. In this case,

we create multiple seeds with different ωw parameter values. Using domain knowledge

in weather simulation, we know that significantly varying temperature/clouds/rain

can be produced by altering the initial wind (i.e., U) and humidity (i.e., qv) values

at multiple heights. To speed up the convergence and detect non-physically possible
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behaviors, we precompute a wide range of physically valid range of values for ωw (by

default 128 in our configuration) and land use distributions (by default 10 different

scenarios). These values are then used to automatically select a discrete set of initial

seeds close to the objective and, thus, likely to achieve fast convergence. Moreover, we

use these precomputed values to evaluate the solution feasibility (See Section 3.5.3).

Given the current state Ωt, a candidate next state is computed by changing one

or more values of the three parameters sets (ωl, ωp, ωw). For parameter values in ωl

and ωp, the user selects a set of grid cells where the changes can happen (or the

whole scenario), the allowable changes of land uses (e.g., change from forest to low-

density residential and green), and subset of procedural parameters that can change

(e.g., only the window-to-wall ratio and roof albedo can change). To calculate the

next state Ωt+1, our system randomly selects a subset of the permissible grid cells and

performs a random perturbation to the land use or a procedural parameter in each grid

cell. For each parameter value ω and its physically-possible range ω ∈ (ωmin, ωmax),

we perturb the current value with a value sampled from a Gaussian distribution

N (0, α|ωmax − ωmin|) where α is the perturbation change (typically set to a random

value α ∈ (0 − 10%)). For constrained optimization mode, we clamp the final value

to enforce the constraints. If the change increases (or decreases) a land use type in

a grid cell, the other land use types in the same grid cell are randomly decreased (or

increased) by the same amount so that the sum of all land use distributions stays at

100%. For parameter values in ωw, the user selects the weather variables that can

be altered and the plausible physical range (or the systems default physically-based

range values are used). Then, using the same sampling scheme, the variables are

perturbed.
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3.5.2 Weather Acceptance Ratio

We have modified the acceptance ratio and it is computed as

amin(Ωt → Ωt+1) = ⎧⎪⎪⎨⎪⎪⎩
min

{
e
−β

E(Ωt+1)

E(Ωt)
−1.0

, 1.0

}
if E(Ωt+1) ≥ η

min

{
e
−β

C(Ωt+1)

C(Ωt)
−1.0

, 1.0

}
if E(Ωt+1) < η

(3.8)

where β is the energy level that affects the acceptance ratio, E(∗) is an error (objec-

tive) function, and C(∗) is a cost function. If β is small ( 1.0), then it is more likely

that higher error candidate states are accepted. In contrast, when β is larger, it is

more likely to accept only improved candidate states.

Our formulation differs from the standard one in two significant aspects:

• Our acceptance ratio is based on relative improvement. For the standard ac-

ceptance ratio of Equation 3.1 to work, the error function E(∗) should produce

similar values during the entire search process, or normalization factors should

be computed and used. However, computing normalization factors is very chal-

lenging when the error function varies by several orders of magnitude during the

optimization iterations. Instead, our approach eliminates the need to find ade-

quate normalization factors by creating an acceptance ratio that only depends

on the relative improvement. To accomplish this, our formulation replaces the

difference computation of the error functions by a division of them. In Fig-

ure 3.12, we show the behavior of the acceptance ratio. The actual values

of E(∗) are irrelevant only the relative level of improvement (or decline), is

important.

• Our modified formulation also serves to implement the error optimization and

cost minimization modes (from Section 3.2). In error optimization mode, the

function is simply optimized as in standard MCMC. This is accomplished by

setting η = −∞. In our cost minimization mode, two behaviors will alternate.
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Fig. 3.12. Acceptance Ratio vs Relative Error. The figure shows
the acceptance ratio for different energy levels. While the temperature
decreases, the acceptance ratio decreases as well, making more unlikely
that worse states get accepted.

While the E(∗) is not satisfied (e.i. E(∗) ≥ η), the optimization will minimiza-

tion E(∗). In contrast, when the objective value is achieved (e.i. E(∗) < η), the

optimization minimize a second function C(∗) (i.e., the cost function). Using

this modification, we can optimize a variable but with the minimum number of

changes (or cost). Figure 5.16 shows an example – once the temperature objec-

tive is reached, the optimization then tries to reduce cost alternating between

both behaviors and the search stays close to the E(∗) ≈ η. See Section 5.3 for

more details.

3.5.3 Towards Global Design

One of the limitations of our current local simulation and inverse approach is

that not all possible user-defined weather behaviors are achievable. Variability is

constrained by the physical laws we model. The user might define a particular weather

behavior that is not feasible locally. This is detected comparing the current scenario
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against our precomputed examples as described in Section 3.5.1, if the error is bigger

than a threshold, our towards global design approach is used instead.

Our current implementation removes the toroidal boundary conditions and, in-

stead, feeds in external user-defined weather states. These weather states can be

easily selected from our precompute states. This ensures their physical feasibility.

Then, the user selects several of these states and defines a timeline for each of them.

These states are then fed in as changing boundary conditions over time. By forcing

the wind to blow inwards across the boundary, we can ‘receive’ the selected states

as an external source collectively yielding the desired weather behavior. Moreover,

the user can decide whether the local weather should interact with the external one.

This is done by altering the initial soundings: a sounding with a relatively low water

vapor mixing ratio and wind speeds similar to the incoming state will provide weather

almost identical to the selected external weather. In contrast, using a sounding with

a high water vapor mixing ratio and/or different wind speeds will cause interaction

between local and external advected and moisture values.

3.6 Example-Driven Road Design

So far in this chapter, we have described how to control the input parameters

and modify the 3D model to achieve the desired design. We have shown that our

methods work efficiently for models and simulation. However, road networks have an

additional component that is hard to capture procedurally, the temporal growth and

political and geographic reasons that build up the layout of a city.

We propose a new approach to generating large-scale realistic urban road networks

that combines the advantages of example-based and procedural modeling. Creating

more realistic road networks benefit the creation of 3D content, in addition to traffic

engineering and urban planning. Figure 3.13 shows an example of an intersection

generated by our system.
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Fig. 3.13. Road Intersection. Example of a complex intersection gen-
erated by our system. Additional geometry is added for the details such
as the sidewalk and urban amenities.

We present an interactive tool that allows untrained users to design roads with

complex realistic details and styles. The key inspiration is to recognize that roads are

generated based on two processes: i) urbanization of a new area or re-urbanization,

and ii) the progressive and more random growth of a city that is expanding. For

the former, that usually contains high-level patterns and that has been designed by

an urban planner, procedural modeling can encapsulate these complexities and many

patterns can be easy created tuning the procedural parameters or using statistical

data. For the later, to capture the small details that road networks contain that

varies in each part of the city, we propose an example-based growth approach.

Figure 3.14 presents the general overview of our algorithm. The process is as

follow:
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• The user selects an interesting source network from Open Street Map (Fig-

ure 3.14a), in our examples we have used styles extracted from 15 different

cities, such as Madrid, San Francisco, Canberra, Tel-Aviv, and London.

• Arterial and local roads are processed independently (Figure 3.14b) to generate

a road graph (Figure 3.14c).

• The road graph is divided into patches (set of roads with interesting features)

and statistical data is computer from the graph (Figure 3.14d). The patches

can contain user-specified features (e.g., roundabouts extracted from circular

shapes using Hough transform) or interesting intersections (a central node and

its connected edges). Figure 3.14e shows the patched found in the given exam-

ple.

• The user defines the target polygonal area and one or multiple target destination

seeds (Figure 3.14f)

• The growth starts from the specified seeds and the process repeats recursively

(Figure 3.14g-k).

• The user can select to use the procedural generation. This generation uses

the statistical data generated from the source example to tune the procedural

parameters. Otherwise, as default, the example-based example will be used.

Note that not all patches can be applied at each growth step (the bottom of

Figures 3.14f-k shows the potential patches to use). When not possible patch

is available, the procedural generation is used.

• Using a similar method, but using as seeds the original position of the example-

based, local roads are generated.

• An after-process is executed to clean the resulting network (e.g. remove dead-

ends).

Our system has two main ways to interactively created the road network:
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Fig. 3.14. Example-Based Overview. a) The user selects an interest-
ing source network. b) The arterial roads are extracted. c) A road graph
is generated from the example roads. d-e) Patches are created from inter-
section and from detected interesting features. f-k) Example of growth, a
patch is added between the possible ones.

1. Sketch Design. The user wants to generate a realistic 3D model without pro-

viding too much detail. The user sketches the terrain, selects several interesting

regions as source examples, and specifies the target area. Our system generates

a realistic 3D model of a city using the road patterns selected within minutes.

2. Detailed Design. The user wants to control the generation of the 3D model

or manipulate an already generated model. The user uses our high-level ma-

nipulation tools (e.g., warping, blending, and manual drawing) to design the

desired road network.

We have used our approach to creating road networks covering up to 200 km2 and

containing over 3,500 km of roads. Figure 3.15 shows a final result of our method.

After the road network has been generated, we use our procedural engine to extract

the blocks and generate parcels and buildings. Finally, we add urban amenities and

vegetation.
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Fig. 3.15. Result of Our Method. 3D model of our example-based
method. After the road network is grown, blocks, parks, parcel, buildings,
vegetation, and urban amenities are generated.

3.7 Summary

In this chapter, we have presented inverse procedural modeling and inverse de-

sign. We have presented our inverse method based on MCMC to find the necessary

input parameter values that creates the desired 3D model, traffic pattern, or weather

behavior.
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4. GEOMETRIC ASSETS AND VISUALIZATION

In this chapter, we present two methods for automatic reconstruction of buildings

densely spanning a city or portion thereof. The demand for such 3D volumetric

content has been significantly increased due to the proliferation of urban planning,

city navigation, and virtual reality applications (Figure 4.1). Nevertheless, automatic

widespread reconstruction of urban areas is still an elusive target. Services, such as

Google Earth/Maps, Apple Maps, Bing Maps, and OpenStreetMap have fomented

the capture and availability of ubiquitous urban imagery and geographic information

system (GIS) style data. Using LIDAR data is one option for city modeling. However,

it still has challenges and is not always available. Ground-level imagery provides

high resolution but such images are usually scattered and incomplete. Aerial images

provide extensive and uniform coverage of large areas, albeit at lower resolution, and

are widely available for most cities. Hence, to reconstruct large urban areas we focus

on aerial imagery.

4.1 Related Work

In this section, we relate our work to urban modeling approaches in procedural

modeling, image-based algorithms, LIDAR-based methods, and volumetric recon-

structions including graph-cuts. Image-based algorithms, from computer graphics,

computer vision, and photogrammetry, have generated very compelling urban re-

construction results. A recent survey by Musiaski et al. [90] provides an overview

of numerous urban reconstruction techniques. Some representative works have cre-

ated individual facades from images (e.g., Müller et al. [17], Xiao et al. [91], Teboul

et al. [92]), individual buildings and statues (e.g., Lafarge et al. [93], Vanegas et

al. [16]), interiors (e.g., Furukawa et al. [94]), and point cloud reconstructions (e.g.,



89

Liao et al. [95]). However, these methods have not produced volumetric building

models (e.g., complete texture-mapped building envelopes) of large city areas. Ap-

proaches have also been proposed that use large online photo communities to perform

reconstructions of popular areas (e.g., Goesele et al. [96], Agarwal et al. [97], Frahm

et al. [98]). However, these results are fragmented and cannot necessarily produce all

buildings in a given target area. Daniels et al. [99] extract high-quality spline based

features but assume a point cloud dense enough to apply RMLS (type of MLS, such

as [100]). Chauve et al. [101] determine planar regions and then extend the planes so

as to indirectly find edges. They assume points in the same plane belong to the same

spatially adjacent cluster.

Numerous methods exploit LIDAR data sources. For example, Nan et al. [102]

and Zheng et al. [103] provide interactive tools to improve partial scans of individ-

ual building models. Zhou and Neumann [104] provide striking results by extending

dual contouring to 2.5D building structures. Poulis et al. [105] present an automatic

method to reconstruct 2.5D buildings from aerial images and LIDAR data. They

propose a framework using i) 2.5D graph-cuts, ii) automatic and interactive seg-

mentation, and iii) automatic identification and reconstruction of linear roof types.

Lafarge and Mallet [106] segment data into ground, buildings, vegetation, and clutter.

Then, buildings are formed by fitting points to a collection of template primitives. In

general, these methods, and similar ones, rely on the availability of high-resolution

point cloud data, sometimes make assumptions of the roof/building geometry, and

some do not produce colored/textured models a nave projective texture-mapping

using the available aerial images will not necessarily produce good results, as shown

in our results subsection. Shen et al. [107] presents an adaptive partitioning of unor-

ganized LIDAR data to find high-level facade structure repetitions. This method can

be used to consolidate facades but it is not designed to recover geometry. Toshev et

al. [108] detect building structures from city-scale 3D point clouds and construct a

hierarchical representation for high-level tasks. Also Golovinskiy et al. [109] present

another approach to recognizing objects in 3D urban LIDAR data using specialized
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clustering and graph-cut segmentation. However, reconstruction is not the focus of

these last three methods. Some methods focus on the registration of aerial images

with LIDAR data or with 3D models. For example, Ding et al. [110] describe a new

feature called 2DOC based on 2D corners that corresponds to orthogonal structure

corners in 3D. Wang et al. [111] improve the registration by using a novel feature

called 3CS which uses sets of connected lines. To create a robust registration, they

first overestimate the number of line segments and then perform a RANSAC-based

refinement. Frueh et al. [112] automatically texture detailed 3D models. They im-

prove the texture discontinuities of each triangle using a classification approach and

reduce the graphic card memory footprint using an atlas approach. They present

nice results but with clearly visible seams between ground-base and airborne tex-

tures. Volumetric reconstruction via space carving, graph-cuts, and related methods

have also received significant attention. Methods, such as space carving [113] and

image-based visual hulls [114] assume the presence of many images observing the

silhouette of the object. Such observations are in general not possible using aerial

images of dense urban environments. Another option is using a set of ground-level

images to reconstruct the facades of buildings (e.g. Gallup et al. [115] uses a high-

resolution video with a priori calibrated street level video and per-pixel depth map as

input; Frahm et al. [98] uses a scattered set of images; Grzeszczuk et al. [17] recon-

structs building facades from street level images without significant occlusions) but it

is impossible to fully sample all facades and all roofs of all buildings in a large urban

area. Pollard et al. [116] present a voxel-based volumetric method to detect changes

in a 3D scene. Despite presenting some similar inspiration, this approach is designed

to detect changes instead of find similarities.

Graph-cuts have been extensively used in computer graphics (e.g., texture syn-

thesis Kwatra et al. [117], Lefebvre et al. [118]). For volumetric reconstructions,

graph-cuts are applied to 3D subdivisions of space and combined with stereo pro-

cessing (e.g., Vogiatzis et al. [119], Sinha and Pollefeys [120], Tran and Davis [121]).

Nevertheless, these methods rely on high photo-consistency over the entire build-
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ing surface and require an initial building geometry, such as the visual hull. Using

aerial images to obtain the visual hull as well as sufficient samples for robust photo-

consistency metrics over the entire building surface is challenging for dense urban

environments. In our work, we also use graph-cuts, but we define a surface graph-cut

that lies on building roofs and walls and on the ground surface. Further, each graph

node is positioned and oriented in 3D space but is only connected to its neighboring

surface elements. Lempitsky and Ivanov [122] also use graph-cut optimizations, as

well as gradient-domain techniques, to address the problem of texture fragmentation

on a 3D surface. They assume i) all textures completely see the object, ii) there are no

occlusions, iii) all images have the same quality (=importance), and iv) the cameras

are perfectly calibrated. These assumptions allow them to simplify their cost function

to only use the direction of the corresponding view and the surface normal and to

discard any duplicated or overlapping texture segments. Allene et al. [123] alleviate

the aforementioned equal image-quality assumption by including optimization terms

to measure the effective texture resolution and the color continuity at edges between

faces assigned to different (textured) images. Moreover, they use per-pixel blending

to minimize the difference due to lighting conditions. In contrast, our approach tack-

les the problem when occlusions are frequent, camera poses are not contiguous nor

have similar angles, cameras are not perfectly calibrated, and the proxy model is not

guaranteed to be accurate.

Alternative approaches have been proposed. Gao et al. [124] directly operates

on the points and splats/combines results to an output image without obtaining a

geometric model. Mathias et al. [125] use structure-from-motion, image-based anal-

ysis, and shape grammars. The reconstruction results are promising. However, a

grammar is required, which thus lacks automation for large-scale deployment. A

related semi-automatic approach is that of Taillandier et al. [126]. However, their

method has several requirements which make it not adequate for many urban areas:

they only handle square buildings with slanted roofs; they require having an accurate

outline of the building and not just the parcel contour or a rough approximation.
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In contrast to previous methods, our work focuses on automatically obtaining com-

plete (e.g., closed) building models of urban tall building areas (e.g., downtown, office

buildings, financial districts) spanning multiple square kilometers and rely only on

aerial imagery and commonly available GIS data for cities around the world. In ad-

dition to estimating a building proxy, our method enables the creation of plausible

texture-mapped building models using stitched together imagery, even in the pres-

ence of imperfect geometric proxy estimates and imperfect camera calibration. Some

commercial ventures, such as C3 Technologies (purchased by Apple), pursue simi-

lar 3D reconstruction objectives but to our knowledge use manual-intervention and

wide-baseline stereo to obtain building models, thus making widespread deployment

challenging.

4.2 Volumetric Reconstruction and Surface Graph-Cuts

The demand for 3D city-scale models has been significantly increased due to the

proliferation of urban planning, city navigation, and virtual reality applications. We

present an approach to automatically reconstructing buildings densely spanning a

large urban area. Our method takes as input calibrated aerial images and available

GIS meta-data. Our computational pipeline computes a per-building 2.5D volumetric

reconstruction by exploiting photo-consistency where it is highly sampled amongst

the aerial images. Our building surface graph-cut method overcomes errors of occlu-

sion, geometry, and calibration in order to stitch together aerial images and yield a

visually coherent texture-mapped result. Our comparisons show similar quality to

the manually modeled buildings of Google Earth, and show improvements over naive

texture mapping and space-carving methods. We have tested our algorithms on a 12

square kilometer area of Boston, MA (USA), using 4667 images (i.e., 280GB of raw

image data) and producing 1785 buildings.
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Fig. 4.1. Urban Modeling. A complex urban area (left) is automatically
obtained using volumetric reconstruction with surface graph-cuts (middle)
computed from aerial imagery and GIS-style parcel/building data (right).
Our methodology uses photo-consistency to robustly recreate 2.5D build-
ing structures and surface graph-cuts to assemble seamless and coherent
textures despite occlusion, geometry, and calibration errors.

4.2.1 3D Urban Reconstruction

There have been several fundamental approaches for producing urban volumetric

reconstructions. In contrast to partial (or facade-level) reconstructions (e.g., Müller

et al. [17], Xiao et al. [91]), we seek to automatically create texture-mapped building

envelopes spanning a large-portion of a city (i.e., akin to the crowd-sourced created

models visible in Google Earth) such complete models are suitable 3D content for the

aforementioned graphics and visualization applications. Inverse procedural modeling

approaches pursue generating parameterized 2D and 3D models from observations

(e.g., Št́ava et al. [13], Bokeloh et al. [14], Park et al. [74]), but have not been demon-

strated for large-scale urban areas due to the inherent complexity and ambiguity in

the inversion process. Relevant volumetric reconstruction methodologies from image-

based modeling and computer vision can be loosely divided into i) space carving and

similar techniques (e.g., Kutulakos and Seitz [113], Matusik et al. [114], Montenegro

et al. [127], Lazebnik et al. [128], Shalom et al. [129]) and ii) volumetric graph-cuts
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(e.g., Vogiatzis et al. [119]). All of these methodologies exploit, in some form, photo-

consistency, visibility constraints, and smoothness assumptions.

However, for our targeted large areas with high building density and thus a high-

level of occlusion, we cannot assume a dense, complete, and un-occluded sampling

of all building and ground surfaces. These facts about the input data spawn three

important challenges. First, although in a typical aerial capture process each building

might be at least partially observed in 25-50 images, parts of each facade might only

be seen by a few images (and sometimes none at all). This relatively sparse sam-

pling of the building walls hinders photo-consistency measures. Further, the limited

visibility and high-level of occlusion also encumbers the silhouette usage and robust

foreground/background segmentation for space carving and hampers the determina-

tion of the initial geometry (e.g., visual hull) for volumetric graph-cuts. Second,

since the captured images of building and ground surfaces may be plagued with the

projections of nearby buildings, obtaining occlusion-free projective texture mapping

(i.e., texture mapping without neighboring buildings unwillingly appearing on other

buildings) would require very accurate geometry. Third, obtaining such very accurate

geometry is hindered by camera calibration error and by the grazing angle observa-

tions of the building facades. Nave projective and view-dependent texture mapping

would produce strong visual discontinuities or would compensate for the inaccuracies

by using significant blending/blurring. Our solution circumvents the aforementioned

challenges by exploiting the following inspirations.

• Buildings are, by and large, individual 2.5D structures; thus we assume each

successive floor up the building is equal to or contained within the contour of

the previous floor.

• Since aerial images mostly sample the roof structures of a building, we ex-

ploit photo-consistency only for determining the roof structure; for the building

walls, we exploit the 2.5D assumption and stitch together the visual observa-

tions using a surface graph-cut based technique (a surface graph-cut is a 2D
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Fig. 4.2. System Pipeline. Our system uses (a) aerial images and GIS-
like input data to (b) compute a geometric proxy, (c) generate surface
graph-cuts, and (d) assemble textured 3D building models of large urban
areas.

manifold in 3D space that has been stitched together using a solution to the

minimum-cost graph-cut problem); our surface graph-cut assembles a seamless

and visually-coherent texture-mapping of the buildings and ground surfaces de-

spite an imperfect building proxy, projected occlusions, and camera calibration

errors.

• To solve the chicken-and-egg dilemma of needing to know the geometry to solve

for visibility (and needing to know visibility to solve for geometry), we exploit

the assumption of having approximate GIS data (e.g., building outlines) in order

to formulate simple building shape estimates which we enhance. Our approach

builds upon voxel occupancy and graph-cuts (e.g., Kwatra et al. [117]) to auto-

matically and robustly yield large-scale 3D urban reconstructions. Our largest

example includes 1785 reconstructed and texture-mapped buildings spanning

more than 12 square kilometers. Our system pipeline (Figure 4.2) takes as in-

put a set of pre-calibrated high-resolution aerial images captured from a multi-

camera cluster flying over a city (courtesy of C3Technologies), approximate

building outlines extracted from a GIS provider (i.e., OpenStreetMap (OSM))

and rough initial building heights per city zone.

A coarse initial building geometry is subdivided into voxels which are then refined.

Improved building outlines, heights, and roof structures are obtained by using a
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photo-consistency and clustering algorithm. Then, we use surface graph-cuts to add

the remaining visual details to the building walls and the ground. The roof struc-

ture is sampled by many images. Thus, texture mapping the roof voxels to display

additional visual details can be straightforwardly done by selecting the most head-on

observations. However, the building walls are sparsely sampled. Hence, in order to

create a complete, coherent, and occlusion-free colored appearance, we texture-map

wall voxels using the aerial images for which a satisfactory graph-cut with the roof

and with the adjacent building walls is produced. Further, we solve two other surface

graph-cut problems in order to provide a smooth visual transition between the build-

ing walls and the ground surface as well to produce a top-down high-resolution ground

surface image that is free of unwanted projections of building geometry and shadows.

Altogether, our method exploits photo-consistency only where it is highly sampled

(thus less susceptible to outliers and noise) and uses a graph-cut based algorithm to

stitch together a visually plausible result for the rest of the building surfaces and the

ground surface. Our examples are from a large metropolitan area (i.e., Boston, MA in

the USA) using a dataset of 4667 aerial images and conservative initial building out-

lines and height estimates (e.g., often overestimates of 50%). Our comparisons show

that our results are significantly better than texturing a space-carving/visual-hull

result and similar quality to crowd-sourced manual modeling efforts.

4.2.2 Voxels and 3D Graph-Cut

We identify two main tasks to reconstruct a city: i) find the building geome-

try (Figure 4.2b), and ii) texture the models (Figure 4.2c). For the first task, we

could discretize the space of the whole city and try to find the geometry at the same

time, but this approach would not scale since the number of voxels is linear with

the size of the city (e.g., in our case it would be O(108) voxels). Given the individ-

ual nature of each building (i.e. a building can be seen as an independent model

surrounded by streets), we simplify the problem by processing each building individ-
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ually. For each building, we first initialize the building with a set of voxels using

the GIS data (subsection 4.2.3) and find the photo consistency-between aerial images

(subsection 4.2.3). Then, we find 2.5D building geometry (subsection 4.2.3). For

the second task, we could use a standard view-dependent texture mapping, but this

would assemble imagery by blending together fragments from many different images.

Such a method does not exploit the internal consistency of each captured image and

might create seams along image transitions. In contrast, we use graph-cuts to stitch

together imagery from as few images as possible so as to exploit internal consistency

as well as produce seamless texture mapping. Given that the complexity of graph-

cuts (solved using the min-cut algorithm) is O(V E2), it would not scale to city level

(in our case it would be O(1019)). Therefore, we also process each building individu-

ally. However, this does not completely solve the problem since the ground should be

also textured, which in turn necessitates a smooth transition between building and

ground surfaces. To overcome the problems of this task, we use graph-cut for three

different purposes: i) texturing building surface (subsection 4.2.4), ii) improving the

transition building-ground surfaces (subsection 4.2.4), and iii) finding an optimized

ground surface (subsection 4.2.4).

4.2.3 Volumetric Building Proxy

We first describe our algorithm for computing a per-building volumetric proxy.

Our method initializes each building model as a grid of voxels, calculates a weighted

photo-consistency measure per voxel, and clusters the voxels of minimum variance.

The output is a 3D un-textured proxy model.

Appearance Editing

Each building is initialized as a 3D array of voxels (Figure 4.3a). The voxels are

obtained by subdividing a vertical extrusion of a coarse estimate of the 2D building
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Fig. 4.3. Building Volumes. We show the steps of our volumetric build-
ing reconstruction. a) An initial model is divided into voxels. b) The per-
voxel variance of our weighted photo-consistency measure is computed.
c) The most consistent voxel per column is chosen, potentially reducing
building height. d) The voxels are clustered by height, e) placed in a
height-map, and filtered. f) The final proxy model is obtained.

footprint. Given a building of size [bx, by, bz] and a voxel size r, we label each voxel

vi for i ∈ [1, N ] and N = (bx/r) ∗ (by/r) ∗ (bz/r).
For notational brevity, we also assume vi refers to the 3D position of the middle

of voxel i. The upper bound for N is when a voxel of size r0 corresponds roughly

to one projected pixel. In practice, we choose values of r > r0 in order to reduce

the per-building computation time which is important when processing city-scale

environments.

Building footprints and building heights, or estimates thereof, are frequently

present in a city GISs and some navigation service databases. With regards to build-

ing footprints, one option is to use the shape of the enclosing parcel which is roughly

of the same shape for dense urban areas. In our case, we make use of the increas-

ingly popular open data repository OpenStreetMap.org. It contains top-down street,
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Fig. 4.4. Variance Calculation. Using the initial voxel normals ni for
a voxel vi, we determine the variance of our weighted photo-consistency
measure of the subset of cameras, such as cik, that best see the voxel.

parcel, and approximate building outlines for a very large number of cities worldwide

(as seen in Figure 4.2a and in our video). We extract building outline estimates

from images such as this using image processing; in particular, we detect a loop of

edges per parcel and form a closed polyline. For building heights, if not available

in the GIS, we make zonal estimates (e.g., residential zone apartments are given a

constant height, high-rise zones are given a higher constant height); however, the

building height should be conservative (e.g., we frequently overestimate height by

50%). Photo-consistency will enable finding the actual roof heights and building

outlines.

We must also establish an initial surface normal per voxel. After inspecting many

buildings, we found that a good prior is to represent a building as a half ellipsoid

(Figure 4.4, bottom). At this stage in the pipeline, the voxel normal is solely used

to determine the subset of the aerial images that potentially see the voxel. This
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approximation does not directly affect the resulting building geometry but rather

helps select which images are used in later stages. Because it is not known yet which

voxels will be on the building surface, normals are computed for all voxels of the

initial model (i.e., interior and exterior voxels). Given a building, we first fit the

upper-half of an ellipsoid to the building by computing values for the ellipsoid radius

and ellipsoid coefficients a, b and c. Then, given voxel vi, we compute the voxels

initial normal as

ni =

(
2vix
a2

,
2viy
b2

,
2viz
c2

)
(4.1)

Given voxel positions and normals, we obtain the color cik for voxel i observed

by camera k. To support different voxels sizes (both when voxel-to-camera distance

varies amongst the aerial images and when purposefully working with larger voxels

to increase reconstruction performance), we project the voxel onto camera image k,

estimate the size sik of voxel i on camera image k and grab a Gaussian weighted

footprint of pixels as

cik =
∑

t∈[(−sik,−sik),(sik,sik)]

projk(vi) + t)e−||t−projk(vi)||2/2σc (4.2)

where projk() returns the projection of its argument onto camera image k and σc

is the standard deviation of the Gaussian. Given sik, σc is obtained by the known

estimate 0.3(sik/2− 1) + 0.8

Variance Calculation

Starting with the initial model of a building, we search for a subset of voxels that

are photo-consistent amongst the aerial images observing the building. We assume

strong photo-consistency for a voxel implies it is on the actual building surface. As

the measure of photo-consistency, we use the weighted variance of the color of a voxels

projection on different aerial images (Figure 4.3b).

In preliminary experiments, we investigated several measures for evaluating whether

a voxel is on the building surface. We attempted using color-based segmentation of
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aerial images and/or the weighted sum of the measures of photo-consistency, local

surface planarity, and local supportability (i.e., probability that a voxel is needed be-

cause another higher-up voxel will be selected). However, we observed that the various

variants of this combined metric were not robust to noise/errors and in practice over-

constrained voxel selection. This is primarily due to the relatively sparse (and often

at grazing angles) sampling of building walls. As mentioned in the introduction, we

did, however, observe many visual samples and significant photo-consistency amongst

voxels on the building roof surface which led us to rely mostly on them.

Our method transforms all aerial images to HSL color space and uses the H

and S channels. We use only the H and S channels in order to ignore the effect of

changing daylight illumination and, to a lesser degree, the effect of shadows. Further,

we explicitly weigh variance by the inverted building height of a voxel. Hence, given

an approximately tied variance, the vertically higher voxel is chosen. Numerically,

our voxel variance measure is computed as

mi =
viz + bz/2

bz

⎛⎝ si∑
k=1

c2ik −
(

si∑
k=1

c2ik

)2

/si

⎞⎠ (4.3)

where it is assumed the building is centered at the origin, the first term computes

the ratio of the voxels vertical height (assumed to be along the z-axis) to the buildings

z size, and si is the number of camera images that have a line of sight to voxel i. In

order to improve the variance calculation, we use the initial footprints to account

for the potential occlusion of neighboring buildings. Specifically we create a mask

mk by rendering the building from the point of view of a camera k pointing towards

the building; the building is rendered in white and the background in black. When

computing color cik, we check in the corresponding mask whether the image pixel is

white (unoccluded) and should be used, or black (occluded) and should be discarded.
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Height Clustering

In aerial images, roofs are expected to be viewed by more cameras than facades

(i.e., more photo-consistent). Thus, we find the height of each column by searching for

the columns voxel with the lowest variance mi. We use this information to assemble

the final building proxy (Figure 4.3c). If we observe the building from a side, the

voxels should collectively exhibit a compact distribution around the different heights

of the buildings. Hence, we can use 1D k-means clustering to find those different

building roof heights (e.g., k = 1, 2, 3, ). Since the optimum value for k is not known

a priori, we estimate it using a heuristic that works well in practice. Starting at

k = 1, we increase k until we find that at k + 1 the clustering error reduces by

no more than ce percent. In preliminary experiments, such a clustering algorithm

worked well, yielding buildings with 1 to 5 different roof heights. For our results, we

set ce = 0.3. After clustering, our method selects the voxel per column whose height

is closest to the corresponding clusters mean height (Figure 4.3d).

After clustering, we place all voxel heights into a height map image. Starting

with the uppermost cluster, our algorithm performs a per-cluster morphological close

operation [130] (i.e., dilate and then erode) in order to remove small islands of the

current cluster type and to fill-in small gaps. We also perform an in-filling refinement

step to remove any remaining single-voxel holes with no height/cluster assignment

(i.e., we find the most popular cluster assignment of the neighboring voxels and

assign that value to the missing voxel). Voxels physically below the filtered minimum

variance voxels are marked. Then, all exterior surface voxels are selected as being

part of the building envelope (Figure 4.3f). Although voxels are small, we reduce

jaggedness by adding quadrilaterals to connect corners of adjacent voxels on an off-axis

(i.e., diagonal) building surface. It is worth noting that the final proxys outline will not

necessarily match that of the initial conservative building estimate. Finally, the voxel

normal is recomputed for each exterior surface voxel by summing up the vectors from

the voxel center to each existing neighboring voxel, reversing the normal direction,
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a) Voxels b) Vertex Graph c) Vertex Graph d) Vertices + Edges

e) Texture 1 f) Texture 2 g) Textures & Overlap 
Origen Sink

h) 2D Graph Cut

Min Cut

Fig. 4.5. Surface Graph-Cut. a) Voxels, b) voxels showing graph ver-
tices, c) vertices, d) vertices with edges, e) vertices seen by an image 1, f)
vertices seen by an image 2, g) vertices that see image 1 and image 2 are
in green and are where graph-cut will be applied, and h) a 2D graph-cut.

and normalizing the vector. Afterward, the normals of all voxels are averaged using

a Gaussian weighting of the nearby voxel normals. Succinctly, this is computed as:

ni =
∑
j

γijnorm

(
−
∑
k

δjk(pj − pk)

)
e−||pi−pj ||2/2σn (4.4)

where σm is the standard deviation of the desired smoothing neighborhood, δjk = 1

if vj and vk are adjacent, norm() returns the vector normalized version of its argument,

and γij = 1 if vi and vj are within 2σn voxels of each other (e.g., 95% of the neighbors

that affect normal averaging are considered).
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4.2.4 Surface Graph-Cuts

In this subsection, we define surface graph-cuts as well as describe our multiple

uses of them. Graph-cuts can be used to solve problems such as image stitching and

image segmentation. To solve the stitching problem, a 2D graph is created where

each vertex represents a pixel and edges connect adjacent pixels with a calculated

weight (e.g., the color difference). The best stitching possible will be the one that

minimizes the visible transitions (i.e., the minimum cut through overlapping areas –

Figure 4.5h). We extend this idea to not just define a flat image but instead pixels

on the 3D surface formed by the visible faces of the building, the interface between

building and ground surfaces, and the ground surface. Conceptually, this can be

viewed as covering the building with pieces of cloth. Each image is a piece of cloth

that partially covers the building. We try to cover the whole building with the least

noticeable transitions. The challenge is in choosing cloths and in how to cut them.

Definition

A surface graph contains the visible faces of a volumetric building proxy (Fig-

ure 4.5a) and/or of the surrounding ground. Since, for reconstruction performance

reasons, we typically chose a voxel size that projects to larger than one pixel, each

exterior (i.e., visible from the outside) voxel face is subdivided into SxS subfaces (in

Figure 4.5b, S = 2) to ensure the final model is textured at near the original image

resolution despite using lower-resolution voxels. In each visible face of each voxel, we

place a SxS array of vertices (Figure 4.5c). Each vertex va is then connected to its

neighbor vb by an edge eab (Figure 4.5d) to form the 3D graph where a graph-cut will

be applied. Thus, the surface graph G = {V,E} is composed of vertices V = {va}
for a ∈ S2NS (where NS are the faces of the voxels that are in the surface) and edges

=eab : va and vb are adjacent.

Within each graph vertex va, our system stores
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• qa: 3D position of the graph vertex,

• na: surface normal in the vicinity of the subface,

• ka: camera image id to use for this voxel,

• ca: current color of the graph vertex, and

• pa: potential color of the graph vertex.

A graph-cut defines a smooth visual transition between two adjacent surface

patches. Each of the two patches is a subset of the surface graph that has the same

camera image id (Figure 4.5e and Figure 4.5f). These two patches overlap in a region

(Figure 4.5g). The graph-cut process will find the trajectory, in this overlapping area,

along which the sum of the color differences between the corresponding pixels of the

two source camera images is minimal (Figure 4.5h).

To avoid re-creating the graph for each texture, we create the graph just once

and update the weights, origin, and sink before calling the min-cut procedure. To

efficiently compute our large min-cuts (e.g., O(106) vertices)), we use the augmenting

path algorithm of Boykov and Kolmogorov [131] which in practice is significantly

faster than other methods. To calculate the cost, we perform color differences in

perceptually linear LAB color space in order to improve the perceived transition from

one texture to another and not just reduce the numerical color difference (i.e., reducing

the Euclidian distance in this color space maps to a perceptual improvement). We

define the matching quality cost C between two adjacent vertices s and t that belong

to two different patches P1 and P2 as

C(s, t, P1, P2) = ||P1(s)− P2(s)||+ ||P1(t)− P2(t)|| (4.5)

where Pi(∗) evaluates to a LAB color.
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Fig. 4.6. Applications of Surface Graph-Cuts. a) We show several
patches over a building surface. Each patch is obtained by grouping ad-
jacent subfaces best observed by the same camera while taking visibility
into account (e.g., patch k is best observed by camera pk because pj is
occluded. In this step, patch 3 and k are joined as in Figure 4.5h. b) An-
other surface graph-cut is defined and computed at the boundary of the
building with the ground surface. c) Finally, a ground surface graph-cut is
also performed so as to obtain a seamless and free-of-projected-buildings
ground texture.

Building Surface

We solve the graph-cut problem for the building surfaces resulting in the best

seamlessly stitched texture-map over the building surface (Figure 4.6a). First, we

compute which cameras are visible from each graph vertex and choose the visible

camera that best samples the vertexs surface fragment. Since we have a very large

number of vertices (e.g., over 100,000 per building), we use the graphics card to

quickly determine which are visible from each of a nearby set of camera viewpoints.

For efficiency, we render each voxel as a color-coded quadrilateral. From all the

cameras k, at position gk, that see a particular voxel and all its subfaces/vertices, the

camera ka for which (gk − qa)na is maximal is chosen; e.g., ka = k.

Second, spatially-adjacent vertices with the same camera image id are grouped

into patches and sorted by size. To assist with reducing the effect of image-to-image

illumination changes and calibration errors, we wish to have as few textures and
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graph-cuts as possible. Thus, we group same-image-id vertices. We also sort them by

area from largest to smallest because the largest group is mostly likely to reference

the best aerial image. Empirically, buildings are stitched together from 3-10 different

aerial images.

Third, our method assembles the surface graph-cut starting with the largest patch.

Given the current processed vertices, the system iteratively searches for the largest

adjacent patch. An overlapping frontier is defined within the two patches. Although

we could use the entire overlapping area to find the graph-cut, we limit the overlapping

area so as to keep most of the current processed vertices intact. Before calling min-

cut, we update the weight of each edge: the vertices that have been processed are

connected to the origin of the min-cut and their weights are set to infinity (i.e., to not

be cut), the edges of the vertices within the transition region are updated with the cost

C (between the current color and the new potential one), and vertices that belong to

the potential texture but do not overlap, are connected to the sink and their weights

set to infinity (i.e., also to not be cut) – as in Figure 4.5h. Our system uses min-cut

to search for the cut that minimizes the visual image transition from one patch to

another one. This step is repeated iteratively until all vertices have an assigned camera

image id. We choose this greedy approach over other global optimizations because i)

we do not try to minimize the transition between vertices but between patches, ii) a

global (patch) optimization would require an exhaustive/stochastic exploration, iii)

it is guaranteed to converge, and iv) it fits the requirement to keep the number of

patches as small as possible to minimize the change-of-illumination issue.

Building-Ground Surface

Next, we solve the graph-cut problem for connecting the building surfaces to the

ground surface (Figure 4.6b). We extend the building surface by generating a ring of

voxels around the ground-level height of the building such that the top most face of

each extended voxel coincides with the existing ground surface (i.e., the voxel center is
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essentially slightly below ground). Even though the width of the ring can be altered,

we use a constant value for all our examples. For each of the newly created voxels,

we assign a camera image id to it. This is done by finding the closest voxel on the

building surface and copying the camera image id to each of the S2 graph vertices of

the new voxel. To build the local ground surface, we use the same extended building

surface vertices but calculate their color using the improved ground surface image

(see next subsection). We define a single building-ground graph (per building) with

a source node inside the footprint and the exterior ring of voxels connected to a sink

node. The graph-cut computes the smoothest transition from building wall textures

to ground surface images. The cut is constrained to lie on the ground surface so as

to prevent the building textures from changing.

Ground Surface

To produce an improved top-down view ground surface image, we stitch together

the most downward facing aerial images (Figure 4.6c). In a manner similar to 2D

texture and image synthesis, the aerial images are pieced together sequentially in

random order – the order does not matter as long as the ground surface is fully

sampled. Since the graph of one ground image is very large (e.g., over a million graph

vertices), only a subset of the overlap region between the currently stitched image

and a new image is used. A graph-cut is calculated within the overlap region and

stored.

To avoid the appearance of building surfaces projected onto the ground outside of

the building footprint, we make use of the building proxies. We render each building

proxy in black from each images center of projection and onto the aerial image. Then,

we explicitly prevent the graph-cut from using, or going through, the building by plac-

ing very large cost penalties when choosing to transition to a building pixel. Although

it is not guaranteed that all ground surface points are observed, unobstructed, from
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an aerial viewpoint, in practice it is possible. The final result is one single coherent,

occlusion-free top-down image of the city.

4.3 Automatic Modeling of Planar-Hinged Buildings

We present a framework to automatically model and reconstruct buildings in

a dense urban area. Our method is robust to noise and recovers planar features

and sharp edges, producing a water-tight triangulation suitable for texture mapping

and interactive rendering. Building and architectural priors, such as the Manhattan

world and Atlanta world assumptions, have been used to improve the quality of

reconstructions. We extend the framework to include buildings consisting of arbitrary

planar faces interconnected by hinges. Given millions of initial 3D points and normals

(i.e., via an image-based reconstruction), we estimate the location and properties of

the building model hinges and planar segments. Then, starting with a closed Poisson

triangulation, we use an energy-based metric to iteratively refine the initial model

so as to attempt to recover the planar-hinged model and maintain building details

where possible. Our results include automatically reconstructing a variety of buildings

spanning a large and dense urban area, comparisons, and analysis of our method.

The end product is an automatic method to produce watertight models that are very

suitable for 3D city modeling and computer graphics applications.

4.3.1 3D Urban Reconstruction

3D city modeling has become extremely popular due to the increased number

of computer graphics applications in the entertainment industry, urban planning,

digital mapping, and virtual environments. However, the automatic modeling of

large dense cities, including the robust recovery of sharp edges and planar features,

and the creation of water-tight geometric models suitable for texture mapping and

interactive applications remains elusive. Previous efforts have addressed our goal

using one or more different input sources (e.g., LIDAR or image data), and from
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Fig. 4.7. Reconstructed Buildings. We automatically reconstruct
buildings from images by assuming a building consists of arbitrary planar
segments inter-connected by linear (i.e., straight) hinges at any angle. a)
Final re-constructed model, b) with projected texture mapping, and c)
processing pipeline: initial point cloud, initial triangulation, Canny edge
points, visualization of plane/hinge constraints, final model, with projec-
tive texture mapping.

ground-level viewpoints, airborne viewpoints, or combinations thereof. We identify

three key challenges: i) sampling completeness - obtaining samples from all surfaces

is a daunting task typically addressed by either coalescing information from multiple

viewpoints or filling-in holes; for large-scale city modeling obtaining a full sampling

of all surfaces using multiple viewpoints is impractical; ii) surface triangulation -

in the presence of missing samples, generating a closed-triangulation can be hard

for traditional triangulation methods which assume clean and near-uniform sampling

(e.g., [132]); and iii) noise - in general recovering sharp edges and other surface features

(e.g., planarity, circularity) is hard in the presence of significant noise.

Our approach addresses the sampling completeness, surface triangulation, and

noise challenges by defining a class of buildings which supports sharp edges and

planar segments and using a new framework to improve automatic building surface

reconstruction. Coughlan and Yuille [133] defined Manhattan World (MW) buildings

as a restricted subset of buildings consisting of exterior facade segments belonging

to one of three orthogonal planes. Schindler and Dellaert [134] extended the Man-
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hattan World assumption to Atlanta World (AW) which includes multiple groups

of orthogonal vanishing directions. We further extend the assumption to arbitrary

planar-hinged building models. A building’s surface consists of arbitrary planar seg-

ments interconnected by linear (i.e., straight) hinges at any angle. This framework

affords a more general class of buildings than MW or AW.

We demonstrate several automatically reconstructed buildings within 0.5 km2 in

Boston (USA) using 135 aerial images.

4.3.2 Planar-Hinge Modeling and Reconstruction

Our approach uses high-resolution aerial images captured from a multi-camera

cluster flying over a city (courtesy of C3Technologies), approximate building out-

lines extracted automatically from OpenStreetMap (GIS data), and automatically

produces a 3D triangulated model.

Initial Model

First, we obtain a dense 3D point cloud and an initial model triangulation and

model vertices. The aerial images observing a building are given to Bundler [135]

to obtain a sparse point cloud. Then, we use CMVS [136] in combination with

PMVS [137] to generate a dense 3D point cloud. The dense 3D point cloud is used

to generate an initial model triangulation using Poisson surface reconstruction [138].

Poisson surface reconstruction is able to generate a watertight closed mesh even in the

presence of significant missing surface samples. However, the reconstruction generates

a new set of approximating vertices, which we call the model vertices.

Plane Construction

Next, we find the most probable planar segments in the building’s dense 3D point

cloud. Initially, we smooth the normals estimated by CMVS using a normalized
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Fig. 4.8. Planes reconstruction. a) Segment point cloud b) RANSAC
plane fitting c) Projection of points into plane to define bounding box and
create grid d) For each cell create a prism to define the distribution of the
points inside the likelihood the cell plane exits.

(based on the confidence values calculated by CMVS) bilateral-filter. Then, we find

planar segments in the point cloud by growing regions based on point color and normal

similarity and use random sample consensus (RANSAC) to determine the plane per

region. Our method uses as region starting seeds the most densely-sampled 3D point

cloud regions and successively adds points to regions based on normal similarity and

distance measurements. After region growing, another pass regroups the regions that

form the same plane but are not contiguous (Fig. 2a). Then, we re-run RANSAC to

find the most probable plane per group (Fig. 2b). With just a few hundred iterations,

the algorithm converges quickly and with a relatively small error (i.e., 5 cm. for up to

200m. high buildings). To preserve small geometric details, we partition the points

in each of the aforementioned planar groups into a set of grid cells (Fig. 2c) and

determine which cells contain points most likely belonging to the plane (Fig. 2d).
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a b c d

Fig. 4.9. Hinge reconstruction. a) Canny point cloud b) Find lines c)
Fitted lines d) Using the lines find the hinges: edge and planes

Hinge Construction

Using the input images with a Canny edge detector applied, we run CMVS and

PMVS again to generate the building’s edge 3D point cloud (i.e., 3D points recon-

structed only on the edges of the building) (Fig. 3a). A hinge implies points forming

a 3D line segment from location A to location B. There should be points approxi-

mately uniformly distributed within a cylinder from A to B and with a small radius

r. To find candidate cylinders, we set each point in the cloud as a potential location

A and search for a point B such that there are points contained within the cylinder

from A to B. When a candidate cylinder is found, it is extended along its axis in both

directions until there are no more points in the extended directions (Fig. 3b). Nearby

cylinders with similar central axis directions are grouped. Then, we use RANSAC

to find the most probable 3D line segment within each cylinder group (Fig. 3c). To

find the planes adjacent to each 3D line segment, we partition the line segment and

for each partition analyze the corresponding points in the building’s dense 3D point

cloud within the line segment’s cylinder. We fit a single plane to all points in the

cylinder segment. Then, we divide the points into two subgroups using the plane

perpendicular to the fitted plane. We now fit a plane to each subgroup. If the two

fits each have a small error (e.g., 5 cm or less), we have found the two local building

surface planes. The result is a set of hinges over the building surface, each being a

3D line segment and two adjacent planar regions (Fig. 3d).
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4.3.3 Model Reconstruction

In this process, we modify the model so as to better satisfy the plane and hinge

constraints calculated with the 3D point clouds. Each hinge is divided into segments

and each segment attracts model vertices within an action radius of its center line

segment and to each of the hinge planes. In addition, each plane constraint also pulls

model vertices towards the corresponding plane. In summary, the new position pi+1

of a point is calculated from pi as:

pi+1 = pi +
∑
s∈Hl

(s− pi) k

‖s− pi‖2
+

∑
f∈Hp

(f − pi) k · δ
‖f − pi‖2

+
∑
c∈Hp

(c− pi) k · γ
‖c− pi‖2

where s is the center of each hinge line segment, k is a spring constant, f is the

center of each hinge plane, δ=1 when the point lies within the action radius of the

hinge plane and 0 otherwise, c is the center of each plane cell, and γ is the dot product

of the grid cell normal with the direction of the point to the center of the plane.

4.4 Summary

In this chapter, we have presented two methods to recover the 3D geometry of

a 3D urban model. The results can be used for visualization, urban planning, and

educational purposes.
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5. RESULTS AND ANALYSIS

In this chapter, we present the results of the 3D urban design (Section 5.1), traf-

fic simulation (Section 5.2), weather simulation (Section 5.3), and geometric assets

(Section 5.4).

5.1 3D Urban Procedural Modeling

We use our forward and inverse framework to create, design, and edit a variety of

city-scale models. All rendering and editing are interactive, and the results appear

while editing. All example sessions were completed in under five minutes and most

took less than three minutes.
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Fig. 5.1. ANN Error. a-c) Comparison of measured vs. estimated by
the ANN for three different indicators. d-e) Comparison of top 120 target
and measured indicator values.
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Fig. 5.2. Variability. a-c) We show the three top solutions generated by
our system, with variability disabled, for a desired sun exposure indicator
value. d-f) Next, we enable our solution to increase solution variability and
obtain three clearly non-similar top solutions. g-i) Show the corresponding
models of d-f but using our interactive rendering engine.

ANN. Figure 5.1 presents a comparison of the measured vs. estimated values by

our ANN. Figures 5.1a-c compares the accuracy of our ANN. We run 200 sampled

parameter inputs and feed our procedural model and out ANN, we display as scattered

point the value measured (x-axis) respect the predicted by our ANN (y-axis) for

three different indicator values. Note that the ideal result would be a line (perfect

correspondence). Figures 5.1d-e compare the target value vs. the measured one. The

result shows that 90% of the samples have a fitting error below 10%.

Variability. Figure 5.2 shows how our solution search method 3.3.4) can help to

find solutions that present variability. For this example, the user defines that wants

a 3D model with an average sun exposure of 30%. Using the k best solutions (closest

to the target indicator value), with k = 3 we obtained the solutions presented in

Figure 5.2a-c. The solutions have very similar input parameters (they belong to the

same cluster) and, thus, they present very similar visual appearance. In contrast,

when we use our k−means algorithm, the solutions have the target indicator values

but with significant different input parameter yielding 3D models that are signifi-
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Fig. 5.3. Content Design Example. We show an example of design
using a high-level indicator, in this case, an indicator that measures the
open/bright vs. compact/dark of a 3D urban model. Using a single
slider the user can control it: a) high shadowing or compact, b) medium
shadowing, and c) low shadowing or open.

cantly different (Figures 5.2d-i). Using this technique, the user can explore different

alternatives but still keeping the control over the target indicators.

Content Design. Figure 5.3 shows a content-design example. The designer

wants to control how open/bright vs. compact/dark a city model is. Our method

allows the user to do such control just altering one slider. Our system learns how

the indicator behaves and which subtle interdependencies of the needed parameter

changes (shown in the insets in Figure 5.3) to achieve the desired behavior.

Multiple Land-Use Dependencies. Figure 5.4 shows an example of multiple

land-use dependencies. The user implements a new indicator value, landmark visi-

bility. This indicator value tries to capture the inhabitants preference of a city to

see the main landmarks from their building. We set up a scenario as presented in

Figure 5.4a, we have two landmarks on the North, and three different place-types

placed in a horizontal layout. We want to be able to control with a single slider how

many buildings are able to see at least one of the landmarks. We train our system

with this layout. Then the user sets the target indicator value to 15%, 30% and 75%.

Our system is able to find such configurations with a 3% error. Note that our system

learns the most important parameters that need to be controlled, the building heights

and the percentage of parks in each one of the three place-type instances. For low
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Fig. 5.4. Global Indicator Control. This example focuses on a global
landmark visibility indicator. a) Top-down view of the city model and
user-selected landmarks. b) Initial 3D city model configuration where
the landmarks are not visible from most buildings (yellow boxes). c-d)
User increases the desired amount of landmark visibility and the system
interactively alters the city model. Below images b-d is a color coded
profile of the city showing how many landmarks are visible.

landmark visibility, our system sets high buildings close the landmarks (Figure 5.4b)

such that just those building do have visibility. For middle visibility, our system

learns that needs to set homogeneous heights along the three place-types. Finally,

for high landmark visibility, our system propose to set low-rise buildings close to the

landmarks ( 5 floors), mid-rise buildings ( 15 floors) to the middle place-type, and
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high-rise buildings (30 floors) the furthest from the landmark. Note that this might

seem an obvious solution when observed, but our system learn it without any user

interaction and allows to control it with a single slider.

Fig. 5.5. Local Changes for Global Indicator Control. a) One of
the nine neighborhoods of a city is redeveloped so that the average floor-
area ratio of the entire city increases. b) The system proposes a solution
that satisfies the target floor-area ratio but that reduces the sun exposure
of the area. The user then requires the system to find a solution that
maintains a high sun exposure. Three different solutions are produced
(c, d, e) that exhibit different styles but satisfy the constraints on both
indicator values.
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Local Control for Global Indicator. Figure 5.5 shows an example on how we

can achieve global control of a 3D urban model (in this case, the whole city counts

with nine place-types) just with the redevelopment of one of them, i.e., local control.

We set up our city with land-uses as shown in Figure 5.5a and we let our system

to learn how to control the global indicator values changing one land-use (the one

to redevelop). We use our system to improve the average floor-to-area ratio of the

entire city to 5.2. Our system finds such a solution with a 3% error. However, the

proposed model has too low sun exposure. Thus, the user uses the sun exposure slider

to increase its value. Our system finds several solutions that has the desired floor-to-

ratio value and also has the user-specified sun exposure (Figure 5.5c-d). Finally, the

user selects one based on style preferences (Figure 5.5d) and exports it to CityEngine

(Figure 5.5e).

5.2 Traffic Simulation

We used our framework to create and edit a variety of city-scale 3D models ob-

tained from OSM or our procedural engine having up to 360 km of roads. The

simulation is implemented both on the CPU and on the graphics card (CUDA). All

rendering is done using our custom shader (see video). All editing is interactive, and

results appear while editing. All example sessions were completed in less than 10

minutes (and typically in less than 5).

Example Designs. Figures 5.6-5.8 show the results from several example design

sessions. Figure 5.6 demonstrates a local inverse design using downtown Boston (9a)

with 1393 streets, 4767 intersections, and a total road length of over 290km. The

people and job distribution has been extracted from a GIS. The user first runs the

simulation with 110k vehicles. Results show significant traffic crossing the Boston

Commonwealth Park and the nearby government buildings. The user then draws two

areas to reduce the road occupancy and defines the maximum occupancy to be 20%

of those roads. Next, the simulation is run in three different scenarios. In the first
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Fig. 5.6. Local design. a) Fragment of central Boston. b) Job and
people distribution from GIS sources. c) Initial road occupancy as per
our traffic simulation. d-e) Close-ups. Three solution options: f) solution
by only changing lane directions, g) similar as previous, but only jobs
distribution changes, and h) using both change types (best solution).

scenario, the user only allows changes in lane directions (9f). This restriction sparks

changing 48 lane directions to reach the desired behavior. Then, the user only allows

changes in job distribution (9g); this could be useful to improve traffic with the cost of

a company office reallocation. However, it causes 37% of the jobs to relocate. Finally,

the user enables lane direction change and job re-distribution resulting in just 16 lane

changes and 3% of the jobs moving (9h). Moreover, we reduce the occupancy to just

9% as indicated by the specified traffic zone behavior.

Figure 5.7 represents an interactive session with a global design objective. The

user loads the map of Madrid, Spain from OSM (10a). It contains 2288 streets,

6141 intersections, and more than 330km of roads. The user defines a desired traffic

behavior for the entire city and for 220,000 vehicles (10b). Our system finds a solution

that produces the given traffic zones with just a few iterations (10c-d). This is possible

thanks to the tomo-gravity model (this is the only result that uses subsection 3.4.3

initialization). Afterward, the user wanted an alternate traffic behavior of the city

(10e). The system was also able to find the model that yields such a traffic behavior

(10f-g). This session took under 5 minutes.
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Fig. 5.7. Global Design. a) Fragment of Madrid. b) User draws the
desired traffic and c-d) our system first uses the tomo-gravity model and
then MCMC refines it. e-g) Another editing iteration produces the final
output.

Fig. 5.8. Global Optimization. a) Fragment of New York. It has an
average travel time (TT) of 60min and CO emission of 1012gr. Our system
finds that b) by just changing lanes it is able to achieve the 50min goal.
c-d) To reach 40min and 30min, it is necessary to change people, jobs,
and lanes.

Figure 5.8 shows a global traffic optimization. We procedurally generate a frag-

ment of New York City using GIS data, producing over 900 streets, 620 intersections,

25k cars, and 360 km of roads. The initial urban model yields an average travel time

of 60 minutes and 1012 gr of CO per person (11a). The user defines three desired

travel time values (i.e., 50 minutes, 40 minutes and 30 minutes). Our system finds

that it is possible to improve the traffic to a 50 minute travel time by changing 52

lane directions (11b). However, in order to achieve a 40 minute travel time, more

radical changes are required –16% of the jobs and 31% people should be relocated
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Fig. 5.9. Performance. a) Times (in minutes) to perform a 4-hour
simulation b) The number of simulation steps per second.

(11c). Finally, to achieve a 30 minute average travel time even more changes are

required (11d). Each of these sessions took 10 minutes or less.

Performance. We present a performance summary using up to 300k vehicles on

200 km of roads (with no rendering overhead). Performance is shown for CPU and

GPU versions (Figure 5.9a). A four-hour peak traffic period simulation (i.e., 6am-

10am) of 300k cars takes as little as 24 seconds, including trip planning, simulation,

and estimating occupancy and indicators. Figure 5.9b shows that with 300k cars our

system can compute 636 simulation steps per second.

Analysis. Figure 5.11 compares the behavior of our two search strategies for

30k cars (Sections 3.4.4 and 3.4.4). Note that due to the non-linear nature of traffic,

solution process is not monotonic. We define traffic zones that reduce traffic through

one of the main arterial roads. Further, we set the cost function to be the total

number of changed lanes. On the left, the goal-oriented optimization minimizes the

objective function without any constraints. The found low-score solution requires
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almost 350 lane changes. On the right, the cost-driven optimization finds solutions

with even lower score and with much lower cost (i.e., just 50 lane changes!). This
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occurs because the second acceptance formula is more relaxed and thus other state

changes can occur.

We compare performance to those of Sewall et al.’s [33] macrosimulation engine

and to SUMO’s open source microsimulation engine. SUMO’s performance, as well

as ours, is dependent on the number of vehicles and on the simulation time. Sewall

et al.’s [33] method is claimed to be linearly dependent on road network size and on

the simulation time. Their largest reported network has 140,000 cars and only 10

km of roads. Their fastest system (8 cores) was reported as 50 seconds which was 54

times faster than their SUMO performance. For a network with the same number of

cars but with 200 km of roads, our approach only takes 13 seconds which is 81 times

faster than our SUMO performance. The amount of simulated time is not reported

for Sewall et al. [33] thus a direct comparison is hard to make. However, if we linearly

extrapolate their performance from 10 km to 200 km of roads, our method would be

77 times faster than Sewall et al. Moreover, our method yields disaggregated per-

vehicle data. Finally, we use SUMO to evaluate simulation accuracy (Figure 5.10).

Our method produces occupancy values that, on average, are within 6% of SUMO-

computed values.

5.3 Weather Simulation

We have used our approach to design and simulate weather in various synthetic

cities. Our results include a forward design tool, an inverse design tool, comparison,

and performance analysis.

5.3.1 Weather Forward Design

Figure 5.12 shows two exemplar cases of the method described in Section 2.6.4.

The user draws the distribution of land use (Figure 5.12a) and designs the procedural

model of the city (Figure 5.12b). Then, the user selects some initial procedural

conditions weather conditions (top) and selects a location and date and loads real
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User draws Land Use Day 1 Day 2 Day NUrban PM

Fig. 5.12. Forward Design. Two examples of forward design. a) The
user draws the land use distribution and uses our Urban PM to design
a city; b) the simulation runs indefinitely for this procedural model, we
display different days of a year.

sounding (bottom), in this case from Miami, FO. Finally, our model is able to simulate

any number of days of realistic weather (Figure 5.12c).

5.3.2 Weather Inverse Design

We demonstrate our weather design tool in Figure 5.13, Figure 5.15, and Fig-

ure 5.16. We show how our framework can be used to design, control, and optimize

different scenarios.

Cloud Design.

Figure 5.13 shows an example of the use of our high-level design tool. The user

wants to control the cloud coverage (percentage of sky covered by clouds) of a pro-

cedural city throughout a day. To compute the cloud coverage, we accumulate the

amount of clouds computed for our Radiation Model (Section 2.6.3) and average over

the domain space. The user interactively paints an urban and non-urban area (Fig-

ure 5.13a). Then, the user designs the weather behavior (Figure 5.13b) defining as

objective the mean percentage of cloud coverage (σ̄) and, optionally, the permissible

error (this allows the user to define an admissible range) of cloud coverage (σ̌) for

m different time ranges r. This defines an objective cloud coverage set {σ̄r∈ri , σ̌r∈ri}
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Fig. 5.13. Cloud Design. Two examples of cloud design. a) The user
interactively draws a land use distribution; b) the user selects the high-
level behavior of the weather; c) the system finds such weather and the
weather sequence is visualized.

where i = [1,m]. Then, we run the optimization to find the closest solution (Fig-

ure 5.13c).

For this example, we fix ωl and ωp since we do not want to alter the 3D model. To

alter ωw, we set-up the optimization: i) to use our multi-seed approach, ii) to set the

variable ranges within plausible physical values, iii) to just alter the control points of

U and qv, iv) to use η = −∞ (error function optimization). Finally, we define the

error function to minimize the computed cloud coverage respect the user-specified

one as

E(Ω) =
m∑
i=1

max (0.0, |σΩr∈ri − σ̄r∈ri | − σ̌r∈ri) (5.1)

To speed up the process, the user can decide to use our 2D XZ simulation model.

Our 2D XZ model uses the same formulation and code than for 3D but drops one-

dimensionality (in this case the depth, Y ) to create a fast approximation. We use it

here as an approximation to compute the cloud coverage. Figure 5.14 shows the error

for three different scenarios of the computed cloud coverage using our 2D XZ and
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Fig. 5.14. Difference 3D vs 2D simulation. We show the square error
of the cloud coverage of three different scenarios when it is simulated using
our 2D and 3D simulator for 50 different initial conditions.

the complete 3D version. As can be observed the error for time periods of 12 hours

have a maximum error of 5% and an average of 3% that provides enough accuracy for

the task in hand. The presented solutions ware found using 12 initial seeds, 4 steps,

and required less than 5 minutes. Optionally, the user can then explore the rest of

evaluated solutions (plotted as temporal cloud coverage changes) and select a more

suitable simulation and visualization.

Rain Design.

Figure 5.15 presents an example of our inverse modeling tool. We use our system

to control (increase and reduce) the rain of the city through the change of the non-

urban land use. We constraint this example because we can argue that it is very

expensive (economically) to change the land use inside urban areas; however planting

trees ( 230$ per acre) or changing the land use to crops, it can be something that can

be explored, even as a temporal solution. Note that such considerations are being
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Fig. 5.15. Rain Design. We show the result to optimize the rain levels
in a city, to increase it a); and to decrease it b). We overlap the result for
each energy level and highlight the minimum/maximum value found so
far. c) shows the initial land use distribution of the center cross section.
d-e) are the best solution for each optimization.

actively studied [139,140]. To limit further the solution, we define that the maximum

percentage of land use change of each grid-cell to be 50%.

Note that increasing the rain rates of an area can be interesting for many reasons.

An example would be to alleviate seasonal droughts or flood potential [141]. Decreas-

ing rain can be useful for humid and rainy areas (e.g., Seattle, WA) or even to palliate

the spread of insects such as mosquitoes. A wide range of environmental services have
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been envisaged for urban greening, and optimization tool such as discussed here is

critically required.

For this example, we fix ωp with the default procedural parameters and ωw with a

warm summer day. To control the rain, we alter ωl of the non-urban areas (green in

Figure 5.15c) allowing changes to ‘bare soil’, ‘forest’, ‘beach sand’, and ‘crops’. We use

our system with one unique seed (the original scenario) and run it with 20 chains with

different energy levels β ∈ [10, 650] and 50 steps. In Figure 5.15a-b we present the

evolution of rain for each chain, we highlight as a thick line the minimum/maximum

value found so far for that number of steps, the circled state is the one selected as

optimal.

To compute the total rain fallen in h hours, we use the concept of rain intensity.

Each s min of simulation we sample the rain intensity (mm/h) in each bottom level

grid-cell. We use the classic [Marshall and Palmers 1948] derivation to compute the

rain intensity as RI = 360ρ0Vrqr where terminal velocity is Vr = 3634(ρqv)
0.1354. The

total rain is computed as the average of RI per hour times the elapsed time (in our

case 12 hours); i.e.,

E(Ωt) =
h∑

t=0

60

s

gridx∑
i=0

RI(t, i) (5.2)

Using this formula as the objective function, rain is minimized (5.15a). In order

to use the same function but as maximization (5.15b), we invert the terms in the

acceptance ratio E(Ωt)/E(Ωt+1) instead of E(Ωt+1)/E(Ωt). As seen in the particular

case of Figure 5.15, we achieve a rain decrease of 45% (Figure 5.15a) and an increase

of 35% (Figure 5.15b). Note that such ‘drastic’ changes are indeed possible since

we included ‘desert’ as a land use category. This land use category has a very high

albedo. In contrast, if we eliminate this option, the maximum decrease is only 19%

and the maximum increase is 16%.

Temperature Design.

Figure 5.16 presents an example of our cost minimization. We use our system to

reduce one degree of temperature in the city center (i.e., η = E(Ω0) − 1C.) so as to

alleviate the higher temperatures produced by the urban heat island effect. Reducing
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Fig. 5.16. Temperature Design.a-b) We show the behavior of a biased
optimization for example e) of this figure; a) if just one mode is used (opti-
mize temperature); if we use the two models optimization (optimize tem-
perature and cost); c) the original model; d) altered model that achieves
one degree reduction by introducing more parks; e) alternative model that
achieves the same goal but uses white roofs to increased albedo; and f) a
solution with both parks and white roofs (note the reduction in both).

the urban heat island by only a few degrees is recognized as a difficult though valuable

goal [70]. For example, super dense cities such as Beijing can benefit from reduced

heat islands that would decrease pollution [142].

As allowable changes to the initial model, we fix ωl and ωw and explore three

alternative options for ωp: change some urban land to parks, paint some roofs to be

of high albedo (e.g., White Roof Project [143,144] is currently promoting this option),

and perform both of the aforementioned changes.

First, we want to compare the standard acceptance ratio where one variable is

optimized (Figure 5.16a) with our modified formula where we optimize a variable while

we keep the cost to the minimum (Figure 5.16b). In Figure 5.16a, the temperature

is progressively reduced by the optimization method until it crosses the desired goal

just once per energy level. After it crosses, the temperature is reduced further, but

now the cost may increase. The best solution is found in one of this single crosses. On

Figure 5.16b, we present our cost minimization method, the temperature is reduced by

the optimization, as before, but when the desired level is achieved (η = E(Ω0)− 1C),
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Fig. 5.17. Global Design. a) The user selects the desired cloud states.
b) Our system is able to simulate the user-selected behavior.

the optimization minimizes the cost. Both behaviors alternate trying to find the

goal temperature with the minimum cost. Figure 5.16c shows the original model.

Figure 5.16d shows the model with 31% more parks and 1C degree reduction in

temperature. Figure 5.16e shows an alternative option with 61% more white roofs and

1.1C degrees lower temperature. Figure 5.16f uses both more parks and white roofs

to achieve 1.2C degrees reduction. Overall, the design tool enables quick exploration

of options to achieve the desired weather/climate change.

Global Design.

Figure 5.17 shows an example of our solution towards global design. The user

selects few interesting cloud states (Figure 5.17a) from all the sampled precomputed

states (in our case, from 128 · 10 · 72 states), the order, and the time period of

simulation. Our system, changing the boundary conditions, is able to simulate using

our phisically-based method the user-defined behavior (Figure 5.17b).

5.3.3 Comparison

To validate our physically-based, simplified, super real-time simulator we compare

it to state-of-the-art results and systems. We validate each of the three main compo-

nents of our framework separately. One option to validate the first component, our

fundamental equations, is to perform a comparison to well-known benchmark cases
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of a bubble of cold air and a bubble of warm air under prescribed conditions [145].

Figure 5.18 and 5.19 have 2D visualizations of such bubbles. In Figure 5.18a, an

elliptical cold bubble (−12.5C) is placed in the center of the domain at a height of

3km, using a grid cell size of 0.125km and a time step of 0.25s. As should be the case,

after 450s of simulation the bubble sinks and Kelvin-Helmholtz eddies are produced

(Figure 5.18b). We impose wind of 20m/s which as per Wicker and Skamarock [146]

makes the test more stringent. At 900s, as expected the eddies have completed a half

revolution around the domain and approach each other (Figure 5.18c). This behav-

ior is very similar to Figure 2 of Wicker and Skamarock [146], a classical reference.

Figure 5.19 has a spherical warm bubble of 28C and at 2km above the ground, and

same grid cell size and time step as in Figure 5.18. After 900s, the bubble rises as

should be the case as per Ahmad and Lindeman [147] – no wind is introduced in this

benchmark case.

To verify the second component, we compare our clouds and precipitation model to

the WRF-ARW (Weather Research and Forecast Model Advanced Research Version)

and an expected cloud/rain formation process. Figure 5.20a-b show the computed

value of water vapor qv at different heights in a rural area and in an urban area

using WRF and using our model both models behave similarly. However, WRF

does not model clouds explicitly nor render them. Thus, we look to the literature on

cloud dynamics. Cumulus clouds are formed by convergent-divergent zones producing

powerful updrafts that form large vertical clouds and typically significant rainfall. We

use our simulator to generate such a cumulus cloud adding a 3C warm bubble in the

city center and successfully show its three main stages (Figure 5.20c-e): towering

cumulus stage, mature stage, and dissipating stage. As expected, this large cloud

forms a thunderstorm during the third stage that resembles a classic supercell [148].

For the third component, we compare WRFs radiation model to our simplified im-

plementation of radiation model. The simulated domain consists of a simple circular

city in the middle of an otherwise green terrain. As can be observed in Figure 5.21a,

the relative temperature difference between urban and non-urban areas, defining the
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Fig. 5.18. Cold Bubble. Our evolution of potential temperatures sim-
ilar to that of Wicker and Skamarock [146]. Vertical axis is height and
horizontal axis is spatial x-axis location (both in km). Simulation isolines
at a) 0 seconds, b) 450 seconds, and c) 900 seconds.

Fig. 5.19. Warm Bubble. Our simulation produces potential temper-
atures very similar to Ahmad and Lindeman [147]. Axes and temporal
sequence same as in Figure 8.
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Fig. 5.20. Cloud and Precipitation Comparison. a-b) We show the
water vapor mixing ratios for an urban and rural area using WRFs and
our Kessler Microphysics implementation. c-e) A temporal evolution of a
cumulus cloud with our implementation.

urban heat island, computed by the two models is almost identical. The shown curves

are the difference between an East-West slice through the middle of the domain and

an East-West slice through the southern part of the domain (not intersecting the city)

as computed by each model. We also show the temperature evolution over time for a

point in a rural area and in an urban area (Figure 5.21b-c), using both models. Our

radiation model again behaves very similarly to WRF.

It is important to highlight that, weather forecast are inherently nonlinear and

by definition chaotic [149]. Small changes to initial conditions (either prescribed or

computed/interpolated by different model routines) can result in differences in the

model output. Even for two sophisticated models or for two different physics options
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Fig. 5.21. Radiation Model Comparison. We compare WRFs radi-
ation model to our radiation model (RM): (a) urban heat island effect
as the temperature difference between an urban and non-urban 1D slice
using each model; b-c) we show the temperature evolution over time for
a point in a non-urban and an urban portion. Our model behaves quite
similar to WRFs.

runs the model output can have significant differences. This is the basic of the so-

called ensemble weather forecasting [150] used by the meteorological community (and

yields values such as probability of precipitation). Therefore, the differences seen in

the simulator and the more sophisticated state-of-the-art WRF model is expected.

Performance.

For a simulated volume of 50x50km and 25km high (divided into 50x50x56 grid

cells), our 2D XZ system (Section 5.3.2) computes 81 minutes of weather in one second

and our 3D system computes 1.7 minutes of weather in one second. In all cases, we

use a simulation time step of 1 second. Table 5.1 summarizes our performance on
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Table 5.1.
Performance. CPU uses 4 cores while GPU uses 2304 cores. See main
text for additional details.

Time per Time Faster than

Step (ms) Real-Time

CPU GPU (GPU)

Fund. 25.02 0.08 12195x

2DXY +Clouds 62.98 0.16 6135x

+Rad. 64.72 0.21 4878x

Fund. 250.23 5.04 199x

3D +Clouds 639.11 9.71 103x

+Rad. 671.72 9.90 101x

the aforementioned CPU and GPU. Our GPU implementation reaches over 101x

with respect to real-time, and it is 68x faster than the CPU counterpart. As a

reference, WRF is just 7.1x faster than real-time running on a computer server with

4 AMD Opteron 6176 12-core processors ( 450 GFLOP) this maps to approximately

1.2x faster than real-time using our Intel Core i-7 ( 170 GFLOP). Note that this

comparison is not straightforward since WRF is optimized to run on servers. For

instance, a ‘typical’ scenario for WRF would be to run a 4 nests of 72x72x48 to

simulate 30 days using a high-performance cluster (with 256-512 nodes).

5.4 Geometric Assets and Visualization

In this section, we present the results for our two methods to reconstruct 3D urban

models.
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5.4.1 Volumetric Reconstruction and Surface Graphic Cuts

We have used our method and system for several large urban examples. Fig-

ures 5.22- 5.33, show our results and analysis. Our example dataset consists of a

grid of about 58 by 19 aerial viewpoints over central Boston, MA (USA). At each

viewpoint, a camera cluster takes 5616 x 3744 resolution images in five directions:

one direction straight-down, and 4 diagonally downward facing directions at about

90-degrees from each other when projected on the ground plane (note: our method

makes no assumption about the spatial and angular distribution of the camera views).

This totals 4667 images from pre-calibrated viewpoints. The area has 1785 buildings

assumed to lie on a flat ground plane. We set the default initial building height to

35 meters (assumed residential zone height). Medium-height high-rise zones are set

to an initial building height of 125 meters and tall high-rise zones are set to initial

overestimated building height of 250 meters.

There are two user parameters, voxel size r and texture size per voxel S. As

described before, r defines the voxels size and we found empirically r = 2 or r = 4

is a good balance in time and reconstruction accuracy. The parameter S can be

calculated from r to use the maximum resolution of the images (user can decide to

decrease it to speed up the process).

There are two building height clustering parameters: the threshold to discard the

column variability and ce which defines when to stop the clustering process. In our

examples, the first parameter is set to two times the standard deviation and the latter

to 0.3.

Finally, there are two more parameters regarding the surface graph-cuts that

depend on how much the images overlap. In our case, the amount of overlap between

patches and the overlap region between building and ground textures are both set

to 4m. Reconstruction time depends mostly on the voxel size r and subdivision

factor S. For our dataset, a half resolution reconstruction (e.g., r = 4 and S = 4)

takes 22 seconds per building on average (10 hours total time). A full resolution
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Fig. 5.22. Volumetric Reconstruction Pipeline. We show example
images from a volumetric building reconstruction. a) OpenStreetMap in-
put image. b) Voxelized-version of the extruded building footprint. c)
Per-voxel weighted photo-consistency variance (white = low variance). d)
Selection of per-column voxel with lowest variance. e) Vertical support
added beneath each per-column selected voxel. f) Final proxy after clus-
tering and filtering.

reconstruction (e.g., r = 2 and S = 4) consumes 109 seconds per building (51 hours

total time). The timing includes local file I/O. A typical building has from 15 to 130

contiguous patches (of the same image id) before graph-cut application and 74 patches

on average. A representative building graph has about 150k vertices, 300k edges, 80k

triangles before grouping voxels for rendering and 5k triangles after grouping voxels.

The ground graph is at pixel resolution and the integrated ground graph-cut solution

is stored in a grid of 4x4 12MP images (so that the 16 tiles can fit in texture memory

and leave space for building texture atlases).

Memory requirements depend on the stage in the pipeline. Building geometric re-

construction requires about 100MB and can be reduced to less than 1MB per building

after processing. Per building graph-cut processing requires less than 200MB and the

atlas creation requires less than 850MB (the requirement is higher since the images

are loaded at maximum resolution).
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Building Reconstruction

We show in Figures 5.22- 5.26 several examples and comparisons for individual

building modeling. Figure 5.22 contains intermediate results from the volumetric

reconstruction process of an example building. Figure 5.22a has a close-up of the OSM

street map used as input. Using an image processing algorithm, we find the building

outline and choose a default medium high-rise height in this zone. In Figure 5.22b, we

show the initial volumetric approximation subdivided into voxels. Figure 5.22c shows

the calculated per-voxel variance it is computed for all voxels but only the exterior

voxels are visible. Nevertheless, the photo-consistency of the upper roof structure is

evident. Figure 5.22d shows the voxels with minimum variance per voxel column,

which begins to reveal the building structure. In Figure 5.22e, we also draw all the

voxels beneath each selected minimum variance voxel. Finally, Figure 5.22f shows

the proxy model after clustering and filtering. This same process is repeated for all

buildings.

In Figures 5.23a-d and 5.24a-c, we show the initial volumetric approximation, the

computed proxy model, and the textured result after surface graph-cut processing.

Our approach is able to produce reasonable proxies for this variety of building shapes.

For comparison, we show in Figure 5.23e the ground truth (obtained by manual mod-

eling) and in Figures 5.23f-h the accuracy of several reconstructions is compared to

ground truth using Hausdorff distance: we show the reconstruction error of our proxy

(8f) and two versions of space carving (8g-h). As one can observe, the reconstruc-

tion error for our proxy is small. To create the first version of space carving, we use

Graph-Cut Segmentation [151] (as explained Figure 5.25) to automatically segment

the foreground (i.e., the building in view) from the background (i.e., everything else).

For the second version, we manually perform the segmentation using a painting tool –

a task that it is impractical for large-scale urban reconstruction (e.g., it took between

one hour to two hours to create the 25-50 masks of each building). Nevertheless,

despite perfect segmentation we found that in general the obtained building recon-



141

a)
b
b) 

c) d) 

e) f) 

g) h) 

Fig. 5.23. Building Graph-Cuts and Space Carving. a-d) Aerial
picture, initial voxels, our textured result, and our calculated model with
no textures. e) Ground truth and f-h) show Hausdorff distance (color map:
green=0m, blue=5m, red=10m or more) between ground truth and our
proxy, graph-cut space carving, and manual-segmentation space carving
(see text).

struction was inferior to ours. This is due primarily to the relatively sparse image

sampling of each building and to the camera viewpoints being above the city (e.g., a

distant camera would theoretically see the building more from the side but the view

is most likely be occluded by another building).

In Figure 5.26, we present the reconstruction for buildings of different sizes and

complexities. Figure 5.26a is a small building of 20m height, 10b is a medium size

building of 90m height, and 10c is a large building of 180m height. For each building,
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Fig. 5.24. Texture Mapping Comparison. a) Initial model. b)
Calculated proxy model. Mismatch/discontinuities occur due to geom-
etry/calibration errors that are in general unavoidable in a dense city.
Yet, c) our surface graph-cuts compensate for inaccuracies and produce a
continuous/coherent texturing, better than d) standard projective texture
mapping.

Fig. 5.25. Graph-cut Space Carving. To perform space carving, as in
Figure 5.23g, we use a) an initial image, b) perform automatic labeling
(using the initial voxels as masks), and c) calculate a graph-cut segmen-
tation.
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Fig. 5.26. Building Reconstruction for Various Building
Sizes/Complexities. For a) small building (20m), b) medium size build-
ing (90m) and c) large building (180m), (left) aerial images, (middle)
initial voxels, and (right) reconstruction error using Hausdorff distance
(green=0m, blue=3.5m, red=7m or more).

we show its picture, the initial proxy, and the Hausdorff distance between refined

proxy and ground truth. The absolute reconstruction error is approximately constant

regardless of the size of the building although the defects are more visible in the small

buildings. The error would, of course, be larger if there are not enough images that

capture the building.

Figure 5.27 shows the impact of voxel size r in the reconstruction process. When

the voxel size is too big, our method is not able to reconstruct the building. When

the voxel size is small, the vertical sampling is dense enough to find low variance

points and the reconstruction can be performed. However, if the value is too small,

excessive processing might occur.
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2m 4m 8m 16m

Fig. 5.27. Result Comparison of Different Voxel Sizes. From left to
right, we increase the voxel size. When the size is too large, reconstruction
fails. When the size is small, the reconstruction presents similar results but
excessive processing might occur. Hausdorff distance error: green=0m,
blue= 3.5m, red=7m or more.

Figure 5.28 summarizes the error in reconstructed building height as compared to

ground truth (gathered from Wikipedia) for 15 well-known buildings. The average

initial height error is 72%. Our system reduced the building height error to an average

error of 1%-3% with a 95% confidence interval.

Surface Graph-Cuts

The impact of our surface graph-cuts is observed in Figures 5.24c-d, Figure 5.29,

Figure 5.30, and Figure 5.31. Figure 5.24d contains the result of a nave projective

texture mapping. The imprecision in the proxy model, camera calibration, and the

high-level of occlusion with neighboring buildings makes it challenging to obtain a

perfect texture-mapping. Our additional use of (multiple) building surface graph-
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Fig. 5.28. Reconstructed Building Height vs. Ground Truth. For
15 buildings, red bars represent the difference between the initial model
height and ground truth. The blue bars indicate the difference between
our refined model and ground truth.

cuts is able to compensate for these imprecisions and produce a visually-plausible

approximation to the buildings appearance (Figure 5.24c).

Figure 5.29 contains a comparison of our graph-cut algorithm with projective

texture mapping over the proxy. We compare the original building (middle) with

two altered proxies to see how the proxy error affects the texture step. To create

the altered proxies we expanded the original building in all directions of the building

+10% (left) and we collapsed in all directions of the building -10% (right); in both

cases we added a random noise of 5m in the height map. As observed in the top row,

our approach manages to make less visible the error in the transition in the top images.

Moreover, our approach compensates for the incorrect proxy and is able to eliminate

the unwanted appearance of content (e.g., sidewalk, bushes, and side walls). In this

example, it is accomplished by automatically extending the wall texture to meet the

roof texture, thus producing a transition with reduced visual artifacts however, the

solution while smooth might not be physically correct. Our technique cannot always

produce an improvement (i.e., compare bottom right picture of 14c with the bottom
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Fig. 5.29. Graph-Cut vs. Projective Texture Mapping. Compar-
ison of our graph-cut algorithm with projective texture mapping for the
original building and two altered proxies: building expanded +10% in all
directions with random noise in the height map of 5m (left) and collapsed
-10% in all directions with random noise in the height map of 5m (right).
Our approach creates a seamless texture transition from facade to roof. In
fact, as compared to projective texture mapping, it reduces the ill visual
artifacts in all cases as can be seen by our results in the top row.

right picture of 14f). However, the smoothness of the image transition is never worse

than the original.

Figure 5.30 contains a comparison of building-ground surface graph-cuts. For the

building in Figure 5.30a, Figures 5.30b and 5.30c show the result using our proxies

and standard projective texture mapping. By enabling the computation of building-

ground surface graph-cuts, we are able to improve the coherence at the interface of

the building and ground surfaces, as is seen in Figures 5.30d and 5.30e. In particular,

notice the discontinuity of the roads and cars in Figures 5.30b and the projection of

the extra roof surface in Figure 5.30c both of which are eliminated in our result.

Figure 5.31 contains an example of the benefit of our ground surface graph-cuts.

Figure 4.1a contains the initial top-down view of an example area (we choose a camera

with a view direction that is closest to the vertical axis). Observe how the building in
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Fig. 5.30. Building-Ground Surface Graph-Cuts. a) We show two
close-ups of this building. b-c) With projective texture mapping, there are
discontinuities, missing content, and building projections at the boundary
between the building and the street. d-e) Our building-ground surface
graph-cuts are able to find a smooth transition between the two structures
and produce a coherent and visually plausible appearance.

the middle occludes some of the nearby roads and buildings. Figure 5.31b contains the

result of a nave graph-cut without taking into account the buildings proxies notice

the disturbing visual artifacts despite the attempt of minimizing neighboring pixel

differences with the graph-cut. Figure 5.31c shows the result of our ground surface

graph-cut: buildings are not rendered on purpose and the occluded road pixels are

automatically filled-in using content from other images. Figure 5.31d contains an

image of the ground surface from Google Earth. Figure 5.31e shows the visual quality

of our method using proxies and the ground surface from c. In contrast, using Googles

ground images (Figure 5.31f) yields similar disturbing artifacts as in b.
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Fig. 5.31. Ground Surface Graph-Cuts. a) A downward looking orig-
inal aerial image in our dataset (note occluded roads). b) Visual artifacts
of using a nave graph-cut due to ignored inter-building occlusions. c) The
result when using our ground surface graph-cut method. d) An image of
the ground surface from Google Earth with no building proxies. e) Our
method using building proxies and the ground from c. f) Using Google
Earth imagery in projective texture mapping with buildings yields similar
bad artifacts as in b.

Fig. 5.32. Full Dataset View. We show a birds eye view of the textured
3D model produced by our system.

Urban-Scale Reconstruction

We show in Figures 4.1, 5.32, and 5.33, several birds eye views of urban-scale

examples (i.e., a fragment or portion of a city). Figures 4.1 and 5.32 show views of
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Fig. 5.33. Google Earth Comparisons. We show several compar-
isons between Google Earth snapshots (a,c,e) and our result (b,d,f). Our
method yields similar quality results in most cases and thus opens up the
door for the rapid creation of city-scale 3D models.

Boston reconstructed using our method. Figure 5.33 shows some close-ups of several

city areas and the views using Google Earth, including its crowd-sourced buildings.

It is important to note that Google Earth is using a different image set than ours

though qualitatively similar and its models are all manually created. Our method is

able to automatically produce good geometric proxies and to use surface graph-cuts

to stitch together the aerial imagery yielding visually effective texture mapping.
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5.4.2 Planer-Hinge Reconstruction

We use images in five viewing directions of resolution 5616 x 3744 in order to

reconstruct 20 buildings. Table 5.2 shows the average computation time for one

building:

Table 5.2.
Reconstruction Time. Time to compute each step of our method.

Bundler PMVS Hinge Plane Recons.

18 min 20 min 5 min 2 min 1 min

Fig. 5.34. Triangulation Comparison. a) Poisson reconstruction b)
Grid Projection reconstruction c) RIMLS reconstruction d) Greedy pro-
jection triangulation.

Figure 5.34 shows the model reconstruction using one of four different triangula-

tion algorithms. Poisson reconstruction generates a watertight closed model of the

cloud point (4a). Marching cubes RIMLS reconstruction [100] is qualitatively similar

to the one generated by Poisson reconstruction. However, it is not guaranteed to be

closed and has many discontinuities (4c). Grid projection reconstruction [152] is not
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Fig. 5.35. Our Results vs. Poisson Reconstruction. Each row
presents a comparison: top Poisson reconstruction, bottom our results.

able to fill holes (4b). Greedy projection triangulation [153] produces reconstructions

quickly but is very sensitive to noise and holes (4d).

Figure 5.35 shows the improvement of our system as compared to a näıve Poisson

reconstruction. Our system recovers sharper edges and corners using the hinge and

plane constraints. In particular, the plane constraint significantly eliminates aberra-
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Fig. 5.36. Results after using planes and hinges. a) Actual geometry
b) Poisson reconstruction c) After our plane reconstruction d) After our
plane and hinge reconstruction.

Fig. 5.37. Surface displacement caused by our method. Hausdorff
Distance between Poisson surface and our final mode.

tions within facades. The hinge constraint improves the sharpness of the edges and

corners (top) and can make incorrect geometry disappear (bottom).

Figure 5.36 shows the successive improvements of hinge and plane constraints. The

initial model reconstruction has dull edges and perturbations in the supposedly flat

parts due to lack of points and presence of noise (6b). Plane logic flattens the area,
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making the building more rectilinear (6c). Hinge logic brings improved geometric

details to the building and creates sharper edges where detected (6d).

Figure 5.37 shows for two building examples the Hausdorff Distance between Pois-

son surface and our final model. In the already flat areas, the improvement is small

(red), but in the areas where the error is big (e.g., missing samples), our system

improves the model significantly with surface displacements of up to 8 meters.

5.5 Summary

In this chapter, we have presented the results of this dissertation. We first explored

our forward and inverse design for urban models, then traffic, and weather simulators.

Finally, we concluded with the urban reconstruction.
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6. CONCLUSIONS AND FUTURE WORK

We have presented a framework to enhance urban procedural modeling with inverse

design controls. Our system allows the user control and design geometry, traffic,

and weather through a set of high-level indicators or the direct control of the input

parameter values.

Urban Procedural Modeling

We have coupled an automatic inverse design approach for urban procedural modeling

with forward procedural modeling. Urban indicators are intuitive metrics for mea-

suring the desirability of urban areas, and we have incorporated this as a key method

for designers to efficiently generate optimized 3D urban models that meet their target

criteria. The relationship of indicators to the procedural model is in general unknown

and complex that has until now hindered their direct specification. We tackle the well-

known open problem of controlling procedural modeling by providing a generalized

mechanism that allows users to specify arbitrary target indicators and automatically

compute the optimal parameters to obtain the desired output. Our methodology uses

MCMC and artificial neural networks, including algorithms to search both local and

global state changes, and presents multiple distinct 3D model options to the user.

Traffic Modeling

We have developed a super fast novel traffic microsimulation that runs on real-world

road networks (OpenStreetMaps) and procedural models. The high performance of

our simulator allows us create an inverse tool to design and control traffic. Using

our framework, the user can interactively ”painting” a desired vehicular traffic be-

havior (i.e., animation) and let the system to automatically computes a realistic 3D
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urban model that yields the user-specified behavior. Our traffic manipulation strat-

egy adapts an MCMC method to explore the solution space by performing a set of

topology-preserving and topology-changing road network changes. We used our sys-

tem to control traffic behaviors such as road occupancy, travel time, and CO emission.

Weather Modeling

We have also developed a super real-time rates (up to 4800 faster than real-time)

realistic, physically-based weather model. Our weather simulation is based on a

non-hydrostatic weather model consisting of a set of nonlinear dynamical equations

which govern atmospheric motions. Our system allows the user to control and design

weather. As validation, we compare our system against the well-known state-of-the-

art weather forecast results and systems. This model also uses an MCMC method

to explore the solution space, allowing different optimization variations depending on

the purpose. We use our system to control the cloud coverage, rain, temperature of

a 3D procedural model.

Reconstruction

We have presented two automatic urban-scale modeling approach using planar-hinge

model, volumetric reconstruction from aerial calibrated images, and surface graph-cut

based texture generation.

6.1 Future work

For our current framework, we have identified several limitations and future work

items:

• Urban Procedural Modeling We would be interesting to explore alternative

means to support scaling to a much larger number of parameters while keeping

the accuracy. Moreover, we will explore additional indicators, including feeding
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indicator values back to the model so as to, for instance, alter window sizes and

wall materials based on the result of sun light exposure.

• Traffic Modeling We would be interested in exploring additional topology-

preserving changes, such as altering intersection type and speed limit. Addi-

tionally, our simulator will be improved to support more complex traffic lights,

on/off ramps, random driver behavior, and more.

• Weather Modeling First, since our focus is urban-scale our model cannot

simulate weather phenomena that are formed on bigger or smaller scale; we

will explore a multi-resolution grids to address this and enhance the global

design. Second, our microphysics model currently simulates cumulus clouds

and rain. We will explore more complex models to add snow and hail. Third,

we will include additional land use categories including modeling the effect of

terrain height on the land use properties and weather grid variables. Fourth, we

will explore the use of shared memory, dynamic parallelism, and streaming to

enhance GPU performance. Fifth, we will explore physically based weathering

of urban models, such as buildings, using our weather simulator.

• Reconstruction We will incorporate knowledge of roads, sidewalks, and other

urban structures, merge other data sources (e.g., LIDAR), and experiment with

faster GPU implementations. Moreover, we would be interested in closing the

loop between graph-cut calculation and proxy computation; e.g., an iterative

process going between refinement of the proxy and re-computing graph-cuts.
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