155 research outputs found

    VB-MK-LMF: Fusion of drugs, targets and interactions using Variational Bayesian Multiple Kernel Logistic Matrix Factorization

    Get PDF
    Background Computational fusion approaches to drug-target interaction (DTI) prediction, capable of utilizing multiple sources of background knowledge, were reported to achieve superior predictive performance in multiple studies. Other studies showed that specificities of the DTI task, such as weighting the observations and focusing the side information are also vital for reaching top performance. Method We present Variational Bayesian Multiple Kernel Logistic Matrix Factorization (VB-MK-LMF), which unifies the advantages of (1) multiple kernel learning, (2) weighted observations, (3) graph Laplacian regularization, and (4) explicit modeling of probabilities of binary drug-target interactions. Results VB-MK-LMF achieves significantly better predictive performance in standard benchmarks compared to state-of-the-art methods, which can be traced back to multiple factors. The systematic evaluation of the effect of multiple kernels confirm their benefits, but also highlights the limitations of linear kernel combinations, already recognized in other fields. The analysis of the effect of prior kernels using varying sample sizes sheds light on the balance of data and knowledge in DTI tasks and on the rate at which the effect of priors vanishes. This also shows the existence of ``small sample size'' regions where using side information offers significant gains. Alongside favorable predictive performance, a notable property of MF methods is that they provide a unified space for drugs and targets using latent representations. Compared to earlier studies, the dimensionality of this space proved to be surprisingly low, which makes the latent representations constructed by VB-ML-LMF especially well-suited for visual analytics. The probabilistic nature of the predictions allows the calculation of the expected values of hits in functionally relevant sets, which we demonstrate by predicting drug promiscuity. The variational Bayesian approximation is also implemented for general purpose graphics processing units yielding significantly improved computational time. Conclusion In standard benchmarks, VB-MK-LMF shows significantly improved predictive performance in a wide range of settings. Beyond these benchmarks, another contribution of our work is highlighting and providing estimates for further pharmaceutically relevant quantities, such as promiscuity, druggability and total number of interactions. Availability Data and code are available at http://bioinformatics.mit.bme.hu

    Learning by Fusing Heterogeneous Data

    Get PDF
    It has become increasingly common in science and technology to gather data about systems at different levels of granularity or from different perspectives. This often gives rise to data that are represented in totally different input spaces. A basic premise behind the study of learning from heterogeneous data is that in many such cases, there exists some correspondence among certain input dimensions of different input spaces. In our work we found that a key bottleneck that prevents us from better understanding and truly fusing heterogeneous data at large scales is identifying the kind of knowledge that can be transferred between related data views, entities and tasks. We develop interesting and accurate data fusion methods for predictive modeling, which reduce or entirely eliminate some of the basic feature engineering steps that were needed in the past when inferring prediction models from disparate data. In addition, our work has a wide range of applications of which we focus on those from molecular and systems biology: it can help us predict gene functions, forecast pharmacological actions of small chemicals, prioritize genes for further studies, mine disease associations, detect drug toxicity and regress cancer patient survival data. Another important aspect of our research is the study of latent factor models. We aim to design latent models with factorized parameters that simultaneously tackle multiple types of data heterogeneity, where data diversity spans across heterogeneous input spaces, multiple types of features, and a variety of related prediction tasks. Our algorithms are capable of retaining the relational structure of a data system during model inference, which turns out to be vital for good performance of data fusion in certain applications. Our recent work included the study of network inference from many potentially nonidentical data distributions and its application to cancer genomic data. We also model the epistasis, an important concept from genetics, and propose algorithms to efficiently find the ordering of genes in cellular pathways. A central topic of our Thesis is also the analysis of large data compendia as predictions about certain phenomena, such as associations between diseases and involvement of genes in a certain phenotype, are only possible when dealing with lots of data. Among others, we analyze 30 heterogeneous data sets to assess drug toxicity and over 40 human gene association data collections, the largest number of data sets considered by a collective latent factor model up to date. We also make interesting observations about deciding which data should be considered for fusion and develop a generic approach that can estimate the sensitivities between different data sets

    Network-based methods for biological data integration in precision medicine

    Full text link
    [eng] The vast and continuously increasing volume of available biomedical data produced during the last decades opens new opportunities for large-scale modeling of disease biology, facilitating a more comprehensive and integrative understanding of its processes. Nevertheless, this type of modelling requires highly efficient computational systems capable of dealing with such levels of data volumes. Computational approximations commonly used in machine learning and data analysis, namely dimensionality reduction and network-based approaches, have been developed with the goal of effectively integrating biomedical data. Among these methods, network-based machine learning stands out due to its major advantage in terms of biomedical interpretability. These methodologies provide a highly intuitive framework for the integration and modelling of biological processes. This PhD thesis aims to explore the potential of integration of complementary available biomedical knowledge with patient-specific data to provide novel computational approaches to solve biomedical scenarios characterized by data scarcity. The primary focus is on studying how high-order graph analysis (i.e., community detection in multiplex and multilayer networks) may help elucidate the interplay of different types of data in contexts where statistical power is heavily impacted by small sample sizes, such as rare diseases and precision oncology. The central focus of this thesis is to illustrate how network biology, among the several data integration approaches with the potential to achieve this task, can play a pivotal role in addressing this challenge provided its advantages in molecular interpretability. Through its insights and methodologies, it introduces how network biology, and in particular, models based on multilayer networks, facilitates bringing the vision of precision medicine to these complex scenarios, providing a natural approach for the discovery of new biomedical relationships that overcomes the difficulties for the study of cohorts presenting limited sample sizes (data-scarce scenarios). Delving into the potential of current artificial intelligence (AI) and network biology applications to address data granularity issues in the precision medicine field, this PhD thesis presents pivotal research works, based on multilayer networks, for the analysis of two rare disease scenarios with specific data granularities, effectively overcoming the classical constraints hindering rare disease and precision oncology research. The first research article presents a personalized medicine study of the molecular determinants of severity in congenital myasthenic syndromes (CMS), a group of rare disorders of the neuromuscular junction (NMJ). The analysis of severity in rare diseases, despite its importance, is typically neglected due to data availability. In this study, modelling of biomedical knowledge via multilayer networks allowed understanding the functional implications of individual mutations in the cohort under study, as well as their relationships with the causal mutations of the disease and the different levels of severity observed. Moreover, the study presents experimental evidence of the role of a previously unsuspected gene in NMJ activity, validating the hypothetical role predicted using the newly introduced methodologies. The second research article focuses on the applicability of multilayer networks for gene priorization. Enhancing concepts for the analysis of different data granularities firstly introduced in the previous article, the presented research provides a methodology based on the persistency of network community structures in a range of modularity resolution, effectively providing a new framework for gene priorization for patient stratification. In summary, this PhD thesis presents major advances on the use of multilayer network-based approaches for the application of precision medicine to data-scarce scenarios, exploring the potential of integrating extensive available biomedical knowledge with patient-specific data

    Probabilistic analysis of the human transcriptome with side information

    Get PDF
    Understanding functional organization of genetic information is a major challenge in modern biology. Following the initial publication of the human genome sequence in 2001, advances in high-throughput measurement technologies and efficient sharing of research material through community databases have opened up new views to the study of living organisms and the structure of life. In this thesis, novel computational strategies have been developed to investigate a key functional layer of genetic information, the human transcriptome, which regulates the function of living cells through protein synthesis. The key contributions of the thesis are general exploratory tools for high-throughput data analysis that have provided new insights to cell-biological networks, cancer mechanisms and other aspects of genome function. A central challenge in functional genomics is that high-dimensional genomic observations are associated with high levels of complex and largely unknown sources of variation. By combining statistical evidence across multiple measurement sources and the wealth of background information in genomic data repositories it has been possible to solve some the uncertainties associated with individual observations and to identify functional mechanisms that could not be detected based on individual measurement sources. Statistical learning and probabilistic models provide a natural framework for such modeling tasks. Open source implementations of the key methodological contributions have been released to facilitate further adoption of the developed methods by the research community.Comment: Doctoral thesis. 103 pages, 11 figure

    Predicting Gene-Disease Associations with Knowledge Graph Embeddings over Multiple Ontologies

    Get PDF
    Tese de mestrado, Bioinformática e Biologia Computacional, Universidade de Lisboa, Faculdade de Ciências, 2021There are still more than 1,400 Mendelian conditions whose molecular cause is un known. In addition, almost all medical conditions are somehow influenced by human genetic variation. This challenge also presents itself as an opportunity to understand the mechanisms of diseases, thus allowing the development of better mitigation strategies, finding diagnostic markers and therapeutic targets. Deciphering the link between genes and diseases is one of the most demanding tasks in biomedical research. Computational approaches for gene-disease associations prediction can greatly accelerate this process, and recent developments that explore the scientific knowledge described in ontologies have achieved good results. State-of-the-art approaches that take advantage of ontologies or knowledge graphs for these predictions are typically based on semantic similarity measures that only take into consideration hierarchical relations. New developments in the area of knowledge graphs embeddings support more powerful representations but are usually limited to a single ontology, which may be insufficient in multi-domain applications such as the prediction of gene-disease associations. This dissertation proposes a novel approach of gene-disease associations prediction by exploring both the Human Phenotype Ontology and the Gene Ontology, using knowledge graph embeddings to represent gene and disease features in a shared semantic space that covers both gene function and phenotypes. Our approach integrates different methods for building the shared semantic space, as well as multiple knowledge graph embeddings algorithms and machine learning methods. The prediction performance was evaluated on curated gene-disease associations from DisGeNET and compared to classical semantic similarity measures. Our experiments demonstrate the value of employing knowledge graph embeddings based on random walks and highlight the need for closer integration of different ontologies
    corecore