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Abstract

There are still more than 1,400 Mendelian conditions whose molecular cause is un-
known. In addition, almost all medical conditions are somehow influenced by human
genetic variation. This challenge also presents itself as an opportunity to understand the
mechanisms of diseases, thus allowing the development of better mitigation strategies,
finding diagnostic markers and therapeutic targets. Deciphering the link between genes
and diseases is one of the most demanding tasks in biomedical research. Computational
approaches for gene-disease associations prediction can greatly accelerate this process,
and recent developments that explore the scientific knowledge described in ontologies
have achieved good results. State-of-the-art approaches that take advantage of ontolo-
gies or knowledge graphs for these predictions are typically based on semantic similarity
measures that only take into consideration hierarchical relations. New developments in
the area of knowledge graphs embeddings support more powerful representations but are
usually limited to a single ontology, which may be insufficient in multi-domain applica-
tions such as the prediction of gene-disease associations.

This dissertation proposes a novel approach of gene-disease associations prediction by
exploring both the Human Phenotype Ontology and the Gene Ontology, using knowledge
graph embeddings to represent gene and disease features in a shared semantic space that
covers both gene function and phenotypes. Our approach integrates different methods
for building the shared semantic space, as well as multiple knowledge graph embeddings
algorithms and machine learning methods. The prediction performance was evaluated on
curated gene-disease associations from DisGeNET and compared to classical semantic
similarity measures. Our experiments demonstrate the value of employing knowledge
graph embeddings based on random walks and highlight the need for closer integration of
different ontologies.

Keywords: ontologies, semantic similarity, knowledge graph, knowledge graph
embedding, machine learning
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Resumo Alargado

Existem ainda, mais de 1.400 condições mendelianas cuja causa molecular é desco-
nhecida e quase todas as condições médicas são, de alguma forma, influenciadas pela
variação genética humana. Descobrir a base genética das doenças continua a ser um de-
safio em aberto, apesar dos tremendos avanços em genómica nas últimas duas décadas.
Além disso, a maioria das doenças apresenta um genótipo altamente heterogéneo, o que
dificulta identificação de marcadores biológicos. Doenças como o transtorno do espec-
tro do autismo ou doenças cardiovasculares, que costumam ter múltiplas etiologias com
o envolvimento de possivelmente centenas de diferentes genes representam um desafio
adicional.

Este desafio também se apresenta como uma oportunidade para compreender me-
canismos de doenças, permitindo assim o desenvolvimento de melhores estratégias de
atenuação, encontrando marcadores de diagnóstico e alvos terapêuticos. Decifrar a ligação
entre genes e doenças é uma das tarefas mais exigentes na investigação biomédica. De-
senvolvimentos recentes que exploram o conhecimento cientı́fico descrito nas ontologias
tem alcançado bons resultados.

Experiências de alto rendimento, tais como estudos de linkage, geram uma grande
quantidade de dados que podem apontar para associações entre genes e doenças. Contudo,
uma validação precisa destas associações é dispendioso e demorado. Isto fomentou o
desenvolvimento de abordagens computacionais para prever as associações de doenças
genéticas e identificar associações mais promissoras a validar futuramente.

Centenas de ontologias foram desenvolvidas, cobrindo quase todos os domı́nios de
investigação biológica e biomédica. As ontologias biomédicas têm-se tornado cada vez
mais importante para estruturar e descrever conhecimento biológico existente e impul-
sionaram um novo panorama de dados biomédicos semânticos, onde milhões de enti-
dades biomédicas semanticamente descritas são anotadas com conceitos de ontologias
e estruturadas em knowledge graphs. Ter dados num knowledge graph possibilita uma
representação semanticamente rica e partilhada de dados, e que permite codificar as pro-
vas por detrás de uma asserção.

Recentemente, abordagens mais sofisticadas baseadas em incorporações de knowledge
graph embeddings permitem a representação de cada entidade com um vetor que apro-
xima as propriedades de semelhança do grafo e pode ser utilizado para calcular semelhança
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ou aplicar num algoritmo de aprendizagem automática. Knowledge graph embeddings
suportam em principio representações mais poderosas que consideram múltiplos tipos de
relações enquanto que a semelhança semântica é limitada a relações hierárquicas.

O principal objetivo deste trabalho é investigar abordagens para prever as associações
de doenças genéticas que exploram a riqueza semântica dos knowledge graphs. O tra-
balho aborda a riqueza semântica de diferentes perspetivas: semelhança semântica vs.
knowledge graph embeddings; uma ontologia vs. duas ontologias; ontologias desconec-
tadas vs. ontologias ligadas. A nossa hipótese é que representações mais ricas semanti-
camente, alimentadas pelo conhecimento dos knowledge graph embeddings computadas
em múltiplas ontologias interligadas conseguem uma melhor performance de previsão
do que abordagens mais simples baseadas na semelhança semântica ou knowledge graph
embeddings usando uma única ontologia.

Explorámos a Human Phenotype Ontology e a Gene Ontology, duas das mais popu-
lares ontologias biomédicas, para representar as caracterı́sticas do gene e da doença num
espaço semântico partilhado que abrange tanto a função genética como os fenótipos. Te-
mos como hipótese de que a utilização de mais do que uma ontologia pode melhorar a
previsão da associação gene-doença e que uma integração mais rica pode ter um impacto
positivo. Em particular, consideramos as definições lógicas que associam entidades de di-
ferentes ontologias com relações semânticas complexas podem ser exploradas para ligar
domı́nios e contextualizar relações entre diferentes entidades, tais como um gene e uma
doença.

A metodologia proposta neste trabalho pode ser dividida em 4 passos principais. O
primeiro passo na abordagem é integrar as diferentes ontologias e dados de anotações
para construir cinco tipos de knowledge graphs. Numa segunda etapa, são criadas as
incorporações que representam o gene e a doença de acordo com as suas anotações em
diferentes knowledge graphs. Numa terceira etapa, os embeddings são combinados uti-
lizando 5 tipos de operadores vetoriais (Concatenação, Média, Hadamard, Weighted-L1,
Weighted-L2), produzindo uma representação de genes e doenças naquilo que é efetiva-
mente um espaço semântico partilhado. Finalmente, numa quarta etapa, quatro algoritmos
de aprendizagem automática são treinados sobre os vários knowledge graph embeddings
de genes para prever as associações de genes e doenças. Gerámos knowledge graph em-
beddings com uma dimensão de 200 caracterı́sticas e utilizámos cinco métodos diferen-
tes que cobrem diferentes abordagens: distância translacional (TransE), correspondência
semântica (DistMult) e caminhos aleatórios (RDF2Vec, OPA2Vec, OWL2Vec). O desem-
penho da previsão foi avaliado em associações de doenças genéticas curadas da DisGe-
NET e contra abordagens baseadas em seis medidas clássicas de semelhança semântica
(linha de base que permite estabelecer a performance de métodos que usam uma única on-
tologia e medidas de semelhança semântica clássica) e knowledge graphs que incorporam
similaridade.
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O desempenho das classificações foi avaliado a média ponderada das F-measures.
Também avaliámos o desempenho com a classificação AUC (área sob a curva da carac-
terı́stica de operação do receptor (ROC)). Em cada experiência, realizámos um método de
divisão estratificado de 70% treino e de 30% dos testes, sendo que a mesma divisão foi
utilizada em todas as experiências, incluindo na linha de base. A previsão da associação
na linha de base é expressa como um problema de classificação em que um valor de
semelhança semântica para um par gene-doença que exceda um determinado limiar in-
dica uma associação positiva. Para cada medida, foi escolhido um limiar após avaliação
da média ponderada das medidas F (para previsões positivas e negativas) em diferentes
limiares e seleção do máximo (valores no intervalo de 0 a 1).

Há vários fatores da metodologia proposta para as representações semânticas ricas que
podem ter impacto no desempenho da previsão da associação genes-doença, tais como a
riqueza semântica e a cobertura do domı́nio do knowledge graph, os métodos de kno-
wledge graph embedding, e os operadores utilizados para combinar os vetores do gene e
da doença. Dados estes fatores, há três aspetos importantes que precisam de ser conside-
rados ao elucidar o impacto do desempenho: (1) como combinar os vetores do gene e da
doença; (2) que métodos de knowledge graph embeddings são mais adequados para esta
tarefa; (3) qual é o impacto de considerar mais de uma ontologia.

De um modo geral, os resultados demonstraram que as incorporações de knowledge
graph embeddings quando acopladas a algoritmos de aprendizagem automática alcançam
um melhor desempenho do que as medidas de semelhança semântica. OPA2Vec alcança
os melhores resultados, em conjunto com Hadamard, e é também capaz de tirar partido da
integração de ontologias com uma pequena melhoria no desempenho. OPA2Vec gera um
corpus com um conjunto de axiomas afirmados e inferidos de uma ontologia, o conjunto
de axiomas de anotação envolvendo designações, descrições, sinónimos e criadores, e as
anotações do fenótipo genético e da doença. Ao incluir todas estas caracterı́sticas, esta é
uma causa provável para se apresentar como um algoritmo mais estável e bem sucedido
em relação aos outros.

No entanto, as nossas experiências revelam que as diferenças entre a utilização de uma
única ontologia ou a combinação de duas ontologias (Human Phenotype Ontology e Gene
Ontology) são comparativamente pequenas, independentemente de uma integração mais
rica utilizando definições lógicas. Uma possı́vel hipótese é o facto de que a informação
fornecida pelas definições lógicas não fornece informação adicional substancial compa-
rando com o que já está presente na Human Phenotype Ontology. Isto pode ser parci-
almente explicado pela existência de apenas 350 definições lógicas que ligam as duas
ontologias. Os próximos passos irão explorar técnicas de correspondência de ontologias
para criar definições lógicas adicionais e ligações entre ontologias, o que também nos per-
mitirá expandir as ontologias utilizadas para aquelas que não contêm definições lógicas
entre elas.
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viii



Contents

1 Introduction 1
1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Document Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 5
2.1 Ontologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Knowledge Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Related Work 13
3.1 Semantic Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Semantic Similarity for Classes . . . . . . . . . . . . . . . . . . 14
3.1.2 Semantic similarity for Entities . . . . . . . . . . . . . . . . . . 15

3.2 Knowledge Graph Embeddings . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.1 Matrix Factorization . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.2 Translational Distance . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.3 Semantic Matching . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.4 Path-based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.5 Deep Learning-based . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Gene-Disease Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.1 Non Ontology-Based approaches . . . . . . . . . . . . . . . . . 22
3.3.2 Ontology-Based approaches . . . . . . . . . . . . . . . . . . . . 23

4 Methodology 27
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.1 Gene-Disease associations . . . . . . . . . . . . . . . . . . . . . 27
4.2.2 Ontologies and Knowledge Graphs . . . . . . . . . . . . . . . . 29

4.3 Knowledge Graph Integration . . . . . . . . . . . . . . . . . . . . . . . 31

ix



4.4 Knowledge Graph Embeddings and Representation . . . . . . . . . . . . 32
4.5 Gene-Disease Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.6 Baseline and Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Results and Discussion 37
5.1 Baseline Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Rich Semantic Representations Performance . . . . . . . . . . . . . . . . 38

5.2.1 Comparison of Vector Combination Approaches . . . . . . . . . 38
5.2.2 Comparison of Knowledge Graph Embedding Methods . . . . . . 40
5.2.3 Comparison of different Knowledge Graphs . . . . . . . . . . . . 43
5.2.4 A case study on gene BACH2 and KPD disease . . . . . . . . . . 45

6 Conclusions 49
6.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

References 52

Appendices 63

A KGE Default Parameters 65

B Ten-fold Cross Validation 67

C Results for KGE Methods 69

x



List of Figures

2.1 Excerpt of a DAG representing the class GO:0031981 ”Nuclear Lumen”
and its anscestors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Structure and example of a triple from the GO. . . . . . . . . . . . . . . 7
2.3 Graph representation of an excerpt of GO and GO annotations regarding

the gene AKT1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Example of a logical definition of the class Human Phenotype ontology

class for “Hearing impairment” (HP:0000365). . . . . . . . . . . . . . . 8
2.5 Subgraph of the HP KG illustrating the relationships between genes and

diseases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Simple illustrations of TransE, TransH, and TransR extracted from Wang
et al. (2017). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Simple illustrations of RESCAL, DistMult and HolE extracted from Wang
et al. (2017). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Framework of DeepWalk and Node2Vec extracted from Hou et al. (2020). 20
3.4 Autoencoder architecture as a whole extracted from Abirami and Chitra

(2020). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 Overview of the methodology. . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 LD Simplification Process Example. . . . . . . . . . . . . . . . . . . . . 32

5.1 ROC curves and AUC values obtained for different vector operators with
RF classifier for the HP-simple + LD + GO. . . . . . . . . . . . . . . . 39

5.2 Precision and Recall for each KGE using eXtreme Gradient Boosting
(XGB) and Hadamard . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

xi





List of Tables

3.1 Summary of the representative methods . . . . . . . . . . . . . . . . . . 17

3.2 Scoring functions for each semantic matching approach. . . . . . . . . . 19

3.3 Summary of the existing work on ontology-based approaches. . . . . . . 24

4.1 Number of classes, branches and annotation data for the two ontologies. . 29

4.2 Choice of binary operators. . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Grid-Search parameters for the machine learning algorithms. . . . . . . . 34

4.4 Summary of SSMs used in the baseline. . . . . . . . . . . . . . . . . . . 35

5.1 WAF and AUC-ROC scores for optimal SSM performance with HP on-
tology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2 Comparison of vector combination operators . . . . . . . . . . . . . . . . 39

5.3 WAF scores for the competing combination of KGEs and vector opera-
tions for the different KGs using XGB. . . . . . . . . . . . . . . . . . . . 41

5.4 WAF scores for the combinations of KGE and machine learning algo-
rithms for the different KGs using the Hadamard operator. . . . . . . . . 43

5.5 Gene-disease association prediction of the pair BACH2-KPD made by
the best SSM and KGE method OPA2Vec with random forest and the KG
HP-simple + LD + GO. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

A.1 Default Parameters for the KGE. . . . . . . . . . . . . . . . . . . . . . . 65

B.1 Median of WAF scores obtained for RDF2Vec and OPA2VEC combined
with RF classifier and hadamard operator. The KG used was HP-simple
+ LD + GO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

C.1 WAF scores for RDF2Vec with the competing combinations of ML algo-
rithms and operators for the different KGs in a 70/30 split. In bold is the
best result possible in every KG. . . . . . . . . . . . . . . . . . . . . . . 69

C.2 WAF scores for OPA2Vec with the competing combinations of ML algo-
rithms and operators for the different KGs in a 70/30 split. In bold is the
best result possible in every KG. . . . . . . . . . . . . . . . . . . . . . . 70

xiii



C.3 WAF scores for Owl2Vec with the competing combinations of ML algo-
rithms and operators for the different KGs in a 70/30 split. In bold is the
best result possible in every KG. . . . . . . . . . . . . . . . . . . . . . . 71

C.4 WAF scores for DistMult with the competing combinations of ML algo-
rithms and operators for the different KGs in a 70/30 split. In bold is the
best result possible in every KG. . . . . . . . . . . . . . . . . . . . . . . 72

C.5 WAF scores for TransE with the competing combinations of ML algo-
rithms and operators for the different KGs in a 70/30 split. In bold is the
best result possible in every KG. . . . . . . . . . . . . . . . . . . . . . . 73

xiv



Acronyms

ABox Assertion Box.

ASD Autism Spectrum Disorder.

AUC-ROC Area Under the Receiver Operating Characteristic Curve.

BMA Best-Match Average.

BP Biological Process.

CC Cellular Component.

CS Cosine Similarity.

DAG Directed Acyclic Graph.

DO Disease Ontology.

GAF Gene Association File.

GO Gene Ontology.

GOA Gene Ontology Annotation.

HP Human Phenotype Ontology.

IC Information Content.

KG Knowledge Graph.

KGE Knowledge Graph Embeddings.

LD Logical Definitions.

Max Maximum.

MF Molecular Function.

MGI Mouse Genome Informatics.

ML Machine Learning.

MLP Multi-Layer Perceptron.

MPO Mammalian Phenotype Ontology.

NB Naı̈ve Bayes

xv



OBO Open Biomedical Ontology.

OMIM Online Mendelian Inheritance in Man.

OWL Web Ontology Language.

RDF Resource Description Framework.

RF Random Forest.

SS Similarity Score.

SSM Semantic Similarity Measure.

TBox Terminology Box.

TSV Tab-separated Values.

URI Uniform Resource Identifier.

WAF Weighted Average of F-measures.

XGB eXtreme Gradient Boosting.

XML Extensible Markup Language.

xvi



Chapter 1

Introduction

There are more than 1,400 Mendelian conditions (single genetic locus) whose molecular
cause is unknown (Amberger et al., 2014). In addition, almost all medical conditions are
somehow influenced by human genetic variation. Uncovering the genetic basis of diseases
remains an open challenge despite the tremendous advances in genomics of the past two
decades. Genomics studies and high-throughput experiments often produce large lists of
candidate genes, of which only a small portion is truly relevant to the disease, phenotype,
or biological process of interest.

Furthermore, most diseases present a highly heterogeneous genotype, which hinders
biological marker identification. Diseases like Autism Spectrum Disorder or Cardiovascu-
lar Disease that often have multiple etiologies with the involvement of possibly hundreds
of different genes represent an additional challenge (Asif et al., 2018). However, this
challenge also presents itself as an opportunity to understand the mechanisms of diseases
and human biology by exploring the interplay between genes, phenotypes, and diseases,
uncovering new diagnostic markers and therapeutic targets.

High-throughput experiments such as linkage studies, genome-wide association stud-
ies, and RNA interference screens generate a large amount of data that can point towards
associations between genes and diseases. However, a precise validation of these associ-
ations in the wet lab is expensive and time-consuming. This fostered the development
of computational approaches for predicting gene-disease associations and identifying the
most promising associations to be further validated. These approaches typically explore
diverse databases (e.g., OMIM, DisGeNet, dbSNP) and employ a diversity of computa-
tional approaches ranging from machine learning to network-based algorithms.

Opap and Mulder (Opap and Mulder, 2017) have identified three main challenges in
gene–disease associations:

1. how to represent the data in a readily accessible manner for researchers;

2. how to attribute evidence to assertions made by algorithms;

3. how to scale the algorithms with the rate of increase in data size and complexity.
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Chapter 1. Introduction 2

Methods that explore the scientific knowledge described in ontologies can provide an
answer to the first two challenges. Ontologies are formal and explicit specifications of a
conceptualization of a given domain. They provide a structured way to define concepts
and relations between them and have been used in the biomedical domain for the past
two decades to support a shared and computationally amenable description of biological
entities. Hundreds of ontologies have been developed, covering almost all domains of
biological and biomedical research. Biomedical ontologies have become increasingly
important to structure and describe existing biological knowledge and have propelled a
new panorama of semantic biomedical data, where millions of semantically described
biomedical entities are annotated with ontology concepts and structured in knowledge
graphs. Having data in a knowledge graph allows for a shared and semantically rich
representation of the data, and also allows encoding the evidence behind an assertion.

The third challenge is not directly addressed by ontologies and knowledge graphs,
however, ontologies and knowledge graphs can be explored by different algorithmic ap-
proaches that can tackle the challenges of data size and perhaps more importantly, com-
plexity.

There are several well-established works that explore semantic similarity algorithms
in the context of ontologies. Semantic similarity expresses the similarity between two
entities based on their shared meaning. For example, if both genes and diseases are anno-
tated under the same ontology (e.g. Human Phenotype Ontology (HP)), we can compare
them by comparing the classes (which in the case of HP describe phenotypes) with which
they are annotated. Semantic similarity provides a single score view of an association
between a gene and a disease.

Recently, more sophisticated approaches based on knowledge graph embeddings al-
low the representation of each entity with a vector that approximates the similarity prop-
erties of the graph (Wang et al., 2017) and can then be used either to compute similarity or
to feed a machine learning algorithm. Knowledge graph embeddings support in principal
more powerful representations that semantic similarity since that consider multiple types
of relations and are multi-dimensional. However, in a complex task such as predicting
gene-disease associations, employing a single graph with a single ontology may be insuf-
ficient, since multiple perspectives may be necessary for prediction, such as gene function
and phenotype.

1.1 Objectives

The main goal of this work is to investigate approaches to predict gene-disease asso-
ciations that explore the semantic richness of knowledge graphs. The work tackles se-
mantic richness from different perspectives: semantic similarity vs. knowledge graph
embeddings; one ontology vs. two ontologies; disconnected ontologies vs. linked on-
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tologies. Our guiding hypothesis is that richer representations, powered by knowledge
graph embeddings computed over multiple linked ontologies achieve a better predictive
performance than simpler approaches based on semantic similarity or knowledge graph
embeddings using a single ontology.

The work aims to answer three research questions:

1. RQ1: What are the advantages of knowledge graph embedding over semantic sim-
ilarity measures as a representation strategy?

2. RQ2: How can different knowledge graph embedding approaches be computed over
multiple biomedical ontologies to represent both genes and diseases as vectors?

3. RQ3: What is the impact of employing multiple ontologies and having logical links
between them?

We explore the Human Phenotype Ontology (Köhler et al., 2021) and the Gene On-
tology (Consortium, 2020; Ashburner et al., 2000), two of the most popular biomedical
ontologies, to represent gene and disease features in a shared semantic space that covers
both gene function and phenotypes.

1.2 Contributions

The main contributions of this dissertation are:

1. Development of a novel approach with a rich semantic representation through the
use of multiple ontologies and knowledge graph embedding methods prediction for
gene-disease associations.

2. Creation of an unbiased benchmark dataset for gene-disease association prediction.

3. Poster with the preliminary results presented in 6th LASIGE Workshop.

4. Poster with the preliminary results presented at the Bioinformatics Opens Days
2021.

5. Short paper and Poster with the main results presented at the 29th Conference on
Intelligent Systems for Molecular Biology and the 20th European Conference on
Computational Biology. The short paper was also published and being considered
for an extension on a special issue on the Journal of Biomedical Semantics.
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1.3 Document Structure

The present introductory chapter gives a contextualization for the problem at hand and
introduces the main objectives and contributions of this dissertation. The remaining five
chapters are organized as follows:

• Chapter 2 defines and explains the basic concepts vital for the understanding of the
problem itself, namely, ontologies, knowledge graphs, and machine learning.

• Chapter 3 presents methods in two relevant areas, semantic similarity and knowl-
edge graph embeddings, but also overviews the field of gene-disease association.

• Chapter 4 presents an overview of the methodology developed with a description
of the main tasks.

• Chapter 5 summarizes the results from the methodology implementation and dis-
cussion.

• Chapter 6 discusses the main conclusions and limitations of this work and indicates
some directions for future work.



Chapter 2

Background

2.1 Ontologies

An ontology is a technique or technology used to represent the knowledge about a domain,
by modeling concepts and the relationships between them, being that these relationships
describe the properties of those concepts (Bodenreider and Stevens, 2006). Ontologies are
thus semantic models for reality domains. Ontologies have two major components: (i) a
set of classes (concepts) that define the entities in a domain; and (ii) a set of semantic links
(relationships) between the classes that describe interactions between classes or properties
of classes. Ontologies often structure their classes and the relationships between them
as a Directed Acyclic Graph (DAG), where the classes are nodes and relationships are
edges. An example of an excerpt of a DAG of the Gene Ontology (GO), a very successful
biomedical ontology that describes the function of genes and gene products, is depicted
in Figure 2.1. The relations between classes can be structured in triples, as seen in Figure
2.2. Each class or property in an ontology is identified by a unique Uniform Resource
Identifier (URI) that is used to identify each component of a triple: subject, predicate, and
object. The predicate (e.g. ’is a’) denotes the relationship that exists between the subject
and the object.

Typically, ontologies are stored in files conforming to a specific file format, although
there are exceptions that are stored in custom-built infrastructures. Ontologies can be
represented in different underlying ontology languages:

• Resource Description Framework (RDF): is a simple language; its underlying
data structure is a labeled directed graph, and its only syntactic construct is the
triple that specifies the relation between the subject and the object via the predicate.
A set of triples is called an RDF graph and in order to facilitate the sharing and
exchanging of graphs on the Web, the RDF specification includes an Extensible
Markup Language (XML) serialization (Horrocks, 2008).

• Web Ontology Language (OWL): more powerful language consisting of a set of
axioms of 2 types: Terminology Box (TBox) and Assertion Box (ABox). TBox

5
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axioms define a hierarchy of classes and properties, but also restrictions as the dis-
jointness of two classes or characteristics of some properties. ABox assert facts
about concrete entities and are usually not included in an ontology definition (Hor-
rocks, 2008).

• Open Biomedical Ontology (OBO): compact language, readable by humans, and
easy to parse composed by a header and a stanza. The header describes generic
information about the ontology and each stanza enclosures the description and re-
lations of each ontology element (Golbreich et al., 2007).

Figure 2.1: Excerpt of a DAG representing the class GO:0031981 ”Nuclear Lumen” and
its anscestors. Created in BioRender.com

Open repositories such as the BioPortal (Whetzel et al., 2011) provide access to over
900 biomedical ontologies (dating august 2021) expressed in these various formats, with
scopes as diverse as the characterization of gene products (Gene Ontology) to phenotypic
abnormalities in human diseases (Human Phenotype Ontology).

The purposes that are supported by ontologies are diverse. The most straightforward
application of ontologies is to support the structured annotation of data. Semantic an-
notation is about assigning real-world entities in a domain to their semantic description
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Figure 2.2: Structure and example of a triple from the GO. Created in BioRender.com

(Kiryakov et al., 2004). Relying on ontology classes to annotate biomedical entities al-
lows automatic reasoning to be applied directly to them. Thus, the richer the ontology
is in relations between classes and the thorough the annotation is, the better captured the
semantic description of the entity will be (Stevens et al., 2004). In Figure 2.3 we can see
an example of using the Gene Ontology to annotate a protein.

Figure 2.3: Graph representation of an excerpt of GO and GO annotations regarding the
gene AKT1. Created in BioRender.com
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Ontologies can be used as a rich source of vocabulary for a domain of interest, pro-
viding a dictionary of names, synonyms, and interrelationships, thereby facilitating text
mining, intelligent searching, and unambiguous identification. When used in multiple in-
dependent contexts, such a common vocabulary can become additionally powerful. For
instance, a shared ontology allows the comparison and translation of entities from one
discipline to another such as between biology and chemistry, enabling interdisciplinary
tools that would be impossible computationally without a unified reference vocabulary
(Hastings, 2017).

To employ multiple ontologies for describing entities, we need to link them and many
biomedical ontologies have logical definitions that relate to classes from different ontolo-
gies with complex semantic relations. A recent approach of defining classes using logical
definitions is now increasingly being adopted as a method for facilitating interoperabil-
ity and data integration (Köhler et al., 2011). These can be explored to bridge domains
and contextualize relations between different entities, such as a gene and a disease. An
example of a logical definition is the Human Phenotype ontology class for “Hearing im-
pairment” (HP:0000365) that is equivalent to a restriction that involves four other ontolo-
gies, as depicted in Figure 2.4 allowing to create a bridge between them (this example is
explored again in section 4.3).

Figure 2.4: Example of a logical definition of the class Human Phenotype ontology class
for “Hearing impairment” (HP:0000365). The explanation for this logical definition is
’Hearing impairment’ EquivalentTo ’has part’ some (’decreased rate’ and (’inheres in’
some ’sensory perception of sound’) and (’has modifier’ some ’abnormal’)). Created in
BioRender.com
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2.2 Knowledge Graphs

Knowledge graphs structure and link data that is described using an ontology into a graph
(Paulheim, 2016). These graphs provide a conceptualization of a domain based on a
formal definition of its entities, that are described by associated ontological concepts, and
their relations.

Within the biomedical domain, Nicholson and Greene (2020) defined a knowledge
graph as a resource that integrates one or more expert-derived sources of information
into a graph where nodes represent biomedical entities and edges represent relationships
between two entities. In other words, the nodes of the knowledge graph are employed
in representing ontology classes and RDF statements subjects and objects, and edges
are employed in representing ontology classes relations and RDF statements predicates.
For example, the Human Phenotype Ontology and its associated annotations that link
diseases and genes to HP classes (phenotypes) and to other diseases or genes make up
a knowledge graph. An example of a portion of a knowledge graph is represented in
Figure 2.5, contextualized by the Human Phenotype Ontology and its annotations, where
diseases and genes are linked to HP classes and to other diseases and genes.

Knowledge graphs can help tackle many problems in the biomedical domain, based on
the ontological descriptions of the entities (Kulmanov et al., 2020b). For instance, finding
new treatments for existing drugs, aiding efforts to diagnose patients, and identifying
associations between diseases and genes.

2.3 Machine Learning

The exponential growth of biomedical data in recent years has urged the application of nu-
merous machine learning techniques to address emerging problems in biology and clinical
research. It is defined as a field in computer science that studies the use of computers to
simulate human learning by exploring patterns in the data and applying self-improvement
to continually enhance the performance of learning tasks (Auslander et al., 2021).

Traditional machine learning algorithms take as input a feature vector, which repre-
sents an object in terms of numeric or categorical attributes. The main learning task is
to learn a mapping from this feature vector to an output prediction of some form (Nickel
et al., 2016a). The algorithms can be divided into supervised and unsupervised learning
algorithms. Supervised learning algorithms learn to map input examples into their respec-
tive output (subsection 2.3.1 will deepen this category). Unsupervised learning algorithms
identify hidden patterns in unlabeled data.The advances made in machine learning over
the past decade transformed the landscape of data analysis.
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Figure 2.5: Subgraph of the HP KG illustrating the relationships between genes and dis-
eases. The green and blue nodes are the genes and diseases (biological entities), respec-
tively, and the black nodes are the HP classes (ontology concepts).

2.3.1 Supervised Learning

The most common form of machine learning, deep or not, is supervised learning. In
supervised learning, models are trained using a labeled dataset, where the model learns
about each type of data. Once the training process is completed, the model is tested on
the basis of test data (a subset of the training set), and then it predicts the output.

Supervised learning can be divided further into two categories of problem:

• Classification uses an algorithm to accurately assign test data into specific cate-
gories. It recognizes specific entities within the dataset and attempts to draw some
conclusions on how those entities should be labeled or defined. Common classi-
fication algorithms are linear classifiers, support vector machines, decision trees,
k-nearest neighbor, and random forest, etc.

• Regression is used if there is a relationship between the input variable and the out-
put variable. It is used for the prediction of continuous variables. Linear regression,
logistical regression, and polynomial regression are popular regression algorithms.

Machine learning methods have become a rapidly growing research area, redefining
the state-of-the-art performance for a wide range of fields. Given the rapid growth in the
availability of biomedical and clinical datasets in the past decades, these techniques can be
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expected to similarly transform multiple avenues of biomedical research, and indications
of their high efficacy are already accumulating (Auslander et al., 2021).

In this work, we focused on four different supervised learning algorithms: Random
Forest (RF) (Breiman, 2001), Gradient Boosting (Chen and Guestrin, 2016), Naı̈ve Bayes
(NB) (Friedman et al., 1997), and Multi-Layer Perceptron (MLP) (Rumelhart et al., 1986).

Random forest (Breiman, 2001) is a machine learning algorithm that utilizes ensem-
ble learning, which is a technique that combines many classifiers to provide solutions to
complex problems. It operates by constructing a multitude of decision trees at training
time. The decision tree is a hierarchical structure that is built using the features (or the
independent variables) of a dataset. This algorithm establishes the outcome based on the
predictions of the decision trees and predicts by taking the average or mean of the output
from various trees.

Gradient boosting (Chen and Guestrin, 2016) is a machine learning algorithm, used
for both classification and regression problems, which produces a prediction model in
the form of an ensemble of weak prediction models, typically decision trees. When a
decision tree is a weak learner (i.e shallow tree), the resulting algorithm is called gradient
boosted trees, which usually outperforms random forest. XGB is an open-source library
that provides an efficient and effective implementation of the gradient boosting algorithm.

Naı̈ve Bayes classifier (Friedman et al., 1997) is a probabilistic machine learning
model based on Bayes’ Theorem with an assumption of independence among predictors.
In simple terms, it assumes that the presence of a particular feature in a class is unrelated
to the presence of any other feature.

Multi-Layer Perceptron (Rumelhart et al., 1986) is a type of feed-forward artificial
neural network. It consists of three types of layers—the input layer, output layer and
hidden layer. The input layer receives the input signal to be processed. The required
task such as prediction and classification is performed by the output layer. An arbitrary
number of hidden layers that are placed in between the input and output layer are the
true computational engine of the MLP. This algorithm is designed to approximate any
continuous function and can solve problems which are not linearly separable. The major
use cases of MLP are pattern classification, recognition, prediction and approximation.





Chapter 3

Related Work

This chapter presents methods in two relevant areas, semantic similarity and knowledge
graph embeddings, and overviews the field of gene-disease association prediction with a
focus on ontology and knowledge-graph based approaches.

3.1 Semantic Similarity

A semantic similarity measure is a function that, given two ontology classes or two sets
of classes annotating two entities, returns a numerical value reflecting the closeness in
meaning between them (Pesquita et al., 2009). The meaning of the classes being com-
pared is automatically extracted from the ontologies. In the case of Human Phenotype
Ontology (Köhler et al., 2021) and HP annotations, semantic similarity can be calculated
between two entities each annotated with a set of HP classes, for instance calculating the
similarity between two diseases through their phenotypes, two genes or even a gene and
a disease. In other words, when biological entities are described using a common schema
provided by an ontology, they can be compared by means of their semantic annotations.

Semantic similarity measures can be used as unsupervised methods for association
prediction based on a threshold (Cáceres and Paccanaro, 2019; Wu et al., 2008), as fea-
tures in supervised learning models (Sousa et al., 2020) or in clustering algorithms (Sun
et al., 2011). Ontology-based similarity measures have been applied to a variety of pre-
diction processes such as protein-protein interactions (Maetschke et al., 2011; Liu et al.,
2018), gene-disease associations (Liu et al., 2018; Li et al., 2014) and is also useful to
diagnose patients, determining sequence similarity, or evaluating computational methods,
which predict ontology class annotations (Kulmanov et al., 2020b).

Most state-of-the-art methods are categorized as taxonomic (hierarchical) semantic
similarity. Taxonomic semantic similarity also commonly known as ontology-based se-
mantic similarity, compares ontology entities based on the taxonomic relations within the
ontology graph (d’Amato et al., 2008).

The approaches used to quantify semantic similarity can be distinguished based on

13
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which entities they intend to compare: approaches for comparing two classes and ap-
proaches for comparing two entities annotated with its own set of classes (Pesquita et al.,
2009).

3.1.1 Semantic Similarity for Classes

For comparing classes there are two types of approaches:

• Edge-based: rely on counting the number of edges in the graph path between two
classes. The most common technique is by calculating the distance where selects
either the shortest path or average of all paths when more than one path exists. Other
possible technique is the common path, through the length of the lowest common
ancestor of the two classes to the root node. These approaches assume that the dis-
tance between all the relationships in an ontology is constant or depth-dependent.
This assumption is not valid in existing biomedical ontologies so edge-based mea-
sures are rarely used in the biomedical domain.

• Node-based: depend on comparing the properties of the classes involved, which
can be related to the classes themselves, their ancestors, or their descendants. They
typically rely on the Information Content (IC) of a class which gives a measure of
how informative or, rather, specific a class is. The IC can be calculated through the
graph structure (intrinsic approach) or the number of annotations a class is used on
(extrinsic approach).

Node-based measures are more commonly employed, since they do not suffer the
limitations of edge-based methods. A crucial aspect of node-based measures is the calcu-
lation of information content. Two popular IC measures are Resnik (Resnik, 1995) and
Seco (Seco et al., 2004).

ICResnik is a corpus-based approach to compute information content proposed by
Resnik (1995) and based on the number of entities annotated with class h in the knowledge
graph, which is given by:

ICResnik(h) = −log p(h) (3.1)

where p(h) is the probability of annotation in the corpus.
ICSeco, proposed by Seco et al. (2004), is a structure-based approach based on the

number of direct and indirect children from a class h and is given by:

ICSeco(h) = 1− log[hypo(h)] + 1

log[maxnodes]
(3.2)

where hypo(h) is the number of direct and indirect children from class h, including class
h, and maxnodes is the total number of classes in the ontology.
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A popular class similarity measure is Resnik’s similarity (Resnik, 1995) in which
the similarity between two classes corresponds to the Information Content of their most
informative common ancestor:

sim(e1, e2) = max{IC(e)) : e ε{A(e1) ∩ A(e2)}} (3.3)

where e is a class in A(ei), the set of ancestors of ei.

3.1.2 Semantic similarity for Entities

Calculating semantic similarity for two entities, each annotated with a set of classes, usu-
ally uses one of two approaches:

• Pairwise: measure functional similarity between two entities by combining the
semantic similarities between their classes.

• Groupwise: set, vector or graph-based measures are employed. In set measures
only direct annotations. In graph approaches entities are represented as the sub-
graphs of the ontology corresponding to all their annotations (direct and inherited).
In vector approaches an entity is represented in vector space, with each class corre-
sponding to a dimension.

Both pairwise and groupwise measures have been shown to work well in different
scenarios (Pesquita et al., 2009).

Popular pairwise measures are the Best-Match Average (BMA) and the Maximum
(Max). BMA and Max are pairwise approaches that can work with class-based measures.
The Max simply takes the maximum similarity between all annotating classes of two
entities.

Max(e1, e2) = max{sim(e1, e2) : h1 ε HP (e1), h2 ε HP (e2)} (3.4)

BMA considers the best scoring pairs of classes from each entity.

BMA(e1, e2) =
Σh1εHP (e1)sim(h1, h2)

2|HP (e1)|
+

Σh2εHP (e2)sim(h1, h2)

2|HP (e2)|
(3.5)

where HP (ei) is the number of annotations for entity ei and sim(e1, e2) is the semantic
similarity between the HP class h1 and HP class h2

SimGIC is a popular groupwise measure proposed by Pesquita et al. (2007) which
resorts to a Jaccard similarity, in which each HP term is weighted by its IC and given by

simGIG(e1, e2) =
Σhε{HP (e1)∩HP (e2)}IC(h)

Σhε{HP (e1)∪HP (e2)}IC(h)
(3.6)

where HP (hi) is the set of annotations (direct and inherited) for entity ei.
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3.2 Knowledge Graph Embeddings

An embedding is a vector representation resulting from the use of semantic information
mapping techniques (Ristoski and Paulheim, 2016b). Knowledge graph embeddings aim
to represent represent concepts and relationships in a graph as low dimensional vectors
while the graph structures are preserved. Knowledge graph embeddings can be used as
features for machine learning, but they can also support similarity computation through
vector similarity operations such as the cosine similarity.

There are a variety of methods for building knowledge graph embeddings (Cai et al.,
2018). While some focus on exploring the knowledge graph facts solely, others also
include additional information, such as entity types, relation paths, axioms, and rules or
textual information, and more recently, path-based approaches have been proposed by
transforming the knowledge graph into node sequences (Ristoski and Paulheim, 2016a).

The categorization of knowledge graph embedding methods is still not widely agreed
upon, with different works recognizing different categories. While Wang et al. (2017)
considers matrix-factorization, translational distance, semantic matching, deep learning-
based, Makarov et al. (2021) considers matrix factorization, deep learning and random
walks. Table 3.1 overviews all categories and provides examples of works from each of
them. However, the random walk category was expanded to include path-based methods
that do not employ random walks, and renamed accordingly.

The following sections briefly explain each of the categories characteristics and pro-
vide a summary of representative approaches for each category.

3.2.1 Matrix Factorization

In the early 2000s, graph embedding methods were mostly designed to reduce the high
dimensionality of the non-relational data by assuming the data lie in a low dimensional
manifold, in other words, were mainly matrix factorization based. They represent a graph
property (e.g., pairwise node similarity, node transition probability matrix, etc.) in the
form of a matrix and factorize this matrix to obtain an embedding (Cai et al., 2018).
Locally linear embedding (Roweis and Saul, 2000) and IsoMap (Tenenbaum et al., 2000)
were the pioneering studies.

Locally linear embedding learns node similarity by reconstructing weights matrix W
with which neighboring nodes affect each other and the possibly attributed features X ,:∥∥X −W TU

∥∥2

2
(3.7)

and repeats that procedure to learn manifold U with achieved matrix W (Makarov et al.,
2021).

The IsoMap algorithm is based on graph Laplacian eigenmaps. IsoMap finds the
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Table 3.1: Summary of the representative methods. In bold the methods used in this work.

Category Method Reference

Matrix Factorization
Locally linear embedding Roweis and Saul (2000)

IsoMap Tenenbaum et al. (2000)

Translational Distance

TransE Bordes et al. (2013)
TransH Wang et al. (2014)
TransR Lin et al. (2015)
TransD Ji et al. (2015)

TranSparse Ji et al. (2016)
KG2E He et al. (2015)

Semantic Matching

RESCAL Nickel et al. (2011)
DistMult Yang et al. (2015)

HolE Nickel et al. (2016b)
CompleEx Trouillon et al. (2016)

Deep learning
SDNE Wang et al. (2016)
DNGR Cao et al. (2016)

Path-based

DeepWalk Perozzi et al. (2014)
Node2Vec Grover and Leskovec (2016)
RDF2Vec Ristoski and Paulheim (2016a)
Onto2Vec Smaili et al. (2018)
OPA2Vec Smaili et al. (2019)
OWL2Vec Chen et al. (2021)

shortest path between two nodes and applies Metric Multidimensional Scaling by incor-
porating the geodesic distances imposed by a weighted graph (Makarov et al., 2021).

IsoMap and locally linear embedding were proposed to model global structure while
preserving local distances or sampling from the local neighborhood of nodes. The lower
bound for methods complexity was quadratic in the number of vertices being inappropri-
ate for large networks.

3.2.2 Translational Distance

Translational Distance embeddings methods exploit distance-based scoring functions be-
ing that each fact represents the distance between the two entities, usually after a transla-
tion carried out by the relation (Wang et al., 2017). The considered methods were TransE
(Bordes et al., 2013), TransH (Wang et al., 2014), TransR (Lin et al., 2015), TransD (Ji
et al., 2015), TranSparse (Ji et al., 2016) and KG2E (He et al., 2015).

TransE is the most representative translational distance model by representing both
entities and relations as vectors in the same space.

Given a fact (h, r, t), the relation is interpreted as a translation vector r so that the
embedded entities h and t can be connected by r with h+ r ' t when (h, r, t) holds. The
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scoring function is then defined as the (negative) distance between h+ r and t:

fr(h, t) = −‖h+ r − t‖ 1
2

(3.8)

Despite its simplicity and efficiency, a drawback of TransE is that it cannot deal well
with one-to-many, many-to-one and many-to-many relations. To address this challenge,
there are other extensions like TransH and TransR. Figure 3.1 (Wang et al., 2017) gives a
comparison between TransE, TransH, and TransR.

TransH introduces a hyperplane for each relation r (relation-specific hyperplane) and
projects h and t into the hyperplane. TransH models entities again as vectors, but each
relation r as a vector r on a hyperplane with wr as the normal vector.

TransR shares a very similar idea with TransH but introduces a space for each relation
r (relation-specific space), rather than hyperplanes. In TransR, entities are represented
as vectors in an entity space, and each relation is associated with a specific space and
modeled as a translation vector in that space.

TransD and TranSparse simplify TransR: TransD simplifies by further decomposing
the projection matrix into a product of two vectors; TranSparse simplifies by enforcing
sparseness on the projection matrix.

Figure 3.1: Simple illustrations of TransE, TransH, and TransR extracted from Wang et al.
(2017).

The five methods introduced model entities and relations as deterministic points in
vector spaces. Other works take into account their uncertainties, and model them as ran-
dom variables. For instance, KG2E uses multivariate Gaussian distributions to drawn
vectors to represents entities and relations.

3.2.3 Semantic Matching

Semantic Matching embedding methods exploit similarity-based scoring functions by
matching latent semantics of entities and relations embodied in their vector space rep-
resentations (Wang et al., 2017; Su et al., 2020). Table 3.2 shows the scoring functions of
the four semantic matching approaches.
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Table 3.2: Scoring functions for each semantic matching approach.

Model Scoring Function
RESCAL hTMrt
DistMult hTdiag(r)t
HolE rT (h ∗ t)
ComplEx Re(hTdiag(r)t)

RESCAL was proposed based on the idea that entities are similar if connected to
similar entities via similar relations. By associating each relation r with a matrix Mr, it
defines the energy function by a bilinear model

(h, r, t) = htMrt (3.9)

where h, t ε Rd are d-dimensional (d � n) embedding vectors for entities h and t,
respectively. RESCAL jointly learns embedding results for entities by h and t and for
relation by Mr.

DistMult simplifies RESCAL by restricting matrixMr for relation r as a diagonal ma-
trix. Though DistMult is more efficient than RESCAL, it can only deal with the undirected
networks. To address this problem, HolE composes h and t by their circular correlation.
Consequently, the power of RESCAL and simplicity of DistMult are inherited by HolE.
Figure 3.2 (Wang et al., 2017) provides a comparison between these three approaches.

Figure 3.2: Simple illustrations of RESCAL, DistMult and HolE extracted from Wang
et al. (2017).

ComplEx extends DistMult by introducing complex-valued embeddings to better han-
dle various asymmetric relations. In ComplEx, entity and relation embeddings h, r, t no
longer lie in a real space but in a complex space instead.

3.2.4 Path-based

Motivated by drawbacks of the matrix factorization approach (section 3.2.1), another ap-
proach emerged that attempts to preserve local neighborhoods of nodes and their proper-
ties based on paths (random and non-random walks) (Makarov et al., 2021).

In graph theory, random walks can be explored to capture structural relationships be-
tween nodes (Su et al., 2020). A graph is transformed into node sequences by performing
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truncated random walks, which preserve the structural proximity of the network. After
representing a graph as a set of random walk paths sampled from it, natural language
methods, such as Word2vec (Mikolov et al., 2013), can be applied to the sampled paths
for graph embedding, which preserves graph properties carried by the paths.

DeepWalk utilizes short random walks to extract information from a graph by generat-
ing a sequence of vertices corresponding to a sentence in natural language. Specially, they
adopt the SkipGram, a famous deep model for neuro-linguistic programming, that embeds
words into a low dimensional space by incorporating the context of words in sentences.
Finally, DeepWalk utilizes hierarchical softmax to reduce computational complexity by
transforming the nodes into a huffman tree (Hou et al., 2020).

Node2Vec explores the original graph through ‘biased’ random walks and therefore
can force walks to remain within a certain distance of the origin node or explore further
away (Kulmanov et al., 2020a). Similar to the DeepWalk, Node2Vec turns the embedding
problem into maximizing the probability of finding the co-occurrence neighbor vertices
by utilizing the SkipGram. Also, the negative sampling method is leveraged to solve the
high computational complexity by regarding the neighborhood nodes ’negative sampling’.

Compared to DeepWalk, Node2Vec (Grover and Leskovec, 2016) introduces a more
flexible random walk strategy. In Figure 3.3 is depicted an overview of the framework of
these two approaches (Hou et al., 2020).

Figure 3.3: Framework of DeepWalk and Node2Vec extracted from Hou et al. (2020).

RDF2Vec (Ristoski and Paulheim, 2016a) adapts Node2Vec strategy to RDF graphs.
Unlike DeepWalk and Node2Vec, that are defined for graphs with just one type of edges,
RDF2vec has been tailored to RDF graphs by respecting the type of edges, enriching the
learning approach’s semantics. This method also relies on Word2Vec, used for producing
the embeddings.

OWL2Vec (Chen et al., 2021) computes embeddings for ontologies by projecting the
ontology axioms into a graph and performing random walks over the ontology graph to
create a corpus of sentences. This corpus is then given to Word2Vec language model, to
create concept embeddings. It encodes the semantics of an OWL ontology by taking into
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account its graph structure, lexical information and logical constructors.
Moving on to non-random walk methods, Onto2Vec (Smaili et al., 2018) also uses

language modeling approaches, generating embeddings for ontology classes and instances
taking into account the logical axioms that define the semantics of ontology classes. It
takes an ontology as input, uses a reasoner to infer additional logical axioms, mainly
subclass axioms between named classes, then treats each asserted or inferred axiom as a
sentence and embeds the set of axioms using the Word2Vec language model. This allows
Onto2Vec to embed ontologies directly based on their axioms while considering all axiom
types, no matter how complex they are (Kulmanov et al., 2020a).

OPA2Vec (Ontologies Plus Annotations to Vectors) (Smaili et al., 2019) extends the
Onto2Vec method to include logical axioms and annotation properties. Annotation prop-
erties in biomedical ontologies provide labels, synonyms, definitions, and other types of
information about classes and instances in ontologies. It combines the corpus generated
from the asserted and inferred logical axioms in Onto2Vec with a corpus generated from
all or selected annotation properties. Then applies a Word2Vec skipgram model on the
combined corpus to generate vector representations of all entities in the ontology. In par-
ticular, a pre-train of the Word2Vec model occurs on all PubMed abstracts so that natural
language words are assigned a semantics (and vector representation) based on their use in
biomedical literature.

3.2.5 Deep Learning-based

Over the past years, deep learning methods have shown impressive improvement across
diverse domains (Cai et al., 2018; Makarov et al., 2021). Due to its robustness and effec-
tiveness, deep learning has been widely used in graph embedding.

A deep autoencoder is a deep learning algorithm that constitutes of two symmetrical
deep-belief networks, autoencoder and decoder, with four or five shallow layers, as de-
picted in Figure 3.4 (Abirami and Chitra, 2020). The autoencoders belong to the neural
network family. The aim of an autoencoder is to learn a lower-dimensional representation
for a higher dimensional data, typically for dimensionality reduction. Both encoder and
decoder contain multiple non-linear functions. The encoder compresses the input data
into a representation space and the decoder reconstructs the data back from its encoded
form (reconstruction space).

The idea of adopting autoencoder for graph embedding is similar to matrix factoriza-
tion (section 3.2.1) in terms of neighbourhood preservation. Specifically, the adjacency
matrix captures a node’s neighbourhood. If the autoencoder’s input is the adjacency ma-
trix, the reconstruction process will make the nodes with similar neighbourhood have
similar embedding.

SDNE (Wang et al., 2016) and DNGR (Cao et al., 2016) use deep autoencoder to cap-
ture non-linearity in graphs and simultaneously apply dimension reduction for construct-
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Figure 3.4: Autoencoder architecture as a whole extracted from Abirami and Chitra
(2020).

ing graph embedding. Both methods use global information and thus are not appropriate
for large networks. SDNE use autoencoder preserving first order proximity and Lapla-
cian Eigenmaps for penalizing long distances for embedding vectors of similar vertices.
DNGR uses stacked denoising autoencoders over positive pointwise mutual information
matrix obtained from similarity information based on random surfing. The random surfing
model is inspired by the PageRank model (Chebolu and Melsted, 2008).

3.3 Gene-Disease Prediction

The past decades have witnessed the development of several algorithms to predict gene-
disease associations. In this work, we categorize them into two types of approaches: those
that do not employ ontologies, and those that do.

3.3.1 Non Ontology-Based approaches

The majority of gene-disease prediction methods train a machine learning classifier with
various types of features extracted from different kinds of data (Mordelet and Vert, 2011;
Yang et al., 2012; Singh-Blom et al., 2013; Luo et al., 2019b,a). Since the features are
collected for genes, these algorithms are usually single task, which means they can only
predict disease genes for a specific disease. Thus, these approaches struggle with diseases
that have few or no known associated genes, because the number of the genes would be
too small to train the model. Moreover, the relationships between diseases are generally
not used in the prediction since only one disease is considered at a time.
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Matrix completion methods address these issues by jointly predicting gene-disease
associations and leveraging disease similarities during calculation (Zeng et al., 2017a).
Natarajan and Dhillon (2014) collected the gene–phenotype association’s studies in eight
species with phenotypes from Online Mendelian Inheritance in Man (OMIM) and if two
genes have similar phenotype features, it indicates two genes are associated with a sim-
ilar set of phenotypes across different species. Zeng et al. (2017b) also used pheno-
type–phenotype similarity to prioritize novel gene–phenotype associations. However,
these methods generally have difficulties in finding a global optimal solution and can
take a very long time to converge.

There are also studies that have tackled this challenge via a network-based approach,
motivated by the observation that genes causing the same or similar diseases tend to lie
close to one another in a network of protein-protein or functional interactions. Centrality
indices, random walk, and network energy are used in many methods to predict disease-
gene associations (Köhler et al., 2008; Chen et al., 2014a,b). Although most network-
based methods are unaffected by the lack of known genes for a particular disease, their
performance is strongly affected by the quality of networks, and they generally perform
worse than machine learning-based methods on diseases with many known associated
genes (Chen et al., 2015, 2016).

3.3.2 Ontology-Based approaches

Table 3.3 provides an overview of several methods that explore ontologies or knowledge
graphs to predict gene-disease associations.

There are works in this area that use only one ontology and take advantage of classical
semantic similarity measures such as Asif et al. (2018). This author showed that machine
learning classifiers trained on gene functional similarities, using Gene Ontology, can im-
prove the identification of genes involved in complex diseases as was applied to autism
spectrum disorder.

We also encounter methods that for the learning process use several types of networks
as data. Luo et al. (2019c) proposed dgManifold to predict disease-gene associations
with manifold learning regularized by two similarity networks: gene similarity calculated
based on the Gene Ontology and disease similarity based on Human Phenotype Ontology.
This method was evaluated in Lung Cancer and Bladder Cancer. Vanunu et al. (2010) pre-
sented a novel network-based approach for predicting causal genes and protein complexes
that are involved in a disease of interest (Prostate Cancer, Alzheimer or type 2 Diabetes
Mellitus) and explored the Gene Ontology for manually annotated protein complexes.
Both these authors applied their method to analyze disease-gene association data from
the OMIM knowledgebase.

Network fusion algorithms combine different sources of information on both genes
and diseases and provide a universal ranking of associations for any disease gene pairs.
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Table 3.3: Summary of the existing work on ontology-based approaches.The abbrevia-
tions used in this table are defined at the beginning of the document (acronyms).

Reference Ontology Data Task Method

Vanunu et al. (2010) GO OMIM

Single disease
(prostate cancer,

alzheimer
and type 2

diabetes mellitus)

Similarity
networks

Robinson et al. (2014) HP, MPO OMIM
Mutiple
diseases

Taxonomic SS

Alshahrani et al. (2017) GO, HP, DO DisGeNET
Multiple
diseases KGE

Asif et al. (2018) GO
SFAR

Gene Database
Single disease

(ASD)
Taxonomic SS

Zakeri et al. (2018) GO, HP OMIM
Single disease

(Diseases of the
nervous system )

Matrix
Factorization

Luo et al. (2019c) GO, HP OMIM
Single disease

(Lung Cancer and
Bladder Cancer)

Similarity
networks

Smaili et al. (2019) PhenomeNET MGI Database
Multiple
diseases KGE

Shu et al. (2021) Human DO OMIM
Multiple
diseases

Taxonomic SS

Robinson et al. (2014) developed a cross-species analysis approach that allows computa-
tional reasoning where a phenotypic relevance score is calculated based on the semantic
similarity of human disease (annotations from the Human Phenotype Ontology) and the
phenotypic manifestations observed in a mouse model (annotations from the Mammalian
Phenotype Ontology (MPO)).

Another type of approach implementing the same intuition tries to model this problem
as a recommender system, in which diseases and genes represent customers and products,
respectively. Zakeri et al. (2018) presents a gene prioritization method that can innova-
tively not only integrate data sources describing genes like Gene Ontology, but also data
sources describing Human Phenotype Ontology classes. The proposed method offers
promising results on several types of diseases including diseases of the nervous system.

More recently, the limitations of semantic similarity-based approaches have begun to
be tackled by more sophisticated approaches based on knowledge-graph embeddings.
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Recent advances in knowledge graph embeddings such as OPA2Vec (Smaili et al.,
2019), an extension of Onto2Vec (Smaili et al., 2018), generate vector representations
of biological entities in ontologies by combining formal ontology axioms and annota-
tion axioms from the ontology metadata and applied the approach to a single ontology,
PhenomeNET (Hoehndorf et al., 2011; Rodrı́guez-Garcı́a et al., 2016). This ontology is a
system for prioritizing candidate disease genes based on the phenotype similarity between
a disease and a database of genotype-phenotype associations.

Alshahrani et al. (2017) employed knowledge graph embeddings over a knowledge
graph based on three ontologies, the Gene Ontology, the Human Phenotype Ontology,
and the Disease Ontology (DO). This approach also utilizes structured data sources such
as human protein interactions, protein-chemical interactions, drug side effects and gene-
disease associations. It applies automated reasoning to enrich the graph with inferred
relations and employs a random-walk embedding approach. The application of this work
to gene-disease association prediction presents some challenges regarding data leakage.
DisGeNet (Piñero et al., 2019) includes gene-disease associations extracted from multiple
sources including OMIM and OrphaNet, which are the same sources used to create some
of the HP annotations.

Overall, these works are limited in their use of the ontologies, because they mostly
employ a single ontology, and when they employ more than one, they are included in the
graph without considering semantic links between them.





Chapter 4

Methodology

This chapter gives a detailed explanation of the proposed methodology and is organized as
follows. Section 4.1 gives a general overview of the several steps into our approach. Sec-
tion 4.2 explains how the gene-disease associations were chosen to create a final dataset
to analyze our methodology (section 4.2.1) but also what ontologies and annotations were
used to enrich the knowledge graphs (section 4.2.2). Sections 4.3 to 4.6 provide a closer
look into the methodology showing how the prediction was realized and evaluated but
also how the baseline of comparison was created.

4.1 Overview

The methodology proposed in this work can be divided into four main steps as depicted in
Figure 4.1. The first step in the approach is to integrate the different ontologies and anno-
tation data to build the knowledge graph. In a second step, the embeddings that represent
the gene and the disease according to their annotations in different knowledge graphs are
created. In a third step, these embeddings are combined using different vector operators
producing a representation of genes and diseases in what is effectively a shared seman-
tic space. Finally, in a fourth step, supervised learning algorithms are trained over the
combined embeddings to predict gene-disease associations. This approach is evaluated
against non-machine learning approaches based on classical semantic similarity measures
(baseline) and knowledge graph embedding similarity.

4.2 Data

4.2.1 Gene-Disease associations

Obtained 84038 curated gene-disease associations (dated july 2020) from DisGeNET - a
discovery platform that contains a comprehensive catalog of genes and variants associated
with human diseases (Piñero et al., 2019). These pairs were formed from 9703 genes and

27
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Figure 4.1: Overview of the methodology with four basic steps: 1) build the KG with
ontologies and annotations; 2) create embeddings to represent each gene and disease; 3)
produce a final vector of the pairs in the dataset; 4) gene-disease association prediction.
Created in BioRender.com

11181 diseases, being that the medium number of genes by each disease were two as well
as the medium number of diseases by each gene.

The goal of predictive modeling is to develop a model that makes accurate predictions
on new data, unseen during training. However, there are problems, such as data leak-
age, that can create overly optimistic if not completely invalid predictive models. Data
leakage is when information from outside the training dataset is used to create the model
(Kaufman et al., 2011). This additional information can allow the model to learn or know
something that it otherwise would not know and in turn invalidate the estimated perfor-
mance of the model being constructed. To avoid this problem the original pairs from
DisGeNET suffered a process of filtration and only associations whose original source
reporting the gene-disease association did not rely on the databases Uniprot (Consortium,
2019), OMIM (Amberger et al., 2014), or Orphanet (Wakap et al., 2019) was chosen. The
reason for this decision is because in the process of constructing the knowledge graph
the annotation data for the pairs (presented in section 4.2.2) also rely on these sources and
would have enhanced the performance. After this process remained a total of 73469 pairs,
composed of 8545 genes and 6490 diseases.

To have accurate annotations for all the pairs, they were filtered and excluded if they
did not correspond to one of these three criteria:

(i) the genes must have correspondence with a protein from Uniprot that is annotated
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with GO classes;
(ii) the genes must be annotated with HP classes;

(iii) the diseases must be annotated with HP classes.
A total of 2716 genes, 1807 diseases, and 8189 gene-disease associations remained in

the dataset. Taking into consideration that that negative samples are not included in Dis-
GeNET, we employed a random sampling method to create negative examples composed
of the genes and diseases present in the positive examples, but without known associations
between them, building a final balanced dataset with 16378 entries.

4.2.2 Ontologies and Knowledge Graphs

The knowledge graphs used in this work (described in section 4.3) are composed of one or
two ontologies and their associated annotations. The process of selecting the ontologies
prioritizes the capacity to provide formal knowledge for the pairs in the final dataset to
enrich the final knowledge graph. Two of the most popular biomedical ontologies were
chosen: Human Phenotype Ontology and Gene Ontology. In Table 4.1, we summarized
the information regarding the ontologies and annotations used.

Table 4.1: Number of classes, branches and annotation data for the two ontologies.

Human Phenotype Ontology Gene Ontology
Classes 15340 44117

Branches

Phenotypic Abnormality: 15149
Mode of Inheritance: 31

Frequency: 6
Clinical Course: 48

Clinical Modifier: 106

Cellular Component: 4185
Biological Process: 28769
Molecular Function: 11163

Logical
Definitions

350 —

Gene
Annotations

136068 76161

Disease
Annotations

40583 —

The Human Phenotype Ontology provides comprehensive bioinformatic resources for
the analysis of human diseases and phenotypes, offering a computational bridge between
genome biology and clinical medicine (Köhler et al., 2021). It is organized as independent
subontologies that cover different categories, being “Phenotypic Abnormality” the largest
one. The ”Mode of inheritance” describes the relationship between patients or diseases
and their symptoms. The ”Mortality/Aging” similarly allows the age of death typically
associated with a disease or observed in a specific individual to be annotated. Finally,
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“Clinical Modifier” is designed to characterize and specify the phenotypic abnormalities
defined in the “Phenotypic Abnormality” subontology (Köhler et al., 2019). The main
domain application of the Human Phenotype Ontology has, to date, been on rare disor-
ders, and has in the past provided a large corpus of disease-HP annotation profiles using
OMIM, Orphanet and DECIPHER for disease entities (Köhler et al., 2014). The Human
Phenotype Ontology can be used to annotate both patients, diseases, or human genes. In
the latter case, all phenotype classes associated with any disease that is associated with
variants in a gene are assigned to that gene.

In terms of annotations data, the Human Phenotype Ontology graph (dated October
2020) was collected from the Human Phenotype Ontology website1 in OWL format and
contains 27391 ontology classes. The HP annotations were downloaded from the Human
Phenotype Ontology website in a Tab-separated Values (TSV) file (dated October 2020),
providing links between genes or diseases to HP classes (Köhler et al., 2021).

Gene Ontology is the most successful case of the use of an ontology in biomedical
research and it is used for the annotation of gene products. All functional knowledge
is structured and represented in a form amenable to computational analysis, which is
essential to support modern biological research. This ontology is structured using a formal
ontology, by defining classes of gene functions (GO classes) that have specified relations
to each other (Consortium, 2020). It covers three distinct aspects of gene function:

• Cellular Component (CC) - refers to the cellular location where a gene product is
active.

• Biological Process (BP) - refers to a biological objective to which the gene or gene
product contributes.

• Molecular Function (MF) - is defined as the biochemical activity (including specific
binding to ligands or structures) of a gene product.

The Gene Ontology graph was collected from the Gene Ontology website2 (dated De-
cember 2020) in OWL format and contains 44117 ontology classes subdivided into 4185
CC classes, 28769 BP classes, and 11163 MF classes. The annotations were downloaded
from the Gene Ontology Annotation (GOA) database (dated 11 August 2020) for the hu-
man species (Huntley et al., 2014) in Gene Association File (GAF) 2.1 format. These
annotations link Uniprot (Consortium, 2019) identifiers for proteins with GO classes de-
scribing them. The genes, identified by their Entrez Gene Code, are associated with the
proteins and, the final annotations provide links between the genes and the GO classes.

1https://hpo.jax.org/app/
2http://geneontology.org/
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4.3 Knowledge Graph Integration

The essence of a knowledge graph is the entities, the ontologies, and associated links
between them. To build the different knowledge graphs employed in this work, several
strategies needed to be employed due to the different inputs accepted by the embeddings
implementations. A first step was to merge the Human Phenotype Ontology and Gene On-
tology through a common virtual root and save into an OWL file because both OWL2Vec
and OPA2Vec methods only accepted a single ontology file with a single root. This was
achieved by using the RDFlib 3 library. RDFLib contains parsers for most of the known
RDF serializations, including RDF/XML (OWL). For RDF2Vec, DistMult, and TransE,
both ontologies graphs also needed to be integrated into the same file. In terms of the
entities annotations, only OPA2Vec is able to process annotation files separately from the
ontology graph. For RDF2Vec, DistMult, and TransE, the annotations were parsed and
integrated using RDFlib, whereas for OWL2Vec, the OWLready2 package (Lamy, 2017)
was employed. Owlready2 is a package for ontology-oriented programming in Python 3,
that can load, modify, and save ontologies but also manage knowledge graphs.

The final knowledge graphs used in this work are divided into five possible types:

(i) HP-simple: composed by HP without logical definitions and HP annotations both
for genes and diseases;

(ii) HP-full: composed by HP with all logical definitions and HP annotations both for
genes and diseases;

(iii) HP-simple + GO: composed by HP without logical definitions, HP annotations
(for genes and diseases), GO and GO annotations (for genes). HP and GO are
integrated through a common virtual root;

(iv) HP-full + GO: composed by HP with all logical definitions, HP annotations (for
genes and diseases), GO and GO annotations (for genes). HP and GO are integrated
through a common virtual root;

(v) HP-simple + LD + GO: composed by HP with specifically added logical defini-
tions, HP annotations (for genes and diseases), GO and GO annotations (for genes).
HP and GO are also integrated through a common virtual root;

Regarding the HP-simple + LD + GO, to simplify the graph embeddings approach,
as seen in the example of Figure 4.2, the existing logical definitions are simplified to
a more direct relation between the HP class and GO class through an equivalent class
statement reaching a total of 350 links. This allows for the path to be shorter and direct
for random-walk based methods and for the other methods to extract a single triple with

3https://github.com/RDFLib/rdflib; https://rdflib.readthedocs.io/en/stable/
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the necessary information to enrich the knowledge graph. The owlready2 was the package
used to facilitate this process.

Figure 4.2: LD Simplification Process Example. The HP term for “Hearing impairment”
(HP:0000365) is equivalent to a restriction that involves the GO term “Sensory perception
of sound” (GO:0007605). A possible simplification is to create a direct relation with an
equivalent class statement between the two classes.

4.4 Knowledge Graph Embeddings and Representation

In this work, five methods of knowledge graph embeddings were used to learn feature
vectors for the different knowledge graphs, described in section 4.3, and create a repre-
sentation of two distinct vectors for each gene-disease pair of the dataset. The embed-
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dings present 200 features and cover three types of popular knowledge graph embedding
approaches (AppendixA for default parameters):

• Translational Distance: TransE4 (Bordes et al., 2013) with default parameters;

• Semantic Matching: DistMult4(Yang et al., 2015) with default parameters;

• Path-based:

Random Walk:

-RDF2Vec5 (Ristoski and Paulheim, 2016a) with sequences generated using
the Weisfeiler-Lehman algorithm with walks depth 8 and a limited number of 500
by entity. The corpora of sequences were used to build a Skip-Gram model with the
default parameters for Word2Vec;

- OWL2Vec*6 (Chen et al., 2021) with the same parameters used with RDF2Vec.

Non-Random Walk:

- OPA2Vec7 (Smaili et al., 2019) with default parameters;

We present one example of each type of approach of knowledge graph embedding,
except the case of path-based approaches that are explored in more depth with different
methods. Given that we are using data where the core is an ontology, not the instances,
and that it has no relations between instances but only relations between the instances
and the concepts that describe them in the ontologies, it will be necessary to capture
relations at a greater distance. This means relationships between entities and the various
concepts that describe them in the ontology’s hierarchy. It is thus expected that path-
based methods have the potential to work better because they can capture longer distance
relations. Moreover, OPA2Vec also explores embeddings of the textual component of the
ontologies, which are a defining feature of biomedical ontologies.

After the knowledge graph embeddings methods, each gene-disease pair corresponds
to two vectors, fi(g) and fi(d), associated with a gene and a disease, respectively. We
define a binary operator over the corresponding feature vectors g and d in order to generate
a representation r(g, d) such that r : V × V −→ Rd′ where d’ is the representation size
for the pair (g, d). Several choices for the binary operator were considered from a set of
commonly employed operators with knowledge graph embeddings (Grover and Leskovec,
2016). The chosen operators are summarized in Table 4.2.

4https://github.com/thunlp/OpenKE
5https://github.com/IBCNServices/pyRDF2Vec
6https://github.com/KRR-Oxford/OWL2Vec-Star
7https://github.com/bio-ontology-research-group/opa2vec
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Table 4.2: Choice of binary operators.

Operator Definition
Concatenation fi(g) || gi(d)

Average fi(g) + gi(d)
2

Hadamard fi(g)× gi(d)
Weighted-L1 |fi(g)− gi(d)|
Weighted-L2 |fi(g)− gi(d)|2

4.5 Gene-Disease Prediction

To evaluate the approach, we tested the performance of supervised classifiers to predict
gene-disease associations using the proposed feature vectors.

We used four different machine learning algorithms: RF (Breiman, 2001), XGB (Chen
and Guestrin, 2016), NB (Friedman et al., 1997) and MLP (Rumelhart et al., 1986). A
Grid search was employed to obtain optimal parameters for RF, XGB, and MLP which is
summarized in Table 4.3.

Table 4.3: Grid-Search parameters for the machine learning algorithms.

Algorithm Parameters Values

RF
maximum depth 2, 4, 6, None
nr of estimatores 50, 100, 200

XGB
maximum depth 2, 4, 6
nr of estimatores 50, 100, 200

learning rate 0.1, 0.01, 0.001

MLP

hidden layer sizes (50, 50, 50), (50, 100, 50), (100,)
activation tanh, relu

solver sgd, adam
alpha 0.0001, 0.05

learning rate constant, adaptive

Initially, in each experiment, we performed a stratified ten-fold cross-validation being
that the same folds and, for each fold, the Weighted Average of F-measures (WAF) of
classifications were assessed and reported in the form of a median. A stratified ten-fold
cross-validation consists of the following steps:

1. Split the dataset into ten equally sized folds with class probabilities similar to the
original dataset;

2. Train classifier on nine randomly selected folds (training set);

3. Test the trained classifier using the remaining fold (test set);

4. Repeat the process ten times and each time a different fold is used as a test set.
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We also performed a stratified 70% training and 30% testing split method, and verified
that the overall conclusions were comparable to the 10-fold cross-validation experiments
(Table B.1 in Appendix B) although the running time of cross-validation is much higher.
Consequently the results presented in the chapter 5 will concern only the 70-30 split, with
the same split being used throughout all experiments, including in the baseline presented
in the following section.

4.6 Baseline and Experiments

The baseline aims to establish the performance of methods that use a single ontology and
classical semantic similarity measures.

The knowledge graph used was HP-full. Considering that semantic similarity mea-
sures do not explore logical definitions, results using HP-simple or HP-full are equiv-
alent. The semantic similarity was measured for all gene-disease pairs using six differ-
ent semantic similarity measures that are summarized in Table 4.4. Semantic similarity
computations were run using the tool SSMC8 which was designed to measure semantic
similarity between a set of objects annotated by ontology classes.

Table 4.4: Summary of SSMs used in the baseline.

SSM IC Type of approach Techniques
BMAResnik Extrinsic best pairs Average
BMASeco Intrinsic best pairs Average
MaxResnik Extrinsic best pairs Maximum
MaxSeco Intrinsic best pairs Maximum
simGICResnik Extrinsic graph-based Jaccard
simGICSeco Intrinsic graph-based Jaccard

Each of the selected semantic similarity measures is a combination of two approaches:
the approach used to calculate the Information Content of each HP class (ICSeco or
ICResnik) and the IC-based approach used to calculate the similarity between pairs (BMA
or simGIC or Max).

These approaches for IC-based entity similarity were selected because both simGIC
and BMA represent high-performing classical measures of semantic similarity, whereas
Max helps to elucidate whether a single source of similarity is enough to establish an inter-
action. By combining the approaches for entity similarity with the different IC, we arrive
at the six state-of-the-art semantic similarity measures used: BMAResnik, BMASeco,
MaxResnik, MaxSeco, simGICResnik, and simGICSeco. These six measures are rep-
resentative of the most successful approaches for the baseline calculation using a single
ontology.

8https://github.com/liseda-lab/SSMC
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To establish the performance of the baseline, the association prediction was formu-
lated as a classification problem where a semantic similarity score for a pair exceeding
a certain threshold (semantic similarity cutoff) indicates a positive association. For each
measure, a semantic similarity threshold was chosen after evaluating the weighted aver-
age of F-measures (for positive and negative predictions) at different thresholds intervals
and selecting the maximum (values in the range from 0 to 1 with a step of 0.01). This
emulates the best choice that a human expert could theoretically select. By comparing the
performance of this optimal baseline to the performance of our proposed approach, we
aim at investigating the ability of a richer semantic representation to obtain an improved
classification performance.

The quality of the classifications is evaluated using the WAF. This metric accounts
for class unbalance by computing the F-measure for each interacting and non-interacting
class and then calculating the average of both computed F-measures, weighted by the
number of instances of each class:

WAF =
ΣcεCF-measurec × Supportc

ΣcεCSupportc
(4.1)

where C is the set of classes, F -measurec is the F-measure computed for class c,
and Supportc is the number of instances in class c. The F-measure (for a class c) is the
weighted harmonic mean of the precision and recall and is given by

F-measure = 2× Precision×Recall
Precision+Recall

(4.2)

where

Precision =
Number of instances correctly classified as class c

Number of instances classified as class c
(4.3)

and

Recall =
Number of instances correctly classified as class c

Number of instances labeled as class c
(4.4)

In addition to the WAF, occurred an evaluation of the performance with the Area Under
the Receiver Operating Characteristic Curve (AUC-ROC).



Chapter 5

Results and Discussion

There are several factors of the proposed methodology for rich semantic representations
that can impact the performance of gene-disease association prediction, such as the se-
mantic richness and domain coverage of the knowledge graph, the knowledge graph em-
bedding methods, and the operators used to combine gene and disease vectors. Given
these factors, there are three important aspects that need to be considered when elucidat-
ing the performance impact:

1. How can we combine the gene and disease vector?

2. Which knowledge graph embedding methods are more suitable for this task?

3. What is the impact of considering more than one ontology?

In this chapter, the evaluation of the methodology described in Chapter 4 is presented
and discussed. First, the results for the gene-disease prediction baseline established using
semantic similarity measures are described. Then, the results obtained using a rich seman-
tic representation with different embeddings methods, knowledge graphs, and machine
learning techniques are presented and compared to the best semantic similarity measure
that the baseline achieved as well as the calculated cosine similarity for each knowledge
graph embedding.

5.1 Baseline Performance

The results for predictions based on the six semantic similarity measures using the knowl-
edge graph HP-full are presented in Table 5.1. When using semantic similarity, it is ir-
relevant whether the simple or full versions of HP are used, since these measures only
consider hierarchical is a relations between ontology concepts. Moreover, simple seman-
tic similarity measures are unable to explore more than one ontology.

Concerning the performance of the six semantic similarity measures in terms of infor-
mation content for WAF score with a single ontology, we observe that the Max approach

37
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Table 5.1: WAF and AUC-ROC scores for optimal SSM performance with HP ontology.
The blue and red values show the best score for WAF and AUC-ROC, respectively.

SSM BMAResnik BMASeco MaxResnik MaxSeco simGICResnik simGICSeco

WAF 0.682 0.684 0.681 0.633 0.633 0.636
AUC-ROC 0.713 0.725 0.712 0.662 0.671 0.667

is more sensitive to the IC measure employed. While for BMA and simGIC, differences
between ICResnik and ICSeco are rather small, when using the Max approach, these dif-
ferences are more pronounced, with differences up to 5% both in WAF and AUC-ROC.
This may be explained by the fact that the Max approach only considers the best pair
of classes when measuring similarity, with the IC measure playing a major role in the
similarity score, whereas both BMA and simGIC consider all annotating classes. The
differences between the approaches seen when using Max can potentially highlight that
when comparing single pairs of classes, it is more relevant how often they are used to
annotate entities, rather than where they are placed in the graph.

Regarding the combination approach, the pairwise approach followed by BMA achieves
the best results with a top WAF of 0.684 and AUC-ROC of 0.725 when combined with
ICSeco. This highlights two interesting aspects. On the one hand, considering all pheno-
types globally, as simGIC does, represents a loss in performance (of about 5% in WAF),
since highly diverse phenotypes are compared indiscriminately. On the other, circum-
scribing the comparison to the most similar phenotype, as Max does, is also limiting
when we consider that many diseases present multiple phenotypes. However, this is less
impactful on performance, especially when using ICResnik.

These simple baselines afford a view of what a perfectly chosen similarity threshold
could achieve, yet they still yield performance scores below 0.70 in WAF. Going for-
ward, BMASeco was the measure chosen as the main semantic similarity baseline since it
achieved the best results overall.

5.2 Rich Semantic Representations Performance

5.2.1 Comparison of Vector Combination Approaches

One of the challenges in achieving a rich semantic representation of genes and diseases
when using knowledge graph embeddings is to define a suitable approach to combine the
gene and disease vectors. Figure 5.1 summarizes the comparison of the five chosen vector
operations with AUC-ROC evaluated using the three best knowledge graph embedding
methods (RDF2Vec, OPA2Vec, and DistMult) coupled with Random Forest classifier (one
of the best-performing machine learning algorithms) using the richest knowledge graph
(HP-simple + LD + GO). Table 5.2 provides a more detailed view with the WAF scores
achieved for each operator using all machine learning and embeddings approaches in the
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same knowledge graph. Results for all knowledge graphs are available in Tables C.1, C.2,
C.3, C.4, and C.5 (present in Appendix C).

Figure 5.1: ROC curves and AUC values obtained for different vector operators with RF
classifier for the HP-simple + LD + GO.

Table 5.2: Comparison of vector combination operators (WAF scores) using the HP-
simple+LD+GO KG. In bold is the best result possible in every KGE.

RDF2Vec OPA2Vec OWL2Vec DistMult TransE

Concatenation

RF 0.672 0.728 0.617 0.603 0.484
XGB 0.702 0.739 0.642 0.667 0.490
NB 0.517 0.513 0.507 0.380 0.480

MLP 0.732 0.743 0.707 0.738 0.487

Average

RF 0.714 0.683 0.652 0.683 0.509
XGB 0.700 0.690 0.645 0.704 0.511
NB 0.608 0.573 0.582 0.409 0.492

MLP 0.711 0.717 0.679 0.700 0.366

Hadamard

RF 0.743 0.759 0.695 0.716 0.473
XGB 0.739 0.760 0.694 0.724 0.514
NB 0.617 0.530 0.582 0.467 0.500

MLP 0.732 0.749 0.694 0.714 0.333

Weighted-L1

RF 0.693 0.677 0.623 0.714 0.508
XGB 0.701 0.675 0.617 0.712 0.505
NB 0.679 0.567 0.603 0.525 0.501

MLP 0.699 0.695 0.620 0.696 0.487

Weighted-L2

RF 0.702 0.676 0.611 0.707 0.508
XGB 0.701 0.675 0.630 0.715 0.505
NB 0.669 0.540 0.593 0.629 0.498

MLP 0.704 0.698 0.640 0.699 0.333
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The Hadamard operator outperforms other operators when using RDF2Vec, OPA2Vec,
and TransE, whereas Concatenation works best with OWL2Vec and DistMult. Overall,
Hadamard and Concatenation are the top two performing combination approaches, with
Hadamard achieving the best prediction results when combined with OPA2Vec and Ran-
dom Forests or XG-Boost.

While Hadamard, Average, Weighted-L1, and Weighted-L2 all produce vectors of the
same size (200), Concatenation produces double-sized vectors (400). This impacts the
training time of the machine learning algorithms. Considering the small losses in perfor-
mance by using Hadamard with OWL2Vec and DistMult, going forward all experiments
focus on the Hadamard operator.

5.2.2 Comparison of Knowledge Graph Embedding Methods

Table 5.3 compares knowledge graph embedding methods with the baseline, presenting
the performance obtained for the XGB algorithm and with cosine similarity for all the
possible competing combinations of knowledge graphs embeddings approaches, vector
operators used and knowledge graphs created.

Comparing the cosine similarity of embeddings vectors with the semantic similarity
baseline, it can be seen that the cosine similarity only outperforms the best semantic sim-
ilarity measure, BMASeco, when using DistMult and only on some knowledge graphs like
HP-simple and HP-simple+LD+GO. Since knowledge graph embeddings can explore
all types of semantic relations, including logical definitions asserted between ontologies,
the expectation was that cosine similarity would outperform semantic similarity measures,
which was not observed in most cases.

When using a machine learning approach the differences between using knowledge
graph embeddings and the baseline are more distinct, especially when it comes to the best
three knowledge graph embedding methods: RDF2Vec, OPA2Vec, and DistMult. In al-
most every knowledge graph embedding the best result was achieved with the Hadamard
operator and outperformed both the baseline as well as the cosine similarity. The only
exception was TransE, the only approach that falls into the category of translational dis-
tance, which achieved poorer results overall with Weighted-L1 and Weighted-L2 but did
not outperform the baseline and in many cases not even the cosine similarity. Thhis is due
to the fact that translational distance methods are less well suited to capture long-distance
relations than random-walk and semantic matching methods, which is more relevant in
the context of ontologies (where hierarchical relations between ontology classes are the
backbone) than in the strict knowledge graph context (where links between entities are
the focus). These results reveal that a suitable knowledge graph embedding approach
combined with an appropriate machine learning algorithm outperform a single ontology
semantic similarity-based prediction, even with an optimally chosen threshold, by up to
7.6% in WAF.
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Table 5.3: WAF scores for the competing combination of KGEs and vector operations
for the different KGs using XGB. Best result for each KG is in bold. Best result for each
KGE is underlined.

HP-simple HP-full HP-simple
+ GO

HP-full
+ GO

HP-simple
+ LD + GO

CS 0.674 0.672 0.680 0.677 0.676
Concatenation 0.701 0.703 0.690 0.697 0.702

Average 0.697 0.696 0.689 0.697 0.700
Hadamard 0.724 0.723 0.732 0.734 0.739

Weighted-L1 0.668 0.666 0.732 0.698 0.701

RDF2Vec

Weighted-L2 0.668 0.678 0.695 0.698 0.701
CS 0.674 0.658 0.653 0.666 0.671

Concatenation 0.737 0.727 0.746 0.734 0.739
Average 0.692 0.686 0.680 0.681 0.690

Hadamard 0.751 0.741 0.758 0.750 0.760
Weighted-L1 0.675 0.680 0.669 0.656 0.675

OPA2Vec

Weighted-L2 0.675 0.681 0.669 0.656 0.675
CS 0.665 0.656 0.654 0.649 0.641

Concatenation 0.651 0.638 0.650 0.632 0.642
Average 0.659 0.637 0.645 0.632 0.645

Hadamard 0.697 0.674 0.695 0.678 0.694
Weighted-L1 0.618 0.606 0.623 0.617 0.617

Owl2Vec

Weighted-L2 0.618 0.606 0.623 0.617 0.630
CS 0.700 0.682 0.680 0.674 0.689

Concatenation 0.683 0.676 0.676 0.651 0.667
Average 0.692 0.699 0.698 0.686 0.704

Hadamard 0.719 0.705 0.713 0.703 0.724
Weighted-L1 0.708 0.711 0.712 0.701 0.712

DistMult

Weighted-L2 0.706 0.707 0.708 0.699 0.715
CS 0.513 0.523 0.516 0.512 0.518

Concatenation 0.477 0.474 0.499 0.501 0.490
Average 0.493 0.500 0.490 0.513 0.511

Hadamard 0.506 0.503 0.502 0.510 0.514
Weighted-L1 0.539 0.529 0.500 0.507 0.505

TransE

Weighted-L2 0.539 0.529 0.500 0.507 0.505

BMASeco —- 0.684 —- —- —-

Overall, knowledge graph embeddings coupled with machine learning algorithms
achieve better results than cosine similarity. This is unsurprising since reducing the repre-
sentation of a gene-disease association to a similarity score may be too limiting. A model
learned on multi-dimensional representations is much better at capturing the complex-
ity of the associations. The best results achieved by each knowledge graph embedding
method with XG-Boost presented in Table 5.3 improve on the best cosine similarity re-
sults by between 2.4% for DistMult and 8.6% for OPA2Vec.
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While TransE clearly struggles in the gene-disease association prediction task, regard-
less of operator, machine learning algorithm or knowledge graph employed, the other four
methods outperform the baseline.

RDF2Vec is positioned as the second best performer, with 0.739 WAF, showing the
potential of path-based methods using language modeling approaches for unsupervised
feature extraction from RDF graphs. OWL2Vec, however, is the fourth best performer,
with 0.697 WAF. The worse results when comparing to RD2Vec are unexpected, since
it uses the same techniques as the RDF2Vec but also takes into account OWL axioms in-
cluding lexical information. Potentially, a deeper exploration of OWL axioms introduces
more noise into the representations.

OPA2Vec undeniably achieves the best results in every single knowledge graph when
combined with the Hadamard operator, with a best score of 0.760 WAF. The better per-
formance of OPA2Vec can be explained by multiple factors: it uses asserted and inferred
logical axioms in ontologies by using a reasoner; it combines them with vector represen-
tations for the lexical component of the ontologies learned over PubMed abstracts using
the word2vec model. A clear difference between OPA2Vec and RDF2Vec is the use of
rich OWL axioms and word embeddings, which may explain the observed differences.
Biomedical ontologies are rich in synonyms and exploring their similarities in the con-
text of scientific literature can be immensely informative. In other words, this algorithm
shows better results because it is better tailored to the specifics of bio-ontologies.

DistMult is the third best performing approach, achieving 0.724 in WAF score. Dist-
Mult is more directly comparable to RDF2Vec since they both limit themselves to explor-
ing the RDF graph. The results show an advantage for the random-walk method, which
however is highly dependent on the concatenation operator employed.

Overall, the best combination of methods achieves 0.760 WAF by using the XGB
classifier with the Hadamard operator and OPA2Vec as depicted in Table 5.2. Random
forest also showed very promising results using the Hadamard operator especially when
it comes to the RDF2Vec method. MLP worked well with OWL2Vec and DistMult when
using the Concatenation operator. These results are aligned with the fact that both XG-
Boost and Random Forest are among the most popular and best performing supervised
learning algorithms outside of the deep learning category. In this work, the size of the
data did not motivate the use of deep learning algorithms.

The poor results achieved with the NB classifier may be justified by the fact that this
algorithm’s main limitation is the assumption of independent predictor features. This
algorithm implicitly assumes that all the attributes are mutually independent but working
with linked data this assumptions clearly does not stand.
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5.2.3 Comparison of different Knowledge Graphs

The last aspect to be considered is the influence of the richness of the knowledge graph
employed. Overall, no dramatic differences between the different knowledge graphs were
observed. Table 5.4 presents the performance obtained across all knowledge graphs,
knowledge graph embeddings methods and machine learning methods.

Table 5.4: WAF scores for the combinations of KGE and machine learning algorithms
for the different KGs using the Hadamard operator. In bold the best result.

HP-simple HP-full HP-simple
+ GO

HP-full
+ GO

HP-simple
+ LD + GO

CS 0.674 0.672 0.680 0.677 0.676
RF 0.726 0.720 0.730 0.737 0.743
XGB 0.724 0.723 0.732 0.723 0.739
NB 0.609 0.609 0.613 0.630 0.617

RDF2Vec

MLP 0.717 0.722 0.726 0.737 0.732

CS 0.674 0.658 0.653 0.666 0.671
RF 0.746 0.743 0.754 0.750 0.759
XGB 0.751 0.741 0.758 0.750 0.760
NB 0.511 0.501 0.532 0.529 0.530

OPA2Vec

MLP 0.737 0.732 0.755 0.755 0.749

CS 0.665 0.656 0.654 0.649 0.641
RF 0.694 0.671 0.699 0.685 0.695
XGB 0.697 0.674 0.695 0.678 0.694
NB 0.569 0.558 0.582 0.574 0.582

OWL2Vec

MLP 0.689 0.672 0.690 0.676 0.694
CS 0.700 0.682 0.680 0.674 0.688
RF 0.725 0.702 0.717 0.697 0.716
XGB 0.719 0.705 0.713 0.703 0.724
NB 0.493 0.425 0.550 0.415 0.467

DistMult

MLP 0.708 0.703 0.708 0.708 0.714

CS 0.513 0.523 0.516 0.512 0.518
RF 0.493 0.497 0.482 0.479 0.473
XGB 0.506 0.503 0.502 0.510 0.514
NB 0.509 0.503 0.517 0.503 0.500

TransE

MLP 0.333 0.333 0.333 0.333 0.333

Baseline BMASeco 0.684

When using only the Human Phenotype ontology, the simple version without logical
definitions (HP-simple) typically achieves a better performance than the complete version
HP-full. The principal function of a logical definition is to define the classes in one
ontology using classes from other ontologies, establishing a semantic bridge between
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them. It is likely that this additional information is generating background noise that is
irrelevant for gene-disease association prediction. However, some methods appear to be
more robust to this aspect, with RDF2Vec losing little to no performance between the two
knowledge graphs.

When the Gene Ontology is added, different behaviours are observed. Both RFD2Vec
and OPA2Vec achieve better results with HP-simple + GO compared to HP-simple, with
performance increasing by around 1-2%. For OWL2Vec and DistMult this behaviour is
not observed for all machine learning algorithms, especially not the best performing ones
(XGB and RF).

With HP-full + GO, we observe the same pattern, where RDF2Vec and OAP2Vec
improve on the HP-full results. However, RDF2Vec and OPA2Vec behave differently
when comparing with HP-simple + GO. While RDF2Vec’s performance generally in-
creases when using the full version, OPA2Vec’s performance decreases. This decrease
in performance is also observed for OWL2Vec and DistMult. It appears that these meth-
ods struggle to create more meaningful representations even in the presence of a richer
graph. A possible reason behind this is that a graph with richer semantics when pro-
cessed by methods that are able to explore those richer semantics results in entity vectors
that capture many different aspects that may not be relevant for gene-disease association
prediction. Another explanatory aspect could be related to the proximity in the graph
between the HP class declaration and the related GO class. Logical definitions can be
quite complex and include a number of different entities from different ontologies as well
as semantic constructs. In triple oriented methods, such as OPA2Vec and DistMult, the
relation between the HP class and the GO class are not directly encoded at the triple level,
and it needs to be learned by jointly training on all triples. In random-walk based meth-
ods, such as RDF2Vec, paths linking both classes can be found, making the relation more
explicit.

To delve deeper into this issue, the logical definitions declared in the HP ontology
were analyzed and a total of 3203 definitions were identified, but only around 10% of
those (350) are related to the Gene Ontology. This motivated the creation of another
knowledge graph, (HP-simple + LD + GO), that addresses both challenges: it only in-
cludes logical definitions with GO (potentially removing noise) and it establishes direct
links between HP and GO classes (making the relation more explicit in the graph).

The best results for RDF2Vec and OPA2Vec are achieved with HP-simple + LD +
GO reaching 0.739 and 0.760 respectively. OWL2Vec and DistMult also improve on
their results versus HP-full + GO (although not overall), which supports the hypothesis
that HP-full is introducing noise into the prediction problem.

Some general patterns can be observed, especially when taking advantage of the
Hadamard operator, for each knowledge graph embedding approach. The knowledge
graph embeddings OPA2Vec and OWL2Vec exhibit the same behavior: performance
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drops from using HP-simple to a full version, with or without the addition of the Gene
Ontology. However, OPA2Vec improves and achieves the highest results when using the
direct logical definitions, whereas OWL2Vec does not present this behavior. Regarding
the RDF2vec method, the performance generally increases as the graph becomes richer
but removing the noise from HP-full+GO and using HP-simple+LD+GO also increases
the WAF score for the best machine learning algorithms.

Figure 5.2 presents precision and recall values for all knowledge graph embeddings
using XGB and Hadamard. Interestingly, these values reveal that the increase in perfor-
mance observed as semantic richness increases for different knowledge graph version is
achieved through recall gains. This supports the hypothesis that using more ontologies
and richer representations affords more information that is useful to support gene-disease
association predictions.

Overall the differences between using a single ontology or combining two ontolo-
gies, in this case the Human Phenotype Ontology and Gene Ontology, are comparatively
small regardless of a richer integration using logical definitions. The small contribution to
performance observed when adding the GO may partially be explained by the existence
of only 350 (of a total of 3203) logical definitions that link the two ontologies. More-
over, it is possible that the additional information provided by GO is not supporting novel
predictions over those already uncovered by using HP.

5.2.4 A case study on gene BACH2 and KPD disease

Table 5.5 illustrates an example of a gene-disease association prediction between the gene
BACH2 (Gene ID:60468) and Ketosis-prone diabetes mellitus (KPD) (C3837958).

In addition to classic type 1 (T1D) and type 2 (T2D) diabetes mellitus, atypical presen-
tations are seen, particularly in populations of African ancestry. KPD (Balasubramanyam
et al., 2008), the most common atypical form, is characterized by an acute initial presen-
tation with severe hyperglycemia and ketosis, as seen in classic T1D. This is not a mono-
genic disease and in our dataset it is also associated with other 29 genes (ABCC8, SH2B3,
IL2RA, STAT3, TYK2, SLC11A1, IGF1, IL10, ITPR, GLIS3, HLA-DQB1, AIFM1,
CTSH, KCNJ1, DDIT3,INS, PTPN22, HLA-DQA1, SLC29A3, HSD11B2, CAT, TNF,
CP, HLA-DRB1, IL6, IFNG, NOS3, HNF1A, and NOS1).

The BACH2 gene is commonly associated with T1D and in every form of diabetes
there is an alteration in the functions of beta-cells, which are also associated with this
gene. In our dataset this gene is also associated with other two diseases beside T1D and
KPD: Crohn’s disease (IBD1) and Acute myeloid leukemia (AML). In the case of KPD,
a severe form of beta-cell dysfunction appears to underlie this pathophysiology (Bala-
subramanyam et al., 2008). So the association found between this gene and disease can
be explained indirectly by the alterations of the beta-cells, because one alteration of the
expression of the BACH2 gene does not necessarily means we have the KPD pathology.
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Figure 5.2: Precision and Recall for each KGE using XGB and Hadamard. The KGs
appear on the x-axis. a) RDF2Vec b) OPA2Vec c) OWL2Vec d) DistMult e) TransE.

Analyzing the results, the knowledge graph embedding method can predict correctly
the association, however, the best semantic similarity measure does not: the best cutoff
is placed at 0.43 similarity score which means that under this value every pair is not
considered an association. Regarding the semantic annotations of these entities, both
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Table 5.5: Gene-disease association prediction of the pair BACH2-KPD made by the best
SSM and KGE method OPA2Vec with random forest and the KG HP-simple + LD + GO.

Pair Annotations BMASeco Prediction
(max cuttof of 0.43)

KGE - OPA2Vec
Prediction

Gene BACH2

Variable expressivity (HP:0003828);
Recurrent sinopulmonary infections (HP:0005425);
Autosomal dominant inheritance (HP:0000006);
Recurrent otitis media (HP:0000403);
Bronchiectasis (HP:0002110);
Colitis (HP:0002583);
Splenomegaly (HP:0001744);
Decreased circulating antibody level (HP:0004313);
Pulmonary infiltrates (HP:0002113);
Negative regulation of transcription by RNA polymerase II (GO 0000122);
Nuclear chromatin (GO 0000790);
DNA-binding transcription factor activity, RNA polymerase II-specific (GO 0000981);
DNA-binding transcription repressor activity, RNA polymerase II-specific (GO 0001227);
Protein binding (GO 0005515);
Nucleoplasm (GO 0005654);
Cytosol (GO 0005829);
Import into nucleus (GO 0051170);
Primary adaptive immune response involving T cells and B cells (GO 0090721);
Sequence-specific double-stranded DNA binding (GO 1990837);
Regulation of transcription by RNA polymerase II (GO 0006357);
DNA-binding transcription factor activity (GO 0003700);
RNA polymerase II cis-regulatory region sequence-specific DNA binding (GO 0000978);
Nucleus (GO 0005634).

Incorrect
SS score:0.400

Correct

Disease
Ketosis-prone

diabetes
mellitus

Diabetes mellitus (HP:0000819);
Ketoacidosis (HP:0001993);
Insulin resistance (HP:0000855);
Autosomal dominant inheritance (HP:0000006);
Autosomal recessive inheritance (HP:0000007);
Autoimmunity (HP:0002960);
Beta-cell dysfunction (HP:0006279);
Multifactorial inheritance (HP:0001426).

share ’Autosomal dominant inheritance’, while ’Decreased circulating antibody level’
which annotates BACH2 and ’Autoimmunity’ which annotates KPD are both subsumed
by ’Abnormality of the immune system’. In addition, while HP does not encode relations
between inflammatory bowel disease and diabetes, there are several works identifying
a possible link. Since OPA2Vec employs word embeddings trained on PubMed, it is
possible that the embeddings reflect some closeness between diabetes and inflammatory
bowel disease.

This example illustrates the limitations of semantic similarity-based approaches in
handling complex diseases which are related to more than one gene, and genes related to
more than one disease. On one hand, a single score view coupled with a simple prediction
approach based on a similarity threshold can fail to identify the association between a
gene and a disease with few closely related annotations when using a measure such as
BMA that considers all annotations. On the other, the Max approach is less suitable when
several annotations support a prediction. Moreover, machine learning models coupled
with embeddings afford the formulation of a more complex solution.
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Conclusions

Deciphering the links between genes and diseases is an important area of research given
it is a crucial challenge in human health with applications to understand disease etiology
and develop new techniques for prevention, diagnosis, and therapy.

Computational approaches present themselves as an answer to the data deluge in the
life sciences, and ontologies and knowledge graphs have become increasingly crucial to
support data intensive applications in biology. In particular, they present several opportu-
nities in supporting the prediction and prioritization of gene-disease associations.

State-of-the-art approaches that take advantage of ontologies for predicting gene-
disease associations are typically based on semantic similarity measures and take into
account only one ontology. This study proposed a novel approach to predict gene-disease
associations using rich semantic representations based on knowledge graph embeddings
over multiple ontologies, in this case the Human Phenotype Ontology and the Gene On-
tology. The impact of different approaches to build a shared rich semantic representation
for genes and diseases was investigated, as well as multiple knowledge graph embedding
methods such as RDF2Vec and OPA2Vec.

An unbiased benchmark dataset was created to support evaluation, ensuring its ap-
propriateness for gene-disease prediction. This approach contemplated the integration of
the different ontologies and annotation data to build different knowledge graphs. The
embeddings that represented the gene and the disease according to their annotations in
the knowledge graphs were created and combined using different vector operators and
finally, supervised learning algorithms were trained over the combined embeddings in
order to predict gene-disease associations.

The experiments provided answers to the research questions. Namely, they showed
that knowledge graph embeddings when coupled with machine learning algorithms achieve
a better performance than semantic similarity measures, answering RQ1 (in section 1.1).
We have shown that employing the best knowledge graph embedding method with ma-
chine learning approach outperforms optimal semantic similarity measures by eight 7.6%
WAF score. They also illustrated that some vector combination approaches support gene-
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disease association prediction better, but that a simple cosine similarity between vectors
can support predictions as well as semantic similarity, answering RQ2 (in section 1.1).
Finally, the experiments also revealed that differences between using a single ontology or
combining two ontologies are comparatively small regardless of a richer integration using
the logical definitions, answering RQ3 (in section 1.1). However, there is a clear ad-
vantage for most knowledge graph embeddings methods to employ graph versions where
logical definitions are encoded as direct links between classes. We hypothesize that the
information provided by the Gene Ontology and links to it does not provide substantial
additional information comparing with what is already present in the Human Phenotype
Ontology.

6.1 Limitations

The main limitation of this work is the fact that only two ontologies were employed to sup-
port gene-disease association prediction when other ontologies covering other domains,
such as chemicals, drugs, diseases, side-effects, etc., can also be relevant for the domain,
and be more complementary to Human Phenotype Ontology.

In terms of evaluation, there are also some limitations. We did not employ multi-
ontology semantic similarity measures, which could potentially surpass the single ontol-
ogy baseline. In most applications semantic similarity measures are only calculated for
an ontology, but there are also applications that calculate multi-domain semantic similar-
ity measures. Ferreira and Couto (2019) proposed two approaches that can lift single-
ontology measures into multi-domain measures: aggregative approach and integrative
approach. The aggregative approach compares each of the domains of relevance indepen-
dently using existing single-ontology measures and then aggregates the several calculated
values; the integrative approach integrates all the ontologies under the same common root
and then applies single-ontology measures on it.

6.2 Future Work

From the evaluation perspective, two possible avenues present themselves. First, the in-
clusion of multi-ontology semantic similarity measures. Secondly, the design of ablation
studies, where a part of the Knowledge Graph is removed in order to study the impact of
extra knowledge and understand the impact of each component in our approach.

Regarding the predictive approach, a clearly interesting next step to take is the inclu-
sion of other ontologies, for example the Chemical Entities of Biological Interest is an
freely available dictionary of molecular entities focused on ‘small’ chemical compounds
(Degtyarenko et al., 2008) and could be an interesting addition to the enrich the existing
semantic representation.
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Additionally, ontology matching techniques can be employed to create additional log-
ical definitions and links between ontologies (Oliveira and Pesquita, 2018). Ontology
matching finds correspondences between semantically related entities of ontologies and
these correspondences can be used for various tasks, such as ontology merging, query
answering, or data translation (Shvaiko and Euzenat, 2013). This opens the possibility to
expand the ontologies used to those that do not contain logical definitions between them.
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pages 169–182, Berlin, Heidelberg. Springer Berlin Heidelberg. 6

Grover, A. and Leskovec, J. (2016). node2vec: Scalable feature learning for networks.
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining. 17, 20, 33

Hastings, J. (2017). Primer on Ontologies, pages 3–13. Springer New York, New York,
NY. 8

He, S., Liu, K., Ji, G., and Zhao, J. (2015). Learning to represent knowledge graphs with
gaussian embedding. Proceedings of the 24th ACM International on Conference on
Information and Knowledge Management. 17

Hoehndorf, R., Schofield, P., and Gkoutos, G. (2011). Phenomenet: A whole-phenome
approach to disease gene discovery. Nucleic acids research. 25

Horrocks, I. (2008). Ontologies and the semantic web. Communications of the ACM,
51:58–67. 5, 6

Hou, M., Ren, J., Zhang, D., Kong, X., Zhang, D., and Xia, F. (2020). Network
embedding: Taxonomies, frameworks and applications. Computer Science Review,
38:100296. xi, 20

Huntley, R., Sawford, T., Mutowo-Meullenet, P., Shypitsyna, A., Bonilla, C., Martin, M.,
and O’Donovan, C. (2014). The goa database: Gene ontology annotation updates for
2015. Nucleic acids research, 43. 30



References 56

Ji, G., He, S., Xu, L., Liu, K., and Zhao, J. (2015). Knowledge graph embedding via
dynamic mapping matrix. In ACL. 17

Ji, G., Liu, K., He, S., and Zhao, J. (2016). Knowledge graph completion with adaptive
sparse transfer matrix. In AAAI. 17

Kaufman, S., Rosset, S., and Perlich, C. (2011). Leakage in data mining: formulation,
detection, and avoidance. In KDD. 28

Kiryakov, A., Popov, B., Terziev, I., Manov, D., and Ognyanoff, D. (2004). Semantic
annotation, indexing, and retrieval. Web Semantics: Science, Services and Agents on
the World Wide Web, 2:49–79. 7
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Köhler, S., Doelken, S., Mungall, C., Bauer, S., Firth, H., Bailleul-Forestier, I., Black, G.,
Brown, D. L., Brudno, M., Campbell, J., FitzPatrick, D., Eppig, J., Jackson, A., Freson,
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Robinson, P., Köhler, S., Oellrich, A., Genetics, S., Wang, K., Mungall, C., Lewis, S.,
Washington, N., Bauer, S., Seelow, D., Krawitz, P., Gilissen, C., Haendel, M., and
Smedley, D. (2014). Improved exome prioritization of disease genes through cross-
species phenotype comparison. PCR Methods and Applications, 24(2):340–348. 24
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Appendix A

KGE Default Parameters

Table A.1: Default Parameters for the KGE.

Parameters

RDF2Vec/OWL2Vec

Word2vec default parameters: sentences=None, corpus file=None, alpha=0.025,
window=5, min count=5, max vocab size=None, sample=0.001,
seed=1, workers=3, min alpha=0.0001, sg=0, hs=0, negative=5,
ns exponent=0.75, hashfxn=, epochs=5,
null word=0, trim rule=None, sorted vocab=1, batch words=10000,
compute loss=False, callbacks=(), comment=None, max final vocab=None,
shrink windows=True

OPA2Vec

annotations [metadata annotations]: All annotation properties.
pretrained [pre-trained model]: Default pre-trained model from http://bio2vec.net/data/pubmed model/
reasoner [reasoner]: Elk
debug [debug]: set to no, in which case no intermediate files are kept once the program exits.

DistMult/TransE
work threads(4), train times(500), nbatches(100), alpha(0.001), margin(1.0),
bern(0), dimension(50), ent neg rate(1), rel neg rate(0), opt method(”SGD”)
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Appendix B

Ten-fold Cross Validation

Table B.1: Median of WAF scores obtained for RDF2Vec and OPA2VEC combined with
RF classifier and hadamard operator. The KG used was HP-simple + LD + GO.

10-Fold
Cross Validation

Partitions
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

RDF2Vec RF 0.745 0.744 0.728 0.755 0.741 0.757 0.747 0.760 0.728 0.745
Median 0.745

OPA2Vec RF 0.777 0.780 0.743 0.777 0.782 0.767 0.767 0.753 0.758 0.759
Median 0.767
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Appendix C

Results for KGE Methods

Table C.1: WAF scores for RDF2Vec with the competing combinations of ML algorithms
and operators for the different KGs in a 70/30 split. In bold is the best result possible in
every KG.

RDF2Vec HP-simple HP-full HP-simple
+ GO

HP-full
+ GO

HP-simple
+ LD + GO

Cosine Similarity 0.674 0.672 0.680 0.677 0.676
RF 0.676 0.687 0.676 0.678 0.672

XGB 0.701 0.703 0.690 0.697 0.702
NB 0.513 0.509 0.517 0.510 0.517

Concatenation

MLP 0.730 0.734 0.722 0.736 0.732
RF 0.709 0.698 0.709 0.711 0.714

XGB 0.697 0.696 0.689 0.697 0.700
NB 0.594 0.598 0.606 0.616 0.608

Average

MLP 0.696 0.700 0.723 0.717 0.711
RF 0.726 0.720 0.730 0.737 0.743

XGB 0.697 0.723 0.732 0.734 0.739
NB 0.609 0.609 0.613 0.630 0.617

Hadamard

MLP 0.717 0.722 0.726 0.737 0.732
RF 0.681 0.677 0.704 0.703 0.693

XGB 0.668 0.666 0.732 0.698 0.701
NB 0.656 0.656 0.673 0.679 0.679

Weighted-L1

MLP 0.678 0.675 0.695 0.693 0.699
RF 0.682 0.678 0.701 0.696 0.702

XGB 0.668 0.678 0.695 0.698 0.701
NB 0.645 0.655 0.668 0.667 0.669

Weighted-L2

MLP 0.674 0.670 0.706 0.715 0.704
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Table C.2: WAF scores for OPA2Vec with the competing combinations of ML algorithms
and operators for the different KGs in a 70/30 split. In bold is the best result possible in
every KG.

OPA2Vec HP-simple HP-full HP-simple
+ GO

HP-full
+ GO

HP-simple
+ LD + GO

Cosine Similarity 0.674 0.658 0.653 0.666 0.671
RF 0.732 0.718 0.728 0.716 0.728

XGB 0.737 0.727 0.746 0.734 0.739
NB 0.496 0.499 0.498 0.496 0.513

Concatenation

MLP 0.731 0.733 0.738 0.746 0.743
RF 0.698 0.688 0.668 0.676 0.683

XGB 0.692 0.686 0.680 0.681 0.690
NB 0.540 0.536 0.564 0.559 0.573

Average

MLP 0.714 0.712 0.718 0.723 0.717
RF 0.746 0.743 0.754 0.750 0.759

XGB 0.751 0.741 0.758 0.750 0.760
NB 0.511 0.501 0.532 0.529 0.530

Hadamard

MLP 0.737 0.732 0.755 0.755 0.749
RF 0.679 0.666 0.678 0.658 0.677

XGB 0.675 0.680 0.669 0.656 0.675
NB 0.586 0.580 0.557 0.560 0.567

Weighted-L1

MLP 0.683 0.691 0.691 0.697 0.695
RF 0.674 0.669 0.673 0.657 0.676

XGB 0.675 0.681 0.669 0.656 0.675
NB 0.507 0.528 0.524 0.531 0.540

Weighted-L2

MLP 0.687 0.695 0.693 0.697 0.698
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Table C.3: WAF scores for Owl2Vec with the competing combinations of ML algorithms
and operators for the different KGs in a 70/30 split. In bold is the best result possible in
every KG.

Owl2Vec HP-simple HP-full HP-simple
+ GO

HP-full
+ GO

HP-simple
+ LD + GO

Cosine Similarity 0.665 0.656 0.654 0.649 0.641
RF 0.620 0.607 0.623 0.614 0.617

XGB 0.651 0.638 0.650 0.632 0.642
NB 0.499 0.510 0.511 0.507 0.507

Concatenation

MLP 0.711 0.692 0.691 0.692 0.707
RF 0.666 0.644 0.664 0.640 0.652

XGB 0.659 0.637 0.645 0.632 0.645
NB 0.568 0.560 0.585 0.577 0.582

Average

MLP 0.672 0.667 0.668 0.668 0.679
RF 0.694 0.671 0.700 0.685 0.695

XGB 0.697 0.674 0.695 0.678 0.694
NB 0.569 0.558 0.582 0.574 0.582

Hadamard

MLP 0.689 0.672 0.690 0.676 0.694
RF 0.626 0.600 0.621 0.622 0.623

XGB 0.618 0.606 0.623 0.617 0.617
NB 0.604 0.600 0.601 0.599 0.603

Weighted-L1

MLP 0.631 0.603 0.630 0.628 0.620
RF 0.625 0.609 0.624 0.615 0.611

XGB 0.618 0.606 0.623 0.617 0.630
NB 0.597 0.599 0.599 0.597 0.593

Weighted-L2

MLP 0.628 0.615 0.641 0.618 0.640
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Table C.4: WAF scores for DistMult with the competing combinations of ML algorithms
and operators for the different KGs in a 70/30 split. In bold is the best result possible in
every KG.

DistMult HP-simple HP-full HP-simple
+ GO

HP-full
+ GO

HP-simple
+ LD + GO

Cosine Similarity 0.700 0.682 0.680 0.674 0.689
RF 0.641 0.592 0.592 0.589 0.603

XGB 0.683 0.676 0.676 0.651 0.667
NB 0.385 0.426 0.401 0.501 0.380

Concatenation

MLP 0.731 0.728 0.718 0.721 0.738
RF 0.704 0.677 0.685 0.672 0.683

XGB 0.692 0.699 0.698 0.686 0.704
NB 0.417 0.581 0.409 0.416 0.409

Average

MLP 0.693 0.709 0.711 0.704 0.700
RF 0.726 0.702 0.717 0.697 0.716

XGB 0.719 0.705 0.713 0.703 0.724
NB 0.493 0.425 0.550 0.415 0.467

Hadamard

MLP 0.708 0.703 0.708 0.708 0.714
RF 0.712 0.703 0.708 0.693 0.714

XGB 0.708 0.711 0.712 0.701 0.712
NB 0.577 0.634 0.454 0.435 0.525

Weighted-L1

MLP 0.690 0.687 0.702 0.697 0.696
RF 0.699 0.700 0.701 0.699 0.707

XGB 0.706 0.707 0.708 0.699 0.715
NB 0.655 0.632 0.496 0.412 0.629

Weighted-L2

MLP 0.692 0.693 0.691 0.698 0.699
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Table C.5: WAF scores for TransE with the competing combinations of ML algorithms
and operators for the different KGs in a 70/30 split. In bold is the best result possible in
every KG.

TransE HP-simple HP-full HP-simple
+ GO

HP-full
+ GO

HP-simple
+ LD + GO

Cosine Similarity 0.513 0.523 0.516 0.512 0.518
RF 0.479 0.504 0.486 0.503 0.484

XGB 0.477 0.474 0.499 0.501 0.490
NB 0.487 0.490 0.493 0.493 0.480

Concatenation

MLP 0.510 0.496 0.488 0.502 0.487
RF 0.502 0.496 0.496 0.502 0.509

XGB 0.493 0.500 0.490 0.513 0.511
NB 0.491 0.497 0.496 0.500 0.492

Average

MLP 0.447 0.506 0.333 0.336 0.366
RF 0.493 0.497 0.482 0.479 0.473

XGB 0.506 0.503 0.502 0.510 0.514
NB 0.509 0.503 0.517 0.503 0.500

Hadamard

MLP 0.333 0.333 0.333 0.333 0.333
RF 0.527 0.521 0.531 0.514 0.508

XGB 0.539 0.529 0.500 0.507 0.505
NB 0.516 0.514 0.510 0.509 0.501

Weighted-L1

MLP 0.508 0.510 0.491 0.500 0.487
RF 0.520 0.499 0.493 0.487 0.500

XGB 0.539 0.529 0.500 0.507 0.505
NB 0.504 0.516 0.501 0.497 0.498

Weighted-L2

MLP 0.333 0.333 0.333 0.333 0.333
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