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2 Abbreviations 

ADME Absorption, Distribution, Metabolism, Excretion  

ATC Anatomical Therapeutic Chemical classification system 

AUC Area Under the Curve 

BEDROC Boltzmann-Enhanced Discrimination of ROC 

BN-BMLA Bayesian Network based Bayesian Multilevel Analysis 

BPMF Bayesian Probabilistic Matrix Factorization 

CNS Central Nervous System 

COM Composition of Matter (patent) 

CROC Concentrated ROC 

CSEA Compound Set Enrichment Analysis 

DAG Directed Acyclic Graph 

EF Enrichment Factor 

FDA Food and Drug Administration 

FN False Negative 

FP False Positive 

GO Gene Ontology 

GSEA Gene Set Enrichment Analysis 

HCI High Content Imaging 

HDACi Histone deacetylase inhibitor 

HLGT High Level Group Term (MedDRA) 

HLT High Level Term (MedDRA) 

HPO Human Phenotype Ontology 

HTS High Throughput Screening 
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IND Investigational New Drug 

INN International Nonproprietary Name 

IR Infrared (spectroscopy) 

ISS IntraSet Similarity 

KFR Kernel Fusion Repositioning 

LLT Lowest Level Term (MedDRA) 

MAF Minor Allele Frequency 

MAO-B Monoamine Oxidase B 

MCMC Markov-Chain Monte Carlo 

MeSH Medical Subject Headings 

MKL Multiple Kernel Learning 

MOU Method of Use (Patent) 

NME New Molecular Entity 

NMR Nuclear Magnetic Resonance 

OLS Ordinary Least Squares 

PCA Principal Component Analysis 

PCR Principal Component Regression 

PGM Probabilistic Graphical Model 

PLS Partial Least Squares regression 

PPARγ Peroxisome proliferator-activated receptor gamma 

PPI Protein-Protein Interaction (network) 

PT Preferred Term (MedDRA) 

PU Positive and Unlabelled (learning) 

QSAR Quantitative Structure-Activity Relationship 
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RBF Radial Basis Function (kernel) 

ROC Receiver Operating Characteristic curve 

ROS Reactive Oxygen Species 

SAR Structure-Activity Relationship 

SEA Similarity Ensemble Approach 

SMARTS Smiles Arbitrary Target Specification 

SNP Single Nucleotide Polymorphism 

SNRI Serotonin-Norepinephrine Reuptake Inhibitor 

SOC System Organ Class (MedDRA) 

SSRI Selective Serotonin Reuptake Inhibitor 

SUI Stress Urinary Incontinence 

TN True Negative 

TP True Positive 

UAS Universal Average Similarity 

UMLS Unified Medical Language System 
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3 Introduction 

As the productivity of the pharmaceutical research and development is lagging behind the 

sharply increasing costs, the pharmaceutical industry is continuously searching for new 

approaches in drug discovery. These problems are aggravated also by the price pressure 

caused by expiring patents, and the ever complicated regulatory procedures. In my 

doctoral research I developed and applied methods related to two topics, which 

revolutionized the pharmaceutical industry to ameliorate the effect of the dropping 

effectiveness of the research and development pipeline: drug repositioning and 

personalized medicine (Figure 1). 

 

Figure 1 – The investigated topics and their common characteristics. 

 Drug repositioning or repurposing is a cost-effective and risk-reducing straightforward 

strategy, which aims at reusing already approved drugs in new therapeutic indications. 

From the machine learning perspective the main distinctive feature of drug repositioning 

Figure 2 - Topics related to drug repositioning and their relations. 
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compared to de novo drug discovery is the availability of a wide range of information 

sources. While conducting the research my primary goal was to develop computational 

methods to harness these information sources in drug repositioning (see Figure 2). As a 

first step I created a benchmark dataset containing six different information sources (three 

chemical structure descriptors, two side effect based descriptors and a target profile), and 

a drug-indication gold standard set. The goal of my first computational experiment was 

to compare a novel data fusion methodology, called Kernel Fusion Repositioning (KFR), 

with a baseline method. My contribution primarily concerned   the design and 

implementation of the KFR framework as well as the application of the KFR framework 

on the problem of repositioning for Parkinson’s disease. As one of the authors of a novel 

multi-target prediction method I also applied this method to the repositioning benchmark, 

and analysed the effect of multi-target learning on accuracy. 

My second topic was related to personalized medication, which facilitates the optimal 

therapy for the patient and is also favourable for the researcher interested in drug 

development. Predicting the patient-by-patient variability of the pharmacokinetics can 

help the investigator adjust the doses in a personalized way in order to maximize efficacy 

and minimize side effects and toxicity. I participated in researching the interpersonal 

variability of methotrexate pharmacokinetics at high dose levels, developed new clinical 

descriptors bridging patient and treatment levels, and investigated their usage by applying 

a novel Bayesian multivariate statistical technique to identify predictive genetic variants. 

Moreover, I compared the results against already existing ones based on frequentist 

statistics. 

3.1 Pharmaceutical Industry Background 

The past two decades in the pharmaceutical industry have been characterized by 

decreasing research and development productivity, high attrition rate and high volatility 

of output. Nowadays a dramatic shift has taken place in the field, including more pre-

competition time collaborations, public-private partnerships, and an extremely high 

number of mergers and acquisitions [1]. The cost of developing a new drug is steadily 

increasing, while the yearly number of accepted New Molecular Entities (NMEs) is 

constant or even decreasing regarding only the small molecular drugs. These trends 

clearly show that the productivity of the pharmaceutical research and development sector 
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is deteriorating and the complexity of developing a new drug and the time needed for it 

is growing significantly [2]. One of the several possible causes of this increased 

complexity is the stricter regulation environment well illustrated by the increasing 

number of guidelines [3]. 

The concentration of research and development efforts in therapeutic areas with larger 

patient population and higher risk, like chronic and potentially lethal diseases can be 

observed. A significant exception is the case of rare or orphan diseases, where 

governmental regulation, like the US Orphan Drug Act and the Regulation (EC) 141/2000 

in the EU influence the market [2]. 

A somewhat radical suggestion to change the patent and the regulatory system has been 

also discussed in the literature [3]. It is generally accepted that the pharmaceutical 

industry heavily uses the patent system and employs defensive strategies which can be 

counterproductive and can further decrease productivity through feedback loops. In the 

recent years the fear of sharing information seems to ease, but it is still quite prominent. 

Another way to move the system to a more cooperative mode of operation is to encourage 

the cooperation between the academia and the industry in a way that protects the academic 

focus on the long-term goals and high risk innovation. 

 The history of modern pharmaceutical industry was started by the large scale 

manufacturing of penicillin. At that time regulation was less strict, only safety studies 

were required for approval. Essential changes have taken place after the Contergan case, 

which have led to the introduction of the drug law, the ”Arzneimittelgesetz” in Germany, 

and with a bit logical jump to the Hatch-Waxman act in the USA [4, 5]. 

In the United States a notable step toward the current regulatory system was the enactment 

of the Drug Price Competition and Patent Term Restoration Act, often referred to as the 

Hatch-Waxman Act in 1984. It is useful to shortly examine this law, because it has 

indirect effects to the pharmaceutical development in the entire world. The main goal of 

the act is to facilitate generic development and price competition. It is achieved firstly by 

declaring the sufficiency of bioequivalence studies for generic product approval. A 

generic company can now enter the market by showing with bioavailability studies that 

their product is equivalent to the original medicine. The originator always has a 5 year 

data exclusivity period from approval. During this time the original clinical trials cannot 
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be used in the registration process of the generic competitor product. As a kind of 

compensation to stimulate research, patent term restoration has been introduced, which 

means that half of the time spent between the patent submission and the beginning of the 

marketing period, but maximum 5 years, can be added to the market exclusivity period 

of the originator. The whole exclusivity period cannot be longer than 14 years.  

In the pharmaceutical industry remarkable volatility of the approval rate appeared in the 

mid-90s. However a dramatic market entry-exit volatility already existed in the 80s, 

increased explosively in the 90s and the first decade of the 2000s due to mergers and 

acquisitions. These trends led to an increasing number of managed NME per organisation. 

This concentration of patented products led to the birth of a new type of market player, 

the 'Big Pharma'. Many of these companies do not carry out direct research and 

development activity or only in limited number, but obtaining NMEs by acquisitions of 

small companies instead [1]. 

Historically the time needed for developing a drug from the first screen was 10-15 years, 

but now this pipeline length is increasing. A target discovery phase, where the main 

question is the relevance of a target in a particular disease, usually precedes the de novo 

development, but this is out of the scope of the present work. The identification of the 

compounds starts with in-vitro or in-silico screening, usually High Throughput Screening 

(HTS) or virtual screening, where the goal is to search for hits, molecules with high 

probability of target binding. The preclinical development phase in a broader sense 

includes the classical chemical development steps such as hit-to-lead transition, lead 

optimization (changing substitution) and synthesis scale up. Strictly speaking the 

preclinical studies are experiments carried out to prove that the compound is safe to start 

human studies. These experiments include metabolic stability assays, toxicology studies 

and limited efficacy studies on model organisms. Before an experimental compound can 

be tested on human subjects, it need to be registered at the authority as an investigational 

new drug (IND). The Human Clinical Trials are divided into phases. During the Phase I 

studies, the main goal is to characterize the safety profile of the compound: determine the 

maximal safe dose and the absorption, distribution, metabolism, excretion profile (ADME) 

using increasing doses. These trials are usually carried out with the involvement of 100 

or less healthy volunteers. In special indications like cancer a more frequent adverse 

reaction is acceptable in the hope of the expected favourable risk-benefit ratio. In this case 
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the safety study, usually called Phase I/II study, involves patients and the determination 

of a small sample based estimate of the efficacy is also possible. In Phase II the goal is 

the determination of human therapeutic efficacy with participation of limited number, 

typically hundreds, of patients. This phase is sometimes divided into sub-phases, like II/A 

and II/B. The classical setup is a double-blind placebo controlled setting, but it is not 

always applicable. If an already established therapy exists for the disease, for ethical 

reasons the control is frequently that existing therapy, and the new compound is given on 

its own or as an add-on to the classical therapy. The Phase III trial is an extension of the 

Phase II to 5-8000 patients as a multicentre trial. The successful closure of the Phase III 

is an essential prerequisite for a regulatory approval. If an already approved drug is tested 

and found effective in a new indication, a regulatory submission is made for label 

expansion. This type of submission has considerable interest concerning this work. The 

process is not finished at the point of approval. The final phase of the compound's 

lifecycle is the postmarketing phase, or Phase IV, which is about the continuous 

monitoring of safety also known as pharmacovigilance [6]. The manufacturers together 

with the medical doctors and the patients continuously monitor adverse events. The 

continuous data acquisition and interim analysis is pervasive during the whole pipeline 

both for ethical and financial reasons [7]. In the European Union the 'Community code 

relating to medicinal products for human use' (Directive 2001/83/EC) outlines the main 

regulatory background. 

Regarding the detailed structure of the unsuccessful cases in the 2011-2012 interval, the 

main cause of failure in Phase II and III Clinical Trials was the lack of efficacy (56%), 

followed by safety issues (28%) [8].  The most expensive failure is which happens during 

Phase III; therefore early termination of the probably unsuccessful projects is an interest 

of the company. This fail-fast approach can be an explanation for the increase of attrition 

rate in Phase II and the decrease of failure rate in Phase III. It is worth pointing out that 

the rate of safety failures increased significantly during Phase III, which can serve as a 

motivation for this work, because suggesting approved and safe drugs for new indications 

can decrease the number of safety failures [8]. An analysis from 2014 suggests that the 

research and development output of the industry is still not satisfactory [9]. 

Drug repositioning or repurposing, i.e. searching for an innovative therapeutic application 

for an old drug, is a cost-effective and risk-reducing strategy in pharmaceutical research 
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and development.  For an existing compound already approved as a drug in some 

indications toxicity and pharmacokinetics parameters like ADME profile are available at 

least in some dosage and for some routes of administration [10]. The already developed 

manufacturing process or synthesis scale-up can also lower the costs. 

The classical case of drug repositioning is when a late failed candidate repositioned to a 

new indication. The serendipitous observation which led to the repositioning of 

thalidomide is a good example for this classical route [4]. During a four year period 

thalidomide with the trade name Contergan was originally marketed as a sedative 

especially for pregnant women. After its withdrawal due to its serious teratogenic side 

effects a clinical observation led to its application in erythema nodosum leprosum. 

Similarly, the phosphodiesterase-5 inhibitor sildenafil was in clinical phase for angina, 

but it failed to favourably influence the clinical outcome. However, its side effect later 

led to its approval against erectile dysfunction with a trade name Viagra [4].  

The case of duloxetine is near to what is called a branching development strategy. Eli 

Lilly and Co. originally developed the compound as a serotonin-norepinephrine reuptake 

inhibitor (SNRI) antidepressant later marketed in this indication with the trade name 

Cymbalta. During its development process, based on a mechanistic observation stress 

urinary incontinence (SUI) as a new indication was suggested [4, 11]. This repositioning 

was successful, and duloxetine got approved for SUI with the trade name Yentreve. 

We can regard drug repositioning as a lifecycle management, which led to the new trend 

of early repositioning [12]. The available information during the development process has 

a funnel structure. The information from the early stages is available for a large set of 

compounds, it is general, and it can be used independently of the indication, but it is a 

weak predictor of the clinical outcome. As we proceed, the gathered information will be 

closer to the clinical endpoint, but its specificity for indications will be higher and 

higher [12]. 

In fact the most successful repositioned drugs are based on serendipity, despite the several 

existing systematic approaches [13, 14]. The evidences show that there is need for 

technological intellectual property beside of expert knowledge for a repositioning biotech 

to be successful [13]. An important aspect to understand the difficulty of drug 

repositioning in a classical pharma company is the management mentality against funding 
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already failed projects. Another difficulty is that the strategic focus indications are 

specific for a given company, so if we reposition a proprietary molecule it is highly 

probable that there is no clinical expertise available in this new indication [13]. 

Two important types of patent need to be discussed here [4, 13]. The strongest one in the 

sense of protection is the composition of matter (COM) patent, which claims the chemical 

structure of the compound and grants 20 years of protection from the patent application. 

A company needs to protect the compound in development at least before registering it 

as an IND, so at least half of the time spent in the clinical phases is lost from the market 

exclusivity period. Therefore, starting a new clinical development phase after a late 

failure is a risky decision. If a compound fails in Phase III, the company loses too much 

time to start a new trial: a favourable alternative can be a branched development program 

[12, 13]. This extended profiling or early repositioning of a drug candidate can facilitate 

the deeper understanding of the safety and side effect profile of the compound [12, 13].  

The other important type of patent in the field of drug repositioning is the method of use 

(MOU), which claims that the compound can be used to treat a disease. Because the 

original COM patent usually covers a lot of indications, constructing a MOU patent can 

be very difficult. Another way to get a new COM patent is the combination of active 

substances, which forms the base strategy for some of the repositioning biotech 

companies [4]. In case of the orphan diseases, as already mentioned, an extra protection 

is granted by the law [13].  

Another route to improve the productivity of the pharmaceutical pipeline is the 

stratification of the patient population. In a more homogeneous population, where a well-

defined disease state is present, the lack of efficacy type failures can be reduced [15].  In 

several cases diseases known in the past as a uniform group actually have several different 

aetiologies. An excellent example for this is the case of targeted tumour therapies, but the 

disease heterogeneity is observable in several other therapeutic areas like 

neurodegenerative diseases or immunological conditions as well [15-17]. This effect can 

result in apparent inefficacies in clinical trials, as we try to target an ill-defined disease 

instead of the aetiology. 

Drug development for rare or orphan diseases faces with the same complication as 

stratified patient population: the number of patients can be very low. If we can identify a 
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common molecular mechanism between diseases, we develop a drug to that mechanism. 

Another route is drug repositioning: if we can find a drug already registered in a classical 

indication which can be applied in the rare case, we can use it as a candidate. 

Another important factor is the pharmacokinetics related heterogeneity of the subjects. 

Genetic polymorphisms in metabolizing enzymes and transporters can result in 

significant differences of drug metabolism and therefore can cause a lack of efficacy and 

toxicity problems. 

3.2 Overview of Virtual Screening 

To find novel pharmaceutically active compounds with appropriate properties and a 

patentable new structure sometimes millions of candidates should be analysed. If we can 

reduce the number of compounds we need to test in an HTS setting, we can reduce the 

cost of the early phase of the screening program dramatically. Moreover, sometimes the 

in-house dataset does not provide enough chemical diversity, therefore we plan to use 

candidates from external sources or to synthetize new chemistry. In this case, identifying 

a subset of compounds with the highest probability of activity before candidate 

acquisition or synthesis would result in even higher benefits.  

These computational screening methods can be divided into two main classes, target-

based methods and ligand-based methods. In the first case, when the structure of the target 

is known, this information together with the possibly available structure of known target-

ligand complexes can be exploited to guide the search for new active compounds. Most 

often these target structures are available in the form of X-ray crystallography or NMR 

measurements. In the other case, ligand-based methods only use the structural 

information of known active and known inactive compounds and attempts to identify the 

key elements of the structure-activity relationship (SAR) using statistical techniques. In 

this work we are particularly interested in ligand-based techniques. The most important 

categories of these methods are similarity searching, classification and quantitative 

structure-activity relationship (QSAR) modelling. One of the obvious differences of these 

methods is that they provide ordinal, categorical and numerical predictions respectively.  

In its simplest form similarity searching is a basic tool requiring only a single reference 

compound, and returning a list of neighbours from the database, ordered from the most 
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similar to the least similar one. Assuming that the similar property principle holds – two 

compounds with high global similarity have high probability to share the same biological 

activity – the biologically active compounds will be enriched on the top of the ranking. 

The similar property principle is based on the assumption of a smooth structure-activity 

relationship in the chemical space [18, 19]. While pharmacophore analysis and QSAR 

based methods focus on local features of the chemical compound, the similar property 

principle suggests an inherently global viewpoint [18]. This global similarity viewpoint 

assumes a continuous relation between chemical structure and activity: small changes in 

molecular structure cause small changes in activity. Therefore its validity is limited by 

activity cliffs, which can be caused for example by rigid structural elements in the binding 

site of the target. 

A good example for this sudden change of activity in the chemical space is the so called 

„magic methyl effect”, where introducing a single methyl group to a compound can result 

in several fold changes in activity. It is hardly surprising that using purely statistical 

approaches may lead to the misclassification of some samples near to an activity cliff as 

outlier. Without background knowledge, a sudden change of the activity caused by an 

activity cliff and a measurement error cannot be distinguished. In spite of the steric limits 

and well defined pharmacophoric interactions, the structural plasticity of the binding site 

makes it possible that in practice the biological activity is a smooth function of the 

chemical similarity in some regions of the chemical space. These factors also explain the 

strong dependence of the predictive performance on the target protein and on the 

reference compounds in question [18, 20]. Moreover, the performance depends on the 

molecular description method used, and on the different binding modes of similar ligands. 

The above mentioned properties of the chemical space confirm the necessity of data 

fusion to exploit the advantages of the different methods and reference structures. 

To define similarities between compounds we need an appropriate mathematical 

representation of a molecular structure, on which we can apply a function defining the 

similarity metric we want to use. The most straightforward approach to represent a 

chemical compound which meets the requirements described above is to assign a vector 

of numbers to it. This vector is usually called molecular descriptor. Every position in the 

vector - either binary, categorical or continuous – encodes a feature of the compound. If 

the position encodes the occurrence of a substructure, the descriptor is also called 
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molecular fingerprint. The substructure encoded can be two dimensional or three 

dimensional. In theory 3D fingerprints would contain more information than 2D ones, but 

in practice experience shows that most of the time the models based on the former show 

better predictive performance. A possible cause of this is the uncertainty of the relevant 

conformation used for calculating the 3D descriptor. Since the 2D fingerprint can be 

calculated directly from the graph structure of the compound, it is more robust. 

Most of the time the number of possible substructures is enormous, while the vast 

majority of them is missing from a given compound. To handle this situation a function 

with low collision probability – the hash function - is used to map all possible 

substructures to a lower dimensional vector. Another solution is folding, when positions 

in a vector are merged and the new position is set to be active if any of its ancestor was 

active. 

Another problem is that similarity is subjective; as Maggiora et al. said „similarity like 

beauty is more or less in the eye of the beholder” [20]. Or as a machine learning 

practitioner would say, the selection of the similarity metric should depend on the goal 

we would like to reach with modelling; that is, it should be determined in a supervised 

way. 

There is a significant difference between classical similarity searching and machine 

learning methods. This difference is the weighting. Computing similarities between 

actives and candidates and then applying a predefined similarity threshold does not work, 

as the optimal threshold depends on the reference compound [20]. When machine 

learning approaches are used the similarity that we compute will depend on those 

substructures which are relevant for the binding process, and the possible many irrelevant 

common substructures will have a low weight.  

The most popular similarity metric used on binary fingerprints is the Tanimoto or Jaccard 

metric. Its most popular chemoinformatics definition in its vectorial form is the following: 

 

or written with sets (Jaccard definition):  
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The Tanimoto similarity is only used on binary vectors in this work. A possible 

generalization of the Jaccard similarity to non-binary vectors exists for multisets, sets 

where the number of occurrence of a substructure is also taken into account:  

 

There are several application areas for molecular similarities, probably the most famous 

ones are the already mentioned database searching and activity prediction. Molecular 

similarity also has its application in assessing intellectual property positions and diversity 

based library enrichment [20]. In these two latter applications our goal is to maximize 

dissimilarity. 

3.3 Overview of Data fusion 

Molecules have many different types of measurable or computable characteristics from 

as simple ones as elemental composition, 2D structure, 3D structure, and physicochemical 

properties to as complex ones as phenotypic effects in a biological system, which makes 

the available data very heterogeneous. This heterogeneity is especially high in case of 

drug repositioning where we can work with much better characterized compounds. The 

relative importance of these characteristics depends on the scientific question we want to 

answer. The combination of this type of heterogeneous data should be problem specific, 

which imposes a significant mathematical challenge. Even in the prediction of drug action, 

different types of features and different inter-molecular similarity metrics can be 

predictive for different targets. This type of „no free lunch” characteristic, which is 

inherent in nature, makes the task even more challenging. The no free lunch behaviour is 

well known, and mathematically proven in the case of machine learning models [21]. 

What we call data fusion has always been organic chemists' general practice in a smaller 

scale. Let us consider a structure elucidation process based on infrared (IR) spectra, mass 

spectrometry and different multidimensional nuclear magnetic resonance (NMR) 

experiments. These spectroscopic measurements provide information about the different 
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aspects of the unknown compound. IR informs us about functional groups with 

characteristic bands, mass spectrometry about exact molecular mass, and optionally 

fragmentation data. On the other hand, NMR provides a wide range of information from 

local environments of protons, carbon, nitrogen, oxygen, phosphorus, fluorine atoms 

among others, and pairwise bond count distances, or even distances in the three 

dimensional space. All of these fragments of information, even if some of them are highly 

redundant, can be used to deduce the structure of the unknown compound with high 

confidence. In the modern era of big data our need to synthetize information and 

knowledge is still present, we just need computers to understand the relations in this 

enormous volume of data. 

In chemoinformatics, it is very popular to fuse rankings or scores derived by different 

methods based on different information sources. In case of the rank fusion, we order the 

possible candidates (here compounds) and fuse this ranked list to a consensus ranking. 

This process can be interpreted as a special case of quantile normalization, a statistical 

technique often used in expression microarray data analysis [22, 23].  

In an earlier chemical application of data fusion basic min-rank, max-rank or sum-rank 

rules were evaluated on the individual rankings [24]. These rules simply calculate the 

minimum, maximum or average of the given compound's rank in the different lists, and 

reorder them using this new derived score. The sum-rank rule is commonly referred to as 

Borda protocol in information retrieval, which name is used in this work. It is originally 

an election method named after the French mathematician Jean-Charles de Borda. When 

applying this method, each voter creates a full preference list of the candidates, and scores 

them inversely to their preference: gives N point to the first candidate, N-1 to the second, 

and so on. Finally, these scores are summed globally, and the candidate list is ordered 

based on these points.  

If we assume that every scoring function uses only a single reference structure, we can 

identify two cases. Two scoring functions can be different because the underlying 

similarity metric used is different, or because the reference active compound is different. 

The data fusion applied in the former case is called similarity fusion, while in the latter 

case we can talk about group fusion [25, 26]. It is shown by multiple studies that in case 

of similarity fusion sum-rank outperforms min-rank and max-rank, and the average of the 
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individual data source performance [24]. Furthermore, in some of the experiments the 

fused score showed at least as good performance on average as the best individual scoring 

function [24-26]. 

In case of group fusion it is shown that max-score fusion is better than sum-score or sum-

rank [26-28]. Because in this case the underlying similarity metric is unchanged, there is 

no need for the quantile normalization effect of the rank based fusion rules [27]. As the 

naming can be misleading at the first read, at this point it should be noted that min-rank 

is the quantile normalized pair of max-score and max-rank is the pair of min-score. It is 

also shown that to gain from the application of group-fusion query diversity is preferred. 

However, it is true that lower query diversity results in higher predictive performance 

both in the case of the single data source and the fused result. An interesting connection 

is that one-class support vector machines (see details in Section 3.14) can be interpreted 

as a robust hybrid of max-score and weighted sum-score rules, where representatives – 

the so called support vectors – are automatically selected from the reference set. These 

support vectors represent the boundary of the known actives in the chemical space. In our 

experiments we found that query diversity is preferred only to a limit (see Section 6.1). 

The group fusion can be used for scaffold hopping if the fusion strategy is chosen 

correctly. The simplest max-score rule is expected to result in poor retrieval of new 

scaffolds, because all of the retrieved molecules will have a single dominant reference 

molecule, where the similarity is maximal.  

A different type of fusion rule beside the rank and score based rules is the voting fusion 

rule, also called classifier fusion. In this case binary pass-fail votes are aggregated to reach 

consensus prediction. Votes are collected for all candidates and only those candidates are 

selected as active which reached a predefined number of pass votes. This fusion technique 

leads to an increase in precision but a comparable decrease in recall [25, 29, 30]. 

Unfortunately, it is not possible either to identify the best fusion rule and scoring function 

combination independently from the target, but fused scores are usually more robust to 

the change in the task or database than single ones [18, 24, 25]. This shows the real 

persistent nature of the no free lunch property, and motivates the application of problem 

specific fusion rules. A possible solution is the application of a regression-based fusion 
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rule, where the weighting of the different data sources are tuned to get optimal 

performance on the specific task at hand [31].  

Another important decision is how to choose the performance reference for our fusion 

method. We can compare the fusion result to the best individual data source; in this case 

the result is clear if the fusion provides a better result than the reference. A less strict 

reference commonly applied is the average performance of the sources. If our fusion 

result is better than the average, it is still useful because to select a better than average 

single data source we need to validate all sources individually, and we will lose statistical 

power due to the needed validation datasets. 

To increase predictive performance in the case of single reference structure Hert el al. 

introduced a method called turbo similarity searching. They used the nearest neighbours 

of the reference structure as co-reference structures and reached performance 

improvement [32]. They gave a somewhat ad-hoc interpretation of the result in the paper, 

but a quite plausible interpretation of the performance gain is a more general statistical 

phenomenon. The method introduces the local structure of the chemical space into the 

decision process. In that sense the method can be interpreted as a type of machine learning 

method from the positive and unlabelled learning class, and shows strong similarities to 

self-training [33]. For a detailed discussion on the positive and unlabelled learning 

problem see Section 3.15. 

A key assumption in similarity and group fusion is that inactive compounds are more 

diverse than active ones. This assumption makes it highly probable that different metrics 

score active compounds more consistently than the inactive ones. We can formulate the 

independent-and-accurate criteria well known in machine learning as follows: in an ideal 

case we want information sources which produce accurate ranking on active compounds 

and uncorrelated ranking on inactive ones. Another formulation for this criterion in the 

special case of ranking fusion was suggested based on the difference of rank–score 

graphs [34]. 

The literature of target-based methods usually refers to data fusion methods as consensus 

scoring. Ligand poses are evaluated with multiple scoring functions, and then a consensus 

result is computed [29]. Several fusion rules have been applied for consensus scoring 

including sum-rank and min-rank like rules, and robustified versions of them where the 
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worst ranks are dropped before applying the fusion rule. Other approaches use binary 

pass-fail votes computed based on the different scoring functions, or build regression 

models to combine scores. Another interesting direction is the combination of ligand-

based and target-based data sources [35]. 

3.4 Network pharmacology 

Polypharmacology, a property of a compound to be active on more than a single 

biological target, has been regarded as unfavourable by the classical medicinal chemistry. 

Efforts have been made to develop maximally selective compounds, ideally showing high 

affinity only to a single target. This is a rational approach to reduce the chance of side 

effects related to off-targets. Paul Ehlich's concept of „magic bullet”, selectively targeting 

disease causing targets, shaped the landscape of drug design for decades. As the network 

view of complex diseases got widely accepted, the view of pharmacotherapy as 

perturbation of a complex network became more and more dominant [36, 37]. Nowadays, 

the reductionist approach of treating targets as entities standing without biological context 

is more and more criticized. Psychiatric drugs are typical agents with extensive 

polypharmacology on central nervous system (CNS) related targets. For example, 

atypical antipsychotics have activity on a wide range of targets including antagonism on 

various dopamine and serotonin receptors. Beside the experimental evidences that 

inhibition of dopamine action on the D2 receptor seems to be essential for their therapeutic 

value against the positive symptoms of schizophrenia, other targets - especially 5-HT2A - 

are also important [38]. Actions on these targets determine the differential behaviour of 

these agents, like the action against negative symptoms or the risk of dyskinesia. This 

network view can result in a wider range of information sources for in silico methods, 

including side-effects, off-label uses, molecular biological information and gene 

expression (see Table 1). 
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Table 1 - Network levels relevant in the pharmaceutical sciences. 

Network Level Possible information sources 

Disease – Disease Side effect profile, co-morbidity profile 

Compound – Protein Target profile, metabolizing enzyme 

profile 

Protein – Protein Pathway analysis, target identification 

Gene expression Differential expression profiles (e.g.: 

CMAP) 

 

The classical target based assay is not appropriate for designing agents with 

polypharmacology. However, phenotypic screening can be an answer to the problem of 

modern candidate screening, as it starts from the system level state. In these screens 

compounds are tested on disease models to achieve a desirable change in phenotype. The 

downside of this approach is that target deconvolution efforts are needed to figure out the 

precise mechanism of the candidates found with phenotype based screens. 

One class of polypharmacology based therapy can rely on the phenomenon of synthetic 

lethality. Synthetic lethality is a cellular death occurring due to the simultaneous 

perturbation of two or more genes or gene products [36, 39]. These perturbations can be 

caused by genetic change or modification like naturally occurring mutation, knock-out or 

RNA interference experiment; pharmacological modulation, or environmental changes. 

Synthetic lethality can be a particularly important mechanism in cancer therapies, where 

the difference of the tumour cells and the wild-type host cells are in principle 

characterizable by specific mutations resulting in a changed protein-protein interaction 

(PPI) network. This new network can have new lethal targets which are non-essentials in 

the wild-type cells. This approach can be interesting especially in cases where the causal 

mutation is a loss of function mutation which is complicated to reverse, or it is found in 

a gene, whose product is difficult to modulate pharmacologically. Similarly, in case of 

drug combinations where more than one chemical perturbations are applied, the 
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prediction of the resulting effect needs to take into account the network structure. The 

detection of these types of complex interactions demands network based multivariate 

statistical techniques, which can take into account redundancies and synergies between 

variables. The Bayesian network based Bayesian multilevel analysis of relevance (BN-

BMLA) methodology is an ideal candidate for this task (see Section 3.9). 

Designing agents for specific disease cases with known genetic variants also leads us to 

the field of personalized medicine. As in the case of tumour cells, interpersonal variability 

of the protein-protein network can lead to differences in the set of relevant targets. 

Therefore, the knowledge of the patient specific network can help choose a therapy which 

will probably be effective in the case in question counter to the classical therapy effective 

in the general population. 

Synthetic lethality highlights one of the probable reasons why we need compounds with 

polypharmacology: the well-known robustness of the biological systems. As developed 

by evolutionary steps under continuously changing environmental conditions, these 

complex systems need to be robust against most of the single point changes and against 

a wide range of environmental effects. We need network biology based considerations to 

attain stable changes of the phenotype [37, 40]. 

Modulating central protein nodes, hubs, with a really high number of connections, can 

lead to toxicity because of the essentiality of these proteins. Conversely, peripheral nodes 

are probably well buffered, and drugs acting on these targets can have a lack of efficacy 

type problems. It is found that the middle ground, highly connected but not essential 

proteins are good drug targets. According to the network pharmacology paradigm the goal 

is to identify one or more network nodes – target candidates – whose perturbation would 

result in system level changes, and, more importantly, a favourable change in the disease 

related phenotype. 

An interesting new direction is the intentional design of multi-target directed ligands, 

using the already known SARs [16]. One possible option is the design of conjugated 

ligands when two or more already tested bioactive pharmacophores are linked together to 

form a new ligand. This method can result in high molecular weight and ADME problems. 

Another technique is to design a ligand with overlapping pharmacophores which can lead 
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to smaller molecular weight and structural complexity, but at the same time makes the 

design process more complicated. 

The method of selective optimization of side activities (SOSA) can also be used as a route 

to polypharmacology. The main idea of SOSA is to screen a diverse set of existing drugs 

for new activities with the aim of finding a starting point for further optimization, and not 

a candidate for direct repositioning [41]. With this method all starting points will be drug 

like by definition. The optimization goal thereafter will be twofold: on the one hand, to 

increase the new activity of the candidate; and on the other hand, to reduce the old activity. 

In case of optimization for polypharmacology, the original activity can be one of the 

desirable activities. 

Screening methods using gene expression become a universal reductionist approach. The 

proposal of gene expression as lingua franca of different perturbations on a biological 

system had a great impact [42]. The Connectivity Map defines a biological state by a gene 

expression profile, which is clearly a reductionist approach given that the downstream 

state variables like protein and metabolite levels and post translational modifications are 

not included.   

The Connectivity Map contains a database of reference profiles; gene sets ordered by 

differential expressions in a control–treatment setting. Using a query signature, a list of 

differentially expressed genes annotated by the direction of the expression change, the 

reference databased can be searched. The retrieved profiles are then ordered based on a 

gene set enrichment score, called connectivity score. The score can be positive or negative 

depending on the relative direction of the differential expressions. If the directions are the 

same in the query signature and the database profile the connectivity score is positive, but 

if they are reverse, the score is negative. The original work suggests that if a perturbation 

A has negative connectivity score with condition B, then it may reverse the effect of the 

condition. In practice this is true only if a strong linearity assumption of gene expression 

changes holds. 

Chemical compounds, short hairpin RNAs or, more generally, perturbagens can be used 

to treat different cell lines. In the Connectivity Map reference set relatively high 

concentrations (mostly 10uM) and short accumulation times (mostly 6h) were often used. 
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This time is usually not enough for feedback loops to get activated, and to cause changes 

in the expression of the target itself [43]. 

Illustrative examples on histone deacetylase inhibitors (HDACi), oestrogens, 

phenothiazines and natural compounds show that the method can recover structurally 

non-related ligands, can differentiate between agonists and antagonist and can be used for 

target discovery [44]. The usage of disease related profiles from an animal model was 

also demonstrated on the case of connectivity between diet-induced obesity profiles and 

peroxisome proliferator-activated receptor gamma (PPARγ) inhibitors. Two 

demonstrative examples were also given for human samples: Alzheimer's disease and 

dexamethasone resistance in acute lymphoblastic leukaemia [44]. 

A similar connectivity database was also built from differential expression profiles based 

on Gene Expression Omnibus DataSets [45]. A network containing disease and drug 

nodes and edges between them was constructed using profile correlation or using the same 

signature enrichment based method as in Connectivity Map. The set of nodes in the 

network was also extended with the reference profiles from the Connectivity Map. It was 

illustrated that the disease–drug links in this network can be used as hypotheses for drug 

repositioning and side effect discovery; while on the other hand, drug–drug links can be 

useful in target and pathway deconvolution. 

A network based analysis method for differential expression in these chemical 

perturbation experiments discussed above is also suggested [43]. This method uses 

functional protein associations from a database of known and predicted protein-protein 

associations. It is shown that simple differential expression based ranking is not a good 

predictor for target identification, because it relies on feedback mechanisms changing the 

own expression level of the targets. Therefore, a diffusion method is used to distribute 

differential expression based evidences through the network. These evidences are 

diffused through the functional association links, or based on the correlation of the 

neighbourhood structure of the proteins. It is not surprising that this method works best 

on nuclear receptors, which are directly linked to the gene expression level. Galahad, a 

free online service based on this method provides full microarray data processing pipeline 

for drug target identification [46]. It can be used to prioritize candidate targets, predict 

new mode of actions or off-target effects. 
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The network view also changes the way how we see diseases. Contrary to the traditional 

symptom based classification, more and more effort is made to discover the common 

mechanisms, and the co-morbidity structure of diseases. A good illustration for the 

entanglement of disease states is the fact that a naive guilt-by-association based method 

can reach surprising performance [47]. The suggested method is based on the following 

assumption: if two diseases share a drug, another drug for one of the diseases can be 

prioritized as treatment of the other. During the evaluation of the method 12 fold 

enrichment has been detected in clinical trials relative to random drug–indication pairs. 

The similarity of the active ligands on two proteins is a more sophisticated information 

which can be used. The binding site similarity of two proteins can be significantly 

different from their sequence similarity and can be unrelated from their evolutionary 

origin. A common endogenous ligand in a metabolic pathway for example can result in a 

convergent evolution of the binding sites. A similar phenomenon is the existence of 

ionotropic and metabotropic receptors for the same endogenous ligand. Based on this 

observation, a method called the Similarity Ensemble Approach (SEA) was 

developed [48]. SEA assesses protein similarity using 2D fingerprint based similarity of 

their ligands. More precisely it analyses the distribution of pairwise Tanimoto similarity 

scores between ligands of the two proteins with a correction for set size bias. Analysing 

the differences between sequence based and ligand based similarities shows typical 

protein groups with divergent and convergent binding site evolution, furthermore it 

illustrates the current trend of selective ligand design. It has been illustrated that the 

method can be used for the prediction of new primary or side effect related targets even 

between protein families [49].  

An approach with possible application for personalized medicine is also suggested in the 

literature [50]. This method can handle repositioning scenarios and novel molecules as 

well. Using known associations as gold standard for training a classifier to distinguish 

valid associations from random pairs, the method can be seen as a multi-task learning 

method. Because data are only available for valid drug–disease associations, random 

associations are used as a negative set for training. For more details on methods for 

learning from positive and unlabelled samples see Section 3.15. The method uses five 

drug–drug similarities (three out of which are drug target related) and two disease–disease 

similarity metrics to describe the associations. The applied drug–drug similarities cover 
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the chemical and side effect aspects, and the similarities between the drug targets based 

on sequence, PPI network and Gene Ontology (GO) categories. The disease–disease 

phenotype similarities are based on Medical Subject Headings (MeSH) terms and Human 

Phenotype Ontology (HPO) base semantic similarity. An alternative set of disease–

disease similarity based on gene expression signatures was also used. This points to the 

direction of personalized medicine: diseases can be represented with expression profiles, 

therefore a given specific case of the disease can be screened as well. After the application 

of a conservative cross-validation scheme the method reached significant predictive 

performance. A biologically motivated validation technique was also applied based on 

disease–tissue and drug–tissue associations. The hypothesis behind this validation was 

that it is highly probable that a target of a drug should be expressed in the tissue, which 

is relevant in the context of the new indication. 

 The side effect resource (SIDER) developed by Kuhn et al. contains side effect terms 

and frequencies of occurrences based on text mining from public data sources, mainly 

FDA package inserts [51]. For text mining a side effect dictionary based on the Unified 

Medical Language System (UMLS) ontology has been used. As side effects can be 

regarded as phenotypic responses to a given chemical perturbation, they represent 

valuable information for describing biologically active compounds. Placebo controlled 

frequencies have been also extracted for a subset of the drugs. 

It is shown by the same research group, that the set of side effects can be used as a 

predictor for drug-target interaction in the context of drug repositioning [52]. The above 

discussed work of this group, which was one of the main motivations of the repositioning 

related works in our research group, led to a patent application about aprepitant as a 

potential agent in cancer therapies [53]. It is claimed that aprepitant is a non-competitive 

inhibitor of the enzyme thymidylate synthase and inhibits cell proliferation. 

PROMISCUOUS is another online database project; it is a rich information source with 

search and network exploration tools with the purpose of helping drug-repositioning [54]. 

PROMISCUOUS contains four different types of interactions; namely, drug–protein, 

protein–protein, drug–side effects and drug–drug, where protein targets are also mapped 

to KEGG pathways. There is a possibility to search the database by drug, ATC class, side 

effects, targets or KEGG pathways, and to visualize the interaction in a network. The 
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system has a side effect similarity feature, which is able to list drugs based on a high 

number of shared side effects. 

3.5 Evaluating the performance of virtual screening 

First, we illustrate performance measures in a medicinal chemistry context using a small 

example. Let us assume we have 20 unknown compounds, 5 out of which are active COX-

1 inhibitor. The fraction of actives (RP) in this dataset is 25%, which is selected for 

illustrative purposes and unrealistically high in practice. We have three different methods 

which order these compounds based on the chemical structure and further information we 

have. After ordering the compounds, we check the COX-1 inhibitory activity of the 

compounds in vitro, and we get the result on Figure 3. 

 

 

In this example red colour always indicates active compound and blue indicates inactive 

compound. In Figure 3 boxes represent compounds in the order the given method ranked 

them. The question is which method is the best.  

The answer, as always, depends on what we mean by 'the best'. To concentrate on 

performance measures, let us regard these predictors as black boxes, which means there 

is no use of the predictor on its own; we want to evaluate only the predictive performance 

of the models. For instance, we cannot learn new chemistry by inspecting them, or we 

cannot use the models for lead optimization more effectively than just predicting activities 

of analogues. 

If we have limited capacity to test compounds, and we want good candidates for our 

pipeline, how much can we gain? We will apply a threshold τ to define the position in the 

Figure 3 - Output ordering of three hypothetical prioritization methods on 20 

compounds: 5 active (red boxes) and 15 inactive compounds (blue boxes). Predicted 

activity is highest on the left side and lowest on the right side. 
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list above which the compounds are predicted to be active. To measure predictive 

performance we need to define some statistical measures: 

True Positive (TP): Number of compounds our classifier predicted as active out of the 

real active ones. 

False Positive (FP): Number of compounds our classifier predicted as active but which 

actually are inactive. 

True Negative (TN): Number of compounds our classifier predicted as inactive out of the 

real inactive ones. 

False Negative (FN): Number of compounds our classifier predicted as inactive, but 

which actually are active. 

All of these four measures are threshold dependent, therefore we could write them as 

functions as well in the form: TP(τ), FP(τ), TN(τ) and FN(τ) respectively. We will need 

two parameters of the library, which are independent of the model and the applied 

threshold: 

NP (All Positives): The number of active compounds in our library. NP which applies to 

our whole library is usually not known, but it can be known in case of a validation set. 

NN (All negatives): The number of inactive compounds in our library. The sum of NP and 

NN is the size of the library NA, and the ratio of actives can be written as RP = NP/NA. 

As we will see, these numbers will be sufficient to derive all measures we need in a 

contingency table (Table 2).  

 

Table 2 - Contingency table. Table containing all sufficient statistics we need to assess 

performance given a threshold τ. 

 Real active 

(NP) 

Real inactive 

(NN) 

Predicted to be 

active 

True Positive False Positive 

Predicted to be 

inactive 

False Negative True Negative 
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We will use the following derived measures: 

Sensitivity (also called Recall): The fraction of the active compounds that the classifier 

identified successfully. TP / NP 

Specificity: The fraction of the inactive compounds that the classifier excluded 

successfully. TN / NN 

Precision (also called Positive Predictive Value): The fraction of real actives, in the set 

of compounds that the classifier identified as active. TP / (TP + FP)  

For a medicinal chemist, precision has a probably more intuitive form called the 

Enrichment Factor (ER). ER is a normalized form of precision by the fraction of active 

compounds in the whole dataset. It measures the fold of increase in the number of hits, 

which the experimenter can get if instead of choosing random compounds from the library, 

they test compounds predicted by the model. We can write EF proportional to sum of 

weights for all active compounds [55]: 

 

where the weighting for a compound ranked before the threshold is 1, and after the 

threshold is 0: 

 

where ri denotes the rank of the active compound i in the output ordering of the model. 

Let us assume that we have capacity to test 4 compounds, so we will use the methods to 

predict the 4 most likely active compounds (Figure 4). 
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 Actives  

NP = 5 

Inactives 

NN = 15 

Predicted to be 

active: 4 

TP: 2 FP: 2 

Predicted to be 

inactive: 16 

FN: 3 TN: 13 

 

 Actives  

NP = 5 

Inactives 

NN = 15 

Predicted to be 

active: 4 

TP: 3 FP: 1 

Predicted to be 

inactive: 16 

FN: 2 TN: 14 

 

 Actives  

NP = 5 

Inactives 

NN = 15 

Predicted to be 

active: 4 

TP: 1 FP: 3 

Predicted to be 

inactive: 16 

FN: 4 TN: 12 

Figure 4 – Contingency tables and graphical illustration of thresholding for τ = 4 

Based on these contingency tables, we can compute the derived measures (Table 3). 
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Table 3 - Derived measured computed for τ = 4 

 Method 1 Method 2 Method 3 

Sensitivity 0.40 0.60 0.20 

Specificity 0.87 0.94 0.80 

Precision 0.50 0.75 0.25 

Enrichment Factor 2.00 3.00 1.00 

 

For example, in case of Method 1 40% of the actives (two out of five) has been in the 4 

selected compounds, therefore they have been identified successfully, while 87% of the 

inactive compounds are excluded. The ratio of actives in the 4 selected compounds is 

50%, which corresponds to a two fold increase relative to random selection.  We can see 

from Table 3 that the classifier corresponding to Model 2 at the selected threshold 

outperforms the other two classifiers irrespectively of our optimization goal. For example, 

this classifier improves our hit rate by 3 folds. While this classifier is objectively better, 

the same is not true in the level of the methods. Let us choose now a new threshold: we 

can now test 10 compounds (Figure 5). 
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 Actives 

NP = 5 

Inactives 

NN = 15 

Predicted to be 

active: 10 

TP: 5 FP: 5 

Predicted to be 

inactive: 10 

FN: 0 TN: 10  

 

 

 Actives 

NP = 5 

Inactives 

NN = 15 

Predicted  

to be active: 10 

TP: 3  FP: 7 

Predicted  

to be inactive: 10 

FN: 2 TN: 8 

 

 Actives 

NP = 5 

Inactives 

NN = 15 

Predicted  

to be active: 10 

TP: 1 FP: 9 

Predicted  

to be inactive: 10 

FN: 4 TN: 6 

Figure 5 - Contingency tables and graphical illustration of thresholding for τ =10 
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The computed derived measures are shown in Table 4. 

Table 4 - Derived measures computed for τ = 10 

 Method 1 Method 2 Method 3 

Sensitivity 1.00 0.60 0.20 

Specificity 0.67 0.53 0.40 

Precision 0.50 0.30 0.10 

Enrichment Factor 2.00 1.36 0.40 

 

With this threshold the classifier corresponding to Model 1 outperforms the other two 

classifiers according to all measures. It is clear that the performance of a model we want 

to use for classification will depend on the threshold, but will not depend on the ordering 

of the compound above or below that threshold. We can plot this performance for all 

possible thresholds using a tool called Receiver Operating Characteristic or ROC curve. 

As a convention, we plot the sensitivity with respect to 1-specificity for all threshold levels 

(Figure 6). 
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In some cases we are interested in the predictive performance of the models in a threshold 

independent way. One measure to use in this case is the area under the ROC curve (AUC). 

The AUC value has a very intuitive interpretation: it gives the probability of ranking an 

active compound higher than an inactive one if the inactive-active pair in question is 

drawn uniformly at random. This interpretation relies on the connection between AUC 

and the Mann-Whitney-Wilcoxon statistics [56]. 

We can see that according to the AUC measure, Method 1 is better than Method 2, which 

is better than Method 3. We can also realize that Method 3 would be a bit better if we 

inverted its ordering. The truth is that the ordering for Method 3 was generated randomly; 

and because of the small number of entities, its AUC value can randomly deviate from 

the totally random model. If we had a huge number of entities, a random model would be 

a diagonal line with AUC = 0.5. To better understand the apparently controversial 

statements about Model 1 and Model 2, let us examine the ROC plots of them together 

(Figure 7, left). 

Figure 6 - Receiver Operating Characteristics (ROC) curve of the three different 

prioritization methods. Every coloured dot corresponds to an active (red) or inactive 

(blue) compound in the ordered sequence. 
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The green ROC curve corresponds to Method 1, and the brown one to Method 2. The 

green and brown shaded area corresponds to the superiority of Method 1 and 2 

respectively. The AUC metric weights the two sub-area equally, Model 1 therefore has 

higher AUC value. 

It can be shown that we can write AUC in the following form: 

where ri denotes the rank of the active compound i in the output of the model. From this 

equation we can see that AUC is a linear transformation of the sum of a weighting, where 

the weights are: 

If our chemical library contains several millions of compounds, but we have a limited 

testing capacity for testing only the top hits – which is the case in practice - , we are 

usually not interested in the performance after the top hits i.e. in the brown area. We want 

to weight the early part higher, and only invest time and money in more measurement, if 

it is really worth it. In this case we are facing the so called early recognition problem. An 

Figure 7 - Comparison of the Receiver Operating Characteristics (ROC) (left) and the 

Concentrated ROC curves (right) of Method 1 and Method 2. The green area represents 

the superiority of Method 2 in classification tasks using small threshold value, the 

brown area represents the superiority of Method 1 in case of high threshold values. 
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intuitive way to do it is to transform the horizontal axis of the ROC curve in such a way, 

that the area elements in the early part of the curve will be magnified, and in the late part 

they will be compressed. In a more formal way, we apply a continuous compression 

function f to 1-specificity, which maps the [0,1] interval to itself, f : [0,1] → [0,1]. An 

illustration is shown on Figure 7 (right), where we can see that the green area in the low 

end of the 1-specificity axis is now magnified, while the brown area at the high end is 

compressed. This type of transformation reflects our preference in the early recognition 

problem and can be achieved by a concave compression function, which has a derivative 

higher than 1 for low values, and lower than 1 for high values. This measure is called the 

concentrated ROC (CROC) [57]. A well-behaving compression function, which we will 

use in this work is the exponential compression:  

 

This function has a parameter α, which defines how early is the part we want to focus on.

  

 A very similar measure can be derived also form the probability theory point of view, 

called Boltzmann-Enhanced Discrimination of ROC (BEDROC) [55]. If we enforce that 

our weighting corresponds to a proper probability density function f(x), than we can 

interpret our weighted sum in the continuous limit: 

as an expected value, which have a similar probabilistic interpretation to AUC given that 

αNP/NN << 1 holds, which is usually the case in virtual screening, and is the case in our 

experiments as well. 

Similarly to the case of AUC, we need to transform this rank average based metric to get 

a metric which have values between 0 and 1: 

 

It is important to note that BEDROC is not a measure which tells if our model is better 

than a random model or not. It tells if our model is better than a reference enrichment, we 
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selected that way that it is sufficient to reach our virtual screening goal. We can however, 

analytically compute the BEDROC score of a model ranking the actives corresponding 

to a uniform distribution: 

which is with a good approximation 0.05 for α = 20.0.  

In case of the sensitivity, precision or EF, a hard threshold is applied, which means every 

active compound found higher than the threshold level is counted with equal weight, and 

every compound under this level is ignored – weighted by zero. In case of AUC all active 

ranks have equal weight. The measures like CROC or BEDROC can be interpreted as a 

trade-off between these two extremes: a decreasing weighting function - in our case an 

exponential - is applied to the ranking. These measures can take into account the early 

discovery requirement, but they are more stable than hard thresholded methods. Because 

we want to apply our method not exactly on the compound library we used for testing, 

but possibly many similar libraries, we need a robust evaluation, which does not depend 

strongly on small perturbations of the order. 

3.6 Probabilistic graphical models in the Bayesian statistical 

framework 

Probabilistic Graphical Models (PGMs) are standard representations of complex 

probabilistic models, as they allow the use of the underlying independencies in both 

model specification, learning and inference. A particularly popular subclass of PGMs are 

the Bayesian networks (BNs), which allow the specification of local dependencies. 

Another universal framework used in the thesis is the Bayesian statistical framework. In 

the following sections an overview will be given about the basics of that methodology in 

the hope that the name will gain its correct semantics. 

3.7 Bayesian framework 

The Bayesian statistical framework is gaining wider and wider acceptance as a principled 

approach to cope with uncertainty with respect to a priori knowledge, statistical models 

DOI:10.14753/SE.2018.2060



39 

and predictions [58]. In the Bayesian framework we do not assume that we will be able 

to build „the correct model” based on a limited number of observations, therefore we use 

all possible models weighted by their probability of correctness; the probability 

distribution of all models. In practice we calculate with a limited set of probable models 

because of the computational limitations. As the Bayes-theorem states, after which the 

framework is named: 

 

Where P(M|D) denotes the above mentioned probability distribution of all models M 

given the observed data D, called the posterior distribution. P(D|M) is the data likelihood, 

the probability that we observe the data we have, given that M is the correct model. P(M) 

represents the a priori correctness assumption of the models. P(D) is the marginal 

likelihood. As it does not depend on M it is only a normalization constant of the 

probability density over the models. From now on, we can use this P(M|D) distribution 

for prediction, or to gain understanding of the dependency structure between the variables 

in the domain. We can infer the a posteriori distribution of a variable V using 

marginalization, i.e. summing the distributions according to each model, weighted by the 

model probability:  

 

Similarly, we can compute marginals not only to get the distribution of a variable or set 

of variables in the domain, but to get the distribution of some properties of the model as 

well. Let f(M) denote a feature of a model, like the existence of some kind of statistical 

dependence between two variables. Then we can compute its a posteriori probability by: 
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3.8 Bayesian networks 

Bayesian networks are graphical models with directed acyclic graph (DAG) structures. 

They are composed of a set of vertices (representing random variables) and directed edges 

between them. Being a DAG they do not have directed circles, which statement is 

equivalent to the fact that at least one ordering of the variables exists in which edges are 

only directed from variables to other variables forward in the ordering. Those variables 

from which variable V has incoming edges are called the parents of V. Here we are 

interested only in the structure of the Bayesian networks; we will ask questions related to 

the existence of some edges and neighbourhood relations. These relations encode direct 

relevances of genetic polymorphisms to measured pharmacokinetic parameters of drugs. 

However, to provide an insight into how the probabilities of the possible models are 

constructed we should take into account that there is an other layer of specification. Every 

vertex has a description of the conditional probability of the variable it corresponds to, 

given the value of its parents. In general, this description can be any function mapping 

from the values of the parents to a distribution of the child variable. However, in the case 

of discrete variables a tabular representation is usually used. To illustrate the concept of 

these local probability models on an example, let us consider the local structure on Figure 

8. From the conditional probability table we can read that if all relevant single nucleotide 

polymorphisms (SNP) are absent, the probability of measuring a high Area Under the 

time plasma concentration Curve value is 0.5. If the other SNPs are absent, SNP1 

increases the odds of a high AUC by 50%, SNP2 by more than two folds and the two 

together by 9 folds.  

Figure 8 - Local probability structure of a variable and its parents. 
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Every variable from which we can go to the variable V by stepping through edges in the 

direction corresponding to its orientation are said to be an ancestor of V. It can be seen 

that every variable is independent of these ancestors if we know the value of their direct 

parents. 

   

In the example of Figure 9 the parent of the Inhib variable is only the Level variable, 

which means that according to that model, if we know the active substance concentration 

in the tissue we are interested in, the dose of the drug or the CYP enzyme activity gives 

no more information about the potential inhibition of the target. This is true only in the 

case of ancestors. However, if we know the value of the Dose and CYP it is still possible 

that we can gain extra knowledge about the concentration of the active substance by 

measuring the inhibition. To rule out or isolate all effects, we need to know the values of 

all variables in the Markov blanket of our variable. The Markov blanket of a variable 

contains its parents, its children, and the other parents of its children. Two of these three 

cases was previously discussed. Let us assume that the mechanism of our hypothetical 

drug is a competitive antagonist. In that case the inhibition is also influenced by the level 

of an agonist in the tissue, because the agonist can overcompete the inhibitor in the 

binding site [59]. In Bayesian network terms we have a new parent, let us call it Agonist, 

of the Inhib variable. Now the knowledge of this Agonist concentration can be important 

to infer the distribution of the Level variable from the inhibition. 

Figure 9 - A simplified illustrative Bayesian network of a drug action. The administered 

dose (Dose) and the activity of the relevant CYP450 enzymes (CYP) directly influence 

the level of the active substance (Level) in the tissue of interest, given that no other 

variable is known. This structure does not state that these are the only influencing 

variables, neither that there is no other intermediate variable, like the plasma level of 

the drug in the chain. 
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3.9 Bayesian Multilevel Analysis of Relevance 

The Bayesian network based Bayesian multilevel analysis of relevance (BN-BMLA) 

provides an overview of multivariate strong relevance relations, including the option of 

multiple target variables in a multi-task setting. The BN-BMLA uses hierarchical, 

systematically linked levels of representations, such as Markov Blanket Memberships 

(MBMs), Markov Blanket Sets (MBSs), and their subsets (k-MBSs). The method was 

applied in a wide range of bioinformatics problems including genetic association analysis 

[60-64].  

Using the marginalization formula for model properties, we can determine the probability 

of some features in the Bayesian network even if we do not have enough data to determine 

the complete structure.  

A simple f(M) function is used to discover edges. The value of this function is 1 if there 

is directed edge from variable A to variable B, and zero otherwise. Another feature 

function used in this work is the MBM function. The MBM function is 1 if variable A is 

in the Markov blanket of variable B and zero otherwise.  

There is a possibility to calculate edge or MBM features to a set of target variables. In 

that case the value of the function is one, if there is an edge from variable A pointing to 

any variable in the predefined set of target variables, or analogously if A is in the Markov 

blanket of at least one variable of the target set. 

There are several other possibilities, but they are not relevant to this work and they are 

discussed in detail in a book chapter published by the research group at the Technical 

University [65].   
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3.10 Machine Learning methods 

In the chemoinformatics literature the main distinctive feature of machine learning 

methods relative to similarity searching methods is the use of the inactive compound set 

[25]. Here we assume that the discussed methods are black boxes; we are only interested 

in predictive performance and not in interpretation. The machine learning community 

defines itself in a broader sense, e.g. also including methods using only positive labels 

with the goal of learning their weighting. In this work the latter convention is used, 

therefore we discuss here one-class methods, and semi-supervised learning methods in 

the extreme case where only positive samples are available. 

3.11 Linear methods for quantitative prediction 

In regression setting our goal is to build a quantitative model of one or more outcome 

variables using features also called independent or explanatory variables or covariates. In 

chemoinformatics the main applications for regression models is the field of quantitative 

structure-activity relationship modelling (QSAR).  For the discussion of this setting, let 

us assume that the features are organized in an N-by-F matrix X where a row corresponds 

to a sample – here compound – and a column corresponds to a feature. Furthermore let 

us organize all outcome variables to an N-by-M matrix Y, where a row corresponds to a 

sample and a column to an outcome variable. See the illustration on Figure 10. In the 

following discussion - if otherwise not specified - we will work with a single outcome 

(univariate regression). In this case Y is a column vector. 
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Ordinary Least Squares (OLS) is the simplest form of regression methods, which can be 

used to predict compound activities. The name comes from the fact that the method 

minimizes the squared error between the prediction and the known outcome: 

 

 

where β is a vector of model parameters, interpreted as weights on the elements of the 

feature set.  The vector xi is a row of the matrix X corresponding to sample i, and yi is the 

value of the outcome variable corresponding to sample i. 

It can be shown that the β for which the above error term is minimal can be calculated as: 

where the expression multiplying y is called the Moore-Penrose pseudoinverse of X. If 

two features are linearly dependent – they differ only by a linear transformation plus a 

small deviation term – exchanging and transforming the two β values will result in similar 

predictions. From the other way around, a small change in y would result in a huge change 

in some β values. In mathematical terms the condition number of the matrix will be large. 

Even if the problem is numerically stable, models with a high dimensional feature set 

Figure 10 - The structure of a linear regression problem in its general multivariate 

form: X is a sample by feature matrix containing the samples of the covariates, Y is the 

outcome matrix, and β is an outcome by feature weight matrix, containing the model 

parameters. As a convention we add a feature which is always one, and the β 

corresponding to that feature is the bias of the model. 
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trained on a small number of training samples can have suboptimal performance. See the 

topic of over-fitting discussed in chapter 3.16. We can ameliorate these problems if we 

introduce a constraint to restrict the space of possible models, often called regularization. 

One possible way is to reduce the actual dimensionality of the feature set by Principal 

Component Analysis (PCA). PCA will find new derived features which are uncorrelated. 

It can be interpreted as finding a transformation of the coordinate system to minimize 

correlation between the new variables (see Figure 11). In this case feature 1 and 2 are 

nearly linearly dependent, which would cause numerical instabilities during the 

computation of the Moore-Penrose pseudoinverse. On the other hand, the principal 

component corresponding to the largest variance (PC1) and the second principal 

component (PC2) are totally independent, and PC2, which corresponds to the deviation 

from the linear dependence, has small variance. If the two features were perfectly 

dependent, PC2 would have zero variance. More formally PCA finds two matrices U and 

V satisfying 

 

where U is a sample-by-principal component matrix, called the score matrix, and V is a 

feature-by-principal component matrix called the loading matrix. The rows of U, or 

simply scores, describe the samples in the new space, as plotted on Figure 11. The rows 

of V, or loadings, however, define the transformation from the original to the new feature 

space. 

The technique called Principal Component Regression (PCR) is the sequential 

composition of a PCA step on the features followed by an OLS regression. In this case 

we use only the principal components with the highest variance to make predictions, by 

using the truncated scores as features in OLS. In some cases, however, a principal 

component with lower variance can have equal or even higher importance. This problem 

arises from the fact that the creation and selection of the principal components do not 

depend on the outcome value y; they are selected an unsupervised way.   
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The most popular method applied in chemometrics is the Partial Least Squares (PLS) 

regression. In PLS the selection of the latent variables is a supervised procedure. The 

method projects the features and the prediction target or targets to new spaces with 

constrained dimensionality [66]: 

with the optimization criteria to maximize the covariance between these derived variables: 

Having these representations, the method finds a regression model between these two 

spaces: 

 

Because Ti and Ui are corresponding latent variables with the highest covariance, this 

regression problem falls back to independent univariate problems: the D matrix we search 

for is diagonal. 

As the OLS can be interpreted as maximization of the correlation, while the PCR selects 

latent variables according to the maximal variance criterion, PLS is a trade-off between 

these two cases [67].  

 The more general case of PLS briefly discussed above is called the PLS2, which can 

regress for several outcome variables together. This can help to improve predictions 

compared to building separate regression models. This principle is called multi-task 

learning in the machine learning literature [68]. We will use the same effect in matrix 

Figure 11 - Illustration of Principal Component Analysis (PCA) on the case 

of two strongly dependent features. 
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factorization models (see Section 3.17). If the prediction of only one outcome is needed, 

the PLS algorithm simplifies to a variant called PLS1 [69]. 

3.12 Basics of kernel methods 

All of the techniques discussed above are linear, which means a given feature can have 

only an additive effect to the prediction. In some cases a better prediction can be made if 

we take into account their nonlinear effects and the interactions between different features. 

The easiest way to achieve this goal is to derive nonlinear combinations of the original 

covariates and use them in the regression procedure. A modern „off the shelf” method to 

derive a nonlinear counterpart for a linear method while preserving its favourable 

properties is kernelization. In this case we use the observation that the product XTX and 

the product XXT contain the same information for modelling for a given sample by feature 

matrix X. While the size of the square matrix XTX is the number of features and the size 

of XXT is the number of samples, the rank of the two matrices is the same. In the case 

where we have a very high dimensional feature set for moderate amount of samples using 

the later representation is more economical. This is the case when we use chemical 

fingerprints for approved drugs, or we derive a large number of nonlinear interactions of 

features. It is important to note, however, that this trick alone will not prevent the 

problems arising from the high dimensional feature set discussed above. We need to apply 

regularization to address this problem. The simplest illustrative case of the kernel trick is 

the kernelization of the ridge regression (a regularized form of Ordinary Least 

Squares) [70]: 

 

As β is a vector with the size corresponding to the number of features, we can define it as 

a function of a new set of variables α with a size corresponding to the number of 

compounds as:  

 

Substituting back, and applying the Woodbury matrix identity for positive semidefinite 

matrices we get [71]:  
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And to compute the prediction for a new input x, we need to calculate: 

 

On this point we can substitute X by a matrix Φ which is derived from the original features 

by nonlinear transformation Φ = Φ(X). As there is no X outside of an inner product we 

can use K = ΦΦT everywhere. With the kernel trick we can even use an infinite number 

of features if we can directly compute the elements of K, which is always a finite sized 

sample-by-sample matrix (Figure 12). This matrix is called kernel matrix, and the direct 

mapping from the input space to the elements of K is called the kernel function k(xi,xj). 

A similarity relation discussed in the introduction, to form a valid kernel function, needs 

to meet some mild criteria. Because K is a symmetric matrix in the form ΦΦT, the matrix 

calculated with the given similarity relation should be symmetric as well, and it should 

be factorizable in this form.  

According to Mercer's theorem K is a valid kernel if it is symmetric and positive-

semidefinite, that is 

 

 

Figure 12 - Illustration of the kernelization. Using the kernel function k(xi,xj) we can 

have a direct mapping from the input space to kernel space even if the dimensionality of 

our feature space is extremely high. 
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For an illustration, let us use the following kernel function: 

 

It can be shown using the original form of Mercer's theorem that this function is a valid 

kernel function (for the theorem and its application, see detailed description in [72]). To 

illustrate the kernel trick instead, let us expand kernel function above as 

 

from which we can read the feature map Φ: 

The generalization of this kernel for a general exponent d, is called the polynomial kernel. 

Another, probably the most frequently used kernel in the machine learning literature is 

the radial basis function (RBF) kernel has the form 

It can be shown using Taylor-expansion that this kernel corresponds to an infinite 

dimensional feature space: 

As the above equation shows, all elementwise powers of x are included in the feature set, 

but the multiplier decreases strongly with increasing k. 

3.13 Data fusion with kernel methods 

To understand the complex nature of small molecule–target interaction, we need to use 

several type of data sources including chemical structure, mechanism, known targets, 

gene expression, known phenotypic effects; and integrate the information content of these 

sources. The different possible representation of these type of data – like different 

chemical fingerprints for the chemical structure - , and the diversity of the similarity 
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relations make the number of possible combinations even higher. Similarly to genomics, 

the data fusion in chemoinformatics and chemogenomics becoming more and more 

important [73].  

It is practical to divide data integration methods into three categories, namely early, 

intermediate and late integration methods [73]. In case of early integration the feature 

vectors from different information sources are concatenated to a single vector, and the 

modelling procedure uses this as an input. If the model takes into account the correlation 

between the features, the model will use any interaction between features even between 

sources.  

In case of intermediate fusion, the similarities of the entities are combined – usually added 

up - to form a fused similarity matrix. It is, therefore, called as kernel combination. In this 

case the between-source correlations are not taken into account. We generally assume 

that the within-source correlations are more important, therefore we may want to restrict 

the descriptive power of our model this way. The similarity of this motivation to the one 

behind dropout, a widely used technique in modern machine learning, would be worth 

further investigation [74].   

In case of late fusion, separate models are trained based on the different data sources, and 

the decisions of the models are fused. Two possible fusion options are the score fusion, 

when the output of the models are directly combined, and the rank fusion. As we already 

discussed in the case of virtual screening, if we reduce our scores to ranks and then we 

fuse the ranked lists to a consensus ranking, we can combine outputs with significantly 

different score distributions. 

Multiple Kernel Learning (MKL) is a commonly used technique for data integration, 

which depends on the application of the kernel trick. As an intermediate fusion technique, 

MKL depends on the linear combination of kernels:  

 

Here Kk is a kernel derived from the information source k, and dk is a corresponding 

information source weighting which we want to determine during the model building. An 

intuitive way to think about the optimization of the data source weights is that we want 
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to create a combined similarity metric, which makes our query compounds as similar to 

each other as possible, while in the same time make the separation from the other class, 

or from the origin in case of one-class problem, possible. 

We will follow the Lp-MKL formulation [75]. In case of a two-class classification 

problem the non-kernelized optimization objective, also called the primal objective, is: 

 

The objective contains three clearly identifiable contributions, namely the regularization 

of the model parameters, the classification error, and the regularization of the kernel 

weights. As the inequality constraint shows, the problem is equivalent to classifying in a 

concatenated feature space contrary to the early fusion, where we apply concatenation in 

the input space. Following the tedious derivation of Sun et al. we get the kernelized or 

dual objective as: 

3.14 One-class Support Vector Machines 

In its original form one-class SVM aims to identify a region of the input space where 

most of the training examples lie, or more precisely: to identify a function f(x) which has 

a definite positive value f(x) ≥ 1 in the region where a given (1 - ν) portion of the 

probability mass lies. In our application we will take advantage of the smoothness of f(x) 

to prioritize the points, the candidate drugs, in the input space. 

Let the training set be  

 

Using the nonlinear transformation Φ we map the training samples to the feature space, 

where we search for the solution as the form:  
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where the optimization goal is to make f(x) positive for all training samples if it is possible, 

given some regularization constraint. The problem is equivalent to finding a separating 

hyperplane between the training samples and the origin in the feature space.  

 

It can be shown that we can write f(x) in the following form:  

 

where some of the α values will be zero. The support vectors – training examples with 

non-zero α values - will lie on the boundary of the set, and will give the ranking a max-

score like behaviour, as pointed out in Section 3.3. It is also clear that ρ is only an additive 

constant, therefore irrelevant in the ranking case. 

For a similarity metric S for which S(xi,xj) ≥ 0 and S(xi,xi) = 1, the points lie in a 

hypersphere, and also in the same orthant. For illustration in the two dimensional case 

see Figure 13.  

 

 

Figure 13 - Structure of the feature space in case of a normalized similarity metric 

(left), and the example of the prioritization using the separating hyperplane between the 

training compounds (red dots) and the origin (right). 
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A multiple kernel version of the one-class SVM can be derived analogously to the two-

class classification case discussed above, from the primal optimization problem [10]:  

 

Leading to a prioritization score: 

 

3.15 Semi-supervised and Positive and Unlabelled Learning 

The SVM models provide good predictive performance [76], but there is space for 

improvement. Like in the case of similarity searching, performance can be improved by 

introducing the information of the input distribution, even if this information lacks labels 

or known outcome values. In machine learning, when a method solves a supervised 

learning task utilizing also the unlabelled examples available is called semi-supervise 

learning. An extreme case of semi-supervised learning when only positive labels are 

available is called positive and unlabelled (PU) learning [77]. This means that in our case 

only active compounds are labelled for an indication, every unlabelled compound can be 

an undiscovered active one, or an inactive. 

The two most well-known semi-supervised learning metaheuristics are self-training and 

co-training. In case of self-training a classifier is trained on the labelled dataset, and then 

prediction is computed for all unlabelled samples. In the further iterations highly 

confident predictions from the previous iteration are added to the real labelled set, and 

the classifier is re-trained [33]. An application of this metaheuristic in chemoinformatics 

is turbo similarity searching [32]. The main drawback of this method is that a false 

prediction can be self-reinforcing. Co-training is a similar method using two different 

classifiers training each other with highly confident predictions. 
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We can view the iterative application of a prioritization method by a human expert as a 

kind of semi-supervised learning assisted with weak evidences or expert knowledge [14]. 

In this scenario a prioritization framework is used to rank chemical compounds, and then 

a human expert selects some of the high ranked candidates into a query set in the next 

iteration. 

 

In case of PU learning if the assumption holds that the missing labels are probably 

unobserved negative labels, we can label a random set as negative. We should be careful, 

however, if we would like to predict new positive cases. 

An illustration of the semi-supervised learning concept is shown on Figure 14. Based on 

our a priori assumption about the distribution conditioned on the label, we can use the 

empirical input data distribution to choose a better classification model. 

Figure 14 - The effect of the utilization of information about the unlabelled samples to 

the decision boundaries of the models. Two class supervised learning task (a) versus 

semi-supervised classification (b), and one-class learning (c) versus PU learning (d). 

Placing the decision boundary the way that it corresponding to our structural 

assumption of the input distribution can lead to an increase in model performance. For 

example this illustration relies on the assumption that our class is compact. 
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3.16 Generalization error and cross validation 

Generalization ability is an important property of a prediction method because we want 

to use our models in new chemical libraries. If a dictionary of known input–output pairs 

is used as a classifier, it is obvious that the performance on this original training dataset 

will be perfect, given that our training data is perfect. For example, a dictionary-based 

QSAR method would just search for the given chemical structure in the dictionary, and 

output its measured activity. It is easy to see that this type of method is totally useless to 

predict new chemical series. This type of non-flexible behaviour is called overfitting.  

Cross-validation is a model validation technique for assessing future performance on 

independent datasets [78].  To avoid overfitting, we can split our dataset to a training set, 

and a non-overlapping test set. The latter is not used in model building, and it is only used 

to compare the prediction of the model with the measurement values. One of the most 

common methods is n-fold cross validation. In that case we divide our dataset to n equal 

sized folds, and use one of them as test set, and the rest as training set. We build the model 

with the n possible training sets separately, and evaluate it with the corresponding test set. 

Using the evaluation metrics we can compute statistics like mean performance, or assess 

the statistical significance of the performance differences. The illustration of n-fold cross 

validation is shown on Figure 15. 

A simpler to implement version is bootstrap cross-validation when we just sample a 

portion of the samples to the test set, and train the model on the rest of the data, and repeat 

Figure 15 - Illustration of 5-fold cross-validation. The dataset is partitioned to five 

parts four out of which is always used as training set and one as a test set. 
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it several times. In this case the variability of the result can be higher because the test sets 

may overlap, so more repeats need to be calculated to reach the same statistical power. 

If the model building has hyperparameters, like ν or C in case of SVM, or the number of 

layers in case of a neural networks, we need to tune these hyperparameters. If we want to 

assess the predictive accuracy on an unrelated dataset we cannot do it by just optimizing 

the test set performance. If we did it, the hyperparameters would be tuned specifically to 

reach good performance on the test set and then we would overestimate the generalization 

performance. Therefore we need to use nested cross-validation. If we are only interested 

to compare different parametrizations or different methods, but we do not want to claim 

a quantitative measure of accuracy in a practical situation, we do not need external folds. 

In nested cross-validation (see Figure 16) we partition the dataset to n outer folds, one out 

of which is used as test set for measuring the performance. The training set is then 

partitioned to m inner folds, one out of which is used for test set during the hyperparameter 

tuning often called validation set, and the others as training set.  

3.17 Macau: Bayesian Multi-relational Factorization  

As it is discussed above, if we do not have enough samples to properly identify a model, 

we should determine the a posteriori distribution of the models instead (Section 3.7). In 

the Bayesian framework we can control model complexity through the prior by simply 

Figure 16 - Illustration of 3x3-fold nested cross-validation. The dataset is partitioned to 

three equal parts two out of which form the outer training set in every iteration. This set 

is now partitioned again to three equal parts, and analogously an inner training set, 

and a validation set is formed. 
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making P(M) small for complex models and large for simple ones. However, we can still 

use other regularization techniques, like dimensionality reduction. Macau is an example 

for this as a Bayesian matrix factorization method for large scale incomplete matrices 

with high dimensional side information. Macau was developed in the STADIUS 

bioinformatics research group at KU Leuven with my participation. In that project I was 

responsible for model specification and for evaluation in pharmaceutical applications. It 

is a general tool that is designed with the special requirements of compound-protein 

interaction prediction task in mind. The so called side information is composed of 

additional features for rows and columns. If the rows of the matrix correspond to chemical 

compounds, side information can be the set of chemical fingerprints. The likelihood of 

the observations P(D|M) have the following form in this specific case:  

 

where U and V variables have their own prior probability, corresponding to the general 

term P(M). The rows and columns of Y can be regarded as entities like drugs and 

indications, and the matrix encodes relations between them. These entities have their own 

representations as a form of the vectors ui and vj. Every entity, like every compound or 

indication category, has its own descriptor vector with the length of K, where K is a small 

number relative to the size of the matrix. Therefore, we limit the number of free variables 

from N x M to N x K + M x K, where K << N,M. 

Macau has a hierarchical structure, and can be described with a graphical model, which 

is similar to the Bayesian networks discussed before (see Figure 17) [79, 80]. In the 

following discussion the precision of the observations (α) is assumed to be known a priori, 
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but in a more general form of the model it can have a Gamma distribution as non-

informative prior. 

The model can be defined by giving the local probability models for every variable 

similarly as P(Y|U,V,α) was given above. As the model is perfectly symmetric, we will 

give the formula only for one of the variables. In the second level the prior of the latent 

variables is defined as: 

 

As xi and xj are observed variables, in the third level we are left with two vectors of mean 

(µu, µv), two precision matrices (Λu and Λv) and two link matrices (βu and βv). The 

speciality of Macau is the proposed scale invariant prior over the link matrices: 

 

where • denotes the Kronecker product operation [81]. This prior is invariant to the scale 

of the latent variables. The determination of the probability distribution of the link matrix 

βu can be regarded as solving a multivariate regression problem (see Section 3.11) in a 

Bayesian context, when our feature matrix is X, and our outcome matrix is V. As V is a 

latent variable and not an observed variable, our regression is “shooting a moving target”, 

therefore the introduction of an adaptive self-adjusting prior was necessary. The prior 

Figure 17 – Probabilistic graphical model of Macau. The graph shows the hierarchical 

structure of the model: the prior of ui and vj depend on the row and column side 

information xi and zi respectively, and link matrices βu and βv are learned for the row 

and column side information. All unobserved -white- variables have their own priors. 
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over Λu and µu is a standard normal-Wishart distribution. Only one pair of variable is left 

for the fourth level: λβu and λβv. Their a priori distribution is the Gamma distribution. 

We can use the independence relations encoded in the graphical model to determine the 

distributions of the variables. For example, if we knew the value of all variables in the 

Markov blanket of ui (xi, βu, µu, Λu and Yij and vj) we could compute the distribution of ui. 

As we do not know the values of these variables, we use a Monte Carlo method called 

Gibbs-sampling to draw samples from the joint probability distribution of the 

variables [82]. 
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4 Objectives 

The objectives of my doctoral thesis are:  

 To develop a novel data fusion method for the prediction of the biological effects 

of small-molecular drugs by integrating heterogeneous information sources. 

 To apply the data fusion method for finding Parkinson's disease related drugs, and 

to evaluate the ability of this method to enhance drug discovery, especially drug 

repositioning. 

 To develop and evaluate a novel matrix factorization based method capable of 

predicting multiple activities simultaneously, and to compare it with a single 

target baseline method. 

 To adapt and apply a novel Bayesian multivariate statistical technique to identify 

genetic variants predictive of the interpersonal variability of methotrexate 

pharmacokinetics at high dose levels. 
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5 Methods 

5.1 Information sources 

At the start of the research information sources describing compounds were constructed: 

Molecular Access Keys (MACCS); molecular connectivity, shape and electrotopological 

fingerprint (MOLCONN-Z); 3D pharmacophore based fingerprint; side effect 

occurrences and frequencies; and known drug-target interactions. We define the vector 

representation of the compounds for each information source. Also similarity metrics was 

identified to compute pairwise similarity kernels from the features for the methods 

requiring similarities. The Tanimoto similarity was used for every information source 

with binary features, whereas the cosine similarity was applied for sources based on real 

valued features. 

The basic summary provided below describes the source of the data, the software version 

used to generate the features and the number of drugs for which the given type of 

information is available. It also shows the mean and median value of all pairwise 

similarities and the histogram of all pairwise similarities, which gives an image of the 

distribution of similarity relations in the space defined by the given features.  

Two main versions of these information sources were used during the work: the first 

version relies on the Anatomical Therapeutic Chemical Classification System (ATC) 

codes as identifiers for the compounds [10]. Because of the multiple occurrences of some 

compounds in the ATC hierarchy, in later publications we used a new version, where the 

identifiers are standardized English International Nonproprietary Names (INNs) of the 

compounds. The properties of these two datasets and the results based on them are 

qualitatively the same.  

It seems to be a rational choice to use the chemical structure of the compounds as an 

identifier, but the possible salt forms and different tautomers make the mapping labour 

intensive, therefore in the case of approved drugs an identifier like INN is a more 

convenient choice. 
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Table 5 - Information sources used in the different phases of the work 

 Target Freq Preval 3D MACCS Molconn. TFIDF Used ID 

Method 

study (CMC) 
X X X X X X X ATC 

Amantadine 

study (FMC) 
X X  X X X X INN 

Parkinson's 

study (CTMC) 
 X  X X X X INN 

Multi-target X X  X X X X INN 

 

The target information source is special in a sense that it can biases the prioritization 

towards known targets. If we would like to be conservative, we can drop this information 

source to find out if our method can identify a target which is already known from the 

other sources (see Table 5). In the studies, where we compared two statistical methods, 

this bias is irrelevant because the extra knowledge can help both methods equally. An old 

version of side effect prevalence based data source (Preval) contained information only 

for approximately 100 drugs; we therefore decided to drop it from the second version of 

the dataset. 

The pairwise overlap of the data sources is presented in Table 6. For every pair of data 

sources the number of drugs present on both data source is given. In the diagonal the size 

of the data sources are presented. 
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Table 6 - Overlap of the data sources: The table contains the number of drugs 

occurring in two data sources simultaniously. The diagonal elements are the sizes of the 

data sources. 

 MACCS MOLCONN 3D FREQ TARGET TFIDF 

MACCS 1851      

MOLCONN 1823 1823     

3D 1754 1753 1755    

FREQ 532 519 511 543   

TARGET 1087 1074 1055 404 1162  

TFIDF 868 853 819 513 766 925 

 

MACCS: Molecular Access Keys (Schrodinger Suit 2012 Canvas) 

 

Figure 18 - Histogram of Tanimoto similarities based on MACCS keys (Number of drugs: 

1851, Mean similarity: 0.2786, Median similarity: 0.2708) 
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It is a MACCS key based binary fingerprint, where all binary features directly correspond 

to a question about the existence of a structural pattern defined by a Smiles Arbitrary 

Target Specification (SMARTS) query and no hashing or folding is applied. In this work 

we used the standard MDL definition with 166 queries. The histogram of the pairwise 

Tanimoto similarities is presented on Figure 18. 

 

MOLCONN-Z: Molecular Connectivity, Shape and Electrotopological fingerprint 

(Schrodinger Suit 2012 Canvas) 

 

We calculated the Molconn-Z electrotopological state (Estate) with all four options (Key, 

Count, Sum, Average) available in Schrodinger Canvas software, and concatenated the 

result to get a feature vector with maximal length of 352 for all compounds. The 

histogram of the pairwise cosine similarities is presented on Figure 19. 

 

3D pharmacophore based fingerprint (Schrodinger Suit 2012 Canvas) 

Figure 19 – Histogram of cosine similarities based on the MOLCONN-Z descriptor. 

(Number of drugs: 1823, Mean similarity: 0.4720, Median similarity: 0.5000) 
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The fingerprint is generated from triplets of pharmacophoric features and their distances. 

The conformers used for the analysis were generated during the fingerprint calculation 

process with default parameterization. The histogram of the pairwise Tanimoto 

similarities is presented on Figure 20. 

  

  

FREQ: Side Effect Frequencies 

This fingerprint was built based on the data we extracted from the SIDER database [51]. 

Every real valued feature corresponds to a side effect, and the value between 0 and 1 

measures the prevalence of this side effect in the treated population. The histogram of the 

pairwise cosine similarities is presented on Figure 21. 

Figure 20 – Histogram of Tanimoto similarities based on three dimensional 

pharmacophore fingerprint (Number of drugs: 1755, Mean similarity: 0.0380, Median 

similarity: 0.0600) 
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TARGET Known Drug-target interactions 

A binary descriptor based on validated targets of the drug, extracted from the DrugBank 

database [83]. Every feature corresponds to a biological target. Because the number of 

validated targets for a given drug is usually very small, even if the compound in practice 

can be quite promiscuous, these vectors are very sparse. 

Table 7 - Statistical properties of the pairwise Tanimoto similarities based on the 

Target data source 

Number of drugs: 

1162 

Tanimoto similarity 

Zeros removed Zeros not removed 

Mean similarity 0.3146 0.0082 

Median similarity 0.2000 0.0000 

 

Figure 21 - Histogram of cosine similarities based on side effect frequencies (Number 

of drugs: 543, Mean similarity: 0.1195, Median similarity: 0.0794) 
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Because of the sparseness of this relation, histogram is dominated by a peak at 0.0 

similarity level. Mean and median similarity calculated based only on the nonzero values 

(see Table 7). 

TFIDF Side effect related terms 

This one is a continuous valued descriptor, where each position corresponds to a relevant 

term and its value is the tf-idf score of the term in the package leaflet corpus. We used 

documents from the DailyMed database, which contains package leaflets submitted to the 

FDA [84]. These labels are stored in a standardized semi-structured XML format. They 

contain information about the active substances, manufacturer, indications, dosage, 

contraindications, possible drug interactions and side effects among others. 

To compute tf-idf score, first we need to compute the term frequency: 

where nij is the number of times term i appears in the document j, and dj is the length of 

document j in words. Here document j corresponds to the package leaflet of drug j. As a 

next step we need to compute the inverse document frequency, which measures how 

informative, in other words how specific, a term is in general: 

where ni is the number of the documents containing the term i, and N is the number of all 

documents. It is clear that if all documents contain a word, that word has very little 

information about the drugs. The tf-idf score is the product of tfij and idfi. 

We used the MedDRA (Medical Dictionary for Regulatory Activities) to create a 

dictionary of side effects in the form they are used in package inserts [85]. MedDRA is a 

standardized, international, officially adopted terminology to facilitate the sharing of 

regulatory information. It has a tree structure with five specified levels: System Organ 

Class (SOC), High Level Group Term (HLGT), High Level Term (HLT), Preferred Term 

(PT), and Lowest Level Term (LLT). Only PTs and LLTs were used to create this 

information source. Every position in a descriptor corresponds to a PT, and every LLT 

occurrence in the corpus was counted to the corresponding PT. For example the LLT 

Joint inflammation corresponds to the PT Arthritis. 

DOI:10.14753/SE.2018.2060



68 

We filtered these terms further using the UMLS (Unified Medical Language System) 

ontology [86], using only terms that are assigned for one of the following four UMLS 

semantic types: 

 Anatomical Abnormality 

 Finding 

 Natural Phenomenon or Process 

 Sign or Symptoms 

Because MedDRA is also part of the UMLS system, the filtering is directly applicable. 

  

Finally, a descriptor vector is formed for each drug from all tf-idfij scores corresponding 

to that drug id j. The histogram and the statistical properties of the pairwise cosine 

similarities are presented on Figure 22. 

 

Figure 22 - Histogram of cosine similarities based on side effect tf-idf scores in 

package leaflets. (Number of drugs: 925, Mean similarity: 0.1364, Median similarity: 

0.1057) 
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5.2 Redundancy and complementarity of the information 

sources 

To assess the common information content of these data sources, that is to evaluate their 

complementarity, we computed the Spearman correlations of all pairwise similarities 

(Table 8). Because the distribution of the similarities is very different kernel to kernel, 

the correlation of the ordering of these similarities is more suitable than a standard 

Pearson correlation. As it is discussed earlier, this ordering is equivalent to a quantile 

normalization approach, which maps the different empirical distributions to a uniform 

distribution. 

Table 8 - Spearman correlations between pairwise similarities based on different data 

sources using the ATC based kernels (*: p < 10-5; **: p < 10-10; ***: p < 10-20) 

α = 0.001  Target Sider Prev 3D MACCS TF-IDF Molconn 

Target - 0.4763 0.4927 0.4911 0.4941 0.4837 0.4743 

Freq *** - 0.1996 0.067 0.0637 0.1465 0.0006 

Prev *** *** - 0.1377 0.0762 0.2543 -0.0412 

3D *** *** * - 0.3798 0.0934 0.2764 

MACCS *** *** ** *** - 0.1343 0.4433 

TF-IDF *** *** *** *** *** - 0.0743 

Molconn *** not sig. not sig. *** *** *** - 

 

5.3 Evaluation framework for the fusion methods 

I participated in the development of the novel Kernel Fusion Repositioning (KFR), which 

method uses the one-class SVM framework and serves as a reference model class in the 

comparison of other data fusion methods. As the one-class SVM seems to be quite 
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insensitive to the parametrization in a prioritization setting, we just used a fixed parameter 

ν=0.4 for all of our experiments. In the late fusion setup we computed prioritization based 

on different data sources separately, and fused the ranking with the Borda protocol. We 

used the Lp-MKL formulation for the intermediate fusion, and we used an in house 

implementation of the SMO-MKL solver by Sun et al. extended with the one-class 

option [75]. 

 AUC[ROC], AUC[CROC(exp)], BEDROC and fixed threshold sensitivity and 

specificity measures were used to evaluate predictive performance. The early discovery 

focus was α=20.0. Two thresholds were introduced for both the sensitivity and the 

specificity: top25 and top100. We predicted the membership of Level 4 ATC classes and 

evaluated the performance with bootstrap cross-validation: 30% of the class members 

were randomly selected as a test set, and 70% were kept for training, using 100 repetitions. 

5.4 Drug-Indication reference set 

To evaluate the different data fusion methods we need a drug classification system which 

is widely accepted and defines the “gold standard” indications. ATC, a widely accepted 

classification system was utilized to compare the predictive performance of the different 

ranking methods. ATC is a five-level taxonomy maintained by the Collaboration Center 

for Drug Statistics Methodology of the World Health Organization. The first level, called 

the anatomical main group, is the most general group, based on the organ or system on 

which the drug acts, like dermatologicals or nervous system. The second level, called the 

therapeutic main group, indicates therapeutic categories like antihypertensives, 

immunosuppressants or analgesics. The third level can indicate therapeutic or 

pharmacological subgroups, like antidepressants, or opioids. The fourth level can indicate 

chemical, therapeutic or pharmacological subgroups, like sulphonamides, or selective 

serotonin reuptake inhibitors. It is important to note that the same compound can appear 

multiple times in the taxonomy if it has more than one indication. For example the 

macrolide tacrolimus has two different ATC identifiers: D11AH01 and L04AD02. The 

former corresponds to D (dermatologicals), 11 (other dermatological preparations), AH 

(non-corticosteroid agents for atopic dermatitis), while the latter is L (immunomodulators 

and antineoplastics), 04 (immunosupressants), AD (calcineurin inhibitors). 
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In the experiments we used the 95 Level 4 ATC classes from our dataset, which contained 

at least 6 drugs, without eliminating duplicated ATC identifiers. We omitted 6 categories 

because of their inhomogeneity: Other ophthalmologicals (S01XA), Detoxifying agents 

for antineoplastic treatment (V03AF), Antidotes (V03AB), Other nasal preparations 

(R01AX), Other plain vitamin preparations (A11HA), Other antineoplastic agents 

(L01XX), Other dermatologicals (D11AX), Electrolyte solutions (B05XA), and Other 

cardiac preparations (C01EB). 

5.5 Application for Parkinson's disease therapy 

Parkinson’s disease (PD) is one of the most well-studied neurodegenerative diseases 

characterized by the progressive loss of dopamine producing neurons in substantia nigra. 

As the research group at the Department of Organic Chemistry has interest in Parkinson's 

disease therapies, we applied the data fusion based methodology to prioritize 

repositioning candidates for Parkinson's disease (PD). [14]. Nevertheless, the developed 

methodology can be applied to a wide range of repositioning projects in general. 

According to our current knowledge all neurodegenerative diseases share, with different 

levels of importance, the following underlying mechanisms: oxidative stress, 

neuroinflammation, mitochondrial dysfunction, protein misfolding and aggregation, 

glutamate excitotoxicity, proteosomal dysfunction, disrupted intracellular transport and 

neurofilamental network, microglial activation and abnormal apoptotic behaviour [14, 

16].  

To apply the methodology on practical pharmacology problems, there are some common 

steps to be done [14]. These steps are the following: 

1. Definition of the broader prioritization goal 

The prioritization can be a single run or it can be a sequential process. The goal can be to 

find drugs for an indication, or to find an indication to a drug. In our specific application, 

the goal was to find FDA approved drugs with good repositioning potential as a PD 

therapy. 

2. Construction of the candidate list 
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We used the entire set of approved drugs as a candidate set. We could use any set, like a 

proprietary chemical library, or a subset of approved drugs. For example, as we search 

candidates for a central nervous system (CNS) related indication, we can pre-filter the 

candidates based on their blood-brain barrier penetration ability. Other options are 

filtering based on intellectual property considerations, toxicity related substructures or 

unwanted biological effects.  

3. Construction of special kernels 

As discussed earlier, the similarity of compounds can be assessed outside of the classic 

chemical representation space. One approach is the side effect based similarity, first 

applied by Campilos et al. and further discussed in one of our publications [10, 52]. Other 

rich sources of information can be constructed from chemically perturbed gene 

expression profiles, like from the CMAP or LINCS datasets [42, 87]. A use case for the 

application of CMAP profiles is discussed in detail in our work [12]. Another promising 

option is the incorporation of disease specific information sources, and expert knowledge 

through kernels. An interesting new possibility is the data source construction from High 

Content Imaging (HCI) screens [88]. 

4. Design and construction of the query 

An important property of the query is heterogeneity, as it is also discussed in the case of 

group fusion [26]. To a given limit, heterogeneity is desirable as it increases the 

probability of non-trivial hits. Too high heterogeneity on the other hand can lead to 

anomalous behaviour. We constructed four different queries representing four 

subcategories or mechanisms of action such as neuroprotective agents, dopaminergic 

agents, muscarinic agents, and NMDA antagonists (see Table 9). Designing a query for 

prioritization is equivalent to setting the focus of the in silico study. Intuitively, we need 

to describe the indication we are interested in with a set of compounds. According to our 

studies, an optimal query size is around 3-10 compounds, but the query size can deviate 

significantly from this value in special cases. 
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Table 9 – The four Parkinson’s disease related queries with their descriptions. 

 

5. Running the method and evaluating the performance 

There are diagnostic steps which can be done to rule out meaningless results. Checking 

the query heterogeneity – e.g. ISS/UAS value - before the run is the first diagnostic step. 

Checking the positions of the query compounds in the output list is also informative. If 

some candidate compounds got higher rank than some query compounds it can signal a 

strong hit, but if too many candidates had been ranked before the query it is a strong signal 

of extreme heterogeneity. 

6. Extracting knowledge from the ordering 

Query Description 

amantadine 

pramipexole 

rasagiline 

Neuroprotective agents: Agents with disease modifying 

effect and the ability of slowing or reversing disease 

progression. 

bromocriptine 

cabergoline 

pramipexole 

rotigotine 

Dopaminergic agents: Direct agonists of various 

dopamine receptors replacing the effect of the missing 

endogenous ligand. 

amantadine 

budipine 

ifenprodil 

memantine 

NMDA antagonists: Antagonists of the N-methyl-D-

aspartate sensitive ionotropic glutamate receptor, believed 

to protect against glutamatergic excitotoxicity [89]. 

benzatropine 

biperiden 

trihexyphenidyl 

Muscarinic antagonists: Agents used for reducing the 

relative cholinergic hyperactivity in the central nervous 

system caused by dopamine deficiency, restoring the 

striatal dopaminergic-cholinergic balance.  
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There are several ways to extract information from the resulted ordering, in addition to 

the investigation of the top hits. One option is to apply filters to lower the number of 

compounds we need to investigate. These filters can be chemical structure based or text 

mining based filters. We applied a PubMed based filter, where we filtered out compounds 

without co-occurrences with the terms “PD”, “Parkinson” or “Parkinson’s disease” in 

PubMed abstracts. Other options are filtering based on physicochemical properties, or 

based on functional group occurrences [90]. 

In addition to the filtering we can use enrichment analysis to test, if there is a property 

enriched in the top of the list. The application of the compound set enrichment analysis 

(CSEA)  is discussed in our publication [12]. Compound set here means compounds 

having common properties interesting for our purpose, like common mode of action, 

target, indication or side effect [12]. The idea originates from gene set enrichment analysis 

(GSEA) [91]. 

We used the SaddleSum algorithm for enrichment analysis [92]. The intuition behind the 

algorithm is rather simple. We are interested in the enrichment of certain annotations on 

the top of our prioritization list. We have a vocabulary V of compound sets; the members 

of each set shares the same annotation. In our examples we will use the ATC Level 4 

classes as annotations. We can collect a weight for every annotation by adding up the 

inverse rank or the score of all compounds sharing the given annotation. 

To answer the question 'Is the given annotation significantly enriched on the top of the 

list?' we have to ask how likely it is that if we randomly pick entities, the sum of weights 

exceeds S. This probability will be our p-value. If this probability is low, it is highly likely 

that the enrichment is not caused by chance. 

5.6 Evaluation of Macau 

I also participated in the development of the Bayesian matrix factorization method Macau 

for the drug-indication prioritization task. An important aim of the present work is to 

make the method applicable for settings without negative samples. The probability that a 

missing association does not hold is much higher than the probability that it exists but it 

has not been verified yet. In the research a well-established strategy was selected to 

randomly choose a subset of the missing associations identified as the negative set.  
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Using the 4th level of the ATC hierarchy, we created a 718 x 99 matrix where the rows 

represent compounds, and the columns represent ATC Level 4 classes. The created matrix 

is sparsely filled with 872 ones with average of 1.21 classes per compound, which 

corresponds to a fill rate of 1.2%. We used the same ATC class level as in the one-class 

SVM experiments to make the interpretation of the results easier. There are, however, 

factors making the strict comparison difficult. First of all, the one-class SVM experiments 

were carried out using ATC codes as identifiers, while the new version of the kernels uses 

INNs. Secondly, we use Macau as a least-square classifier in the PU learning setting 

discussed earlier, while the one-class SVM does not use any information about the non-

labelled compounds. Finally, Macau is capable of predicting multiple targets 

simultaneously.  

We left out the compounds for which the side information is unavailable in every 

experiment, therefore the real factorized matrix is somewhat smaller than 718 x 99 (See 

Table 10). 

Table 10 - The sizes of the matrices in the different Macau runs. 

Data source 

Drug–ATC class matrix Drug–Feature Matrix 

Number of drug Number of ones Num. of 

features 

Nonzero 

features 

MACCS 623 774 152 24166 

MOLCONN 617 768 348 22332 

3D 597 748 49710 387128 

TFIDF 485 620 2339 59459 

TARGET 534 658 1024 2080 

 

As we mentioned above, to predict the missing elements in the matrix we need to include 

zeros with a prior probability. We chose to randomly add 4 times as many zeros as known 
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membership relations and repeated this imputation 20 times. To validate that the multi-

task effect between ATC level 4 classes can improve our results we used a column-wise 

ridge regression (a form of regularized OLS regression) as a benchmark. 

5.7 Analysis of the methotrexate pharmacokinetics 

The second major topic of my thesis is pertaining to personalized medicine. Personalized 

medicine can help in the clinic by suggesting tailored therapies, and also in the 

pharmaceutical research, as it can facilitate more effective drug development. I 

participated in a research about analysing interpersonal variability of methotrexate 

pharmacokinetics at high dose levels in children with osteosarcoma. The aim of our study 

was to investigate possible genetic factors and their role in the inter-individual differences 

of the pharmacokinetics and toxicity of methotrexate. 

Osteosarcoma is a primary malignant bone tumour with the highest prevalence in the 

group of children and young adults. One of the established therapies is high dose 

methotrexate chemotherapy. The reduced elimination of this drug can lead to toxicities, 

especially hepato- and myelotoxicity. 

In the following I will describe a dataset collected at the 2nd Department of Paediatrics 

of Semmelweis University, and which I will use to demonstrate the application of the 

Bayesian multilevel relevance analysis in phamacokinetics studies. As a member of the 

research group I analysed the effect of 29 preselected single nucleotide polymorphisms 

(SNP) from the genes ABCB1, ABCC1, ABCC2, ABCC3, ABCC10, ABCG2, GGH, 

SLC19A1, NR1I2 (see the details in Table 11). In gene selection we significantly relied 

on the literature and on relevant scientific findings as well. When estimating functionality 

we relied on the classification of the polymorphism and its localization. The SNPs were 

ranked from the highest to the lowest functionality as non-synonymous, localization in 

the promoter region, localization in the 3' UTR region, synonymous and intronic 

localization. Only polymorphisms with minor allele frequency (MAF) greater than 10% 

were selected taking care to cover the most haplotype blocks possible.  

The isolation of the genetic material from blood was carried out by using Qiagen isolation 

kits (QIAmp DNA Blood Maxi Kit / QIAmp DNA Blood Midi Kit; Qiagen, Hilden, 
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Germany). For sequencing GenomeLab SNPstream genotyping platform (Beckman 

Coulter) was used.  

 

Table 11 - Selected SNPs for genotyping (table adapted from [60]). We will concentrate 

on the methodology in this work, therefore only properties relevant for the statistical 

analysis are presented. Detailed description of the biology can be found in our 

publication or in the doctoral thesis of Dr. Marta Hegyi [60, 93]. 

Gene SNP Alleles N11 (%) N12 (%) N22 (%) MAF (%) HWE 

ABCB1 

 

rs1045642 C/T 16 23 15 49 0.27 

rs1128503 C/T 16 29 14 48 0.28 

rs9282564 A/G 31 10 0 12 0.37 

ABCC1 rs4148358 G/A 32 11 2 17 0.42 

rs246219 G/A 38 9 1 11 0.59 

rs246221 A/G 25 17 5 29 0.42 

rs12922588 A/G 20 23 9 39 0.49 

rs215060 A/G 28 18 0 20 0.10 

rs4148330 G/A 17 22 4 35 0.40 

ABCC2 rs2273697 G/A 32 19 2 22 0.68 

rs3740066 G/A 23 21 8 36 0.39 

rs717620 G/A 28 13 1 18 0.72 

ABCC3 rs4793665 T/C 17 30 9 43 0.48 
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Gene SNP Alleles N11 (%) N12 (%) N22 (%) MAF (%) HWE 

rs2107441 A/G 16 23 6 39 0.61 

rs2412333 G/A 23 24 4 31 0.50 

rs733392 G/A 21 28 3 33 0.10 

rs12602161 A/G 37 14 0 14 0.10 

ABCC10 rs1214748 G/A 15 28 5 40 0.12 

rs831314 A/G 37 13 2 16 0.53 

rs1214752 G/A 19 18 8 38 0.31 

ABCG2 rs2231142 C/A 39 13 0 13 0.30 

GGH rs3758149 C/T 20 28 7 38 0.56 

SLC19A1 rs1051266 A/G 15 27 14 49 0.79 

NR1I2 

(SXR) 

rs7643038 A/G 16 20 9 42 0.55 

rs3814055 G/A 18 23 11 43 0.47 

rs1054190 G/A 36 12 0 13 0.32 

rs3732361 G/A 13 24 9 46 0.72 

rs3814058 A/G 25 16 3 25 0.84 

rs6785049 A/G 11 29 9 48 0.19 
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5.7.1 Patient data 

59 patients participated in the study, all of whom were diagnosed with osteosarcoma 

between 1988 and 2006 at the 2nd Department of Paediatrics of Semmelweis University. 

The participants are all Hungarian. Informed consent from patients or the parents was 

received, and the whole study was carried out according to the principles expressed in the 

Declaration of Helsinki, approved by the Hungarian Scientific and Research Ethics 

Committee of the Medical Research Council (case no.: 8-374/2009-1018EKU 914/PI/08.).  

The clinical data contain 551 blocks of methotrexate treatments, with the dosage of 

12g/m² body surface area, applied 4 to 12 times in every case. The patient database 

available for this study contains the following collected information: age at diagnosis; 

gender; risk-group; serum MTX level at 6h, 24h, 36h and 48h after treatment; lowest 

serum total protein; white blood cell count; neutrophil granulocyte count;  highest value 

of alanine aminotransferase (ALAT) and aspartate aminotransferase (ASAT);  bilirubin 

and creatinine during 2 week after treatment. 

The following derived measures of the pharmacokinetics were used: area under the 

concentration–time curve in the first 48 hour (AUC0-48), the peak methotrexate 

concentration, and the half-lives of methotrexate: T1 and T2 assuming two-compartment 

kinetics. T1 and T2 were derived using the serum level measurements before and after 

24h respectively. 

The main tool to analyse this database was univariate frequentist statistic (Pearson’s chi-

squared test), carried out and interpreted as a part of a parallel work [93]. We used the 

results of the Bayesian multilevel relevance analysis to complement and confirm the 

frequentist results in that work, specifically with respect to interactions. For the above 

mentioned reasons, here we will discuss details of the frequentist methodology only when 

it is essential for clear understanding. 

5.7.2 Bayesian multilevel relevance analysis 

We used Cooper-Herskovits (CH) non-informative structure prior for the analysis [94]. 

The maximal number of parents per node is a parameter of the method, which we set to 

4 and to 2 in two separate runs. This setting limits the space of all possible Bayesian 

network models in case of limited data availability. We used 200 million Markov-chain 
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Monte Carlo (MCMC) steps; one million out of which were discarded from the beginning 

as burn-in to ensure that our samples are drawn from the correct a posteriori distribution. 

We only accepted associations, which appeared in the case of both parent count setting. 
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6 Results 

6.1 Fusion of heterogeneous information sources for the 

prediction of the biological effect of small-molecular 

drugs 

The aim of the research we conducted into computational drug repositioning was to 

compare the predictive performance of the newly developed Kernel Fusion Repositioning 

(KFR) method as an intermediate fusion method and a standard late fusion method, the 

Borda protocol based fusion via using one-class support vector machines as the model 

class. The Level 4 ATC classes were used as prediction tasks. 

We computed AUC[ROC], AUC[CROC(exp)], BEDROC, TOP25 and TOP100 

Sensitivity and Specificity values for all prediction tasks, here ATC classes, and 

illustrated the result on boxplots (See Figure 23). Because of the high specificity values, 

they are also shown on Figure 24, with an appropriate range. 

Figure 23 - Comparison of the performance of the intermediate and the late fusion 

method. 
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We also calculated the number of ATC classes which are significantly better predicted by 

the two fusion methods according to all measures (t-test; p < 0.001). We have found that 

in all cases, primarily underpinned by the early discovery measures, the intermediate data 

fusion has better predictive performance. 

 

 

To illustrate the result of the prioritization, a heatmap with hierarchical co-clustering is 

generated (see Figure 25). Every row in the heatmap corresponds to a drug and every 

column corresponds to a level 4 ATC class. The map is coloured according to the 

predicted membership relation between the drug and the class. Red signifies strongly 

predicted memberships, while blue signifies weak or no relations at all. 

The hierarchical clustering organized the drugs with similar membership profiles, and the 

classes with similar members together, forming rectangular block structures in the map.  

 

Figure 24 - Comparison of specificities of the intermediate and the late fusion method. 

Figure 25 - Illustration of the drug–ATC class heatmap. Red colour signifies strong 

membership relations, blue signifies no membership relations. 
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An 8 x 16 (compound by ATC class) section of the heatmap in Figure 25 corresponds to 

some monoamine reuptake inhibitors shown on the Figure 26. All the drugs are either 

selective serotonin reuptake inhibitor (SSRI) (fluvoxamine, sertraline, paroxetine, 

fluoxetine, citalopram, escitalopram) or tricyclic antidepressants (protriptyline, 

nortriptyline). The red column shows the SSRI ATC class N06AB. There are 

antihistamine ATC classes (R06AD, R06AX, D04AA) in the neighbourhood, which can 

be a chemical structure related similarity, see e.g. fluoxetine and diphenhydramine. There 

are other classes like anti-obesity drugs (A08AA), erectile dysfunction related drugs 

(G04BE) or antiepileptics (N03AX) where the similarity can be anticipated based on 

biological knowledge. It is important to note that citalopram and escitalopram have 

slightly different profiles even with non-stereospecific chemical descriptors. This 

discrimination power comes from the other data sources.  

 

 

An additional direct output we can extract from the kernel fusion based technique is the 

weighting of the information sources (see Figure 27). The plot shows the average kernel 

weights of the 100 cross-validation runs. 

Figure 26 – Heatmap of monoamine reuptake inhibitor drugs and relevant ATC classes. 

Some of the relevant classes are: non-selective monoamine reuptake inhibitors 

(N06AA), SSRIs (N06AB), other antidepressants (N06AX), sympathomimetic (N06BA, 

R01AA, S01EA), centrally acting antiobesity products (A08AA), erectile dysfunction 

related drugs (G04BE), antihistamines (R06AX, R06AD, D04AA) and antiepileptics 

(N03AX). 
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Since the Borda method does not have explicit weights, we calculated the Spearman 

correlation of the ordering based on the given single data source and the output orderings 

of the two fusion methods to compare their behaviour (see Figure 28). This measure is 

univariate, while the kernel weighting is multivariate in nature. This means that if two 

information sources are redundant, the kernel weights will drop, while the correlation 

between the output and the single source models will not. 

 A notable feature of these results, also a key result of my work, is that the relative 

contributions of the different data sources are quite stable across the different drug 

Figure 27 - Parallel coordinates diagram of the kernel weights: the relative importance 

of the different data sources determined by the KFR algorithm. 

Figure 28 – Parallel coordinates diagrams of the Spearman correlations between the 

single source and the fusion models. The contributions are quite stable across the 

different drug categories in case of the Borda method (left), while the kernel fusion based 

method (right) shows adaptive, query-specific properties. 
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categories in case of the Borda method, while the kernel fusion based method shows 

adaptive, query-specific properties. 

We observed cases, independently of the fusion method, where the predictive 

performance is less than AUC = 0.5, which means it is worse than the performance of a 

random model. These anomalous cases have to be removed to ensure applicability. The 

following solution forms a key result of my work: we suggested a criterion on query 

compactness to define an acceptable training set for prioritization [10]. The proposed 

solution relies on the use of the intraset similarity (ISS) to measure the diversity of a 

training set, where ISS is the average of all pairwise similarities of the elements in the 

training set T: 

We normalized it with the average of all similarities in the full set of drugs: the universe 

of our experiment, called universal average similarity (UAS): 

The measure ISS/UAS shows a good correlation with AUC values as it is shown on Figure 

29.  It can be seen that all classes which have higher than one ISS/UAS value, have at 

least 0.5 AUC. 

 

Figure 29 - The correlation of the ISS/UAS measure and the predictive performance. 
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In Table 12 and Table 13 the 10 most compact and the 10 least compact ATC classes are 

presented with their average pairwise similarity (ISS) values. It can be seen that the most 

compact ones are defined based on target or chemical class, while the diverse ones are 

based on broad functional categories. 

Table 12 - The 10 most compact ATC Level 4 classes with the computed kernel-wise 

average ISS and ISS/UAS values. 

ATC Level 4 Name ISS ISS/UAS 

C07AB Selective beta blocking agents 0.40852 2.90816 

N02CC Selective 5HT1 agonists 0.40679 2.89581 

N06AB Selective serotonin reuptake inhibitors 0.40474 2.88124 

N05AB Phenothiazines with piperazine structure 0.38035 2.70757 

C09AA Angiotensin-converting enzyme inhibitors 0.35983 2.5615 

H02AB Glucocorticoids 0.35725 2.54319 

R06AA Aminoalkyl ether antihistamines 0.35109 2.49929 

L01DB Anthracyclines and related substances 0.34375 2.44708 

D07AB Corticosteroids, moderately active (group II) 0.33612 2.39275 

N04BC Dopamine agonists 0.33329 2.37259 
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Table 13 - The 10 least compact ATC Level 4 classes with the computed kernel-wise 

average ISS and ISS/UAS values. 

ATC Level 4 Name ISS ISS/UAS 

A06AD Osmotically acting laxatives 0.03782 0.26924 

V08AC Water soluble hepatotropic X-ray contrat media 0.04659 0.33164 

G01AA Gynecological antibiotics 0.04661 0.33178 

V08CA Paramagnetic contrast media 0.08047 0.57282 

D06AX Other antibiotics for topical use 0.08361 0.59510 

S02AA Otological antiinfectives 0.09246 0.65817 

D01AE Other antifungals for topical use 0.09879 0.70329 

B05XA Electrolyte solutions 0.10896 0.77562 

D06BB Antivirals for topical use 0.1135 0.80801 

A07AA Antibiotics, Intestinal 0.12187 0.48414 

 

The geometry of this anomalous behaviour is illustrated on Figure 30. If the query is not 

compact, like the set of red dots on the figure, the model which separates them from the 

origin will rank a lot of unrelated compounds higher than the query itself (dots between 

the two groups on the figure). The compound ranked as 9th is more similar to the 

subgroup formed by the 7th and the 5th than the compounds ranked in the first place. 
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Both the MKL method and the single data source method applied in this comparison are 

sensitive to this situation, therefore it does not influence the comparison. 

This behaviour, while presented here as anomalous, can be useful to detect outliers in a 

query, or what is the main goal here, to detect some novel entities with the same property 

as the query. 

  

Figure 30 - Geometric illustration of the anomalous behaviour in the case of a 

heterogeneous query. The query compounds (red dots) are so heterogeneous that they 

are not ranked at the top of the list. 
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6.2 Application of the Kernel Fusion Repositioning method 

for finding Parkinson's disease related drugs 

We analysed the result given to four Parkinson’s disease (PD) related queries composed 

of neuroprotective agents, dopaminergic agents, muscarinic agents and NMDA 

antagonists by the KFR system (see Table 14) [14].  

Table 14 - The four Parkinson's disease related queries 

Query Drugs 

Neuroprotective agents amantadine, pramipexole, rasagiline 

Dopaminergic agents bromocriptine, cabergoline, rotigotine, 

pramipexole 

Muscarinic agents biperiden, benzatropine, trihexyphenidyl 

NMDA antagonists ifenprodil, budipine, amantadine, 

memantine 

 

The neuroprotective query is the most heterogeneous one, containing compounds with 

different structural scaffolds and mechanisms of action, which can have an effect on the 

disease progression (See Figure 31).  

Amantadine is an adamantane derivative originally introduced to the market as an 

antiviral agent inhibiting the M2 protein of influenza A viruses [95]. It is a relatively weak 

Figure 31 - Neuroprotective agents with their assumed neuroprotective mechanisms 
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NMDA receptor antagonist and only indirectly increases dopamine release [89, 96]. 

Pramipexole is a dopamine agonist partially selective for D3 receptor and an antioxidant 

[97, 98]. Both enantiomers of pramipexole can inhibit the mitochondrial production of 

reactive oxygen species (ROS) [98]. Rasagiline is an irreversible monoamine oxidase B 

(MAO-B) inhibitor, and a well-tolerated drug in PD therapy [99]. The effect against 

oxidative stress is only partly due to its MAO-B inhibitory effect [100, 101]: the reaction 

catalysed by MAO-B itself leads to H2O2 production, and in the next step to ROS 

production by Fenton's reaction. Another possible mechanism is a direct antioxidant 

effect due to the presence of the propargyl moiety [102]. 

The dopaminergic agonist query contains two ergoline (bromocriptine, cabergoline) and 

two non-ergoline (rotigotine, pramipexole) compounds (see Figure 32). Besides being a 

dopamine agonist, pramipexole is also have an antioxidant effect [97, 98]. 

 

 

The NMDA antagonist query is also structurally diverse containing two adamantane 

derivatives: amantadine, memantine (see Figure 33). In addition to its NMDA antagonist 

activity budipine shows anti-muscarinic effect as well [104]. Ifenprodil shows 400 fold 

selectivity for the NMDA receptor subunit NR2B relative to NR2A [105]. 

Figure 32 - Dopaminergic agonists and their main targeted subtypes [103]. 
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The members of the muscarinic antagonist group illustrated on Figure 34. Both biperiden 

and trihexyphenidyl show NMDA antagonist property as well [107]. 

 

In Table 15 the result of the four prioritization runs is shown after the PubMed based 

filtering. For every query those top10 compounds are shown which have non-zero co-

occurrence number defined with the following PubMed search query: („Parkinson” OR 

„Parkinson's Disease” OR „PD”) AND INN. As the original filtering was based on the 

state of the PubMed in 2013, the number of the found abstracts is also shown in case of a 

repeated search on the September 2016 version of the database. From a prospective point 

of view, which is the most reliable evaluation, it is interesting to note that the co-

occurrence number for some of the highly prioritized compounds increased significantly. 

For example it is increased by 176% for clonidine and by 200% for gabapentin, while the 

relative increase was less significant for others (eg.: trihexyphenidyl or pergolide) or there 

was no change at all (eg.: encainide). These three groups show good correspondence with 

the following groups: possible repositioning candidates, already known drugs and false 

positives. 

Figure 33 - NMDA antagonists with their specific features. Budipine shows anti-

muscarinic effect [104], while ifenprodil shows selectivity based on NMDA receptor 

subunits [105, 106]. 

Figure 34 - Muscarinic antagonists with their targets [103]. 
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Table 15 - Result of the prioritization with PD related queries. The prioritization list 

was filtered based on PubMed co-occurrence. 

Query Description 

Query elements 

with their resulted 

rank 

Result 

Ranking 
PubMed hits 

2013/2016 

Neuroprotective 

agents 

1 amantadine 

2 pramipexole 

3 rasagiline 

5 memantine 77 / 166 

6 pergolide 442 / 550 

7 tacrine 30 / 45 

9 ropinirole 335 / 485 

12 gabapentin 20 / 60 

21 fentanyl 33 / 91 

24 ziprasidone 24 / 42 

25 clonidine 43 / 119 

26 chloroquine  11 / 55 

29 clozapine. 289 / 446 
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Query Description 

Query elements 

with their resulted 

rank 

Result 

Ranking 
Query 

Description 

Dopaminergic agonists 1 bromocriptine 

2 cabergoline 

3 pramipexole 

4 rotigotine 

Ranking 
PubMed hits 

2013/2016 

6 pergolide 442 / 550 

7 lisuride 240 / 272 

8 apomorphine 1105 / 1787 

9 risperidone 83 / 155 

10 aripiprazole 27 / 67 

11 ziprasidone 24 / 42 

13 olanzapine 92 / 161 

14 quetiapine 125 / 198 

15 ergotamine 12 / 16 
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Query Description 

Query elements 

with their resulted 

rank 

Result 

Ranking 
PubMed hits 

2013/2016 

NMDA antagonists 1 ifenprodil 

2 budipine 

3 amantadine 

4 memantine 

8 dextromethorphan 19 / 46 

12 pergolide 442 / 550 

13 aprindine 21 / 21 

16 benzatropine 59 / 75 

19 mianserin 13 / 31 

20 imipramine 59 / 119 

21 biperiden 70 / 92 

23 encainide 25 / 25 

25 trihexyphenidyl 229 / 274 

29 donepezil 71 / 133 

  

DOI:10.14753/SE.2018.2060



95 

Query Description 

Query elements 

with their resulted 

rank 

Result 

Ranking 
Query 

Description 

Muscarinic antagonists 1 biperiden 

2 benzatropine 

3 trihexyphenidyl 

4 procyclidine 33 / 41 

7 atropine 119 / 253 

21 dextromethorphan 19 / 46 

24 rotigotine 110 / 236 

32 perphenazine 37 / 54 

35 ajmaline 118 / 119 

38 quinidine 110 / 144 

40 haloperidol 335 / 665 

41 encainide 25 / 25 

42 donepezil 71 / 133 

 

Beyond simply applying filters to lower the number of compounds we need to investigate, 

there are several other ways to extract information from the resulted ordering. One option 

is to use enrichment analysis to test if there is a property which is overrepresented in the 

top of the list. The application of enrichment analysis is discussed in our publication [12]. 

As an illustration, we show the application of CSEA, which can be seen as an extension 

of the prioritization method, which is also developed in our research group. 

Using the information sources discussed in this work, and in addition a Connectivity Map 

based source described in our publication, we prioritized all compounds based on the 

similarity to amantadine [12]. We then calculated the enrichment of all ATC Level 4 

classes in that list which is shown in Table 16. The original study is more detailed, 
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suggesting continuous information management through the drug discovery pipeline. 

However, since it is outside the scope of this thesis, here we refer to the original 

publication [12]. 

Table 16 – ATC Level 4 classes enriched in the list ordered by similarity to amantadine 

using all information sources + CMAP profiles. Detailed application scenario for 

CSEA is published in our paper [12]. 

Rank ATC4 Name E-value 

1. N04BC Anti-Parkinson / Dopamine agonists 0.66352 

2. G03CC Estrogens, combinations with other drugs 3.22836 

3. G02CB Prolactine inhibitors 3.64457 

4. C03CA Sulfonamides 4.10682 

5. C02CC Guanidine derivative antihypertensives 5.93538 

6. N05AB Phenothiazine antipsychotics with piperazine structure 7.72258 

7. A03FA Propulsives 7.95207 

8. N05AE Indole derivative antipsychotics 8.59378 

9. N07BB Drugs used in alcohol dependence 11.0787 

10. N04AA Anti-Parkinson / Tertiary amine anticholinergics 11.8485 

 

As it is known that amantadine does not bind to the dopamine receptors, the presence of 

the class N04BC, or the classes G02CB, A03FA, N05AA which are rich in dopaminergic 

agents suggests indirect action on the dopaminergic system, which is well-known [108]. 

Other anti-Parkinson medications, like the ones in N04AA, also have an indirect effect 

on dopaminergic signalling [109].  
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6.3 Predicting multiple activities simultaneously improves the 

accuracy 

Every level 4 ATC class contains a relatively low number of drugs, therefore learning a 

classifier which can generalize well is not easy. Some classes, however, show 

considerable similarity to one another. If two learning tasks are similar, we can use this 

similarity to learn them together, and this way we can increase the information available. 

To test this hypothesis we evaluated the predictive performance of Macau, described in 

Section 3.17, and compared it with a set of class by class trained regression models. As 

there is no negative set available, we used unscreened controls. For every positive sample 

in our dataset we randomly selected 4 membership relations from the unlabelled drug-

class pairs and used them as negative set. We repeated this procedure 20 times, and using 

all the 20 datasets we trained models and averaged the predictions. The AUC values were 

computed for every ATC class using these aggregated predictions, and then these AUC 

values were averaged over the classes. 

As Macau is a Bayesian method we do not need to set parameters to get the optimal 

performance. The only parameter we need to choose is the number of latent dimensions, 

but we know from our previous studies that choosing the latent dimension parameter 

slightly larger than necessary does not deteriorate the predictive performance [79, 80]. 

The correct strategy to choose the latent dimension parameter is to increase it as long as 

the performance increases, as larger value makes the algorithm slower without any gain. 

The ridge regression has a regularization parameter λ, which we chose using a grid search, 

trying the values 0.01, 0.1, 1.0, 10.0, 100.0, 1000.0 and evaluated the performance using 

30:70 class-level cross-validation. 
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Table 17 - Comparison of the average AUC of Macau and ridge regression. Macau is 

superior in all cases. 

Information 

source 

Macau Ridge regression 

Latent dims. CV-AUC Regularization CV-AUC 

MACCS 16 0.9135 10.0 0.8860 

3D 16 0.9213 10.0 0.8226 

MOLCONN-Z 12 0.9139 0.01 0.7316 

TFIDF 16 0.8701 0.1 0.8559 

TARGET 16 0.9146 0.1 0.8416 

 

The result of the comparison is shown in Table 17. In all of the cases Macau has a 

considerably higher predictive performance than ridge regression. Presumably, Macau 

does not need as high-quality features as a single target method. One role of the feature 

in that case is to link compounds together and make the transfer of information between 

them possible.  

Figure 35 - Histogram of drugs involved in multiple classes. Most of the drugs involved 

only in one ATC level 4 class. 
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As the drug–ATC class matrix is very sparse, matrix factorization without side 

information cannot work on this dataset simply because most of the drugs are present 

only in one class (see Figure 35). This linking role can explain the relatively good 

performance of the MOLCONN-Z descriptor in the case of Macau, while it is a relatively 

poor predictor alone. 

6.4 Comparison of BN-BMLA results to frequentist statistics 

in the task of associated variance detection for 

interpersonal methotrexate pharmacokinetics variability 

As the clinical data contains 551 methotrexate blocks for 59 patients with a variable 

number of blocks per patient, the aggregation of the block level variables was necessary. 

I recommended using the median value over blocks for every variable as a patient level 

value, a convention used both in the frequentist and the Bayesian analysis. All 

pharmacokinetics and toxicity measurements were recorded at block level, therefore the 

median was computed. 

To apply the BN-BMLA method the discretization of the continuous variables is 

necessary. I suggested the discretization based on median values to get a balanced dataset 

with an equal number of samples for different values. In case of multinomial variables 

we applied binning to binary variables to reach lower model complexity. The original 

hepatotoxicity and myelotoxicity variable was multinomial with four possible values. 

Based on the balanced dataset criterion the team binned the myelotoxicity as grade 1 vs. 

grade 2-4, and the hepatotoxicity as grade 1-2 vs. grade 3-4. 

Both the toxicity variables (myelotoxicity, hepatotoxicity) and the pharmacokinetics 

parameters (AUC0-48, peak methotrexate concentration, and methotrexate half-lives) 

show a strongly interconnected correlation structure with one another and with other 

clinical parameters. The BN-BMLA models show a connection between the 

pharmacokinetics (AUC0-48, peak concentration) and the toxicity with a posteriori edge 

probability greater than 0.5. This connection was found based on frequentist methods as 

well [93]. There is also a strong link between the time of diagnosis (1988-1995 vs. 1996-

2006) and the clinical parameters, which is due to the well-known fact of the different 

applied clinical protocol in these two periods [93]. 
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In case of the NR1I2 gene two haplotype blocks can be identified. One of them is made 

up of two SNPs, the other is composed of three (see Table 18). 

Table 18 - Haplotype blocks in the NR1I2 (SXR) gene. (D’: normalised linkage 

disequilibrium constant, LOD: log of the likelihood odds ratio, r2: correlation 

coefficient) [110] 

SNP1 SNP2 D' LOD r2 

Block 1 

rs7643038 rs3814055 1.0 [0.91 – 1.0] 19.95 0.957 

Block 2 

rs3732361 rs3814058 1.0 [0.9 – 1.0] 17.47 0.916 

rs3814058 rs6785049 1.0 [0.76 – 1.0] 6.66 0.437 

rs6785049 rs3732361 1.0 [0.9 – 1.0] 17.47 0.916 

 

The frequentist approach found all NR1I2 polymorphisms in the second block associated 

with heptato- and myelotoxicity, while the BN-BMLA identified a single one in the 

multiple target case. This SNP (rs3814058) is the same as the one where the frequentist 

p-value indicates the strongest interaction, which shows that the BN-BMLA methodology 

can distinguish between direct relations and transitive relations. It is important to note 

that every statement about a direct relevance can be interpreted only with the assumption 

that there is no other unmeasured variable which can change the chain of relevance 

relations. It is possible for example, that there is another polymorphism which has a real 

functional role, and even the identified rs3814058 SNP is only a marker, which is 

associated because it is in linkage disequilibrium with the functional polymorphism. 
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Table 19 - Effect size of identified SNPs. Effect size measured by the change of AUC 

and T1 half-life, and by odds ratio (OR) in case of hepato- and myelotoxicity. 

Frequentist Bayesian Gene SNP AUC T1 Hepato Myelo 

X  ABCC2 rs3740066 +2.8% +2.0% 0.7778 0.2698 

X  ABCG2 rs2231142 -16.3% -8.3% 0.7742 0.3482 

X  

NR1I2 

rs7643038 +16.2% +18.9% 0.7653 0.5714 

X  rs3814055 +7.3% +16.6% 0.7653 0.5714 

X  rs3732361 -5.7% -1.8% 0.5625 0.9333 

X  rs6785049 -1.5% +1.5% 1.4624 1.5111 

X X rs3814058 +2.2% +7.9% 0.3333 1.6714 

X X ABCB1 rs9282564 +16.0% -0.9% 1.0345 0.4952 

X X ABCC3 rs4793665 +10.5% +4.5% 1.0909 0.8182 

X X ABCC2 rs717620 +26.5% +16.2% 1.6800 0.2667 

 X ABCC1 rs246219 -6.2% -2.3% 1.5714 2.6154 

 X GGH rs3758149 +15.4% +21.8% 0.5000 3.2500 

 

While some SNPs are identified by both frameworks (two SNPs in case of AUC, and one 

in case of myelotoxicity), there are weaker candidates suggested by both the frequentist 

and the Bayesian methodology (see Table 19). Our results suggest that using the 

consensus of different methods for robust detection of association is an appropriate 

pragmatic approach to be followed. 
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7 Discussion 

7.1 Fusion of heterogeneous information sources for the 

prediction of biological activity 

The major goal of the research we conducted into drug repositioning was to compare the 

late fusion and the intermediate fusion paradigm via using the small molecule - ATC class 

membership prediction task as a gold standard. We found that the intermediate fusion 

shows better performance both in the case of unweighted AUC measure, and in the case 

of early discovery setting. In accordance with other observations in the literature we 

hypothesise that the difference is mainly due to the capability of the intermediate fusion 

to distinguish between within-source and between-source interactions [73], as it is 

beneficial to restrict the modelled correlation structure of the input space in case of high 

input dimensionality [74]. In the extreme case of dropping all interactions between 

features, we get the naive Bayes classifier [111], a well-known, simple and well-

performing model in the case of high input dimensionality and a relatively small number 

of samples. 

Our results showed that the model is capable of reconstructing meaningful membership 

relations, and deriving similarity between drugs and between classes. We illustrated this 

fact using the example of the SSRI and tricyclic antidepressant drugs on a co-clustered 

heatmap. 

We witnessed that there is an optimal level of query heterogeneity. An appropriate level 

of heterogeneity can help us discover new results, but if the query is extremely 

heterogeneous, an anomalous behaviour takes place. In that case most of the candidate 

set is prioritized higher than the query. One of my key contributions was a diagnostic 

criterion, which can be used to filter these anomalous cases. 

Our method is able to determine weights for the information sources simultaneously with 

the prioritization. The optimization of these data source weights with the primary goal of 

good predictive performance results in a very intuitive criterion. The optimal weights are 

those which make the query as compact as possible. For example, if a query is chemically 

compact, the chemical descriptors will get high weights. This adaptive weighting results 
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in a different level of incorporation of the data sources depending on the query. This 

property is an important advantage, which makes the method applicable in a wide range 

of pharmacological groups and different chemical spaces.   

From a machine learning point of view, the problem discussed here is very similar to the 

problem of gene prioritization [112]. In case of gene prioritization the goal is to predict 

gene-disease associations, and we use a set of genes to represent a disease. Support vector 

machines and Multiple Kernel Learning were applied successfully in gene prioritization 

as well [113, 114].  

7.2 Application of the Kernel Fusion Repositioning 

framework to find Parkinson's disease related drugs 

The developed prioritization method was applied to search for Parkinson's disease related 

drugs, and it was able to identify other drugs used in the treatment of Parkinson's disease 

or co-occurring with the disease in the literature. 

The prioritization for dopaminergic agonists clearly shows one of the limitations of our 

approach. We retrieved 5 antipsychotics in the top10 filtered list, which are well known 

antagonists at different dopaminergic receptors, particularly at D2. Predicting target 

binding is evidently an easier task than predicting the functional role. This behaviour is 

expected even in case of the chemical structure based prediction, but it is more profound 

in case of the target data source. This source contains only the targets known for a given 

drug while the nature of the interaction on the targets are not encoded. The side effect 

data source can ameliorate this fallacy to some extent as side effects are consequences of 

functional effects. This phenomenon shows the importance of system level information 

sources like the side effect based profiles or gene expression profiles. 

Our PubMed based filtering is clearly suboptimal as it removes totally new repositioning 

candidates while still leave false positives in the list. For example antipsychotics are not 

only used in the treatment of Parkinson's related psychosis, but they can also cause 

symptoms similar to Parkinson's disease. This filtering will therefore not eliminate the 

false positives generated by the fact that functional interaction prediction is difficult in 

our context. It is crucial to consider that a bad filtering can have a serious detrimental 
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effect on the predictions. However, if we use the PubMed co-occurrences in a prospective 

way, we can get much more credible signals.  

Finally, we demonstrated the use of enrichment analysis tools in the interpretation of the 

Kernel Fusion Repositioning results. With enrichment analysis we showed that KFR is 

capable of retrieving different but related mechanism of actions to a query compound. 

7.3 Prediction of multiple targets simultaneously 

Our goal was to compare multiple target prediction with the classical single target 

prediction and we found that the predictive power is consequently higher for the multi-

target method in case of each information source. Similar results were found in our 

previous pharmacogenomics studies predicting median inhibitory concentration (IC50) 

values of compounds simultaneously on multiple targets [79]. 

Macau has a limitation in the area of fusion of multiple side information, as it can handle 

only fully observed side information. Side information matrices available for a different 

set of compounds cannot be concatenated. One option would be to drop all compounds 

which are not represented in all information sources, but it would result in a great waste 

of the available data. Other methods relying on the kernel trick have complementary 

application profile to Macau. While the latter is optimized for millions of matrix rows, 

here compounds, other methods are more suitable for a lower number of matrix rows but 

in exchange for a large number of features and several different information sources [115, 

116]. On the other hand, we are working on making Macau capable of incorporating non-

complete side information expressed in a non-kernelized form. 

7.4 Advantages of Bayesian methods 

The application of two novel Bayesian methods was discussed in the present work. In the 

following the common advantages of these methods will be discussed focusing on their 

theoretical relatedness. 

We found direct probabilistic statements useful in both application areas. In the case of 

BN-BMLA the feedback of researchers in the field of genetics suggests that direct 

probabilistic statements are more natural than the frequentist viewpoint centred on the 

Type I (false positive) error. We have a similar experience with Macau: we got a specific 
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request to show a measure of credibility for our predictions to the pharmaceutical 

development team in an industrial scale drug-protein interaction prediction project. These 

questions are typically in the following form: “What is the probability that I will get a hit 

with IC50 < 10μM if I test compound1 in my assay?”. 

Furthermore, these methods offer some convenient advantages both in exploratory data 

analysis and in black-box modelling. In classical frequentist association studies we need 

to correct for multiple hypothesis testing as our main concern is the false positive type of 

error. The simplest solution is to use Bonferroni correction, which means we divide our 

significance level by the number of tests. This seriously reduces our statistical power 

because of the assumption of total independence between tests. We can apply more 

sophisticated correction mechanisms, but in case of multivariate Bayesian modelling we 

do not need to do so, as it is implicitly handled by the framework [117]. This implicit 

“correction” corresponds to the dependence structure of the variables and it is not more 

conservative than necessary. 

In case of black box modelling, as all model parameters are treated as variables, their 

distributions are determined in the same framework as the prediction. Cross-validation 

does not need to be used to set the parameters. The only step to be handled is prior 

selection: we either use expert knowledge or select our priors to be non-informative. 

Another significant advantage of Bayesian models is that they usually outperform their 

frequentist alternatives especially in the case of low sample sizes. It is observed that the 

Bayesian Probabilistic Matrix Factorization (BPMF) approach, one of the successors of 

Macau, outperforms the non-Bayesian matrix factorization especially in rows which are 

really sparse [118].  
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8 Conclusions 

The results of my research allows for making the following conclusions and statements: 

 While conducting my research I significantly contributed to and participated in 

the development process of a novel intermediate data fusion method, the Kernel 

Fusion Repositioning (KFR) framework. Our research evaluations showed that 

KFR has a superior performance compared to the late fusion baseline Borda 

protocol as justified by the AUC measure, and especially verified by all applied 

early discovery measures in terms of a drug repositioning benchmark problem. 

 In order to examine the behaviour of the methods I analysed the Spearman’s rank 

correlation of the single data source based prioritization results with the data 

fusion based prioritization results and we found that KFR shows adaptive, query-

driven properties. This property is an important advantage, which makes the 

method applicable in a wide range of pharmacological groups and different 

chemical spaces.   

 The experiments showed an anomalous behaviour in case of extremely high query 

heterogeneity and we witnessed that the query compounds are not ranked high in 

the resulted ordering. In this case the predictive power of the method can be really 

poor. We suggested a criterion measuring the average pairwise similarity of the 

query compounds to filter these cases, and showed that this criterion can identify 

the queries resulting in poor predictive performance. 

 The KFR framework was applied to identify potential repositioning candidates in 

Parkinson’s disease therapy and compounds showing high co-occurrence with 

those in the literature were retrieved. All results were validated further in a 

prospective evaluation. Also, steps of a novel computational route for drug 

repositioning candidate identification were outlined. 

 I participated in the development process of Macau, a novel Bayesian matrix 

factorization method capable of predicting multiple targets simultaneously. While 
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conducting the research I compared Macau to a single target method (Ridge 

regression) and found it superior in the case of all information sources. 

 My research justifies successful adaptation and application of BN-BMLA, a novel 

multivariate Bayesian method, in complementing and confirming the already 

existing frequentist results in a study conducted into the pharmacokinetics of high 

dose methotrexate therapy. The results suggest that the effective combination of 

the Bayesian and frequentist methods in the field of the robust detection of 

association is an appropriate strategy, whereas the BN-BMLA method is more 

beneficial in the case of investigating interactions or redundancies, such as linked 

polymorphism. 
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9 Summary 

As the research and development productivity decreases, the pharmaceutical industry is 

continuously searching for new approaches in drug discovery to keep their business 

operational. Two possible options discussed in my work are drug repositioning and 

personalized medicine. In the age of big data, shared databases and precompetition time 

collaboration; information technologies, statistics and machine learning play an important 

role in these fields. 

I significantly contributed to an interdisciplinary project in which we designed and 

implemented a data fusion method called Kernel Fusion Repositioning (KFR). KFR can 

predict the biological effects of small-molecular drugs using a diverse set of 

heterogeneous information sources. In my doctoral research I demonstrated that the 

kernel fusion framework shows better predictive performance than the early data fusion. 

The results show that there is an optimal level of heterogeneity of the query to discover 

new indications without getting anomalous behaviour. 

The data fusion method was applied in order to identify Parkinson's disease related drugs. 

We observed that the method is capable of retrieving other drugs used in the clinical 

practice or drugs co-occurring in the literature with Parkinson's disease. Also, steps of a 

novel computational route for drug repositioning candidate identification were outlined. 

I participated in the development of Macau, a novel Bayesian matrix factorization method 

capable of predicting multiple targets simultaneously. While conducting the research I 

compared Macau to a single target baseline and found it superior in the case of all 

information sources. 

In addition to drug repositioning I also participated in a research project conducted into 

the pharmacokinetics of methotrexate at high dose levels. I adapted and applied a novel 

Bayesian multivariate statistical technique to identify predictive genetic variants for the 

interpersonal variability of methotrexate pharmacokinetics. Polymorphisms significantly 

overlapping with those independently discovered by frequentist methods were 

successfully retrieved, and the advantages of the new method were verified in case of 

linked polymorphisms and multiple target variables. 
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10 Összefoglalás 

Ahogy a kutatás-fejlesztés hatékonysága csökken, a gyógyszeripari vállalatok a 

gyógyszerfejlesztés új irányaira kényszerülnek, hogy továbbra is releváns piaci szereplők 

maradjanak. A dolgozatomban tárgyalt két lehetséges út a gyógyszer újrapozícionálás és 

a személyre szabott gyógyászat. A megosztott adatbázisok és a korai fázisú 

gyógyszeripari együttműködések korszakában nagy szerep jut az információtechnológia 

és a gépi tanulás módszereinek. 

Jelentős szerepet töltöttem be egy adatfúziós módszer, a Kernel Fusion Repositioning 

(KFR) keretrendszer megtervezését és implementálását célzó interdiszciplináris 

kutatásban. A KFR rendszer alkalmas kismolekulás vegyületek biológiai hatásának 

előrejelzésére heterogén információforrások felhasználásával. A doktori munkám során 

megmutattam, hogy a kernel fúziós keretrendszer előrejelzési pontossága felülmúlja az 

úgynevezett korai adatfúziós megközelítés eredményeit. Az eredmények tükrében 

kijelenthető továbbá, hogy létezik a lekérdezési gyógyszerhalmaznak egy optimális 

heterogenitása, amely mellett feltárhatók új indikációk ugyanakkor elkerülhető a módszer 

rendellenes működése. 

Ezt követően Parkinson-kór kezelése szempontjából releváns gyógyszerjelöltek 

keresésére alkalmaztam a fenti adatfúziós eljárást, és megfigyeltem, hogy a módszer 

alkalmas klinikai gyakorlatban alkalmazott gyógyszerek és az indikációt tekintve új, a 

szakirodalomban a Parkinson-kórral együttesen előforduló vegyületek megtalálására. 

Továbbá vázoltam egy számítógépes módszereket használó újszerű munkafolyamat 

lépéseit, mely alkalmas újrapozícionálási jelöltek azonosítására. 

Részt vettem egy több célváltozó együttes becslésére képes mátrix faktorizációs módszer, 

a Macau kifejlesztésében. Jelen kutatás keretében összehasonlítottam a Macau-t egy 

egyváltozós módszerrel, és a pontosabbnak találtam a használt információforrástól 

függetlenül. 

A fentieken túl részt vettem egy kutatásban, amely a nagy dózisban adagolt metotrexát 

farmakokinetikáját vizsgálta. Adaptáltam és alkalmaztam egy új Bayes-i többváltozós 

statisztikai technikát a metotrexát farmakokinetika betegenkénti variabilitásának 

szempontjából prediktív genetikai variánsok azonosítására. Az általam azonosított 
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polimorfizmusok jelentős átfedést mutattak a frekventista módszerek használatával 

azonosítottakkal. Ezen felül megmutattam az új módszer előnyeit kapcsolt 

polimorfizmusok és több célváltozó együttes vizsgálata esetén. 
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