40,737 research outputs found

    Bi-k-bi clustering: Mining large scale gene expression data using two-level biclustering

    Get PDF
    Due to the increase in gene expression data sets in recent years, various data mining techniques have been proposed for mining gene expression profiles. However, most of these methods target single gene expression data sets and cannot handle all the available gene expression data in public databases in reasonable amount of time and space. In this paper, we propose a novel framework, bi-k-bi clustering, for finding association rules of gene pairs that can easily operate on large scale and multiple heterogeneous data sets. We applied our proposed framework on the available NCBI GEO Homo sapiens data sets. Our results show consistency and relatedness with the available literature and also provides novel associations. Copyright © 2010 Inderscience Enterprises Ltd

    Literature-aided interpretation of gene expression data with the weighted global test

    Get PDF
    Most methods for the interpretation of gene expression profiling experiments rely on the categorization of genes, as provided by the Gene Ontology (GO) and pathway databases. Due to the manual curation process, such databases are never up-to-date and tend to be limited in focus and coverage. Automated literature mining tools provide an attractive, alternative approach. We review how they can be employed for the interpretation of gene expression profiling experiments. We illustrate that their comprehensive scope aids the interpretation of data from domains poorly covered by GO or alternative databases, and allows for the linking of gene expression with diseases, drugs, tissues and other types of concepts. A framework for proper statistical evaluation of the associations between gene expression values and literature concepts was lacking and is now implemented in a weighted extension of global test. The weights are the literature association scores and reflect the importance of a gene for the concept of interest. In a direct comparison with classical GO-based gene sets, we show that use of literature-based associations results in the identification of much more specific GO categories. We demonstrate the possibilities for linking of gene expression data to patient survival in breast cancer and the action and metabolism of drugs. Coupling with online literature mining tools ensures transparency and allows further study of the identified associations. Literature mining tools are therefore powerful additions to the toolbox for the interpretation of high-throughput genomics data.UB – Publicatie

    Meta Analysis of Gene Expression Data within and Across Species

    Get PDF
    Since the second half of the 1990s, a large number of genome-wide analyses have been described that study gene expression at the transcript level. To this end, two major strategies have been adopted, a first one relying on hybridization techniques such as microarrays, and a second one based on sequencing techniques such as serial analysis of gene expression (SAGE), cDNA-AFLP, and analysis based on expressed sequence tags (ESTs). Despite both types of profiling experiments becoming routine techniques in many research groups, their application remains costly and laborious. As a result, the number of conditions profiled in individual studies is still relatively small and usually varies from only two to few hundreds of samples for the largest experiments. More and more, scientific journals require the deposit of these high throughput experiments in public databases upon publication. Mining the information present in these databases offers molecular biologists the possibility to view their own small-scale analysis in the light of what is already available. However, so far, the richness of the public information remains largely unexploited. Several obstacles such as the correct association between ESTs and microarray probes with the corresponding gene transcript, the incompleteness and inconsistency in the annotation of experimental conditions, and the lack of standardized experimental protocols to generate gene expression data, all impede the successful mining of these data. Here, we review the potential and difficulties of combining publicly available expression data from respectively EST analyses and microarray experiments. With examples from literature, we show how meta-analysis of expression profiling experiments can be used to study expression behavior in a single organism or between organisms, across a wide range of experimental conditions. We also provide an overview of the methods and tools that can aid molecular biologists in exploiting these public data

    Text Mining and Gene Expression Analysis Towards Combined Interpretation of High Throughput Data

    Get PDF
    Microarrays can capture gene expression activity for thousands of genes simultaneously and thus make it possible to analyze cell physiology and disease processes on molecular level. The interpretation of microarray gene expression experiments profits from knowledge on the analyzed genes and proteins and the biochemical networks in which they play a role. The trend is towards the development of data analysis methods that integrate diverse data types. Currently, the most comprehensive biomedical knowledge source is a large repository of free text articles. Text mining makes it possible to automatically extract and use information from texts. This thesis addresses two key aspects, biomedical text mining and gene expression data analysis, with the focus on providing high-quality methods and data that contribute to the development of integrated analysis approaches. The work is structured in three parts. Each part begins by providing the relevant background, and each chapter describes the developed methods as well as applications and results. Part I deals with biomedical text mining: Chapter 2 summarizes the relevant background of text mining; it describes text mining fundamentals, important text mining tasks, applications and particularities of text mining in the biomedical domain, and evaluation issues. In Chapter 3, a method for generating high-quality gene and protein name dictionaries is described. The analysis of the generated dictionaries revealed important properties of individual nomenclatures and the used databases (Fundel and Zimmer, 2006). The dictionaries are publicly available via a Wiki, a web service, and several client applications (Szugat et al., 2005). In Chapter 4, methods for the dictionary-based recognition of gene and protein names in texts and their mapping onto unique database identifiers are described. These methods make it possible to extract information from texts and to integrate text-derived information with data from other sources. Three named entity identification systems have been set up, two of them building upon the previously existing tool ProMiner (Hanisch et al., 2003). All of them have shown very good performance in the BioCreAtIvE challenges (Fundel et al., 2005a; Hanisch et al., 2005; Fundel and Zimmer, 2007). In Chapter 5, a new method for relation extraction (Fundel et al., 2007) is presented. It was applied on the largest collection of biomedical literature abstracts, and thus a comprehensive network of human gene and protein relations has been generated. A classification approach (Küffner et al., 2006) can be used to specify relation types further; e. g., as activating, direct physical, or gene regulatory relation. Part II deals with gene expression data analysis: Gene expression data needs to be processed so that differentially expressed genes can be identified. Gene expression data processing consists of several sequential steps. Two important steps are normalization, which aims at removing systematic variances between measurements, and quantification of differential expression by p-value and fold change determination. Numerous methods exist for these tasks. Chapter 6 describes the relevant background of gene expression data analysis; it presents the biological and technical principles of microarrays and gives an overview of the most relevant data processing steps. Finally, it provides a short introduction to osteoarthritis, which is in the focus of the analyzed gene expression data sets. In Chapter 7, quality criteria for the selection of normalization methods are described, and a method for the identification of differentially expressed genes is proposed, which is appropriate for data with large intensity variances between spots representing the same gene (Fundel et al., 2005b). Furthermore, a system is described that selects an appropriate combination of feature selection method and classifier, and thus identifies genes which lead to good classification results and show consistent behavior in different sample subgroups (Davis et al., 2006). The analysis of several gene expression data sets dealing with osteoarthritis is described in Chapter 8. This chapter contains the biomedical analysis of relevant disease processes and distinct disease stages (Aigner et al., 2006a), and a comparison of various microarray platforms and osteoarthritis models. Part III deals with integrated approaches and thus provides the connection between parts I and II: Chapter 9 gives an overview of different types of integrated data analysis approaches, with a focus on approaches that integrate gene expression data with manually compiled data, large-scale networks, or text mining. In Chapter 10, a method for the identification of genes which are consistently regulated and have a coherent literature background (Küffner et al., 2005) is described. This method indicates how gene and protein name identification and gene expression data can be integrated to return clusters which contain genes that are relevant for the respective experiment together with literature information that supports interpretation. Finally, in Chapter 11 ideas on how the described methods can contribute to current research and possible future directions are presented

    Exploring Patterns of Epigenetic Information With Data Mining Techniques

    Get PDF
    [Abstract] Data mining, a part of the Knowledge Discovery in Databases process (KDD), is the process of extracting patterns from large data sets by combining methods from statistics and artificial intelligence with database management. Analyses of epigenetic data have evolved towards genome-wide and high-throughput approaches, thus generating great amounts of data for which data mining is essential. Part of these data may contain patterns of epigenetic information which are mitotically and/or meiotically heritable determining gene expression and cellular differentiation, as well as cellular fate. Epigenetic lesions and genetic mutations are acquired by individuals during their life and accumulate with ageing. Both defects, either together or individually, can result in losing control over cell growth and, thus, causing cancer development. Data mining techniques could be then used to extract the previous patterns. This work reviews some of the most important applications of data mining to epigenetics.Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo; 209RT-0366Galicia. Consellería de Economía e Industria; 10SIN105004PRInstituto de Salud Carlos III; RD07/0067/000
    corecore