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Abstract: Due to the increase in gene expression data sets in recent years,
various data mining techniques have been proposed for mining gene
expression profiles. However, most of these methods target single gene
expression data sets and cannot handle all the available gene expression
data in public databases in reasonable amount of time and space. In this
paper, we propose a novel framework, bi-k-bi clustering, for finding
association rules of gene pairs that can easily operate on large scale and
multiple heterogeneous data sets. We applied our proposed framework
on the available NCBI GEO Homo sapiens data sets. Our results show
consistency and relatedness with the available literature and also provides
novel associations.
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1 Introduction

Microarray technology allows researchers simultaneously monitor expression levels
of thousands of genes in a single experiment. These experiments are valuable tools
in the understanding of genes, biological networks, and cellular states. Studies
of microarray experiments have targeted many important goals, such as: finding
differentially expressed genes, defining pathways, drug targeting, co-expressed gene
clustering. Therefore, the most important goals of these studies is to survey patterns
of gene expressions (Eisen et al., 1998; Jiang et al., 2004).

A microarray sample is a biological experiment performed on a single
microarray chip to monitor expression levels of thousands of genes. Microarray
samples experimented for specific studies are grouped into data sets. NCBI Gene
Expression Omnibus (GEO) project is a public repository for microarray sample
submissions from all over the world (Barrett et al., 2007). NCBI GEO hosts
tens of thousands of microarray samples, grouped into hundreds of data sets,
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done for different purposes and submitted by different experimenters. Since many
experiments were done on the same organism with a common gene set, it has been
a challenge for scientists to mine gene expression data compiled at such a large and
heterogeneous scale.

In recent years, biclustering and Association Pattern Discovery (APD) (a.k.a
Association Rule Mining (ARM)) methods have been proposed to discover genes
with similar expression profiles in a subset of conditions (samples) (Berrar et al.,
2001; Cheng and Church, 2000; Kotala et al., 2001).

Cheng and Church (2000) introduced the concept of biclustering for gene
expression data and proposed a greedy approach based on a uniformity criterion.
Cheng and Church (2000) used randomly generated values to replace missing
values in the data set. This approach is likely to reduce the quality of the
discovered biclusters. To address this problem, Yang et al. (2003) proposed a
probabilistic algorithm (FLOC) that handles missing values and discovers higher
quality, overlapping biclusters.

Ben-Dor et al. (2002) introduced the Order Preserving Submatrix (OPSM)
model for biclustering that focuses on the coherence of relative order of conditions
rather than the coherence of expression values. Liu et al. (2004) improved the
OPSM model by allowing some flexibility among conditions in an order equivalent
group. Their model, OP-Cluster, is able to tolerate the effect of noise that reduces
the efficiency of the more strict OPSM model.

Pattern based clustering problem proposed by Wang et al. (2002) is related
to the biclustering problem. The p-Clustering algorithm developed by Wang et al.
(2002) is able to discover genes that exhibit similar expression patterns in a subset
of conditions. Pei et al. (2003) improved the p-Clustering algorithm by proposing
a more efficient and scalable method, MaPle, to find maximal pattern-based
clusters. All of the biclustering methods mentioned above discover clusters of
genes that behave similarly in a subset of experimental conditions. However, the
computational resources required by existing biclustering methods do not allow for
analysis of gene expression data on a large scale. The proposed methods generally
work on a single gene expression data set and cannot handle large number of
gene expression data sets in public databases in reasonable amount of time and
space. As a solution we propose a two level biclustering approach that works at
the data set and experiment (i.e., condition) levels and discovers similar behaving
gene pairs in multiple data sets. Our approach does not produce a subset of genes
in a subset of conditions; rather, we report pairs of genes that behave similarly in
a subset of conditions. This property is a setback compared to existing methods;
however, it allows for mining gene expression patterns on a larger scale on a
desktop computer with limited computational resources. In our experiments, the
available biclustering methods we tested were not able to produce an output for
the Breast Cancer Data Set with about 20,190 genes and 188 conditions.

Similar to biclustering methods, APD methods can be used to discover genes
with similar expression profiles in a subset of conditions. APD methods were
first used to discover associations among subsets of items from large transaction
databases (Agrawal et al., 1993). APD methods detect sets of elements that
frequently co-occur in a database and establish relationships between them of
the form of X → Y , meaning that, when X occurs it is likely that Y also
occurs (Agrawal et al., 1993).
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Kotala et al. (2001), Creighton and Hanash (2003), Becquet et al. (2002),
Tuzhilin and Adomavicius (2002), and Georgii et al. (2005) have worked on
associations and relationships among subsets of genes (e.g., X = {Condition1
(sample1), Condition2 (sample2)}, Y = {gene A ↑, gene B ↓, gene C ↑}, which
means, in Condition1 and Condition2 when gene A is up-regulated, gene B is
down-regulated and gene C is also up-regulated).

Most of the studies with APD methods work on homogeneously curated one
or two data sets experimented for a specific study. APD methods that work on
binary data use thresholding on the expression values of genes (Georgii et al., 2005).
It is clear that a crude discretisation such as using thresholding lead to certain loss
of information. As a solution, Georgii et al. (2005) have proposed a quantitative
ARM approach. However, microarray experiments are generally not sufficiently
robust and noise-resistant. It is not easy to decide whether or not an association
of a small quantity is noise. Therefore, quantitative associations among genes do
not generally give valuable information to a biologist. Another disadvantage of
existing APD methods is that these methods try to find out rules over the whole
set of genes. However, focusing on association rules among genes having similar
expression profiles reduces the working data set by eliminating uncorrelated data
patterns and is therefore expected to give more accurate results in a more efficient
manner.

In this paper, we combine ideas from biclustering and association pattern
discovery approaches and propose a novel framework, bi-k-bi clustering, for finding
association rules of gene pairs that can easily operate on large scale and multiple
heterogeneous data sets. Our framework mainly consists of a preprocessing phase
followed by three phases. In the preprocessing phase, we scale gene expression
values of all data sets into a comparable platform and compute an all-to-all
similarity measure over the whole set for finding gene pairs with similar expression
profiles. In the first phase of the bi-k-bi clustering, we apply biclustering on gene
pairs in order to eliminate unrelated gene pairs and data sets. In the second phase,
we assign labels to each gene in each sample of the working data set to indicate
expression levels (high-expressed or low-expressed). Finally, we generate rules of
gene pairs associated with samples by applying biclustering on the working set.
Our method outputs clusters of labelled gene pairs with their associated microarray
samples. We aim to help biologists to discover significant relationships among gene
pairs and work easily on these relationships by concentrating on their associated
microarray samples. Our contributions in this study can be summarised as follows:

• By scaling all expression values into a comparable platform, our framework
enables working on multiple data sets. However, previous studies in this area
generally work on a single gene expression data set.

• By defining a similarity measure and applying biclustering using this measure
at the data set level, we automatically generate a reduced working set
consisting of gene pairs with similar expression profiles with their associated
data sets. This reduction enables focusing on correlated gene pairs therefore,
it becomes easy to work on large scale data.

• We use dynamic thresholding by applying k-means clustering, for assigning
expression level labels (i.e., High-expressed/Low-expressed) to genes.
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• In this study, we extend a maximum frequent itemset algorithm to a
biclustering algorithm and use it for biclustering in an efficient manner
whereas available biclustering algorithms have high space complexity.
Furthermore, our two-level biclustering strategy filters out unrelated gene
pairs in the first level for increased efficiency.

We applied our bi-k-bi clustering framework on all available NCBI GEO Homo
sapiens data sets. Gene pairs in the resulting clusters were classified as housekeeping
genes with steady yet high expression values (i.e., ranks). Since, housekeeping genes
are expected to have similar and robust behaviour across different experimental
treatments this result is consistent with our expectations. As another study,
we applied our framework on five different groups of selected NCBI GEO data
sets (i.e., Breast Cancer, Normal Human Tissue, Obesity, Liver, and Colon).
Results in these groups also showed consistency and relatedness with the available
literature. Novel transcript associations were revealed and contextually analysed
using the available literature. Moreover, existence of gene pairs were searched in
protein-protein interaction databases to recover those pairs that act in concert at
the transcriptional as well as post-transcriptional levels.

Our manuscript is organised as follows. First, we give detailed information
about methods, metrics, and implementation of the bi-k-bi clustering framework.
Then, we provide an illustrative example to explain each step of the framework.
In Section 3, we discuss the results of our bi-k-bi clustering framework applied on
NCBI GEO data sets. Conclusions are provided in the last section.

2 Methods

We follow a three step methodology in our study. In the first step we apply
normalisation in order to scale all microarray samples in our database into a
comparable platform. In the second step, we define a function to find gene pairs
with similar expression profiles from the first step. Finally, we apply the bi-k-bi
clustering algorithm to the gene pairs that have similar expression profiles and
construct rules consisting of gene pairs and associated samples. The overview of the
proposed methodology is given in Figure 1 and explained in detail here.

2.1 Data preperation

We have downloaded the Homo sapiens microarray data sets from NCBI GEO.
In order to analyse gene expression values across several microarray experiments,
we define and apply a two step methodology on each sample in our database:

• global mean normalisation over all spots in a microarray sample

• percentile ranking over the normalised spots within the same sample.

There exist many normalisation methods to scale gene data into a comparable
platform (Yang et al., 2002). We preferred global mean normalisation since it is
one of the least intrusive methods available and does not alter the distribution of
microarray data. Accordingly, a log-based sample mean value is subtracted from
each spot’s log based expression value, for each microarray sample in the database.
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In order to scale the normalised expression values, percentile ranking have been
applied on these globally normalised expression values of each microarray sample.
It is important to note that, each spot is ranked among the other spots only within
the sample it belongs to. We calculate, for each gene, an average change of its rank
in a data set. The idea behind this approach is that some genes may have multiple
probes within the same sample. Let GS = {G1, G2, . . . , Gk} be the set of genes and
S = {e1, e2, . . . , en} be a set of n microarray samples. For each gene Gi in a sample
ei, a single rank value, r(Gi, ei) is computed. For a gene that occurs in multiple
probes in a sample, if the variation across rank values of the spots of that gene
probe does not exceed a threshold then the average gene probe rank value is used.
Otherwise all the probes for that gene is ignored for this sample. Given a set S,
that has n samples, we have at most n rank values for a gene Gi.

Figure 1 The overview of the three step methodology for mining gene expression data
from multiple data sets

2.2 Finding gene pairs with similar expression profiles

In order to find gene pairs with similar expression profiles we follow a three phase
procedure. In the first phase, we define a similarity measure for finding similar rank
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behaving gene pairs and calculate this measure for each gene pair and each data
set. In the next phase, we apply a filter to eliminate gene pairs that consists of
housekeeping genes. Finally, in the last phase, we construct a matrix from the values
calculated in the first phase and apply thresholding to discretise this matrix.

Phase 1: Three commonly used similarity measures for finding similar behaving
gene pairs are the Euclidean Distance, Pearson’s Correlation Coefficient, and
Spearman Rank Correlation Coefficient (ρ) (Balasubramaniyan et al., 2005).
Euclidean Distance and Pearson’s Correlation Coefficient methods are sensitive
to magnitude and shape (Kyungpil et al., 2007). Whereas, Pearson’s Correlation
Coefficient assumes approximate Gaussian distribution of the points and therefore
it is not robust for non-Gaussian distributions (Jiang et al., 2004; Kyungpil et al.,
2007). On the other hand, Spearman Rank Correlation Coefficient does not require
Gaussian distribution and it is more robust against outliers. Therefore, we decided
to use Spearman Rank Correlation Coefficient in our analysis.

Spearman Rank Correlation Coefficient has the drawback of data loss due to
consequence of ranking (Jiang et al., 2004). Since we look for gene pairs with similar
patterns over scaled expression values, the drawback of ranking has a negligible
effect over our analysis.

Spearman Rank Correlation Coefficient is also sensitive to missing values.
One of the approaches for missing values is to ignore the missing value pairs
during correlation computation. Since not every gene is observed in all microarray
samples, missing expression value pairs are ignored during computation. In order
to cope with the negative effect of the ‘ignore’ approach, Weighted Spearman Rank
Correlation Coefficient, ρw is used in our analysis.

Let S = {S1, S2, . . . , Sm} be the data sets in the database where
Si = {ei1, ei2, . . . , ein} is a set having n microarray samples, where n ≥ 3 and
GS = {G1, G2, . . . , Gk} be the set of distinct genes in the database. Also let PS

be the percentage of non-ignored value pairs during Spearman Rank Correlation
Coefficient calculation. We define a log based non linear weight function given in
equation (1). Since PS ∈ [0, 100] then by using equation (1), fw(PS) ∈ [1, 2].

fw(PS) =

{
log(PS) for PS > 10

log(10) for PS ≤ 10.
(1)

Let r(Gi, ek) be the average percentile ranked expression value of gene Gi and
r(Gj , ek) be the average percentile ranked expression value of gene Gj in the
microarray sample ek of the data set Sa. We then define the Weighted Spearman
Rank Correlation Coefficient as in equation (3) by using the equation (2).

R(Gi,j , Sa) = {∀ek ∈ Sa | (r(ek, Gi), r(ek, Gj))} (2)

ρw(Gi,j , Sa) = ρ(R(Gi,j , Sa)) × fw(PSa). (3)

Phase 2: Gene pairs that are not modulated in microarray samples are expected
to (and does) have high ρw values. In this study we mainly focus on genes
whose expression profiles are similarly affected among samples. Therefore, genes
whose expressions are not modulated in any of the experimental conditions,
(i.e., housekeeping genes) does not have much impact on the association rules of
genes which we aim to find.
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Previous studies by Hsiao et al. (2001), and Eisenberg and Levanon (2007) have
provided gene lists involved in cellular maintenance functions; thus these genes
are called housekeeping genes that are generally assumed to have expression
levels unaffected by experimental conditions. However, recent studies indicated
that several widely used housekeeping genes might have altered expression under
different experimental conditions (Vandesompele et al., 2002; Warrington et al.,
2000). Therefore, in order to eliminate genes that are not effected in microarray
samples, we use the Coefficient of Variation, Cv , as a filter.

Let Cv(Gi, Sa) be the Coefficient of Variation of gene Gi and Cv(Gj , Sa) be
the Coefficient of Variation of gene Gj calculated using the percentile ranked
expression values of microarray samples of the data set Sa, as defined in
equation (4). Let also, ρw(Gi,j , Sa) be the Weighted Spearman Rank Correlation
Coefficient for Gi,j among the expression values of Gi and Gj in the data set Sa,
calculated by using equation (3). We then apply a filter on ρw(Gi,j , Sa) using the
Cv values which is defined in equation (5).

Cv(Gi, Sa) = Cv({r(Gi, ek)}) ∀ek ∈ Sa (4)

ρw(Gi,j , Sa) =

{
0 if Cv(Gi, Sa) ≤ tCv and Cv(Gj , Sa) ≤ tCv

ρw(Gi,j , Sa) otherwise.
(5)

Phase 3: For each gene pair, Gi,j = (Gi, Gj) where Gi, Gj ∈ GS, and each
data set S, we calculate Weighted Spearman Rank Correlation Coefficient by
equation (5).

Given a query gene Gi, this calculation forms out an k × m matrix, A,
with k rows and m columns. This matrix is defined by its set of rows,
X = {Gi1, Gi2, Gi3, . . . , Gik} for the given gene and its set of columns,
Y = {S1, S2, . . . , Sm}.

A cell in this matrix, aMN , is a real value representing the Weighted Spearman
Correlation Coefficient of M th gene pair for the N th working set as defined in
equation (6).

aMN = ρw(Gi,j , SN ) where M = Gi,j and N = SN . (6)

Since ρ ∈ [−1, +1] and fw(P ) ∈ [1, 2] then ρw ∈ [−2, +2]. Setting the threshold,
tρw = 1.5, for ρw makes ρ ≤ 0.75; which is a reasonable threshold for two random
variables that show similar behaviour.

Weighted Spearman Rank Correlation gives a scale on the strength of the
similarity of two random variables. Therefore, in order to decide whether two genes
behave similarly, we apply thresholding and discretise the matrix to mark gene
pairs vs. sets showing similar behaviour. A cell, aMN , in the matrix is then defined
in equation (7).

aMN =

{
1 ρw(Gi,j , SN ) ≥ tρw where M = Gi,j and N = SN

0 ρw(Gi,j , SN ) < tρw where M = Gi,j and N = SN .
(7)

There exist approximately 20,200 distinct genes among the 371 NCBI GEO data
sets complied in our database. Therefore, the matrix we used in our analysis
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has more than 150,000,000,000 elements. By the use of the symmetry property of
Spearman Rank Correlation Coefficient, thresholding, filtering weight values during
ρw calculation and using the fact that microarray samples generally do not include
all genes, we had performed 12,000,000,000 ρw calculations to construct this matrix.

2.3 Bi-k-bi clustering algorithm

The bi-k-bi clustering algorithm was applied in three steps (Figure 2 and
Algorithm 1) which operates on the discretised matrix, A, defined in Section 2.2.

In the first step we perform a coarse analysis in order to reduce the working
set by focusing on gene pairs with their associated data sets in which they have
similar expression profiles. The second step is the assignment of labels for genes in
microarray samples by k-means clustering over all available gene expression data
in our database. Finally, a detailed analysis of labelled gene pairs associated with
microarray samples, so called rules, is performed. As it can be deduced, the first
and last step should be done in order, however, the second step, where we assign a
label for each gene in each microarray sample, can be performed in any order.

Finding clusters of gene pairs that have similar expression profiles: After the
discretisation process of the matrix from the finding similar gene expression pair
step (Figure 1), we first focus on identification of both groups of gene and set pairs
in this matrix. It is important to keep in mind that we should find the groups of
gene pairs and sets having 1’s in the matrix which represent similarly behaved gene
pairs after bi-k-bi clustering algorithm. Biclustering algorithms are used for this
purpose and there exists several of them (Cheng and Church, 2000; Jiang et al.,
2004; Wang et al., 2002; Zhao and Zaki, 2005) and tools available in the literature.
Initially in this study we used a freely available Biclustering Analysis Toolbox
(BiCAT) (Barkow et al., 2006) however due to the large size of our matrixes we
faced memory problems. For this reason, we designed and implemented a time and
memory efficient biclustering algorithm.

Association Pattern Discovery (APD) methods have been applied on gene
expression data in order to find out groups of co-regulated gene patterns (Creighton
and Hanash, 2003; Carmona-Saez et al., 2006; Georgii et al., 2005; Gyenesei et al.,
2007). APD originates from market basket analysis and aim to find interesting
relationships hidden in large data sets. Such relationships can be represented as
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frequent itemsets and association rules. APD methods are inherited from the area
of frequent itemsets and association rule mining. However, studies done on this
area have commonly been focused on finding gene patterns as association rules
(Creighton and Hanash, 2003; Carmona-Saez et al., 2006; Georgii et al., 2005;
Gyenesei et al., 2007).

Figure 2 Workflow of the bi-k-bi clustering algorithm

Maximum Frequent Itemset (MFI) in transactional databases is the problem of
mining maximum itemsets from the transactional database. Thus, in a given set of
items and transaction set, MFI algorithms find out maximum sets of items occur
for a given support. For example: for support v, items that occur at least in v
transactions are reported. It is important to note that MFI reports the maximum
itemsets and does not report subsets. There have been many studies for mining
frequent itemsets in the literature (Agarwal et al., 2000, 2001; Gouda and Zaki,
2001).

MAFIA is one of the MFI algorithms which performs best when mining
long itemsets and it outperforms other algorithms on dense data (Burdick
et al., 2001). The algorithm applies space pruning techniques and adaptive
compression that makes optimal use of memory and running time. A free
implementation with source code of MAFIA is publicly available (http://himalaya-
tools.sourceforge.net/Mafia/doxygen-Mafia/index.html).

MAFIA, like most MFI algorithms, outputs the list of frequent itemsets for a
given support. Applying a post processing on this output by adding the associated
transactions of the itemsets, we can have biclusters of itemsets and transactions.
(i.e., biclusters having number of transactions greater than the support, v). The post
processing has at most O(n2) time complexity, which does not have much effect on
the running time of the original MAFIA.

According to this approach, we modified the MAFIA algorithm in order to
output associated transactions with the itemsets. We use this modified algorithm as
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our biclustering algorithm. We then represent transactions as data sets and itemsets
as gene pairs with similar expression profile using the discretised matrix defined in
Section 2.2.

Let Gi,j ∈ GS and Sk ∈ S and v1 be the minimum number of sets in
the clustered results; applying our biclustering algorithm gives clusters as in
equation (8).

Clusterc = [{Gi,j}, {Sk}] where size of (S) ≥ v1. (8)

Labelling gene pairs in experiments. In order to use association rules among the
biclustered gene pairs, gene pairs with similar expression profiles (i.e., biclusters
constructed in the previous subsection) should be labelled. In this step, we assign a
label for each gene pair with the corresponding experiment in which it occurs.

In order to label gene pairs in the prepared data, described in Section 2.1,
a preprocessing step should be applied. In this preprocessing step, rank values of
the genes in the experiments are discretised. High rank values are labelled with
High (‘High-expressed’), low rank values with Low (‘Low-expressed’).

It is clear that a crude discretisation such as using thresholding on rank data
lead to certain loss of information (Georgii et al., 2005). In order to alleviate this
loss of information we decided to use clustering on the rank values for labelling.
Since k-means clustering is a fast and efficient clustering algorithm, we apply
k-means clustering on all rank values and assign a label for each gene in each
experiment using these clusters. When the number of clusters (i.e., k = 2) are known
k-means clustering is also advantageous in both time and space complexity.

Let S = {e1, e2, . . . , en} be a set of n microarray experiments, Gi,j be a gene
pair in S and ek ∈ S. Also, let li,k be the label assigned to gene Gi in ek and lj,k be
the label for gene Gj within the same experiment ek (i.e., li,k, lj,k ∈ {High, Low}).
We define the gene pair experiment labelling function (ExpLabel) for the gene pair
Gi,j within the experiment ek as in equation (9).

ExpLabel(Gi,j , ek) = li,j,k where li,j,k = [Gi(li,k), Gj(lj,k)]. (9)

For a given set, we use the ExpLabel function defined in equation (9) and define
the set labelling function (SetLabel) as in equation (10).

SetLabel(Gi,j , S) = {ExpLabel(Gi,j , ek)} ∀ek ∈ S. (10)

Let C be a bicluster, we then define the cluster labelling function (ClusterLabel) as
in equation (11).

ClusterLabel(C) = {SetLabel(Gi,j , Sm)} ∀Sm, ∀Gi,j ∈ C. (11)

Finally, we apply the ClusterLabel function in equation (11) to all biclusters found
in equation (8) and construct the data to be used in the third step of our bi-k-bi
clustering algorithm.

Extracting rules. In the third step of our bi-k-bi clustering algorithm we aim to find
association rules as clusters of labelled gene pairs vs. experiments. Thus, we apply
biclustering algorithm on the clusters of gene pairs with similar expression profiles
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obtained as a result of k-means clustering. We use the same biclustering algorithm
described in Section 2.3 and find out sets of clusters, which we call them as rules,
for a given support v2 (i.e., number of experiments in the rule is greater than v2).

Let ek be an experiment and Gi,j be a gene pair in or database. Further let v1
be the support for the minimum number of data sets, gene pair Gi,j have similar
expression profiles and v2 be the support for the minimum number of experiments
in a rule. This final step of the algorithm outputs sets of rules as of the form given
in equation (12).

Rule = [{ExpLabel(Gi,j , ek)}, {ek}] for support v1 and v2. (12)

2.4 Illustrative example

As an illustrative example, consider the randomly selected sample genes Gene1,
Gene2, Gene3 and NCBI GEO data sets GDS1, GDS2 and GDS3 from our
database. The average percentile rank values of these sample genes are given in
Table 1.

Table 1 Average percentile rank values of the genes for the illustrative example

Average percentile rank

NCBI-GEO GDS NCBI-GEO GSM Gene1 Gene2 Gene3

GDS1 GSM11 36 51 45
GSM12 51 60 65
GSM13 38 57 −
GSM14 54 − −
GSM15 − − 55
GSM16 55 − 44

GDS2 GSM21 62 90 35
GSM22 59 86 21
GSM23 44 84 42

GDS3 GSM31 87 87 60
GSM32 94 93 46

First, we find gene pairs with similar expression profiles as described in Section 2.2.
For this purpose, we define thresholds tCv = 0.2 and tρw = 1.5. We then compute
similarity measures (PS , Cv, ρ, ρw) for each gene pair. The computed values for
this illustrative example are given in Table 2. By using these computed values and
thresholds, we prepare the input data for the bi-k-bi clustering framework as given
in Table 3.

We apply the bi-k-bi clustering framework on the discretised matrix generated
from the gene pairs with similar expression profiles and data sets.

In the first phase of the framework, we apply biclustering and generate clusters
as described in Section 2.3. The resulting cluster for this illustrative example with
support v1 = 2 is given in Table 4.

In the second phase of the framework, we apply k-means to assign High/Low
labels to the genes and generate (sample, labelled gene pairs) for the clusters as



Bi-k-bi clustering 713

described in Section 2.3. List of labels for the genes in the microarray samples and
the cluster for this illustrative example are given in Tables 5 and 6 respectively.

Table 2 Similarity measure values (PS , Cv , ρ, ρw) of the gene pairs in the illustrative
example where tCv = 0.2

Gene pair GDS 1 GDS 2 GDS 3

Gene1–Gene2 PS = 50 PS = 100 PS = 100
Cv(Gene1) = 0.19 Cv(Gene1) = 0.17 Cv(Gene1) = 0.05
Cv(Gene2) = 0.08 Cv(Gene2) = 0.03 Cv(Gene2) = 0.04
ρ = 1 ρ = 1 ρ = 1
ρw = 1.69 ρw = 2 ρw = 2

Gene1–Gene3 PS = 50 PS = 100 PS = 100
Cv(Gene1) = 0.19 Cv(Gene1) = 0.17 Cv(Gene1) = 0.05
Cv(Gene3) = 0.18 Cv(Gene3) = 0.32 Cv(Gene3) = 0.18
ρ = −1 ρ = 0.5 ρ = −1
ρw = −0.84 ρw = 0 ρw = −2

Gene2–Gene3 PS = 33 PS = 100 PS = 100
Cv(Gene2) = 0.08 Cv(Gene2) = 0.03 Cv(Gene2) = 0.04
Cv(Gene3) = 0.18 Cv(Gene3) = 0.32 Cv(Gene3) = 0.18
ρ = 1 ρ = −0.5 ρ = −1
ρw = 1.51 ρw = 0 ρw = −2

Table 3 NCBI-GEO data sets vs. gene pairs in the illustrative example where tρw ≥ 1.5

NCBI-GEO GDS Gene pairs

GDS1 [Gene1, Gene2], [Gene2, Gene3]

GDS2 [Gene1, Gene2]

GDS3 [Gene1, Gene2], [Gene1, Gene3], [Gene2, Gene3]

Table 4 Clusters for the illustrative example with support v1 = 2

Cluster name Cluster members

c1(2 × 2) {[Gene1, Gene2], [Gene2, Gene3]} × {GDS1, GDS3}

In the last phase of our framework, we apply biclustering and generate association
rules as described in Section 2.3. The resulting rule for this illustrative example with
support v2 = 3 is given in Table 7.

3 Results

The proposed bi-k-bi clustering framework was applied on all available NCBI GEO
Homo sapiens data sets (i.e., 9090 microarray samples grouped into 372 data sets).
Our findings indicated that majority of the gene-pairs belonged to categories with
known housekeeping gene functions, such as ribosomal protein genes and metabolic
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pathway genes. Housekeeping genes generally are assumed to have expression
levels unaffected by experimental conditions thus are expected to exhibit relatively
stable expression at high levels. Coefficient of Variation parameter of the bi-k-bi
clustering approach allowed us to determine the most stably expressed genes in
the database (Carkacioglu et al., 2006). By applying an experimentally defined Cv

filter threshold on the Cv , i.e., 0.1, we filtered out the likely housekeeping genes
thereby leaving gene-pairs potentially involved in cellular signalling processes as
well as those function among tissues and pathological states in highly divergent
manners.

Table 5 K-means clustering for the assignment of gene expression levels in the illustrative
example: High and Low

Assigned labels

NCBI-GEO GDS NCBI-GEO GSM Gene1 Gene2 Gene3

GDS1 GSM11 LOW HIGH LOW
GSM12 HIGH HIGH HIGH
GSM13 LOW HIGH –
GSM14 HIGH – –
GSM15 – – HIGH
GSM16 HIGH – LOW

GDS2 GSM21 HIGH HIGH LOW
GSM22 HIGH HIGH LOW
GSM23 LOW HIGH LOW

GDS3 GSM31 HIGH HIGH HIGH
GSM32 HIGH HIGH LOW

Table 6 Expression level assigned gene pairs vs. NCBI-GEO microarray samples
for the illustrative example

Labelled gene pairs NCBI-GEO GSM

Gene1(HIGH), Gene2(HIGH) GDS1−GSM12, GDS3−GSM31, GDS3−GSM32
Gene1(HIGH), Gene2(LOW) –
Gene1(LOW), Gene2(HIGH) GDS1−GSM11, GDS1−GSM13,
Gene1(LOW), Gene2(LOW) –
Gene2(HIGH), Gene3(HIGH) GDS1−GSM12, GDS3−GSM31
Gene2(HIGH), Gene3(LOW) GDS1−GSM16, GDS3−GSM32,
Gene2(LOW), Gene3(HIGH) –
Gene2(LOW), Gene3(LOW) –

Table 7 Rules for the illustrative example with support v1 = 2 and v2 = 3

Rule name Rule members

Rule1 (2 × 3) {[Gene1(HIGH), Gene2(HIGH)], [Gene2(HIGH), Gene3(HIGH)]}
×
{GDS1−GSM12, GDS3−GSM31, GDS3−GSM32}
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However, the results after Cv filtering may still contain so called housekeeping genes
that pass the Cv threshold since recent studies have indicated that several widely
used housekeeping genes have altered expression under experimental conditions
(Vandesompele et al., 2002; Warrington et al., 2000). One of the important aspects
of the present study is its ability to associate a set of gene-pair rules with subsets
of the available microarray data. Therefore, we applied our framework on five
different groups of data sets:

• Breast Cancer

• Normal Human Tissue

• Obesity

• Liver

• Colon and extracted rules.

For each group we constructed a working set consisting of NCBI GEO microarray
data sets (Barrett et al., 2007). We manually curated working sets by using the
free text titles and descriptions supplied by experimenters in NCBI GEO data sets.
Microarray sample and data set distribution of each working set is as follows:

• Breast Cancer: 188 microarray samples grouped into 10 data sets

• Normal Human: 120 microarray samples grouped into 5 data sets

• Obesity: 275 microarray samples grouped into 8 data sets

• Liver: 35 microarray samples grouped into 2 data sets

• Colon: 132 microarray samples grouped into 9 data sets.

The corresponding NCBI GEO data sets with their titles for each working set were
provided in Table 8.

We applied the bi-k-bi clustering framework on each working set independently.
Cv filter threshold, tCv , was set as 0.1 to specifically focus on gene-pairs with
variable expression. Results for each subset can be accessed online (http://www.
i-cancer.org/∼levent/rules). A search engine that enables users to query genes
within the result sets can also be accessed through the website (http://www.
i-cancer.org/∼levent/query).

The most observed gene-pair rule in the breast cancer subsets, FOXM1-TPX2,
existed in 80% of the microarray samples analysed. Interestingly, a few of the
experiment sets were included or excluded as a whole for the rule determination.
In particular, FOXM1-TPX1 rule was restricted to all samples of GDS817,
GDS820, GDS901 while this rule was not observed in any of the samples of the
experiment sets GDS901 and GDS1250. On the other hand, different samples of
GDS2250 were used for determining the FOXM1-TPX2 rule; for example, normal
breast tissue expression together with six non-basal-like and one basal-like tumour
samples did not contribute to the rule (Richardson et al., 2006). These results
might indicate that normal cells do not exhibit FOXM1-TPX2 rule unlike subsets
of breast tumours, i.e., basal-like. Previous studies support our findings such that
Sotiriou et al. (2006) showed that FOXM1 and TPX2 were up-regulated in breast
tumours.
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Table 8 NCBI GEO datasets used in working sets

Working set NCBI GEO dataset

Breast GDS360: BREAST CANCER AND DOCETAXEL TREATMENT
Cancer GDS817: BREAST CANCER CELL EXPRESSION PROFILES (HG-U95A)

GDS820: BREAST CANCER CELL EXPRESSION PROFILES (HG-U133A)
GDS823: BREAST CANCER CELL EXPRESSION PROFILES (HG-U133B)
GDS881: BREAST CANCER AND SELECTIVE ESTROGEN RECEPTOR
MODULATORS
GDS901: ESTROGEN RECEPTOR ALPHA L540Q MUTATION EFFECT ON
GENE INDUCTION BY ESTRADIOL: TIME COURSE
GDS1250: ATYPICAL DUCTAL HYPERPLASIA AND BREAST CANCER
GDS1326: BREAST CANCER CELLS REEXPRESSING ESTROGEN
RECEPTOR ALPHA RESPONSE TO 17BETA-ESTRADIOL
GDS1329: MOLECULAR APOCRINE BREAST TUMOURS
GDS2250: BASAL-LIKE BREAST CANCER TUMOURS

Normal GDS422: NORMAL HUMAN TISSUE EXPRESSION PROFILING (HG-U95A)
Human GDS423: NORMAL HUMAN TISSUE EXPRESSION PROFILING (HG-U95B)
Tissue GDS424: NORMAL HUMAN TISSUE EXPRESSION PROFILING (HG-U95C)

GDS425: NORMAL HUMAN TISSUE EXPRESSION PROFILING (HG-U95D)
GDS426: NORMAL HUMAN TISSUE EXPRESSION PROFILING (HG-U95E)

Obesity GDS268: OBESITY AND FATTY ACID OXIDATIONC
GDS1480: OBESITY: PREADIPOCYTE EXPRESSION PROFILE (HG-U133A)
GDS1481: OBESITY: PREADIPOCYTE EXPRESSION PROFILE (HG-U133B)
GDS1493: OBESITY: ADIPOCYTE EXPRESSION PROFILE (HG-U95A)
GDS1495: OBESITY: ADIPOCYTE EXPRESSION PROFILE (HG-U95B)
GDS1496: OBESITY: ADIPOCYTE EXPRESSION PROFILE (HG-U95C)
GDS1497: OBESITY: ADIPOCYTE EXPRESSION PROFILE (HG-U95D)
GDS1498: OBESITY: ADIPOCYTE EXPRESSION PROFILE (HG-U95E)

Liver GDS1373: PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR
SUBTYPE ACTIVATION EFFECT ON LIVER CELL
GDS1442: PPARI AGONIST CIPROFIBRATE EFFECT ON LIVER

Colon GDS559: INFLAMMATORY BOWEL DISEASE (HG-U133A)
GDS560: INFLAMMATORY BOWEL DISEASE (HG-U133B)
GDS709: ENTEROCYTE DIFFERENTIATION TIME COURSE
GDS756: COLON CANCER PROGRESSION
GDS1263: DUKES B COLON CANCER RECURRENCE
GDS1330: CROHN DISEASE AND ULCERATIVE COLITIS COMPARISON
GDS1386: COLORECTAL CARCINOMA SUBTYPE WITH
MICROSATELLITE INSTABILITY (HG-U133A)
GDS1387: COLORECTAL CARCINOMA SUBTYPE WITH MICROSATELLITE
INSTABILITY (HG-U133B)
GDS1942: TRANSGENIC KRAPPEL-LIKE FACTOR 4 INDUCTION: TIME
COURSE

For the tissue expression pair-rules, the two most commonly observed composite
rules were [CHD1 (HIGH) – PSD4 (HIGH)] [CHD1 (HIGH) – ZNF384
(HIGH)] and [MBD6 (HIGH) – PSD4 (HIGH)] [POLDIP2 (HIGH) – SFXN4
(HIGH)]. The first rule was determined based on the tissue samples from
GDS422 and GDS423. Similarly, [MBD6 (HIGH) – PSD4 (HIGH)] [POLDIP2
(HIGH) – SFXN4 (HIGH)] rule was supported only by the GDS423 and GDS424
experiment sets. These findings suggested that representative sequences of the same
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gene might be non-equivalent among different platforms influencing the degree
of the association due to either presence/absence of alternative splicing events,
multiple hits in the transcriptome, and/or dinucleotide content of the probesets.
Since [CHD1 (HIGH) – PSD4 (HIGH)] [CHD1 (HIGH) – ZNF384 (HIGH)] rule
was commonly observed in all of the tissues studied (i.e., bone marrow, liver,
heart, spleen, lung, kidney, skeletal muscle, thymus, brain, spinal cord, prostate,
and pancreas), this triplet might represent an alternative reference gene set for
non-diseased tissue normalisation studies. Moreover, CDH1, PSD4, and ZNF384
or MBD6 and PSD4, or POLDIP2 and SFXN4 genes were not shown to be
co-expressed previously in the literature thus represent novel links in cellular
signalling pathways.

The most commonly observed pair-rule in comparing the adipocyte expression
profiling was [CRIP2 (HIGH) – RGS5 (HIGH)]; however this rule was not
able to separate lean vs. obese type adipocytes. Furthermore, [CRIP2 (HIGH)
– RGS5 (HIGH)] rule did not hold in none of the preadipocyte/stromal vascular
cells (GDS1480) or lean/obese skeletal muscle tissue (GDS268) or some of the
lean/obese adipocytes (i.e., some of GDS1493, all of GDS1496, all of GDS1497,
some of GDS1498). The same issue observed for the tissue datasets explained in
the previous paragraph was present for the lean/obese samples (20 non-obese. BMI
25+/−3kg/m2, and 19 obese. BMI 55+/−8kg/m2, non-diabetic Pima Indians;
Lee et al. (2005)). GDS1493, GDS1495, GDS1496, GDS1497, and GDS1498
belonged to five different platforms (HG-U95A-E) and although were used for
the same set of adipocytes. Nevertheless, each platform might contain different
probesets for the same gene thus might not always support the [CRIP2 (HIGH)
– RGS5 (HIGH)] or other rules.

In liver datasets, [CD38 (LOW) – PENK (LOW)] [C2ORF27 (LOW) – HELZ
(HIGH)] [GYS1 (HIGH) – SNX9 (LOW)] rule was observed most commonly
across almost all liver experiment sets. The rule displayed low-high, high-low,
and low-low expression pairs suggesting positive and negative regulation on
these gene-pairs and warrants further experimental confirmation in the context
of liver cancer. Analysing the pair-rules in and experiment specific-manner rather
than globally provided rules with functional importance. For example, composite
rule [AKR1B10 (HIGH) – NQO1 (HIGH)] [TBC1D9B (HIGH) – UBE2G1
(HIGH)] [HADHB (HIGH) – VNN1 (HIGH)] [CYP4F2 (HIGH) – DIO1
(HIGH)] [CD38 (LOW) – PENK (LOW)] [C2ORF27 (LOW) – HELZ (HIGH)]
[GYS1 (HIGH) – SNX9 (LOW)] was able to separate the long-term high dose
treatment (i.e., 3 samples out of 4 150mg/kg/day for 15 days and 4 samples
out of 5 400mg/kg/day for 15 days) effects of peroxisome proliferator-activated
receptor-a agonist ciprofibrate, which caused hepatocellular carcinoma, from
the vehicle control (5 out of 5) and low dose treatment (3mg/kg/day and
30mg/kg/day for 15 days) on primate liver samples (GDS1442; Cariello et al.
(2005)). Therefore, this rule might represent a novel co-expressed gene set that is
dose-dependently regulated by peroxisome proliferator-activated receptor-a during
liver carcinogenesis.

Colon disease datasets investigated in the present study were more
divergent in nature including colon cancer cell lines (metastatic/non-metastatic,
treated/untreated) as well colon biopsy samples (normal, chrons disease, colitis)
and primary tumours (with/without recurrence). The most commonly observed
gene-pair rule, [MRPL12 (HIGH) – RP2 (LOW)] was not able to separate colon
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cancer samples from other colon diseases nor from cell line experiments. On the
other hand, [GPR64 (LOW) – RRAD (LOW)] rule seem to cluster almost all
colon cancer cell lines together although it fails to distinguish between colon cancer
recurrence or colon diseases.

NCBI GEO sets consists of biological experiments realised for a specific
purpose. For example, an NCBI GEO data set may contain microarray samples
done on normal and cancer tissues together where normal tissue samples are
often used as control samples by the experimenters. Microarray samples in rules
generated by our framework consisted of only control or target samples of data
sets included. Only small number of rules included mixtures of control and target
samples of the same data set while misplaced samples in these rules represented
generally duplicates of original samples. Since most rules were determined by the
contribution of the majority of the members of a particular microarray experiment
set this suggested that experimental conditions together with biological differences
also played a role in the observed co-expression patterns of the genes.

A literature survey performed on the genes in the rules generated by our
framework resulted in confirmation of expressional regulation of cancer-related
genes. FOXM1, TPX2, HIST1H1C, HIST1H2BK, IFIT3, RSAD2, ISG15,
HIST1H2BE, DBF4, STIL, KNTC2, MELK, IFIT2, DLG7, BUB1B, HCP5,
OASL genes were the most commonly occurring up-regulated genes in rules found
using the Breast Cancer Working Set. In previous breast cancer studies, some of
these genes have been reported as being up-regulated including FOXM1 (Madureira
et al., 2006; Sotiriou et al., 2006), TPX2 (Sotiriou et al., 2006), HIST1H1C and
HIST1H2BK (Barry et al., 2005), KNTC2 (Lacroix, 2006), MELK (Lin et al.,
2007), BUB1B (Fridlyand et al., 2006).

In the light of all these information, we can say that rules found using the
proposed bi-k-bi clustering framework show consistency and relatedness with the
literature.

4 Conclusion

As gene expression profile data sets became increasingly available, application of
data mining techniques on these data gives valuable hints about gene pattern
associations. Several methods have been proposed for mining gene expression
profiles with potential limitations.

In this paper, we proposed a novel framework, bi-k-bi clustering, for finding
association rules of gene pairs that can easily operate on large scale data. Our
framework outputs specific rules that consist of labelled gene pairs along with their
associated microarray sample IDs.

One of the most important aspects of this study is its ability to deal with
large scale and multiple heterogeneous data sets. By use of dynamic thresholding
on expression profiles, we also alleviate the disadvantages of crude thresholding
on expression data. Available biclustering algorithms are known to require space
complexity on large amount of data. For this purpose, we also modified an existing
MFI algorithm for biclustering.

In order to test our framework, we applied it on all available NCBI GEO
Homo sapiens data sets and more specifically five different functionally concise
groups of NCBI GEO data sets independently (i.e., Breast Cancer, Normal Human
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Tissue, Obesity, Liver and Colon). Gene-pair rules and their association with a
given sample set exhibited concordance with the literature. Furthermore, our results
provided novel insights into the co-regulated gene pairs among a compendium of
tissues as well as diverse conditions of human cancers.

References
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