33 research outputs found

    Robust and secure resource management for automotive cyber-physical systems

    Get PDF
    2022 Spring.Includes bibliographical references.Modern vehicles are examples of complex cyber-physical systems with tens to hundreds of interconnected Electronic Control Units (ECUs) that manage various vehicular subsystems. With the shift towards autonomous driving, emerging vehicles are being characterized by an increase in the number of hardware ECUs, greater complexity of applications (software), and more sophisticated in-vehicle networks. These advances have resulted in numerous challenges that impact the reliability, security, and real-time performance of these emerging automotive systems. Some of the challenges include coping with computation and communication uncertainties (e.g., jitter), developing robust control software, detecting cyber-attacks, ensuring data integrity, and enabling confidentiality during communication. However, solutions to overcome these challenges incur additional overhead, which can catastrophically delay the execution of real-time automotive tasks and message transfers. Hence, there is a need for a holistic approach to a system-level solution for resource management in automotive cyber-physical systems that enables robust and secure automotive system design while satisfying a diverse set of system-wide constraints. ECUs in vehicles today run a variety of automotive applications ranging from simple vehicle window control to highly complex Advanced Driver Assistance System (ADAS) applications. The aggressive attempts of automakers to make vehicles fully autonomous have increased the complexity and data rate requirements of applications and further led to the adoption of advanced artificial intelligence (AI) based techniques for improved perception and control. Additionally, modern vehicles are becoming increasingly connected with various external systems to realize more robust vehicle autonomy. These paradigm shifts have resulted in significant overheads in resource constrained ECUs and increased the complexity of the overall automotive system (including heterogeneous ECUs, network architectures, communication protocols, and applications), which has severe performance and safety implications on modern vehicles. The increased complexity of automotive systems introduces several computation and communication uncertainties in automotive subsystems that can cause delays in applications and messages, resulting in missed real-time deadlines. Missing deadlines for safety-critical automotive applications can be catastrophic, and this problem will be further aggravated in the case of future autonomous vehicles. Additionally, due to the harsh operating conditions (such as high temperatures, vibrations, and electromagnetic interference (EMI)) of automotive embedded systems, there is a significant risk to the integrity of the data that is exchanged between ECUs which can lead to faulty vehicle control. These challenges demand a more reliable design of automotive systems that is resilient to uncertainties and supports data integrity goals. Additionally, the increased connectivity of modern vehicles has made them highly vulnerable to various kinds of sophisticated security attacks. Hence, it is also vital to ensure the security of automotive systems, and it will become crucial as connected and autonomous vehicles become more ubiquitous. However, imposing security mechanisms on the resource constrained automotive systems can result in additional computation and communication overhead, potentially leading to further missed deadlines. Therefore, it is crucial to design techniques that incur very minimal overhead (lightweight) when trying to achieve the above-mentioned goals and ensure the real-time performance of the system. We address these issues by designing a holistic resource management framework called ROSETTA that enables robust and secure automotive cyber-physical system design while satisfying a diverse set of constraints related to reliability, security, real-time performance, and energy consumption. To achieve reliability goals, we have developed several techniques for reliability-aware scheduling and multi-level monitoring of signal integrity. To achieve security objectives, we have proposed a lightweight security framework that provides confidentiality and authenticity while meeting both security and real-time constraints. We have also introduced multiple deep learning based intrusion detection systems (IDS) to monitor and detect cyber-attacks in the in-vehicle network. Lastly, we have introduced novel techniques for jitter management and security management and deployed lightweight IDSs on resource constrained automotive ECUs while ensuring the real-time performance of the automotive systems

    On challenges in training recurrent neural networks

    Full text link
    Dans un problème de prédiction à multiples pas discrets, la prédiction à chaque instant peut dépendre de l’entrée à n’importe quel moment dans un passé lointain. Modéliser une telle dépendance à long terme est un des problèmes fondamentaux en apprentissage automatique. En théorie, les Réseaux de Neurones Récurrents (RNN) peuvent modéliser toute dépendance à long terme. En pratique, puisque la magnitude des gradients peut croître ou décroître exponentiellement avec la durée de la séquence, les RNNs ne peuvent modéliser que les dépendances à court terme. Cette thèse explore ce problème dans les réseaux de neurones récurrents et propose de nouvelles solutions pour celui-ci. Le chapitre 3 explore l’idée d’utiliser une mémoire externe pour stocker les états cachés d’un réseau à Mémoire Long et Court Terme (LSTM). En rendant l’opération d’écriture et de lecture de la mémoire externe discrète, l’architecture proposée réduit le taux de décroissance des gradients dans un LSTM. Ces opérations discrètes permettent également au réseau de créer des connexions dynamiques sur de longs intervalles de temps. Le chapitre 4 tente de caractériser cette décroissance des gradients dans un réseau de neurones récurrent et propose une nouvelle architecture récurrente qui, grâce à sa conception, réduit ce problème. L’Unité Récurrente Non-saturante (NRUs) proposée n’a pas de fonction d’activation saturante et utilise la mise à jour additive de cellules au lieu de la mise à jour multiplicative. Le chapitre 5 discute des défis de l’utilisation de réseaux de neurones récurrents dans un contexte d’apprentissage continuel, où de nouvelles tâches apparaissent au fur et à mesure. Les dépendances dans l’apprentissage continuel ne sont pas seulement contenues dans une tâche, mais sont aussi présentes entre les tâches. Ce chapitre discute de deux problèmes fondamentaux dans l’apprentissage continuel: (i) l’oubli catastrophique d’anciennes tâches et (ii) la capacité de saturation du réseau. De plus, une solution est proposée pour régler ces deux problèmes lors de l’entraînement d’un réseau de neurones récurrent.In a multi-step prediction problem, the prediction at each time step can depend on the input at any of the previous time steps far in the past. Modelling such long-term dependencies is one of the fundamental problems in machine learning. In theory, Recurrent Neural Networks (RNNs) can model any long-term dependency. In practice, they can only model short-term dependencies due to the problem of vanishing and exploding gradients. This thesis explores the problem of vanishing gradient in recurrent neural networks and proposes novel solutions for the same. Chapter 3 explores the idea of using external memory to store the hidden states of a Long Short Term Memory (LSTM) network. By making the read and write operations of the external memory discrete, the proposed architecture reduces the rate of gradients vanishing in an LSTM. These discrete operations also enable the network to create dynamic skip connections across time. Chapter 4 attempts to characterize all the sources of vanishing gradients in a recurrent neural network and proposes a new recurrent architecture which has significantly better gradient flow than state-of-the-art recurrent architectures. The proposed Non-saturating Recurrent Units (NRUs) have no saturating activation functions and use additive cell updates instead of multiplicative cell updates. Chapter 5 discusses the challenges of using recurrent neural networks in the context of lifelong learning. In the lifelong learning setting, the network is expected to learn a series of tasks over its lifetime. The dependencies in lifelong learning are not just within a task, but also across the tasks. This chapter discusses the two fundamental problems in lifelong learning: (i) catastrophic forgetting of old tasks, and (ii) network capacity saturation. Further, it proposes a solution to solve both these problems while training a recurrent neural network

    Dynamic Mathematics for Automated Machine Learning Techniques

    Get PDF
    Machine Learning and Neural Networks have been gaining popularity and are widely considered as the driving force of the Fourth Industrial Revolution. However, modern machine learning techniques such as backpropagation training was firmly established in 1986 while computer vision was revolutionised in 2012 with the introduction of AlexNet. Given all these accomplishments, why are neural networks still not an integral part of our society? ``Because they are difficult to implement in practice.'' I'd like to use machine learning, but I can't invest much time. The concept of Automated Machine Learning (AutoML) was first proposed by Professor Frank Hutter of the University of Freiburg. Machine learning is not simple; it requires a practitioner to have thorough understanding on the attributes of their data and the components which their model entails. AutoML is the effort to automate all tedious aspects of machine learning to form a clean data analysis pipeline. This thesis is our effort to develop and to understand ways to automate machine learning. Specifically, we focused on Recurrent Neural Networks (RNNs), Meta-Learning, and Continual Learning. We studied continual learning to enable a network to sequentially acquire skills in a dynamic environment; we studied meta-learning to understand how a network can be configured efficiently; and we studied RNNs to understand the consequences of consecutive actions. Our RNN-study focused on mathematical interpretability. We described a large variety of RNNs as one mathematical class to understand their core network mechanism. This enabled us to extend meta-learning beyond network configuration for network pruning and continual learning. This also provided insights for us to understand how a single network should be consecutively configured and led us to the creation of a simple generic patch that is compatible to several existing continual learning archetypes. This patch enhanced the robustness of continual learning techniques and allowed them to generalise data better. By and large, this thesis presented a series of extensions to enable AutoML to be made simple, efficient, and robust. More importantly, all of our methods are motivated with mathematical understandings through the lens of dynamical systems. Thus, we also increased the interpretability of AutoML concepts

    Analysis of Artificial Intelligence based diagnostic methods for satellites

    Get PDF
    The growing utilization of small satellites in various applications has emphasized the need for reliable diagnostic methods to ensure their optimal performance and longevity. This master thesis focuses on the analysis of artificial intelligence-based diagnostic methods for these particular space assets. This work firstly explores the main characteristics and applications of small satellites, highlighting the critical subsystems and components that play a vital role in their proper functioning. The key components of this study revolve around Diagnosis, Prognosis, and Health Monitoring (DPHM) systems and techniques for small satellites. The DPHM systems aim at monitoring the health status of the satellite, detecting anomalies and predicting future system behavior. The reason why advanced DPHM systems are of interest for the space operators is the fact that they mitigate the risk of satellites catastrophic failures that may lead to service interruptions or mission abort. To achieve these objectives, a hybrid architecture combining Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks is proposed. This architecture leverages the strengths of CNNs in feature extraction and LSTM networks in capturing temporal dependencies. The integration of these two neural network architectures enhances the diagnostic capabilities and enables accurate predictions for small satellite systems. Real data collected from an operational satellite is utilized to validate and test the proposed CNN-LSTM hybrid architecture. Based on the experimental results obtained, advantages and drawbacks of the exploitation of this architecture are discussed.The growing utilization of small satellites in various applications has emphasized the need for reliable diagnostic methods to ensure their optimal performance and longevity. This master thesis focuses on the analysis of artificial intelligence-based diagnostic methods for these particular space assets. This work firstly explores the main characteristics and applications of small satellites, highlighting the critical subsystems and components that play a vital role in their proper functioning. The key components of this study revolve around Diagnosis, Prognosis, and Health Monitoring (DPHM) systems and techniques for small satellites. The DPHM systems aim at monitoring the health status of the satellite, detecting anomalies and predicting future system behavior. The reason why advanced DPHM systems are of interest for the space operators is the fact that they mitigate the risk of satellites catastrophic failures that may lead to service interruptions or mission abort. To achieve these objectives, a hybrid architecture combining Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks is proposed. This architecture leverages the strengths of CNNs in feature extraction and LSTM networks in capturing temporal dependencies. The integration of these two neural network architectures enhances the diagnostic capabilities and enables accurate predictions for small satellite systems. Real data collected from an operational satellite is utilized to validate and test the proposed CNN-LSTM hybrid architecture. Based on the experimental results obtained, advantages and drawbacks of the exploitation of this architecture are discussed

    Review : Deep learning in electron microscopy

    Get PDF
    Deep learning is transforming most areas of science and technology, including electron microscopy. This review paper offers a practical perspective aimed at developers with limited familiarity. For context, we review popular applications of deep learning in electron microscopy. Following, we discuss hardware and software needed to get started with deep learning and interface with electron microscopes. We then review neural network components, popular architectures, and their optimization. Finally, we discuss future directions of deep learning in electron microscopy
    corecore