4,112 research outputs found

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    System Design of Internet-of-Things for Residential Smart Grid

    Full text link
    Internet-of-Things (IoTs) envisions to integrate, coordinate, communicate, and collaborate real-world objects in order to perform daily tasks in a more intelligent and efficient manner. To comprehend this vision, this paper studies the design of a large scale IoT system for smart grid application, which constitutes a large number of home users and has the requirement of fast response time. In particular, we focus on the messaging protocol of a universal IoT home gateway, where our cloud enabled system consists of a backend server, unified home gateway (UHG) at the end users, and user interface for mobile devices. We discuss the features of such IoT system to support a large scale deployment with a UHG and real-time residential smart grid applications. Based on the requirements, we design an IoT system using the XMPP protocol, and implemented in a testbed for energy management applications. To show the effectiveness of the designed testbed, we present some results using the proposed IoT architecture.Comment: 10 pages, 6 figures, journal pape

    A survey on subjecting electronic product code and non-ID objects to IP identification

    Full text link
    Over the last decade, both research on the Internet of Things (IoT) and real-world IoT applications have grown exponentially. The IoT provides us with smarter cities, intelligent homes, and generally more comfortable lives. However, the introduction of these devices has led to several new challenges that must be addressed. One of the critical challenges facing interacting with IoT devices is to address billions of devices (things) around the world, including computers, tablets, smartphones, wearable devices, sensors, and embedded computers, and so on. This article provides a survey on subjecting Electronic Product Code and non-ID objects to IP identification for IoT devices, including their advantages and disadvantages thereof. Different metrics are here proposed and used for evaluating these methods. In particular, the main methods are evaluated in terms of their: (i) computational overhead, (ii) scalability, (iii) adaptability, (iv) implementation cost, and (v) whether applicable to already ID-based objects and presented in tabular format. Finally, the article proves that this field of research will still be ongoing, but any new technique must favorably offer the mentioned five evaluative parameters.Comment: 112 references, 8 figures, 6 tables, Journal of Engineering Reports, Wiley, 2020 (Open Access

    Real-Time Data Analytics for Monitoring Electricity Consumption Using IoT Technology

    Get PDF
    Rising electricity bills as a result of climate variability and new home electrical and electronic appliances are becoming a major source of concern for most end users. Consumers are typically unaware of their household electricity consumption patterns and the costs associated with them, making proper planning and budgeting difficult. Monitoring and controlling energy consumption on appliances can reduce energy costs for end-users. The Internet of Things (IoT) has the potential to provide remote monitoring and control of devices via automated monitoring and control. In this study, we propose an IoT-enabled system for monitoring and controlling energy consumption in homes to save money and make electricity more affordable to low-income people. Autonomous sensor nodes attached to power outlets collect and route power consumption data to the GSM-enabled gateway. Data aggregation is performed by the gateway for data received from all end-nodes within its coverage area. The gateway sends the data to the cloud, where real-time data analytics is performed. We also developed an algorithm that enables users to not only understand their usage patterns but also remotely control their appliances at any time. Mobile phones are used to remotely turn on and off household appliances via a machine-to-machine interface, as well as to provide real-time visualization of household energy consumption patterns

    Novel proposal for prediction of CO2 course and occupancy recognition in Intelligent Buildings within IoT

    Get PDF
    Many direct and indirect methods, processes, and sensors available on the market today are used to monitor the occupancy of selected Intelligent Building (IB) premises and the living activities of IB residents. By recognizing the occupancy of individual spaces in IB, IB can be optimally automated in conjunction with energy savings. This article proposes a novel method of indirect occupancy monitoring using CO2, temperature, and relative humidity measured by means of standard operating measurements using the KNX (Konnex (standard EN 50090, ISO/IEC 14543)) technology to monitor laboratory room occupancy in an intelligent building within the Internet of Things (IoT). The article further describes the design and creation of a Software (SW) tool for ensuring connectivity of the KNX technology and the IoT IBM Watson platform in real-time for storing and visualization of the values measured using a Message Queuing Telemetry Transport (MQTT) protocol and data storage into a CouchDB type database. As part of the proposed occupancy determination method, the prediction of the course of CO2 concentration from the measured temperature and relative humidity values were performed using mathematical methods of Linear Regression, Neural Networks, and Random Tree (using IBM SPSS Modeler) with an accuracy higher than 90%. To increase the accuracy of the prediction, the application of suppression of additive noise from the CO2 signal predicted by CO2 using the Least mean squares (LMS) algorithm in adaptive filtering (AF) method was used within the newly designed method. In selected experiments, the prediction accuracy with LMS adaptive filtration was better than 95%.Web of Science1223art. no. 454

    Implementing an integrated meter and sensor system (IMSS) in existing social housing stock

    Get PDF
    The current rollout of smart meters for gas and electricity, both in the UK and internationally, will help suppliers to better forecast demand and supply accurate bills to consumers. However, even with an in-home display (IHD), the benefits of a smart meter to a domestic customer are limited by the so-called ‘double invisibility’ of energy [1] and the standardisation of IHD design for an imagined home ‘micro-resource manager’ [2]. Furthermore, low-income households may be limited in the benefits they can reap from such systems; already living within a tight budget, suggestions for further energy-related cost savings may be detrimental to their health and wellbeing. This makes it important that the impact of actions taken to save energy is communicated. This can be done using indoor environmental measures, including carbon dioxide, relative humidity and temperature, as part of an integrated meter and sensor system (IMSS) and an associated IHD or digital application. Such a system gives users the ability to make informed decisions about their energy use and indoor environmental health. This paper explores the potential barriers to implementing an IMSS in practice. It explains how an IMSS was designed, based on a review of meter and sensor systems; details the process is taken to trial the IMSS in 19 social housing properties in the English Midlands; and makes recommendations for a larger scale rollout of IMSSs. The paper also reviews current progress in cloud storage and security as relevant to IMSSs and smart metering

    A user-centric system architecture for residential energy consumption reduction

    Get PDF
    Long-term energy consumption reduction can be achieved more readily through sensible cooperation between end users and technological advancements. The DANCER project presented here proposes a user-centric residential energy management system, with the intention to achieve long-term energy related behavioural changes, thus improving the energy efficiency of modern homes. Although, it follows the same basic principles as other contemporary approaches, it focuses on minimizing the interaction of the user with the system. This is achieved through an improved feedback mechanism and a generic, policy based service that takes advantage of the modularity and generality of the software architecture. The proposed system is designed to support a variety of technologies (WiFi, Zigbee, X10), in order to ameliorate the input and output of the decision making operation. In this paper, the general outline of the DANCER system architecture and its most important components are discussed and the prototype test-bed is presented. Special consideration is given to the implementation, operation and response behaviour of the prototype
    • …
    corecore