22 research outputs found

    Garbage Collection of Actors

    Get PDF
    This paper considers the garbage collection of concurrent objects for which it is necessary to know not only "reachability", the usual criterion for reclaiming data, but also the "state" (active or blocked) of the object. For the actor model, a more comprehensive definition than previously available is given for reclaimable actors. Two garbage collection algorithms, implementing a set of "coloring" rules, are presented and their computational complexity is analyzed. Extensions are briefly described to allow incremental, concurrent, distributed and real-time collection. It is argued that the techniques used for the actor model applies to other object-oriented concurrent models

    Garbage collection of actors

    Full text link

    Capsule-oriented programming

    Get PDF
    Explicit concurrency should be abolished from all higher-level programming languages (i.e. everything except - perhaps- plain machine code.). Dijkstra [1] (paraphrased). A promising class of concurrency abstractions replaces explicit concurrency mechanisms with a single linguistic mechanism that combines state and control and uses asynchronous messages for communications, e.g. active objects or actors, but that doesn\u27t remove the hurdle of understanding non-local control transfer. What if the programming model enabled programmers to simply do what they do best, that is, to describe a system in terms of its modular structure and write sequential code to implement the operations of those modules and handles details of concurrency? In a recently sponsored NSF project we are developing such a model that we call capsule-oriented programming and its realization in the Panini project. This model favors modularity over explicit concurrency, encourages concurrency correctness by construction, and exploits modular structure of programs to expose implicit concurrency

    Preliminary Design of the APIARY for VLSI Support of Knowledge-Based Systems

    Get PDF
    This report describes research done at the Artificial Intelligence Laboratory of the Massachusetts Institute of Technology. Support for the laboratory's artificial intelligence research is provided in part by the Office of Naval Research of the Department of Defense under Contract N00014-75-C-0522.Knowledge-based applications will require vastly increased computational resources to achieve their goals. We are working on the development of a VLSI Message Passing Architecture to meet this need. As a first step we present the preliminary design of the APIARY system in this paper. The APIARY is currently in an early stage of implementation at the MIT Artificial Intelligence Laboratory.MIT Artificial Intelligence Laboratory Department of Defense Office of Naval Researc

    Rapid prototyping 3D virtual world interfaces within a virtual factory environment

    Get PDF
    On-going work into user requirements analysis using CLIPS (NASA/JSC) expert systems as an intelligent event simulator has led to research into three-dimensional (3D) interfaces. Previous work involved CLIPS and two-dimensional (2D) models. Integral to this work was the development of the University of Massachusetts Lowell parallel version of CLIPS, called PCLIPS. This allowed us to create both a Software Bus and a group problem-solving environment for expert systems development. By shifting the PCLIPS paradigm to use the VEOS messaging protocol we have merged VEOS (HlTL/Seattle) and CLIPS into a distributed virtual worlds prototyping environment (VCLIPS). VCLIPS uses the VEOS protocol layer to allow multiple experts to cooperate on a single problem. We have begun to look at the control of a virtual factory. In the virtual factory there are actors and objects as found in our Lincoln Logs Factory of the Future project. In this artificial reality architecture there are three VCLIPS entities in action. One entity is responsible for display and user events in the 3D virtual world. Another is responsible for either simulating the virtual factory or communicating with the real factory. The third is a user interface expert. The interface expert maps user input levels, within the current prototype, to control information for the factory. The interface to the virtual factory is based on a camera paradigm. The graphics subsystem generates camera views of the factory on standard X-Window displays. The camera allows for view control and object control. Control or the factory is accomplished by the user reaching into the camera views to perform object interactions. All communication between the separate CLIPS expert systems is done through VEOS

    Scalable Termination Detection for Distributed Actor Systems

    Get PDF
    Automatic garbage collection (GC) prevents certain kinds of bugs and reduces programming overhead. GC techniques for sequential programs are based on reachability analysis. However, testing reachability from a root set is inadequate for determining whether an actor is garbage because an unreachable actor may send a message to a reachable actor. Instead, it is sufficient to check termination (sometimes also called quiescence): an actor is terminated if it is not currently processing a message and cannot receive a message in the future. Moreover, many actor frameworks provide all actors with access to file I/O or external storage; without inspecting an actor's internal code, it is necessary to check that the actor has terminated to ensure that it may be garbage collected in these frameworks. Previous algorithms to detect actor garbage require coordination mechanisms such as causal message delivery or nonlocal monitoring of actors for mutation. Such coordination mechanisms adversely affect concurrency and are therefore expensive in distributed systems. We present a low-overhead reference listing technique (called DRL) for termination detection in actor systems. DRL is based on asynchronous local snapshots and message-passing between actors. This enables a decentralized implementation and transient network partition tolerance. The paper provides a formal description of DRL, shows that all actors identified as garbage have indeed terminated (safety), and that all terminated actors--under certain reasonable assumptions--will eventually be identified (liveness).Comment: 23 pages, 7 figures. To appear in the proceedings of CONCUR 2020. Version 2: Fixed TeX error that omitted predicates in the third line of the Send rule: Actor AA must have active refobs xx and $y_1 \dots y_n

    Soundness of a concurrent collector for actors (extended version)

    Get PDF
    ORCA is a garbage collection protocol for actor-based programs. Multiple actors may mutate the heap while the collector is running without any dedicated synchronisation. ORCA is applicable to any actor language whose type system prevents data races and which supports causal message delivery. We present a model of ORCA which is parametric to the host language and its type system. We describe the interplay between the host language and the collector. We give invariants preserved by ORCA, and prove its soundness and completeness

    Challenges in using the actor model in software development, systematic literature review

    Get PDF
    Toimijamalli on hajautetun ja samanaikaisen laskennan malli, jossa pienet osat ohjelmistoa viestivät keskenään asynkronisesti ja käyttäjälle näkyvä toiminnallisuus on usean osan yhteistyöstä esiin nouseva ominaisuus. Nykypäivän ohjelmistojen täytyy kestää valtavia käyttäjämääriä ja sitä varten niiden täytyy pystyä nostamaan kapasiteettiaan nopeasti skaalautuakseen. Pienempiä ohjelmiston osia on helpompi lisätä kysynnän mukaan, joten toimijamalli vaikuttaa vastaavan tähän tarpeeseen. Toimijamallin käytössä voi kuitenkin esiintyä haasteita, joita tämä tutkimus pyrkii löytämään ja esittelemään. Tutkimus toteutetaan systemaattisena kirjallisuuskatsauksena toimijamalliin liittyvistä tutkimuksista. Valituista tutkimuksista kerättiin tietoja, joiden pohjalta tutkimuskysymyksiin vastattiin. Tutkimustulokset listaavat ja kategorisoivat ohjelmistokehityksen ongelmia, joihin käytettiin toimijamallia, sekä erilaisia toimijamallin käytössä esiintyviä haasteita ja niiden ratkaisuita. Tutkimuksessa löydettiin toimijamallin käytössä esiintyviä haasteita ja näille haasteille luotiin uusi kategorisointi. Haasteiden juurisyitä analysoidessa havaittiin, että suuri osa toimijamallin haasteista johtuvat asynkronisen viestinnän käyttämisestä, ja että ohjelmoijan on oltava jatkuvasti tarkkana omista oletuksistaan viestijärjestyksestä. Haasteisiin esitetyt ratkaisut kategorisoitiin niihin liittyvän lisättävän koodin sijainnin mukaan

    A Scalable Algorithm for Decentralized Actor Termination Detection

    Get PDF
    Automatic garbage collection (GC) prevents certain kinds of bugs and reduces programming overhead. GC techniques for sequential programs are based on reachability analysis. However, testing reachability from a root set is inadequate for determining whether an actor is garbage: Observe that an unreachable actor may send a message to a reachable actor. Instead, it is sufficient to check termination (sometimes also called quiescence): an actor is terminated if it is not currently processing a message and cannot receive a message in the future. Moreover, many actor frameworks provide all actors with access to file I/O or external storage; without inspecting an actor's internal code, it is necessary to check that the actor has terminated to ensure that it may be garbage collected in these frameworks. Previous algorithms to detect actor garbage require coordination mechanisms such as causal message delivery or nonlocal monitoring of actors for mutation. Such coordination mechanisms adversely affect concurrency and are therefore expensive in distributed systems. We present a low-overhead deferred reference listing technique (called DRL) for termination detection in actor systems. DRL is based on asynchronous local snapshots and message-passing between actors. This enables a decentralized implementation and transient network partition tolerance. The paper provides a formal description of DRL, shows that all actors identified as garbage have indeed terminated (safety), and that all terminated actors--under certain reasonable assumptions--will eventually be identified (liveness)

    Reference Capabilities for Flexible Memory Management: Extended Version

    Full text link
    Verona is a concurrent object-oriented programming language that organises all the objects in a program into a forest of isolated regions. Memory is managed locally for each region, so programmers can control a program's memory use by adjusting objects' partition into regions, and by setting each region's memory management strategy. A thread can only mutate (allocate, deallocate) objects within one active region -- its "window of mutability". Memory management costs are localised to the active region, ensuring overheads can be predicted and controlled. Moving the mutability window between regions is explicit, so code can be executed wherever it is required, yet programs remain in control of memory use. An ownership type system based on reference capabilities enforces region isolation, controlling aliasing within and between regions, yet supporting objects moving between regions and threads. Data accesses never need expensive atomic operations, and are always thread-safe.Comment: 87 pages, 10 figures, 5 listings, 4 tables. Extended version of paper to be published at OOPSLA 202
    corecore