
Working Paper 186B

June 1979

Preliminary Design of the APIARY for
VLSI Support of Knowledge-Based Systems

Carl Hewitt

Artificial Intelligence Laboratory

Massachusetts Institute of Technology

Working Papers are informal papers intended for internal use.

This report describes research conducted at the Artificial
Intelligence Laboratory of the Massachusetts Institute of Tech-
nology. Support for this research was provided in part by the
Office of Naval Research of the Department of Defense under
Contract N00014-75-C-0522.

SMASSACnUSETTS INSTITUTE OF TECHNOLOGY 1979





VLSI Message Passing Architecture

Preliminary Design of the APIARY
for VLSI Support of Knowledge-Based Systems

Carl Hewitt
Room 813.

545 Technology Square
Cambridge, Mass. 02139

(617) 253-5873

ABSTRACT

Knowledge-based applications will require vastly increased computational resources
to achieve their goals. We are working on the development of a VLSI Message Passing
Architecture to meet this need. As a first step we present the preliminary design of the
APIARY system in this paper. The APIARY is currently in an early stage of
implementation at the MIT Artificial Intelligence Laboratory.

DRAFT June 26, 1979



1 VLSI Message Passing Architecture

I -- Support for Knowledge-Based Systems

The development of Knowledge-based systems (MACSYMA, DENDRAL,
Programming Apprentices, Therapy Advisors, Tutors, Trouble-shooters) will require.
increasing hardware support to realize their goals. Knowledge-based systems need to
provide quick response in order to interact effectively with their users. In these systems
there is a vast amount of potential concurrency which we would like to exploit

II -- Goals of Message Passing Architecture

The primary source of our interest in developing a VLSI message passing
architecture is to provide a suitable hardware and software base for such
knowledge-based applications. We are working to create a VLSI Message Passing
Architecture to support our knowledge-based systems research. Message Passing

.Architecture [Hewitt, Bishop, and Steiger: 1973; Steiger. 1974; Jishop: 1977; Baker: 1978;
Halstead: 1.978; Ward: 1978] provides for the connection of a large number of workers.
Each worker consists of a communications processor, work processor, integrated circuit
memory, and communications interface.

The system which we propose to construct is called the APIARY because it is
reminiscent of the social organization of bees. Like that of the honeybee, our APIARY
consists of a large number of workers closely cooperating to accomplish the tasks at
hand.

Message Passing Architecture differs from conventional multiprocessor architecture
(MULTICS, Burroughs 6700, CGmmp, etc.) in which processors communicate through
shared memory using a crossbar switch. The workers of an APIARY do not share any
physical memory. They communicate with each other by sending. and receiving messages.

Pipelined machines such as the CRAY-1 and the CDC STAR are not suitable for
the implementation of knowledge-based systems because the large number of conditional
branches disrupts any ability to keep a pipeline full

DRAFT June 26, 1979



2 VLSI Message Passing Architecture

III -- Actors

The APIARY is intended to supply an execution environment for objects called
actors which specify the actual work of computation. An actor is a virtual object which
is defined by its behavior when it receives messages. An actor conceptually consists of a
script which specifies what it does when it receives a message and a vector of network
addresses (called the acquaintances). The only operation which can be performed on a
network address is to use it to send a message to the actor which is named by the
network address. Each message is an actor.

Each actor x obeys the principle of locality which states that if x receives a
message m, then the only actors which can be directly sent messages are the
acquaintances of x and the acquaintances of m. We plan to heavily exploit the principle
of locality in our implementations of the APIARY. For example our algorithms for the
real time garbage collection of the storage for inaccessible actors are dependent on the
principle of locality. An inaccessible actor is one which can no longer be sent a
message (either directly on indirectly) by the users of the APIARY.

Implementations of actor systems are allowed to use any methods whatsoever
provided that the effects are indistinguishable from those which would result from
actually sending messages (which is called the principle of indistinguishable effects).
Our implementations will depend heavily on this pri.:,ciple in order to gain efficiency.
For example actors implemented directly in hardware do not consist of two separate
objects for the script and acquaintances. The implementations of primitive actors (such
as integers and sequences) is supported by micro-code so that in most cases messages do
not have to be sent Some users might want to implement some actors which subsume
the behavior of integers and sequences (perhaps for the purpose of instrumenting certain
actors). These actors will in fact receive messages. This capability can be implemented
without significantly slowing down the primitive integers and sequences.

The implementations we are developing have the property that it is impossible to
determine the physical representation of any actor (which is called the principle of
Independence of physical representation). This principle is important because it
allows us to extend the behavior of any actor at any time without affecting the behavior
of 'any other actor. Using the principle of indistinguishable effects, independence of
physical representation can be achieved without significantly sacrificing efficiency.

DRAFT June 26, 1979



3 VLSI Message Passing Architecture

IV -- Serialized and Unserialized Actors

An unserialized actor can process arbitrarily many messages concurrently.
Functions such as factorial, tangent, and eval (which performs evaluation given an expression
and environment) are examples of unserialized actors. On the other hand, a serialized
actor can process only one message at a time.

A serialized actor has a current state which can change as a result of the
messages received. At any given point in time a serialized actor can be either locked or
unlocked. When it is created it is unlocked. When the first message arrives, the
serialized actor becomes locked and its script is executed. While locked the actor
might possibly send some messages to other actors. The next state of the serialized
actor is specified and and then the actor becomes unlocked and thus able to accept
another message. An important consideration in the design of efficient serialized actors is
that they should remain locked for as brief a time as possible.

Note that there are three separate events which must occur before a message can
be accepted by a serialized actor T. First it must be sent in a transmission event. Next
it must arrive in an arrival event. Hardware modules called arbiters are used to establish
an arrival ordering for all messages delivered to T. Finally it must be accepted in an
acceptance event Messages are accepted in the order in which they arrive. The
acceptance marks a transition in which the target changes from unlocked to locked.
Thus if a serialized actor becomes locked then no more messages .can be accepted until
it unlocks. Messages which arrive at a serialized actor when it is locked are queued.

DRAFT June 26, 1979



4 VLSI Message Passing Architecture

V -- Workers

A worker consists of a communications processor, work processor, integrated
circuit memory, and a communications interface.

The communications processor of a worker provides the following functions:

accepts messages from the work processor for delivery
to other workers.

accepts messages destined for actors that reside in the
worker and inserts an entry in the work load of the work
processor to cause the message to be processed.

forwards messages along the route from worker to
worker.

The primary function of a worker is to provide storage, processing power, and
communications services for the actors which reside in it To accomplish these goals,
each worker performs the following housekeeping functions:

local real time garbage collection of actors: We are
using the algorithm of [Baker: 19781

dynamic load balancing: Initially we are using a simple
algorithm in which pairs of neighboring workers periodically
compare work loads and shift any excess from the more heavily
loaded worker.

migration: In many cases it is desirable to move an
actor between workers or between a worker and secondary
storage such as disks. This function is performed by a part of
the APIARY called the MOVER [Bishop- 19771

communication: messages must be routed to reach the
destination.

The migration, communication, and load balancing mechanisms are tightly intertwined
with each other so that efficient implementation involves many important research issues
which are not yet resolved.

DRAFT June 26, 1979



5 VLSI Message Passing Architecture

VI -- Inte-•r:onnection of Workers

Each worker is connected to a number of other workers called its neighbors.
We propose to investigate several different technologies for communicating between
workers. The possibilities include electrical busses, coaxial cables (using the CHAOSNET
protocols which are a further development of the ETHERNET, ARPANET, and
ALOHA protocols), and fiber optics.

We plan to experiment with several interconnection topologies for the workers in
an APIARY including the Batcher sorting network [Batcher: 1968 and Moravec: 1978],
Boolean n-dimensional hypercube [Pease: 1977 and Sullivan and Bashkow: 1977], and
another family of topologies which we call the hypertorus,.

A Cartesian hypertorus is obtained by giving each worker three integer
coordinates <x, y, z> such that l1x_!, 1iyw, and lz.h where' , w, and h are the length,
width, and height respectively. Each such node is connected to the six others with
coordinates <x± 11, y1wl, z*hl> where +u and -u are respectively addition and subtraction
modulo u . The hypertorus is topologically the same as a three dimensional cube with the
opposite faces identified. It can be visualized as three orthogonal interlocking doughnuts.
Below is a diagram that shows the connections for three faces of a 3 x 3 x 3 Cartesian
hypertorus:

DRAFT June 26, 1979



DRAFT June 26, 1979 6 VLSI Message Passing Architecture

Unfortunately packaging suggested by the above diagram requires a large number
of very long wires between opposite faces. Richard Zippel has developed a very clever
way to package the Hypertorus topology so that essentially no long wires are required.
Below we show the connections for a 4 x 4 two dimensional Cartesian hypertorus.

<3,2>

<3,3>

<2,2>

<2,3>

<0,1>

<0,0>

<3,1>

<1,0>

:2,1>

\-/ IL

<1,1>

A
<0, 2>

<0,3>

P.--
<1,2>

<1, 3>

z

r

4

, 0>-



7 VLSI Message Passing Architecture

The Hypertorus topologies have a number of potential advantages which -we
would like to explore. In contrast to sorting networks and Boolean n-cubes, the number
of immediate neighbors of a worker does not increase with the total number of workers
in the APIARY. A worker in a Cartesian hypertorus always has exactly 6 neighbors
regardless of the number of workers. In contrast a worker in a Boolean n-cube has
(log N) neighbors where N is the number of workers. A Hypertorus is homogeneous and
isotropic without any annoying boundary effects. The property of homogeneity is that
the workers look pretty much the same: there are no preferred locations. Similarly the
property of isotropy is that there are no preferred directions: the APIARY looks the
same in all directions. The properties of homogeneity and isotropy are important
because they vastly simply the software systems since complicated optimizations do not
have to be performed to take boundary effects and other irregularities into account A
Hypertorus has no bottlenecks of the kind which can limit the parallelism possible in

Stree-structured topologies [Keller, Lindstrom, and Patil: 19791 The Hypertorus topology
will become particularly attractive if methods are developed to interconnect chips directly
in three dimensions as opposed to the two dimensions provided by chips connected
through boards.

Ultimately with the development of ultra large scale integration (millions of gates
on a chip), we will be able to package many workers in a single chip. This development
will make an APIARY with thousands of workers practical for realistic applications.

VII -- Migration of Actors

Allowing actors to migrate from worker to worker is an important capability of
the APIARY. It is essential to the implementation of real time garbage collection over
the entire APIARY. When an actor can no longer be accessed from the worker on
which it currently resides, then it is often desirable to move it to another worker which
is still interested.

Actors can also be moved to improve the efficiency of the system. Copies of
unserialized actors can be moved to workers in which the space-time tradeoff favors
keeping a local copy over communicating with an already existing copy. A serialized
actor might be moved to bring it closer to workers which are using it intensively.

The MOVER needs to insure that the actor being moved will continue to receive
its messages at its new location. This is accomplished using a combination of several
mechanisms. One mechanism is to simply forward the mail from the old location.
Another complementary mechanism is to maintain an interest group for an actor that
migrates. The interest group of an actor is the set of workers who are interested in

DRAFT June 26, 1979



8 VLSI Message Passing Architecture

sending messages to the actor. When an actor migrates to a new location, all of the
members of its interest group will be notified.

One of the primary design goals of the APIARY is that workers should be able
to quickly communicate with one another. This means that messages from an actor in
one worker to an actor in a different worker should. not travel via an inefficient path.
For this reason interest groups are a separate mechanism from message transport in
contrast to [Halstead: 1978] where the reference tree mechanism performs both
functions. The function of message transport is to efficiently deliver messages from one
actor to another. The function of interest groups is to ensure that messages will be
delivered to actors which migrate.

Using the ability to migrate actors, the problem of real time garbage collection
on a multiprocessor system can be solved using the following algorithm which is a slight
adaptation of [Bishop: 19771 The major problem is to garbage collect cycles of actors
which contain each others network addresses where the cycle spans more than one
worker.

The diagram below depicts a. situation in which actor 1 resides in workerl, actor 2 in
worker 2, and actor 3 in worker 3. Furthermore actor 1 has an acquaintance named sister which
is the network address of actor 3 ; actor 2 has an acquaintance named son which is the
network address of actorl; and actor3 has an acquaintance named nephew which is the
network address of actor 2.

Worker2

Worker 3

DRAFT June 26, 1979



DRAFT June 26, 1979 9 VLSI Message Passing Architecture

Suppose that worker, completes a phase of its local real-time garbage collection
so that it knows that actor, is not referenced from elsewhere within itself. It would like
to move actor 1 to another worker which is interested in using it So a member of the
Interest group of actor 1 is selected and actor, is moved to the.worker selected (in this
case worker 2) producing the situation depicted below:



10 VLSI Message Passing Architecture

Next suppose that worker 3 completes a phase of its local real time garbage
collection so that it knows that actor 3 is not referenced from elsewhere within itself. As
before a member of the interest group of actor 3 is selected and actor3 is moved to the
worker selected (in this case also worker 2) producing the situation depicted below:

Worker 2

Son
Sister

Nephew

DRAFT June 26, 1979



DRAFT June 26, 1979 11 VLSI Message Passing Architecture

Notice that the entire cycle is now contained within worker 2. Storing entire
cycles in a single worker should not be much of a problem since a worker can store
some of its actors on secondary storage. When worker 2 completes the next phase of its
local real time garbage collection the space for actorl, actor 2, and actor 3 is reclaimed.

The procedure illustrated above tends to shrink the number of workers involved
in a cycle of inaccessible actors. As pointed out by [Halstead: 1978], in certain cases the
procedure may not reclaim the storage of all inaccessible actors. For example if all three
workers in the initial situation complete phases of their garbage collection at
approximately the same time then the following situation can result:

Worker I

Worker2

Nephew

Worker 3



12 VLSI Message Passing Architecture

Notice that the above situation does not represent any improvement over the
original in recovering the storage of inaccessible actors. Hopefully dynamically
maintained cycles of inaccessible actors will not persist for long periods of time in
practice. We plan to investigate this problem carefully.

VIII -- A Computational Environment

The techniques of virtual memory and real time garbage collection have
proven to be extremely important in the development of efficient useful storage
management systems. We propose to develop algorithms for virtual workers and the
real time allocation of work to aid in the management of thousands of VLSI APIARY
workers. The actor concept provides a good basis for the design of systems with these
goals.

Message Passing Architecture must efficiently provide the following capabilities:

storage for actors which have been created

transport for messages from one actor to another

processing power for actors which have received messages

migration of actors to locations where they can be efficiently utilized

recovery of the storage of actors which are inaccessible

transport for actors to and from secondary storage

We propose to develop automatic mechanisms to efficiently provide the above
capabilities in real time. This means that in no case will a worker be disabled for a
significant amount of time in order to perform the above housekeeping functions.

In pursuit of these goals, we have developed algorithms for a real-time
distributed garbage collection and migration. The purpose is to maintain a suitable
environment in which the actors can do their work.

DRAFT June 26, 1979



13 VLSI Message Passing Architecture

IX -- Programming Environment

The APIARY will support implementations of EXTENDED LISP, SCHEME,
ACTI, ETHER, and ultimately ADA when it reaches a suitable state of development
EXTENDED LISP [Weinreb and Moon: 1978] is a greatly extended dialect of MACLISP
that features support for multiple processes, multiple overlapping windows [Engelbart:
1970, ITS TECO and EMACS: 1977, Swinehart: 1974, Ingalls: 1978, Teitelman: 1977,
CADR: 1978], real-time garbage collection (using adaptations of the algorithms in [Baker:
1978] and [Bishop: 1977D, and message passing as in SMALLTALK and actors.
SCHEME [Sussman and Steele: 1978] is a dialect of LISP which features lexical scoping
and tail recursion (in these respects similar to PLASMA [Hewitt and Smith: 1975).
ACT1 [Hewitt, Attardi, and Lieberman: 1979] has been developed to make it more
convenient to implement actors on distributed systems such as the APIARY. ETHER
[Kornfeld: 1979] is a PLANNER-like system that features parallel pattern-directed
invocation together with flexible resource control capabilities. ADA is a new language
being developed by the DoD. Our goal is to have programs in all of the above
languages be able to efficiently communicate with each other in the same APIARY.

We plan to continue the development of high-level languages (such as ACTI and
ETHER) with inherent parallelism in order to support the development of
knowledge-based applications. We expect that it will be necessary to develop efficient
broadcast protocols in order to support the parallel pattern-directed invocation in
ETHER. The experience of developing successive generations of the APIARY should
have an important effect on the evolution of these languages.

DRAFT June 26, 1979



14 VLSI Message Passing Architecture

X -- Successive Generations of the APIARY

We are proceeding to develop an implementation of APIARY-0 on the MIT
CADR MACHINE. This system consists of 64 workers each with 1 megabyte of local
memory. The area mechanism on CADR is being used to partition the memory between
the workers.

APIARY-0 will serve as a testbed for mechanisms proposed for incorporation in
future hardware implementations using VLSL The APIARY-0 implementation will help
us determine the effect on performance of the following parameters:

number of workers
incorporation of specialized workers
topology of the APIARY
amount of memory for each worker

Subsequently we plan to use APIARY-0 to investigate the robustness of the
system in the face of hardware failures of workers and communication links. We have
designed a checkpoint and recovery system [Hewitt: 1979] for serialized actors which we
plan to implement Our recovery system builds on the ideas in [Gray: 1976] and
[Lampson and Sturgis: 19791 In order to facilitate the initial implementation of
checkpoint and recovery, we plan to impose the following limitation: At any given point
a serialized actor resides in at most one worker in contrast to an unserialized actor
which can reside in arbitrarily many workers. In some circumstances there are
efficiency advantages in allowing a serialized actor to reside on more than one worker.

The interaction between load balancing and locality of reference must be
carefully investigated.

An APIARY will be said to be overheated if more concurrent activities have
been spawned than can be efficiently handled using the available memory and processing
power in the APIARY. We expect that overheating will be a significant problem which
will have to be dealt with using appropriate cooling mechanisms [Hewitt: 1978 Kornfeld:
1979] to control the rate at which parallelism can be created.

The development of APIARY-0 will help us determine the specifications and
kernel code size needed to provide

load balancing with neighbors
migration of actors to neighbors
local garbage collection
communication with neighbors

DRAFT June 26, 1979



15 VLSI Message Passing Architecture

in each worker. The APIARY-0 implementation will enable us to more intelligently
design hardware support for the above functions in VLSI for subsequent generations of
the APIARY.

APIARY-1 (the successor to APIARY-0) will be a more general system that can
run concurrently on several CADR machines. APIARY-1 will be a redesign which
incorporates the lessons learned from the implementation and operation of APIARY-0.
It will be a transitional system that serves as the bridge from APIARY-0 to later systems
that are implemented in VLSL

It is quite clear that VLSI will be required to make it feasible to have an
APIARY with thousands of workers. Since the implementation of APIARY-0 and
APIARY-1 will be on the CADR MACHINE, one natural route for the evolution of
VLSI implementations to take is the development of a VLSI CADR MACHINE. Design
studies will be undertaken to determine the feasibility of a VLSI APIARY worker based
on a modification of the CADR MACHINE architecture. Our initial goal is to get an
entire worker (consisting of a processor, adequate memory, and communication interface)
on one board. We expect that it will take us several years to accomplish this goal. A
pre-requisite is the development of good VLSI design tools such as the ones proposed in
[Sussman, Holloway, and Knight: 19791

XI -- CONCLUSIONS

The needs of knowledge-based systems have provided the driving force behind the
initial design of the APIARY. In addition they will be the most significant factor
guiding its subsequent evolution Systems like the APIARY are needed to provide the
quick response needed by interactive knowledge-based systems. Our approach to these
applications distinguishes the APIARY from other multiprocessor systems that are
currently being proposed by other research groups.

An important design constraint is that the hardware must efficiently provide for
the implementation of knowledge-based systems. .One.of the ways in which the APIARY
meets this design constraint is by multiplexing hardware devices. Packet-switching is used
instead of circuit-switching in communication to make more efficient use of the available
communication bandwidth. The processor of a worker is multiplexed in time so that a
single worker can provide processing power for a large number of actors. We rely on
load balancing between workers instead of attempting to partition programs into units
that are suitable for individual processors.

DRAFT June 26, 1979



DRAFT June 26, 1979 16 VLSI Message Passing Architecture

Another distinguishing feature of our approach is that we believe that
considerable special purpose VLSI will be necessary to create an implementation of the
APIARY that provides a suitable base for knowledge-based systems in the 1980s.
Therefore we propose to develop specialized VLSI chips for the APIARY. We expect the
architecture of the VLSI workers which we eventually develop will be quite different
from current generation computers.



17 VLSI Message Passing Architecture

XII -- ACKNOWLEDGEMENTS

Extensive conversations with Tom Knight, Richard Zippel, Jeff Schiller, and Jack
Holloway have contributed to removing numerous bugs from the preliminary design of
the APIARY. Howard Cannon, John Cocke, Bert Halstead, Danny Hillis, Jack
Holloway, Ken Kahn, Tom Knight, Glen Miranker, Jim Stansfield, Gerry Sussman, and
Dick Waters helped to improve the presentation. Peter Bishop, Henry Baker, and Bert
Halstead originated many of the algorithms used in the design of the APIARY as part of
their thesis research. Bert Halstead showed how to properly diagram the two-dimensional
embedding of the Hypertorus Topology.

The preliminary design of the APIARY presented here is made possible only
because of the hardware and software base provided by the MIT CADR MACHINE
which was conceived and initially designed under the leadership of Richard Greenblatt,
Jack Holloway, and Tom Knight A preliminary version of the manual [Weinreb and
Moon: 1978] describes many of its current capabilities. Henry Lieberman has developed
a preliminary implementation of primitive serializers on the machine. Bill Kornfeld is
transferring his implementation of ETHER-O from the PDP-10 to the CADR
MACHINE.

Message Passing Architecture has been pioneered in the actor machine
architectures of [Hewitt, Bishop, and Steiger. 1973; Steiger. 1974, Bishop: 1977, and
Baker. 1978] and in the Mu-Network of [Ward: 1978 and Halstead: 19781 Interest
groups are generalizations and further developments of Inter-area links [Bishop: 1977]
and reference trees [Halstead: 19781 The interest group concept was developed jointly
with Tom Knight

The Columbia Homogeneous Parallel Processor Design [Sullivan and Bashkow:
1977 and Sullivan, Bashkow, and Klappholz: 19771 the architecture of the CM* projects
at CMU [Swan, Fuller, and Siewiorek: 19771 and data flow machines [Dennis and
Misunas: 1975, Rumbaugh: 1975, Arvind and Gostelow: 1977] have also strongly
influenced our work.

Message Passing Architecture builds on recent work in message passing systems
including the following:

quasi-parallel message passing languages [Dahl and
Nygaard: 1968; Ingalls: 1978; K. Kahn: 1978]

parallel message passing languages [Hewitt and Smith:
1975; Kahn and MacQueen: 1977, Hewitt and Atkinson: 1978;

DRAFT June 26, 1979



DRAFT June 26, 1979 18 VLSI Message Passing Architecture

Hoare: 1978; Hewitt, Attardi, and Lieberman: 1979; Kornfeld:
1979; Svobodova, Liskov, and Clark: 1979; Ward: 1978]

message passing theories [Hewitt and Baker. 1977,
Francez, Hoare, Lehmann, and de Roever. 1978, Milne and
Milner. 1979, Hewitt, Attardi, and Lieberman: 1979]

The concept of an actor has been developed in an attempt to synthesize a unified
system that combines the message passing, pattern matching, and pattern directed
invocation and retrieval in PLANNER [Hewitt: 1969; Sussman, Charniak, and Winograd:
1972; Hewitt: 19711 the modularity of SIMULA [Dahl and Nygaard: 19681 the message
passing ideas of an early design for SMALLTALK [Kay. 19721], the functional data
structures in the lambda calculus based programming languages, the concept of concurrent
events from Petri Nets (although the actor notion of an event is rather different than
Petri's), and the protection inherent in the capability based operating systems with their
protected entry points. The subclass concept originated in [Dahl and Nygaard: 19681
and adapted in [Ingalls: 1978] has provided useful ideas.

XIII -- BIBLIOGRAPHY

Arvind and Gostelow, K. "Some Relationships between Asynchronous Interpreters
of a Dataflow Language" IFIP Working Conference on Formal Description of
Programming Concepts. 31 July to 5 August 1977.

Backus, John. "Can Programming Be Liberated from the von Neumann Style? A
Functional Style and Its Algebra of Programs" CACM. August 1978. pp.
613-641.

Batcher, K. E. "Sorting Networks and their Applications" SJCC. April 1968. pp
307-314.

Baker, H. J. Jr. "Actor Systems for Real-time Computation" MIT Ph.D. Thesis.
Laboratory of Computer Science Technical Report MIT/LCS/TR-197. March
1978.

Baker, H. J. Jr. and Hewitt, Carl "Incremental Garbage Collection of Processes"
MIT A.L Memo 454. December, 1977.

Bishop, P. B. "Computer Systems with a Very Large Address Space and Garbage
Collection" MIT Ph.D. Thesis. Laboratory of Computer Science Technical
Report MIT/LCS/TR-178. May 1977.



19 VLSI Message Passing Architecture

Dahl,O. J. and Nygaard, K. "Class and Subclass Declarations" In Simulation
Programming Languages J. N. Buxton (Ed.) North Holland. 1968. pp.
158-174.

Dennis, J. B. and Misunas, D. P. "A Preliminary Architecture for a Basic Data
Flow Processor" The 2nd Annual Symposium on Computer Architecture.
Houston. pp. 126-132.

Engelbart, D. C. "Advanced Intellect-Augmentation Techniques" SRI Final Report
July 1970.

Feldman, J. A. "A Programming Methodology for Distributed Computing (among
other things)" TR9. Computer Science Dept. Univ. of Rochester.
September 1976.

Francez, N.; Hoare, C A. R.; Lehmann, D. J.; and de Roever, W. P. "Semantics
of Nondeterminism, Concurrency, and Communication" Working Paper.
Augiust 1978.

Friedman, D. P. and Wise, D. S "A Constructor for Applicative
Multiprogramming" Technical Report No. 80. Indiana University. January
1979.

Gray, J. N. "Notes on Data Base Operating Systems" in Operating Systems, An
Advanced Course American Elsevier. 1978.

Halstead, B. "Multiple-Processor Implementations of Message-Passing Systems"
MIT Laboratory of Computer Science Technical Report MIT/LCS/TR-198.
1978.

Hewitt, C. "PLANNER: A Language for Proving Theorems in Robots" IJCAI-69.
Washington, D. C. May 1969. pp 295-302.

Hewitt, C "Description and Theoretical Analysis (Using Schemata) of PLANNER:
A Language for Proving Theorems and Manipulating Models in a Robot"
Unpublished doctoral dissertation. MIT. 1971.

Hewitt, C. "Viewing Control Structures as Patterns of Passing Messages" A.L
Journal Vol. 8. No. 3. June 1977. pp. 323-364.

Hewitt, C. and Smith, B. "Towards a Programming Apprentice" IEEE
Transactions on Software Engineering. SE-1, #1. March 1975. pp. 26-45.

DRAFT June 26, 1979



20 VLSI Message Passing Architecture

Hewitt, C. and Baker, H. "Laws for Communicating Parallel Processes"
Proceedings of IFIP Congress 77. Toronto, August 8-12, 1977. pp. 987-992.

Hewitt, C.; Attardi, G.; and Lieberman, H. "Specifying and Proving Properties of
Guardians for Distributed Systems" MIT AI Lab Working Paper 172.
December 1978. Revised April 1979. Proceedings of International Symposium
on Semantics of Concurrent Computation. Evian les Bains, France. July
1979.

Hewitt, C. "Concurrent Systems Need Both Sequences and Serializers" MIT AI Lab
Working Paper 179. December 1978. Revised February 1979.

Hewitt, C.; Attardi, G.; and Lieberman, H. "Security and Modularity in Message
Passing" MIT AI Lab Working Paper 180. December 1978. Revised
February 1979.

Hewitt, C. "Checkpoint and Recovery in Actor Systems" MIT AI Lab Working
Paper 180. Forthcoming 1979.

Hibbard, P. G.; Hisgen, A.; and Rodeheffer, T. "A Language Implementation
Design for a Multiprocessor Computer System" IEEE/ACM 5th Annual
Conference on Computer Architecture. April 1978. pp 66-72.

Hoare, C.A.R. "Communicating Sequential Processes" CACM, Vol 21, No. 8.
August 1978. pp. 666-677.

Ingalls, D. H. H. "The Smalltalk-76 Programming System Design and
Implementation" Conference Record of the Fifth Annual ACM Symposium on
Principles of Programming Languages. January 23-25, 1978. Tucson,
Arizona. pp. 9-16.

Kahn,K. M. "DIRECTOR Guide" MIT Al Memo 482. June 1978.

Kahn,G. and MacQueen, D.. "Coroutines and Networks of Parallel Processes"
IFIP-77. Toronto. August 8-12, 1977. pp. 987-992.

Keller, R. M., Lindstrom, G., and Patil, S. "A Loosely-coupled Applicative
Multi-processing System" 1979 NCC. pp 861-870.

Kornfeld, W. A. "Using Parallel Processing for Problem Solving" IJCAI-79.
Tokyo, Japan. August 1979.

DRAFT June 26, 1979



21 VLSI Message Passing Architecture

Lampson, B. W. and Sturgis, H. E. "Crash Recovery in a Distributed Data Storage
System" Forthcoming. 1979.

Milne, G. and Milner, R. "Concurrent Processes and their Syntax" JACM. Vol 26,
No. 1. pp 302-321. April 1979.

Moravec, H. P. "Intelligent Machines: How to get there from here and What to do
afterwards" Computer Science Dept Stanford University.

Pease, M. C. "The Indirect Binary n-Cube Microprocessor Array" IEEE
Transactions on Computers. Vol. C-26. No. 5. May 1977.

Rich,C.; Shrobe, H. E.; Waters, R. C.; Sussman, G. J.; and Hewitt, C. E.
"Programming Viewed as an Engineering Activity" MIT A.L Memo 459.
January 1978.

Rumbaugh, J. E. "A Parallel Asynchronous Computer Architecture for Data Flow
Programs" MIT Ph.D. dissertation. Project MAC Technical Report TR-150.
May 1975.

Steele, G. L and Sussman, G. J. "The Revised Report on SCHEME a Dialect of
LISP" Artificial Intelligence Memo 452. January 1978.

Steiger, Richard, "Actor Machine Architecture" Unpublished Masters Thesis. MIT
EECS Dept. June 1974.

Sullivan, H. and Bashkow, T. R. "A Large Scale, Homogeneous, Full Distributed
Parallel Machine, I" Proceedings of 4th Annual Symposium on computer
Architecture. March 1977. pp 105-117.

Sullivan, IR; Bashkow, T. R.; and Klappholz, D. "A Large Scale, Homogeneous,
Full Distributed Parallel Machine, II" Proceedings of 4th Annual Symposium
on computer Architecture. March 1977. pp 118-124.

Sussman, G. J.; Winograd, T.; and Charniak, E. "MICRO-PLANNER Reference
Manual" MIT AI Memo 203A. December 1972. Cambridge, Mass.

Sussman, Holloway, and Knight "Computer Aided Evolutionary Design for
Submicron Digital Technology" MIT AI Memo 526. May 1979.

Swan,RL J., Fuller, S. H., and Siewiorek, D. P. "Cm*-A Modular,
Multi-Microprocessor" AFIPS Conference Proceedings 46. 1977.

DRAFT June 26, 1979



DRAFT June 26, 1979 22 VLSI Message Passing Architecture

Swinehart, D. "COPILOT: A Multiple Process Approach to Interactive
Programming Systems" Stanford AI Memo 230. July 1974.

Ward,& A. "The MuNet: A Multiprocessor Message-Passing System Architecture"
Seventh Texas Conference on Computing Systems. Houston, Texas. October,
1978.

Ward,S. A. "An Approach to Real-Time Computation" Seventh Texas Conference
on Computing Systems. Houston, Texas. October, 1978.

Weinreb, D. and Moon, D. "LISP MACHINE Manual" Preliminary version.
November 1978.


