184 research outputs found

    Efficient sampling of non log-concave posterior distributions with mixture of noises

    Full text link
    This paper focuses on a challenging class of inverse problems that is often encountered in applications. The forward model is a complex non-linear black-box, potentially non-injective, whose outputs cover multiple decades in amplitude. Observations are supposed to be simultaneously damaged by additive and multiplicative noises and censorship. As needed in many applications, the aim of this work is to provide uncertainty quantification on top of parameter estimates. The resulting log-likelihood is intractable and potentially non-log-concave. An adapted Bayesian approach is proposed to provide credibility intervals along with point estimates. An MCMC algorithm is proposed to deal with the multimodal posterior distribution, even in a situation where there is no global Lipschitz constant (or it is very large). It combines two kernels, namely an improved version of (Preconditioned Metropolis Adjusted Langevin) PMALA and a Multiple Try Metropolis (MTM) kernel. Whenever smooth, its gradient admits a Lipschitz constant too large to be exploited in the inference process. This sampler addresses all the challenges induced by the complex form of the likelihood. The proposed method is illustrated on classical test multimodal distributions as well as on a challenging and realistic inverse problem in astronomy

    Automated Quantitative Description of Spiral Galaxy Arm-Segment Structure

    Full text link
    We describe a system for the automatic quantification of structure in spiral galaxies. This enables translation of sky survey images into data needed to help address fundamental astrophysical questions such as the origin of spiral structure---a phenomenon that has eluded theoretical description despite 150 years of study (Sellwood 2010). The difficulty of automated measurement is underscored by the fact that, to date, only manual efforts (such as the citizen science project Galaxy Zoo) have been able to extract information about large samples of spiral galaxies. An automated approach will be needed to eliminate measurement subjectivity and handle the otherwise-overwhelming image quantities (up to billions of images) from near-future surveys. Our approach automatically describes spiral galaxy structure as a set of arcs, precisely describing spiral arm segment arrangement while retaining the flexibility needed to accommodate the observed wide variety of spiral galaxy structure. The largest existing quantitative measurements were manually-guided and encompassed fewer than 100 galaxies, while we have already applied our method to more than 29,000 galaxies. Our output matches previous information, both quantitatively over small existing samples, and qualitatively against human classifications from Galaxy Zoo.Comment: 9 pages;4 figures; 2 tables; accepted to CVPR (Computer Vision and Pattern Recognition), June 2012, Providence, Rhode Island, June 16-21, 201

    Multimodality characterization of microstructure by the combination of diffusion NMR and time-domain diffuse optical data

    Get PDF
    Combining datasets with a model of the underlying physics prior to mapping of tissue provides a novel approach improving the estimation of parameters. We demonstrate this approach by merging near infrared diffuse optical signal data with diffusion NMR data to inform a model describing the microstructure of a sample. The study is conducted on a homogeneous emulsion of oil in a dispersion medium of water and proteins. The use of a protein based background, rich in collagen, introduces a similarity to real tissues compared to other models such as intralipids. The sample is investigated with the two modalities separately. Then, the two datasets are used to inform a combined model, and to estimate the size of the microstructural elements and the volume fraction. The combined model fits the microstructural properties by minimizing the difference between experimental and modelled data. The experimental results are validated with confocal laser scanning microscopy. The final results demonstrate that the combined model provides improved estimates of microstructural parameters compared to either individual model alone

    Recovering the optical properties of a tissue using maximum a posteriori based estimation

    Get PDF
    The spectral reflectance of a biological tissue is known to be affected by its physical and optical properties such as thickness, chromophore concentrations and scattering coefficient. There exist numerous methods that aim to extract the optical parameters of a tissue by relating reflectance measurements to a theoretical model of light transport. During the parameter recovery process, assumptions are often made about the characteristics of the tissue. However, incorrect assumptions lead to inaccurate or even erroneous results. We present a method based on the maximum a posteriori estimation technique to recover some optical properties of the biological tissue from reflectance measurements. The method provides correct results even in the presence of significant uncertainty in the underlying specification of the tissue. A light transport model of the inspected medium is developed and used in the estimation process. The analysis of the results obtained from simulated skin data and phantoms suggests that the proposed MAP based method is a good parameter recovery technique that provides accurate estimates and is robust against a high level of uncertainty in the tissue's model

    Air Force Institute of Technology Research Report 2012

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems and Engineering Management, Operational Sciences, Mathematics, Statistics and Engineering Physics

    New Horizons in Time-Domain Diffuse Optical Spectroscopy and Imaging

    Get PDF
    Jöbsis was the first to describe the in vivo application of near-infrared spectroscopy (NIRS), also called diffuse optical spectroscopy (DOS). NIRS was originally designed for the clinical monitoring of tissue oxygenation, and today it has also become a useful tool for neuroimaging studies (functional near-infrared spectroscopy, fNIRS). However, difficulties in the selective and quantitative measurements of tissue hemoglobin (Hb), which have been central in the NIRS field for over 40 years, remain to be solved. To overcome these problems, time-domain (TD) and frequency-domain (FD) measurements have been tried. Presently, a wide range of NIRS instruments are available, including commonly available commercial instruments for continuous wave (CW) measurements, based on the modified Beer–Lambert law (steady-state domain measurements). Among these measurements, the TD measurement is the most promising approach, although compared with CW and FD measurements, TD measurements are less common, due to the need for large and expensive instruments with poor temporal resolution and limited dynamic range. However, thanks to technological developments, TD measurements are increasingly being used in research, and also in various clinical settings. This Special Issue highlights issues at the cutting edge of TD DOS and diffuse optical tomography (DOT). It covers all aspects related to TD measurements, including advances in hardware, methodology, the theory of light propagation, and clinical applications

    Untangling hotel industry’s inefficiency: An SFA approach applied to a renowned Portuguese hotel chain

    Get PDF
    The present paper explores the technical efficiency of four hotels from Teixeira Duarte Group - a renowned Portuguese hotel chain. An efficiency ranking is established from these four hotel units located in Portugal using Stochastic Frontier Analysis. This methodology allows to discriminate between measurement error and systematic inefficiencies in the estimation process enabling to investigate the main inefficiency causes. Several suggestions concerning efficiency improvement are undertaken for each hotel studied.info:eu-repo/semantics/publishedVersio

    Modeling Atmosphere-Ocean Radiative Transfer: A PACE Mission Perspective

    Get PDF
    The research frontiers of radiative transfer (RT) in coupled atmosphere-ocean systems are explored to enable new science and specifically to support the upcoming Plankton, Aerosol, Cloud ocean Ecosystem (PACE) satellite mission. Given (i) the multitude of atmospheric and oceanic constituents at any given moment that each exhibits a large variety of physical and chemical properties and (ii) the diversity of light-matter interactions (scattering, absorption, and emission), tackling all outstanding RT aspects related to interpreting and/or simulating light reflected by atmosphere-ocean systems becomes impossible. Instead, we focus on both theoretical and experimental studies of RT topics important to the science threshold and goal questions of the PACE mission and the measurement capabilities of its instruments. We differentiate between (a) forward (FWD) RT studies that focus mainly on sensitivity to influencing variables and/or simulating data sets, and (b) inverse (INV) RT studies that also involve the retrieval of atmosphere and ocean parameters. Our topics cover (1) the ocean (i.e., water body): absorption and elastic/inelastic scattering by pure water (FWD RT) and models for scattering and absorption by particulates (FWD RT and INV RT); (2) the air-water interface: variations in ocean surface refractive index (INV RT) and in whitecap reflectance (INV RT); (3) the atmosphere: polarimetric and/or hyperspectral remote sensing of aerosols (INV RT) and of gases (FWD RT); and (4) atmosphere-ocean systems: benchmark comparisons, impact of the Earth's sphericity and adjacency effects on space-borne observations, and scattering in the ultraviolet regime (FWD RT). We provide for each topic a summary of past relevant (heritage) work, followed by a discussion (for unresolved questions) and RT updates

    Modeling atmosphere-ocean radiative transfer: A PACE mission perspective

    Get PDF
    The research frontiers of radiative transfer (RT) in coupled atmosphere-ocean systems are explored to enable new science and specifically to support the upcoming Plankton, Aerosol, Cloud ocean Ecosystem (PACE) satellite mission. Given (i) the multitude of atmospheric and oceanic constituents at any given moment that each exhibits a large variety of physical and chemical properties and (ii) the diversity of light-matter interactions (scattering, absorption, and emission), tackling all outstanding RT aspects related to interpreting and/or simulating light reflected by atmosphere-ocean systems becomes impossible. Instead, we focus on both theoretical and experimental studies of RT topics important to the science threshold and goal questions of the PACE mission and the measurement capabilities of its instruments. We differentiate between (a) forward (FWD) RT studies that focus mainly on sensitivity to influencing variables and/or simulating data sets, and (b) inverse (INV) RT studies that also involve the retrieval of atmosphere and ocean parameters. Our topics cover (1) the ocean (i.e., water body): absorption and elastic/inelastic scattering by pure water (FWD RT) and models for scattering and absorption by particulates (FWD RT and INV RT); (2) the air-water interface: variations in ocean surface refractive index (INV RT) and in whitecap reflectance (INV RT); (3) the atmosphere: polarimetric and/or hyperspectral remote sensing of aerosols (INV RT) and of gases (FWD RT); and (4) atmosphere-ocean systems: benchmark comparisons, impact of the Earth’s sphericity and adjacency effects on space-borne observations, and scattering in the ultraviolet regime (FWD RT). We provide for each topic a summary of past relevant (heritage) work, followed by a discussion (for unresolved questions) and RT updates

    Modeling Atmosphere-Ocean Radiative Transfer: A PACE Mission Perspective

    Get PDF
    The research frontiers of radiative transfer (RT) in coupled atmosphere-ocean systems are explored to enable new science and specifically to support the upcoming Plankton, Aerosol, Cloud ocean Ecosystem (PACE) satellite mission. Given (i) the multitude of atmospheric and oceanic constituents at any given moment that each exhibits a large variety of physical and chemical properties and (ii) the diversity of light-matter interactions (scattering, absorption, and emission), tackling all outstanding RT aspects related to interpreting and/or simulating light reflected by atmosphere-ocean systems becomes impossible. Instead, we focus on both theoretical and experimental studies of RT topics important to the science threshold and goal questions of the PACE mission and the measurement capabilities of its instruments. We differentiate between (a) forward (FWD) RT studies that focus mainly on sensitivity to influencing variables and/or simulating data sets, and (b) inverse (INV) RT studies that also involve the retrieval of atmosphere and ocean parameters. Our topics cover (1) the ocean (i.e., water body): absorption and elastic/inelastic scattering by pure water (FWD RT) and models for scattering and absorption by particulates (FWD RT and INV RT); (2) the air-water interface: variations in ocean surface refractive index (INV RT) and in whitecap reflectance (INV RT); (3) the atmosphere: polarimetric and/or hyperspectral remote sensing of aerosols (INV RT) and of gases (FWD RT); and (4) atmosphere-ocean systems: benchmark comparisons, impact of the Earth’s sphericity and adjacency effects on space-borne observations, and scattering in the ultraviolet regime (FWD RT). We provide for each topic a summary of past relevant (heritage) work, followed by a discussion (for unresolved questions) and RT updates
    corecore