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Abstract

The spectral reflectance of a biological tissue is known to be affected by its

physical and optical properties such as thickness, chromophore concentrations

and scattering coefficient. There exist numerous methods that aim to extract

the optical parameters of a tissue by relating reflectance measurements to a

theoretical model of light transport. During the parameter recovery process,

assumptions are often made about the characteristics of the tissue. However,

incorrect assumptions lead to inaccurate or even erroneous results.

We present a method based on the maximum a posteriori estimation tech-

nique to recover some optical properties of the biological tissue from reflectance

measurements. The method provides correct results even in the presence of

significant uncertainty in the underlying specification of the tissue. A light

transport model of the inspected medium is developed and used in the estima-

tion process. The analysis of the results obtained from simulated skin data and

phantoms suggests that the proposed MAP based method is a good parameter

recovery technique that provides accurate estimates and is robust against a

high level of uncertainty in the tissue’s model.

i



Acknowledgements

All praise be to Allah, the Beneficent, the Merciful.

Firstly, I would like to thank my parents who have always been supportive and encourag-

ing, and without whom I would never have had the opportunity to complete this research.

I would also like to thank my husband for his love, his continuous help and support as

well as his much appreciated patience throughout this process.

I thank my supervisor, Dr. Iain B. Styles for his invaluable help and guidance, and

for all he taught me during my studies. I also thank my thesis group members Prof. Ela

Claridge and Prof. Jon Rowe for the feedback they provided during our meetings, Dr.

Hancox for his invaluable support, and Dr. Dzena Hidovic-Rowe for providing me with all

the images she used in her research.

Special thanks go to my beautiful aunt Fatima Hida for her love, help and faith in me,

my brother Amine for cheering me up when I was down, and my parents-in-law for their

love and encouragement. Finally, I would like to thank every friend and family member

who has wished me luck along the way, and provided me with encouragement and support

when these were most needed.

iii



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Problem Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Proposed Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Fundamentals of Tissue Optics 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Transport Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1 The Diffusion Approximation . . . . . . . . . . . . . . . . . . . . . . 14
2.4.2 The Kubelka-Munk Model . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.3 Monte Carlo Simulation for Multi-Layered Media . . . . . . . . . . . 16
2.4.4 Adding-Doubling Method . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.5 Finite Elements Method . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Model-Based Parameter Recovery 23

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Introduction to Optimisation Algorithms . . . . . . . . . . . . . . . . . . . . 24
3.3 Common Optimisation Algorithms . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.1 Hill Climbing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.2 Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.3 Gauss-Newton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.4 Levenberg-Marquardt . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.5 Evolutionary Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.6 Neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Optimisation Methods in Biomedical Optics . . . . . . . . . . . . . . . . . . 32
3.4.1 Hybrid Techniques Based on Inverse Monte-Carlo . . . . . . . . . . . 32

v



3.4.2 Inverse Adding Doubling (IAD) . . . . . . . . . . . . . . . . . . . . . 34
3.5 Other Optical Parameter Recovery Methods . . . . . . . . . . . . . . . . . . 35
3.6 Introduction to Estimation Theory . . . . . . . . . . . . . . . . . . . . . . . 37

3.6.1 Minimum Variance Unbiased Estimation (MVU) . . . . . . . . . . . 38
3.6.2 Least Squares Estimation (LSE) . . . . . . . . . . . . . . . . . . . . 39
3.6.3 Maximum Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.6.4 Maximum A Posteriori Method (MAP) . . . . . . . . . . . . . . . . 41

3.7 Applications of Estimation Theory in Biomedical Imaging . . . . . . . . . . 43
3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Application to Simulated Data: Human Skin 45

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Structure of the Human Skin . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3 The Forward Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.1 Absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3.2 Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 The Inversion Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.4.1 Maximum Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4.2 Maximum A Posteriori . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Application to Gelatin Phantoms 71

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2 Non-Scattering Phantoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3 Scattering Phantoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3.1 Scattering Properties of Milk . . . . . . . . . . . . . . . . . . . . . . 82
5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6 Application to Multispectral Images of the Colon 91

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.2 Structure of the Human Colon . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.3 Reflectance Model of the colon . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.3.1 Modelling absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.3.2 Modelling Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.4 Histological Changes in Cancerous Tissue . . . . . . . . . . . . . . . . . . . 96
6.5 Simulated Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97



6.5.1 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.6 Multispectral Images of the Colon . . . . . . . . . . . . . . . . . . . . . . . 103

6.6.1 Modelling the Imaging Setup . . . . . . . . . . . . . . . . . . . . . . 103
6.6.2 The Inversion Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.6.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7 Conclusions and Future Work 123

7.1 Summary of Work Presented . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

A Estimation Results from Simulated Reflectance Spectra 129

B Error Correction Algorithm 135

References 146



List of Figures

2.1 Molar extinction coefficient spectra for melanin, oxy- and deoxy-haemoglobin
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 The Kubelka-Munk two flux model . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Flowchart of MCML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1 The Cutaneous Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Molar extinction coefficient spectra for melanin, oxy- and deoxy-haemoglobin
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Reflected light by each layer of the skin . . . . . . . . . . . . . . . . . . . . 53

4.4 Flowchart of the experimental process . . . . . . . . . . . . . . . . . . . . . 54

4.5 These plots represent the results of recovering θ using LSQ, ML, and the
MAP based estimator. The plots entitled MAP from ML and MAP from
LSQ illustrate the MAP estimates obtained using prior data sets from ML
and LSQ estimates respectively. The results are displayed with one param-
eter fixed (CHB∗ in 4.5a and CMel in 4.5b) while varying the other in order
to show the estimates produced for different values of θ. Each box outlines
the estimates θ̂ for a 100 values of depi (drawn from a normal distribution
with a standard deviation of 20%) and a single combination (CHB∗ , CMel)
using five attributes. The top and bottom of each box represent the 75th
and 25th percentile while the band near the middle of the box denoted the
median estimate. The whiskers denote the minimum and maximum of all
estimates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.6 Estimation result when CHB∗ = 5.0% and CMel is varied between 1 and 10.
The estimation process is run with a prior data size of 10. The plots repre-
sent (from bottom-left to upper-right): Estimation results from ML, LSQ,
MAP with prior data from ML and LSQ estimates respectively. Each box
outlines the estimates θ̂ for a 100 values of depi (drawn from a normal distri-
bution with a standard deviation of 20%) and a single combination (CHB∗ ,
CMel) using five attributes. The top and bottom of each box represent the
75th and 25th percentile while the band near the middle of the box denoted
the median estimate. The whiskers denote the minimum and maximum of
all estimates. Note that the box plots for MAP results appear as a single
red line due to the results’ standard deviation being very close to 0. . . . . 66

4.7 Estimation result when CMel = 4.5% and CHB∗ is varied between 0.5 and
9.5. The estimation process is run with a prior data size of 10. The plots
represent (from bottom to top) estimation results from LSQ, ML, MAP
with prior data from LSQ and ML estimates respectively. . . . . . . . . . . 69

ix



4.8 Estimation result when CMel = 6.5% and CHB∗ is varied between 0.5 and
9.5. The estimation process is run with a prior data size of 100. . . . . . . . 69

4.9 Estimation results when CHB∗ = 9% (4.9a) and CMel = 9.5% (4.9b). The
estimation process is run with a prior data size of 100. Note that even when
the estimation results of ML and LSQ vary widely as shown in 4.9b, the
variance of MAP estimates remains very small as demonstrated by their
appearance as a flat red line or a very thin box in Figure 4.9b . . . . . . . . 70

5.1 Transmittance Spectra Acquisition Setup . . . . . . . . . . . . . . . . . . . 73

5.2 The plots show the absorption coefficients of the blue 5.2a and red 5.2b
dye solutions as recorded using the Cary 50 UV-VIS spectrophotometer. A
number of solutions were prepared with varying volume fractions of dyes.
The absorption coefficients were later used to calculate the extinction coef-
ficients of the dyes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3 Extinction Coefficients of Gel Base and Food Dyes as calculated by the
regression analysis performed on absorbance spectra . . . . . . . . . . . . . 75

5.4 Transmittance spectra collected from the gelatin phantoms we prepared.
The data is normalised to the signal transmitted through an empty petri
dish. As illustrated by Table 5.1, Table 5.2 and Table 5.3, the transmittance
was measured for different thicknesses and concentrations of dyes. The
concentration of gelatin, however, remained relatively constant (≈ 28.5 ±
0.19 g/L (0.68%)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.5 These plots represent examples of measured transmittance spectra (solid
line) against the spectra calculated using LSQ and MAP estimates. . . . . . 78

5.6 This figure aims to evaluate the results of MAP and LSQ estimation in
comparison with the actual values of θ. Figure 5.6a depicts the results of
estimating the concentration of blue dye in sample B1-B11 while Figure
5.6b shows the estimates of red dye concentrations in samples R1-NR11.
Note that for larger volume fractions of blue and red dyes, the estimates
recorded using LSQ and MAP are less accurate than those obtained for
smaller concentrations. This is due to the transmitted signal being weak
at these high concentrations due to the relatively large absorbance of the
samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.7 These plots represent the results of the estimation process using samples
containing both red and blue dye (M1, M2 and M3). The difference between
Map and LSQ estimates is smaller than that noted in samples with a single
dye. This is mainly due to the weakness of the transmitted signal as the
presence of two dyes in the phantoms leads to a large fraction of the light
being absorbed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.8 Reduced scattering coefficients of milk obtained from two different sources.
(a): The reduced scattering coefficient is calculated using Matzler’s pro-
gram. This value was generated for a sample containing 100% skimmed
milk. As reported on the milk container, 100 ml of milk contains 0.3g of
fat and 3.6g of protein. These values are consequently used to construct
the volume fractions of scattering particles in milk. (b): Values reported
by Qin in and obtained directly from the authors. . . . . . . . . . . . . . . . 82



5.9 Estimates of Milk Volume Fractions in Samples . . . . . . . . . . . . . . . . 85

5.10 Measured transmittance spectra from Sample 5 plotted against reconstructed
spectra from the expected value of θ. Transmittance was reconstructed us-
ing two methods: a Kubelka-Munk based model and an MCML model.
Note that the spectra are considerably distant making both forward models
inherently inaccurate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.11 Estimates of the value fractions of blue dye in samples. These estimates are
obtained from simulated transmittance spectra + Gaussian noise rather
than measured data. This is to investigate whether the inaccuracies of
the previous estimates where due to the estimation method, prior data,
uncertainty level in input parameters or the inaccuracy of the forward model. 88

6.1 Multi-layer structure of the human colon . . . . . . . . . . . . . . . . . . . 93

6.2 Box plots representing basic statistical information about CHB∗ (6.2a) and
Cclg (6.2b) estimates. The estimates are grouped by their respective ex-
pected values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.3 Imaging Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.4 Reflectance values at wavelength 574 nm. These maps represent the re-
flectance values at every point in the sample images. The image cubes of
the three samples were first constructed by aligning all sample images with
50% reflectance standard images. The images are then corrected for dif-
ferent gains and exposure times before the conversion factor c50 described
above is applied to the resulting multispectral cube. A mask is applied to
all images to only keep the reflectance spectra from the colon tissue which
is why the area around the central circles appears in these figures as having
a 0 reflectance. Equations (6.4) and (6.5) are then applied to generate these
maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.5 Measured vs. reconstructed reflectance spectra using θ = (0.049, 0.38, 0.13, 0.049)T.
This parameter vector was estimated by our inversion method using the
MCML based technique as a forward model. The reflectance spectra is
reconstructed using two methods based on Kubelka-Munk and MCML re-
spectively. Both methods use exactly the same input parameters and model
the tissue as described in Section 6.3. We note that the MCML generated
spectra is much closer to the measured reflectance than the Kubelka-Munk
based reflectance. However, we also observe that there might be a varying
offset between Kubelka-Munk reflectance and the measured spectra. This
is discussed further in Chapter 7. . . . . . . . . . . . . . . . . . . . . . . . . 111

6.6 Image of the cancer tissue sample taken at wavelength 574 nm. The dots
that appear on the image represent the points at which the inversion algo-
rithm was applied. Note that not many points lie on what appears to be
the largest abnormality in this tissue. In addition, the points are not spread
equally over the whole sample. . . . . . . . . . . . . . . . . . . . . . . . . . 112



6.7 Box plots representing a basic statistical analysis of the recovered parame-
ters in all three samples. The data is grouped by tissue type, and each box
represents 30 data points. On each box, the central mark is the median,
the edges of the box are the 25th and 75th percentiles, the whiskers extend
to the most extreme data points not considered outliers, and the red (+)
marks represent outliers. The plots indicate that the means recovered from
cancerous and transitional tissue samples are different from those obtained
from the normal sample. We apply further statistical analysis to establish
whether this difference is statistically significant. . . . . . . . . . . . . . . . 115

6.8 Result of K-Mean clustering applied to the set of observations from all
samples. Note that most cancer and transitional tissue estimates fall within
the same cluster (Cluster1) while normal tissue estimates are part of a
different cluster (Cluster1). We also notice that there were estimates that
were incorrectly classified. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117



Chapter 1

Introduction

Optical techniques have often been used in medical diagnosis. A change in the skin’s

colour or appearance, for instance, was considered a sign of a number of diseases. The

skin of an anaemic patient would become paler while an infected wound would appear

as blue or purple. This is due to the fact that the colour of a tissue changes according

to alterations in its internal structure. In fact, when light travels through a biological

tissue, it undergoes absorption and scattering events that are closely dependent on the

structure of the medium. When the light finally exits the medium, we can infer a number

of information about the tissue’s optical and physiological properties.

There exist many methods that use this knowledge to extract important information

that could be used as part of the medical diagnosis process such as blood volume frac-

tion and oxygenation (Kienle and Patterson, 1997; Gebhart et al., 2006; Wang et al.,

2008; Palmer et al., 2006; Palmer and Ramanujam, 2006; Prahl, 1995a; Pfefer et al., 2003;

Gualtieri and Pursi, 1990; Farrell et al., 1992a). These methods relate observable quanti-

ties, such as the amount of transmitted and reflected light, to parameters characterising

the sample tissue such as the quantities of chromophores and scattering particles present.

These techniques can be categorised into two classes: direct and indirect (Cheong et al.,

1990; Tuchin, 2000).

Direct techniques are based on simple concepts such as the Beer-Lambert law and single

scattering phase functions (Tuchin, 2000). They use simple analytic expression to relate

the reflectance and transmittance spectra to optical parameters that do not depend on

any specific model, namely: the total attenuation coefficient and the effective attenuation

1
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coefficient (Cheong et al., 1990). As a result, the optical coefficients are obtained directly

from the fraction of light absorbed or scattered by the sample. The Beer-Lambert, for

example, relates the transmittance of light through a medium to the product of its atten-

uation coefficient and the distance travelled by light using a logarithmic dependence. The

parameters characterising the tissue (thickness and attenuation coefficient) can therefore

be directly calculated from the observed quantity (transmittance).

However, direct methods cannot be used for most biological tissues and fluids such as

skin, brain and blood as they do not strictly fulfil the actual experimental conditions, or the

actual structure of the medium (Cheong et al., 1990; Welch and Van Gemert, 1992; Duck,

1990; Kay, 1993; Tuchin, 2000). Consequently, direct techniques will not be considered

for this research.

Indirect techniques make use of a combination of measured quantities and a theoretical

model of light propagation that is more advanced than the concepts used in direct tech-

niques. The model describes the physical properties of the biological tissue, such as the

number of different layers, their thicknesses and refractive indices (Tuchin, 2000; Welch

and Van Gemert, 1992; Prahl et al., 1993b). It also reflects knowledge about the various

chromophores and scatterers present in the tissue. Such methods are very popular when

the analysed tissue is thick enough for multiple scattering events to occur and physical

measurements are obtainable. They can be further subdivided into two categories, namely

iterative and non-iterative (Tuchin, 2000; Cheong et al., 1990).

Non-iterative indirect techniques, such as the Kubelka-Munk method (Cotton, 1998),

are based on equations where the reflectance and transmittance spectra are described di-

rectly in terms of the evaluated parameters. Dissimilarly, iterative techniques use more

complicated solutions to the transport equations such as Monte-Carlo (Wang and Jacques)

and adding-doubling methods (Prahl et al., 1993a) where it is necessary to go through

multiple iterations to approximate measurable quantities (such as transmittance and re-

flectance) from optical properties of the tissue (such as absorption and scattering coeffi-

cients).
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Although non-iterative methods are often simpler and faster than their iterative coun-

terparts, they are believed to be rigid. For example, The Kubelka-Munk method does not

consider boundary reflectance even though it is always present as the refractive indices of

the sample and its surrounding medium are often different. On the other hand, iterative

methods are approximative and often slow due to their iterative nature, but more infor-

mation about the tissue can be incorporated into the optical model employed. They can

therefore provide more realistic results than the non-iterative techniques (Cheong et al.,

1990).

1.1 Motivation

Although most of the aforementioned techniques are widely used and may provide accu-

rate results, they suffer from a number of limitations. For instance, while direct methods

can provide good results under certain conditions, they impose very strict constraints on

the studied sample. For instance, the Beer-Lambert method can only be used if the atten-

uating medium is non-scattering which is untrue for biological tissues. Such constraints

are therefore not always possible to respect and can lead to incorrect solutions.

Similarly, a drawback of indirect techniques is that they sometimes require approxi-

mations that are often invalid for biological tissues. For example, indirect models often

assume approximative values for some tissue properties such as ranges for layer thicknesses.

During this process, assumptions are made about the characteristics of the investigated

tissue due to unknown inter-subject variations. These assumptions can lead to inaccu-

rate or even incorrect results. Nevertheless, indirect methods are often preferred to their

analytical counterparts because the constraints they impose are not as stringent as those

required in direct approaches.

While both iterative and non-iterative indirect techniques were proven to be successful

when studying a number of biological tissues (e.g. skin), we note that their outcomes are

in need for improvements under certain conditions. In fact, the results of these techniques

can lack accuracy when the available information about the structure of the biological
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medium is not sufficient. For instance, while some tissues such as the human skin have

been extensively studied, both in vivo and ex vivo, making their physical properties well

understood and documented, other tissues are not so well characterised. For such media,

creating a forward model is only possible through approximations of the tissue’s proper-

ties (e.g. layers thicknesses) making uncertainty an inherent part of the model that the

inversion algorithm has to successfully tolerate.

In addition, a number of methods used today are intended to recover the absorption

and scattering coefficients of the biological medium. Though these parameters are useful,

knowing the blood oxygenation levels or water content of a tissue, for example, might be

more helpful from a diagnostician’s perspective. Though numerous other methods provide

estimates for these parameters, many do so using a second inversion process rather than

a direct result of estimation using the measured reflectance or transmittance spectra.

For instance, such methods may recover chromophore and scatterer concentrations from

absorption and scattering coefficients, that were estimated from reflectance spectra, which

induces further possible errors in the result.

Another issue that arises when solving inverse problems is whether or not an appropriate

solution does exist. In fact, there may be no model that exactly fits the data due to the

presence of noise. In addition, there is also the risk of fitting to the noise when only limited

measurements are available. Even when solutions do exist, the mapping between the model

and the data may not be one-to-one, resulting in more than one model producing the same

reflectance data (Hidovic-Rowe, 2006). Consequently, it may be impossible to determine

which solution to choose using classical parameter recovery methods. Finally, the process

of recovering parameters can very often be unstable as small changes to measurements can

lead to large changes in the estimated model. It is worth noting that this process can be

stabilised by imposing additional constraints that bias the solution (i.e. regularisation).

To attend to these issues, we propose a Bayesian-based inversion method that estimates

concentrations of the main chromophores present in a biological tissue despite uncertainty

in its other underlying physical attributes. The method is tested using data from simulated
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reflectance spectra, measurements obtained from gelatin phantoms, and hyper-spectral

images of the human colon. The optical properties of interest are recovered directly from

reflectance or transmittance measurements.

Throughout this thesis, we will use the term “light” to refer to diffuse white light in the

visible to near-infra-red light (400−700nm). We will also use the term “optical properties”

to refer to the concentrations of chromophores such as melanin and haemoglobin, as well

as the concentration of scattering particles. More information about these properties is

available in later chapters.

1.2 Problem Specification

This research has two main goals:

1. To retrieve the optical properties of a biological tissue from reflectance measure-

ments. These properties include the concentrations of the chromophores present,

blood oxygenation and reduced scattering coefficient∗.

2. To succeed in retrieving the aforementioned values when the physical attributes of

the said tissue are uncertain. That is, our method is aimed at coping with the

uncertainty present in the tissue’s specification and should behave well even when

the physical characteristics of the biological tissue are not known exactly (e.g. layers

thicknesses, optical coefficients of chromophores...etc.).

The absorption and scattering coefficient of a tissue can, in theory, be successfully re-

trieved when the physical properties are well defined. However, they may not perform as

well when such properties are missing or imprecise. This is because such methods rely

on the correctness and accuracy of the forward model used during the inversion process.

They also rely on the accuracy of the parameters used in said model. In addition, these

methods also fail when the mapping between the optical parameters of the tissue and the
∗Formal definitions of these properties are available in Chapter 2
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measured spectra is not one-to-one as described in Section 1.1. Finally, the existing inver-

sion methods, that do not retrieve the previously mentioned optical parameters directly,

are affected by the additional errors introduced in their calculations.

1.3 Proposed Solution

In order to address the problem, we propose to develop an inversion method based on

the Maximum A Posteriori estimation technique. This method will be used to recover a

number of parameters describing a biological tissue even if some of the physical properties

of this tissue are not definite. We will work in two stages:

1. Feasibility study: the aim of this phase is to investigate the possibility of applying

the theory of estimation to a simple, well defined version of our problem. We start

by clearly specifying the problem in a form that can be solved by Bayesian esti-

mation techniques. We then model a simple tissue where the physical and optical

properties are predetermined. Next, we apply estimation to retrieve its unknown

optical parameters. We choose the human skin to test our inversion method as an

example of a tissue whose properties are well defined but not precisely known.

2. Application to biological tissue: during this stage, we apply our inversion method to

measured spectra to account for the presence of noise and uncertainty. We use two

sets of measurements: transmittance spectra collected from gelatin phantoms, and

reflectance spectra recovered from multispectral images of the human colon.

1.4 Thesis Structure

This section describes the structure of this thesis and provides a brief description of

each section.

I. Fundamentals of Tissue Optics: Introduces widely used concepts of tissue optics

such as known solutions to the transport theory as well as a number of terms that

are used throughout the thesis. We describe the Kubelka-Munk method, a technique
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that provides a simple analytical solution to the radiation transport equation, and

which relates the transmission (T) and reflectance (R) of light at a specific wavelength

to the tissue’s absorption and scattering. We also review the adding-doubling tech-

nique which quickly generates accurate estimates of light distributions in a biological

medium. Finally, we introduce the Monte Carlo method and outline its advantages

and limitation.

II. Model-Based Parameter Recovery: Puts the proposed solution in context. We first

introduce the different methods traditionally used to recover tissue optical properties

and review their performance. We then introduce classical and Bayesian estimation

techniques and elaborate on how our proposed solution may address some of the

issues related with the use of traditional parameter recovery methods. This chapter

is hence divided into two sections. The first one reviews the existing literature about

tissue parameter recovery. The second introduces estimation theory, mainly focusing

on three techniques: Least squares, maximum likelihood and maximum a posteriori.

III. Application of the MAP based Estimation Method to Simulated Data: Human Skin

In this chapter, we give a detailed description of the structure of the human skin.

We describe how light reflectance is modelled in the skin and the various parame-

ters required to construct such a model. We then apply our inversion method to

reflectance spectra simulated using the aforementioned model. Finally, we analyse

the results in comparison with classical estimation techniques, namely: least squares

and maximum likelihood.

IV. Application to Gelatin Phantoms: We describe our first attempt at applying our

inversion method to measured rather than simulated Data. We outline how we

constructed a number of scattering and non-scattering phantoms using simple and

commercially available materials. We then construct forward models of light transfer

within these phantoms. Later, we collect transmittance spectra from these sam-

ples and recover the concentrations of absorbing and scattering particles using our

inversion method.
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V. Application to multispectral Images of the Human Colon: This section describes

how our inversion method was applied to multispectral images of the colon. We first

describe the tissue composition of the colon, and the parameters required for build-

ing a forward model of light reflectance. We then outline some of the changes that

accompany the formation of colorectal adenocarcinomas in the human colon. These

changes are used to support our claim that we may be able to differentiate between

normal and abnormal tissue based on the recovered optical properties.

We describe the imaging setup used to acquire the multispectral images of the colon,

and how it has been modelled to allow us to recover reflectance spectra from image

values. Note that this section builds on the findings described in (Hidovic-Rowe,

2006) who have developed the colon model as well as acquired the multispectral

images that we use to test our inversion algorithm.

VI. Conclusions and Future Work: Summarises the results of the experiments and evalu-

ates the performance of our estimator against traditional techniques. It also appraises

the work completed so far by discussing its importance, its strengths and limitations.

Finally, we suggest some avenues to improve and extend the current results.



Chapter 2

Fundamentals of Tissue Optics

2.1 Introduction

Biological tissues and fluids such as skin, brain and blood are inhomogeneous and con-

sidered to be strongly scattering in the visible to near-infra-red range. As light travels

through these media, it can either be absorbed, transmitted, scattered or reflected. These

phenomena are responsible for light beams decaying, broadening or being reflected back.

The absorbed light is converted to heat while the reflected and transmitted light can be

measured and analysed to reveal information about the internal structure of the tissue.

This interaction is described by the Radiation Transport Equation (2.1) (RTE), where

φ(r, s)[W cm−2sr−1] is the radiance at point r in direction s (|s| = 1), µa[cm−1] and

µs [cm−1] are the absorption and scattering coefficients for the medium respectively; P (s, s′)

[sr−1] the scattering phase function and Q(r, s) represents all sources of radiance within

the boundary of the problem (Tuchin, 2000).

s · ∇φ(r, s) = −(µa + µs)φ(r, s) + µs(r)
∫
P (s, s′)φ(r, s′)ds′ +Q(r, s); (2.1)

Consequently, it can be claimed that the transport equation is governed by the absorp-

tion and scattering coefficient µa and µ′s. A model of light propagation through a biological

medium should be founded on the possible solutions of the RTE and constructed around

these parameters. This section will give a brief introduction to the aforementioned quan-

tities. Note that throughout this chapter, we will only consider light in the visible to

near-infra-red range (400− 700nm).

9
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2.2 Absorption

The absorption of light into a biological tissue transforms the photons energy into heat.

This process is normally quantified by the absorption coefficient µa which describes the

extent to which energy is absorbed by the medium. The absorption coefficient depends

on the wavelength and type of the tissue under study and can therefore provide valuable

information about the chemical composition of a tissue. It can ultimately support in the

diagnosis process, making photon absorption an important event in biomedical optics.

The absorption coefficient can be described by equation (2.2) wherein εi(λ) is the molar

extinction coefficient of the ith absorber given as a function of wavelength λ and Ci its

concentration.

µa(λ) =
∑
i

εi(λ)Ci (2.2)

Haemoglobin and water are the most commonly found absorbers in biological tissues.

Haemoglobin can be found in two forms: oxygenated and de-oxygenated. As depicted

by Figure 4.2, which represents the molar extinction coefficient (ε) of oxy- and deoxy-

haemoglobin, they both absorb strongly in the blue and green regions of the spectrum. We

can therefore approximate the absorption coefficient of blood as εHb(λ)CHb + εHb0(λ)CHb0.

With the the concentration of haemoglobin per unit volume of blood being reported

as 150/64500 in Prahl (2007a) and S being the oxygen saturation, the concentrations

of haemoglobin and oxy-haemoglobin can be calculated as S ∗ 150/64500 and (1 − S) ∗

150/64500 respectively. Equation (2.3) is commonly used to calculate the absorption co-

efficient of blood where ln(10) is a correction factor (Prahl, 2007a).

µBlooda (λ) = ln(10) ∗ 150/64500 ∗ [SεHbO2(λ) + (1− S)εHb(λ)] (2.3)
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Figure 2.1: Molar extinction coefficient spectra for melanin, oxy- and deoxy-haemoglobin
(Data from Prahl (2007a))

2.3 Scattering

Photon scattering occurs in media which contain particles of different refractive indices.

When a photon collides with a particle whose refractive index is different from its sur-

roundings, the photon is diverted from its original path. This contributes to the diffusion

of light in the tissue. The factor that expresses the amount of light scattered per unit of

distance is called the scattering coefficient µs.

Scattering can be categorised into two types according to the size of the scattering

particles present in the tissue. Rayleigh scattering occurs when the particles in question

are small in comparison to light wavelengths while Mie scattering is appropriate for larger

particles. In a tissue where both types are present, the scattering coefficient can be

calculated by equation (2.4).
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µs(λ) = µRayleighs (λ) + µMie
s (λ) (2.4)

Scattering also has diagnostic value as it depends on the structure of a tissue and, as

a result, the amount of reflected light (also affected by scattering) can be used to detect

abnormalities in the tissue under study.

One quantity that is associated with scattering is the scattering phase function. The

scattering phase function P (s, s′) = P (θ)[sr−1] describes the probability of a photon scat-

tering at an angle θ relative to its original trajectory, where s, s′ are unit vectors in the

directions of incident and scattered light respectively, and θ is the angle between them

(Jacques, 1998). One of the most frequently used scattering phase functions is the Henyey-

Greenstein function defined in equation (2.5). It was devised to mimic the angular depen-

dence of light scattering by small particles to describe light scattering by interstellar dust

clouds (Jacques, 1998; Henyey and Greenstein, 1941). The Henyey-Greenstein function

was shown to reasonably agree with measured angular distribution in biomedical media

as described in (Jacques et al., 1987).

p(θ) = 1− g2

4π(1 + g2 − 2gcos(θ)) 3
2 )

where
∫ π

0
P (θ)2πsin(θ)dθ = 1 (2.5)

Another quantity that is often used in conjunction with the scattering coefficient is g,

the anisotropy factor. This parameter is often used to describe the average direction of

scattering events: a value of 0 means the scattering is equally distributed in all directions

(isotropic), a value closer to 1 implies strong forward scattering and a negative value

implies backward scattering. The anisotropy factor is given as the average cosine of the

scattering angle where g =
∫ π

0 P (θ)cos(θ)2πsin(θ)dθ and P (θ) is the scattering phase

function.

The scattering coefficient and the anysotropy factor can be combined to define another

quantity, namely: the reduced scattering coefficient µ′s = (1 − g)µs . Another approach
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often used to describe the reduced scattering coefficient directly is that of Mourant et al.

(1997) where µ′s is a scaled power of wavelength λ as described in Equation (2.6) where α

is the scaling factor and β depends on the size of the scattering agents.

µ′s = αλ−β (2.6)

The equation is often used as an approximation to the reduced scattering coefficient as

it has been shown that when the ratio of indices of refraction m (scattering particle to

surrounding medium) is 1 < m < 1.1 and the size x of the scattering particle is 5 < x < 50,

µ′s ∝ λ−0.37 in the range 350 − 950nm (Mourant et al., 1997). For values of the size

parameter x that decrease below 5, the wavelength dependence of µ′s(λ) approaches λ−4

which is the expected dependence for Rayleigh scattering (2.6). In the following section,

we describe a number of methods that are often used to approximate solutions to the

radiative transport equation.

2.4 Transport Theory

Although equation (2.1) can be easily comprehended in physical terms, solving it ana-

lytically is more challenging and can only be achieved for homogeneous media in regular

geometries (Tuchin, 2000). As a result, there have been many attempts at providing ap-

proximate solutions such as the Kubelka-Munk theory and the diffusion approximation

(Farrell et al., 1992b; Kienle et al., 1998). These methods however are limited because

they can only be used in specific circumstances.

The following section provides a brief introduction to the diffusion approximation, and

the Kubelka-Munk theory as possible solutions to the RTE. In Section 2.4.3, we describe

a numerical solution based on the Monte-Carlo method which provides more accurate

results and can be used for a wider range of media. We then give a brief introduction to

some methods that are often used to model light transport in biological tissues, namely:

the adding-doubling technique and the finite elements method.
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2.4.1 The Diffusion Approximation

The radiative transport equation can be solved by making a number of assumptions

about the behaviour of photons in the medium, therefore reducing the number of inde-

pendent variables (Wang and Wu, 2007). These assumptions lead to the application of

the diffusion theory to the RTE, and they are:

• Directional Broadening: The number of scattering events is much larger than that

of absorption events. Similarly, a few absorption events will occur after a larger

number of scattering events and the radiance becomes nearly isotropic.

• Temporal Broadening: The time for the current density to substantially change is

significantly longer than the time needed to traverse one transport mean free path.

Note that both assumptions require the tissue to be predominantly scattering, and

consequently, the reduced scattering coefficient is significantly larger than its absorption

coefficient (Wang and Wu, 2007; Yoo et al., 1990). They also assume that the tissue

thickness is of the order of at least a few transport mean free path (Yoo et al., 1990).

Consequently, the diffusion approximation cannot be used for highly absorbing tissues

such as the skin and the colon and is therefore unusable for our purposes.

2.4.2 The Kubelka-Munk Model

Many models rely on simple methods to solve the transport equation such as the two-

flux Kubelka-Munk theory (Cotton, 1998). Within this method, light travelling through a

tissue is divided into opposing diffuse fluxes: I, flux in the same direction as the incoming

radiance, and J , the flux in the opposite direction. At a distance x from the surface, the

change in flux over a distance dx for the two fluxes is:

dI = −(µa + µ′s)Idx+ µ′sJdx and (2.7)

dJ = (µa + µ′s)Jdx− µ′sIdx (2.8)
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Figure 2.2: The Kubelka-Munk two flux model

Equations (2.7) and (2.8) have an exponential solution and by applying the boundary

conditions I(0) = I and J(d) = 0 shown in Figure 2.2, we can relate the transmittance

T and reflectance R to the absorption µa and the reduced scattering µ′s coefficients as

shown in equations (2.9) and (2.10) where d is the tissue thickness (Nobbs, 1985; Egan

and Hilgeman, 1979).

R = I0
J0

= A(eBd − e−Bd)
A2eBd − e−Bd

(2.9)

T = Id
I0

= A2 − 1
A2eBd − e−Bd

with (2.10)

A = µa + µ′s +B

µ′s
and B =

√
µa(µa + 2µ′s)

The Kubelka-Munk theory provides a simple analytical solution to the radiation trans-

port equation which can be fruitful for understanding the basic principles of light prop-

agation (Nobbs, 1985). This theory, however, makes two main assumptions: that the

tissue contains particles small in comparison with the tissue’s thickness so that multiple

scattering events can occur, and that the illumination on the tissue is diffuse. This makes

the theory suitable for tissues where the assumptions hold but unsuitable for others. To
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counter these limitations, some revisions to the Kubelka-Munk theory were suggested.

In fact, the suitability of the Kubelka-Munk theory for modelling light propagation in

biological tissues has been disputed by some authors such as Cheong et al. (1990) who

states that in addition to the limitations imposed by the assumptions above, the general

model only considers forward and backward flux of light which differs from what happens

in practice. However, the Kubelka-Munk theory is particularly applicable to the human

skin as reported in (Anderson et al., 1981b; Van Gemert et al., 1989; Cotton, 1998) who

recommend it as a particularly good model in the visible range as its results proved to be

very similar to those obtained by more elaborate models (Van Gemert et al., 1989; Reuter

et al., 2013).

2.4.3 Monte Carlo Simulation for Multi-Layered Media

While the Kubelka-Munk theory provides an approximate solution to the radiative

transfer equation (RTE), it is apparent that finding a solution with more accurate estimates

is crucial for practical use. As solving the RTE analytically is highly difficult, and given

the need for handling arbitrary boundary conditions, numerical methods such as finite

elements model and Monte-Carlo became necessary alternatives (Tuchin, 2000).

The Monte Carlo method is widely used to solve the RTE in different scientific fields

(Tuchin, 2000). In biomedical simulations, light is considered to be composed of photons,

and the goal is to trace each of these photons while they propagate through the tissue.

The simulation relies on the use of an accurate representation of the tissue characteristics

such as the number of layers as well as the thickness d, refractive index n, absorption and

scattering coefficients µa and µs ; and anisotropy factor g for each layer. The propagation

of photons is governed by a number of rules such as the step size of their movements

and scattering angles which are generated stochastically (Wang and Jacques; Wang et al.,

1995).

One software which uses this method to simulate light transport in multi-layered media

is MCML (Wang and Jacques; Wang et al., 1995). The software is based on the random
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Figure 2.3: Flowchart of MCML
(Prahl et al., 1989)

walks that photons make as they travel through the medium. As described in (Prahl et al.,

1989), the software starts by launching a photon into the tissue. When simulating diffuse

irradiance, the direction of the photon is chosen randomly from all possible directions

downwards. The photon is then moved. If it has left the tissue, then the possibility
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of internal reflection is checked as follows: If the photon is not reflected internally, it is

recorded as having escaped. Otherwise, the photon position is updated accordingly. In the

latter case, a fraction of the photon is absorbed at each step which leads to this absorption

event being recorded, and to the photon weight being adjusted accordingly. If the weight

of the photon is deemed too small, the photon is either propagated or extinguished, in

which case, a new photon is started. Otherwise, the photon is scattered. The process is

repeated until the photon has either exited the tissue, or was extinguished at which case,

a new photon is started (Prahl et al., 1989).

Photons histories are recorded as they are scattered or absorbed. The program takes

the aforementioned optical properties of each layer of the tissue as an input and provides

a probabilistic result representing the reflectance (Wang and Jacques; Tuchin, 2000; Prahl

et al., 1989). Figure 2.3 provides a summary of the logic behind the MCML software as

reported in (Prahl et al., 1989; Wang and Jacques).

MCML also considers the refractive index and thickness of each layer in order to calcu-

late the reflectance (Wang and Jacques). Consequently, the software (and the method in

general) can be used for any type of tissue as long as its optical parameters are known.

Note that the accuracy of the results generally increases with the use of a large enough

number of photons which could be millions or more depending on the tissue characteris-

tics and required precision. Consequently, this method is computationally expensive as

it simulates the propagation of a large number of photons. Another Monte-Carlo based

method that may be used to overcome the long computational time is Monte Carlo Ex-

treme (MCX), a method that uses GPU-based parallel computing to simulate fast photon

transport (Fang and Boas, 2013).

2.4.4 Adding-Doubling Method

As suggested by its name, this technique involves two main steps. The first step consists

of calculating the reflection and transmission for a thin homogeneous starting layer with the

same optical properties as the tissue to be studied. Then, the reflection and transmission
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of a layer twice as thick is calculated by superposing two identical layers and summing the

contributions from each one of them (Prahl et al., 1993a; Prahl, 1993; de Hulst, 1980). For

an arbitrarily large layer, this operation is repeated until the desired thickness is reached.

The adding method extends the doubling method to cater for layers with different optical

properties, thereby allowing the simulation of light propagation of a multi-layered medium

and/or one with internal reflection at boundaries. This is achieved by placing slabs with

different optical properties adjacent to one another and adding their contribution to the

value of reflectance (Prahl et al., 1993b).

The main disadvantage of this method is that it is restricted to layered media with

uniform irradiation, and homogeneous layers. Although it is a limitation from a theoret-

ical standpoint, it does not pose a problem in practise as most biological tissues can be

considered to conform to those conditions (Prahl et al., 1993b). On the other hand, the

adding-doubling method has a clear advantage over other methods such as the Kubelka-

Munk technique in that it can easily handle boundary conditions. In fact, these can be

implemented simply by adding a layer which mimics the reflection and transmission at a

boundary.

Additionally, it is believed to be well-suited to iterative problems as it provides accurate

total reflection and transmission calculations with relatively few integration points (Prahl

et al., 1993b). Further information about the adding-doubling method and its origins is

available in (Prahl et al., 1991, 1993a; Prahl, 1993, 1995b; Van de Hulst, 1962; Van de

Hulst and Grossman, 1968; de Hulst, 1980; Wiscombe, 1976, 1977b,a).

2.4.5 Finite Elements Method

In addition to the methods listed above, there exists various other techniques that

can be used to approximate a solution to the radiative transport equation such as the

finite element method (FEM). The finite element method is widely used to solve partial

differential equations in complex geometries and has been increasingly used in diffuse

optical tomography ever since it was introduced by Arridge et al. (1993). The basic
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idea behind FEM is to reduce a complex, continuous and heterogeneous problem such as

modelling light transfer in a complex medium to a finite-dimensional system (Schweiger

et al., 1995).

To that aim, the volume describing the tissue of interest is divided into a large number

of small elements of known shape, and the potential is calculated for each element by

linearising the problem within each element (Bagshaw et al., 2003). This allows us to ac-

curately define regions with heterogeneous optical properties with the accuracy depending

on the fineness of the mesh (Elisee, 2011). Consequently, a more realistic geometry can be

included in the forward model and when FEM is combined with an appropriate inversion

technique, the distribution of the optical parameters throughout the whole volume can be

reconstructed. As a result, FEM has become a standard method for modelling complex

geometries and inhomogeneous backgrounds such as the breast, brain and small animal

imaging (Dehghani et al., 2003; Chaudhari et al., 2005; Srinivasan et al., 2005).

Finite element method has also been combined with other techniques in hybrid solu-

tion schemes. For instance, Tarvainen et al. (2006) developed a finite element model for

the coupled radiative transfer equation and diffusion approximation. In their approach,

the radiative transport equation was used as a forward model in sub-domains in which

the assumptions of the diffusion approximation (DA) are not valid while the diffusion

approximation was used elsewhere in the domain. The radiative transport equation and

diffusion approximation were coupled through approximate boundary conditions between

the RTE and DA sub-domains and their equations solved simultaneously using the fi-

nite element method. Their results were then compared with finite element solutions of

the radiative transfer equation and the diffusion approximation and showed that coupled

RTE-DA model gave very similar results to those obtained from using the RTE in the

whole domain and better results than those obtained through the diffusion approximation

(Tarvainen et al., 2006).

Arridge and Schweiger (1993) developed the TOAST (Time-resolved Optical Absorp-

tion and Scattering Tomography) algorithm to reconstruct the absorption and scattering
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coefficients of a tissue given the time-dependent photon flux at its surface. The algorithm

consists of two parts: a forward solver that uses the finite element method to simulate

the propagation of light in a biological tissues, and an inverse solver that uses an iterative

method to recover the absorption and scattering coefficients of the tissue from boundary

measurements of light transmission (Arridge and Schweiger, 1993). A software suite writ-

ten in C++ and based on this algorithm, Toast++, was later developed by Schweiger

and Arridge (2014) to simulate near-infrared light travel in complex, highly scattering and

heterogeneous media (Schweiger and Arridge, 2014).

Another software package, Near Infra-Red Fluorescence and Spectral Tomography (NIR-

FAST), which uses the finite element method to simulate light propagation in biological

tissue was recently developed (Dehghani et al., 2009). It allows users to easily model

standard single wavelength absorption and reduced scattering coefficients as well as multi-

wavelength spectrally constrained and fluorescence models (Dehghani et al., 2009). As it

is written in MATLAB, NIRFAST can also easily supports user extensions.

The main advantage of the finite element method over other numerical techniques is the

ability to model very complex structures relatively easily while also including boundary

effects. However, a well known limitation of FEM-based models is its failure to recover

the optical properties of a tissue when dealing with low-scattering regions (Elisee, 2011;

Firbank et al., 1996). Another limitation arises when dealing with thin multi-layered

tissues as this requires the generation of a large number of small elements that may have

strong discontinuities in optical properties due to the layered structure. This, in turn,

leads to an increased computational cost (Elisee, 2011). Due to the thinness and multi-

layered nature of the biological tissues of interest to this research, namely, the skin and

colon, this method will not be used to model light transfer in either tissue.

2.5 Conclusion

As stated earlier, the parameter recovery process involves two main components: the

forward model describing light transfer in the tissue, and the inversion method used to
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actually recover the parameters. In this chapter, we described a number of methods that

can be used to provide approximate solutions to the radiation transport equation. We

introduced the diffusion approximation theory and how it is unsuitable for our purposes

due to the fact that the tissues of interest to our research are highly absorbing. This

was followed by a description of a simple analytical solution to the RTE, namely: The

Kubelka-Munk method. We demonstrated how it is popular for certain biological tissues,

such as the skin, but in general, is mainly used to provide crude estimates due to the

stringent constraints it imposes on the tissue.

A Monte Carlo based method was then described and possible variations were suggested

to overcome the computational cost of this technique. This was followed by a brief de-

scription of the inverse adding-doubling technique and the finite element method and how

the latter is also unsuitable for our work due to the thinness and multi-layered nature of

the biomedical tissues we study. The next chapter introduces a number of optimisation

and estimation techniques that can be used in the second step of the parameter recovery

process, along with a description of how they are used in biomedical optics.
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Model-Based Parameter Recovery

3.1 Introduction

As previously discussed, when light is reflected from a biological tissue, it holds impor-

tant information about its internal structure such as anomalies in blood flow or oxygena-

tion. This fact has motivated many attempts to answer some physiological questions using

escaped light by quantifying some tissue properties including the concentrations of chro-

mophores and scattering coefficients (Arridge and Hebden, 1997; Arridge, 1999; Gibson

et al., 2005).

Though they vary in some aspects, most of these methods are based on a forward model

of light travel through the tissue, and their aim is to minimise the difference between

the measured spectra and data produced by the model. Simulated data is generated for

different values of a parameter vector θ that describes the biological tissue, and each

spectra is compared with the measured data. Consequently, most algorithms aiming to

recover the optical properties of a biological tissue rely on a common component: an

optimisation algorithm that aims to minimise the difference between the modelled and

measured spectra.

The next section provides a brief introduction to optimisation theory followed by de-

scriptions of commonly used optimisation algorithms. We then describe a number of

optimisation methods used in biomedical optics. Finally, we introduce three estimation

techniques, namely: least-squares (LSQ), maximum likelihood (ML) and maximum a pos-

teriori (MAP) methods.

23
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3.2 Introduction to Optimisation Algorithms

An optimisation algorithm aims to find a value of the vector parameter θ that describes

the biological tissue, and minimises the difference between the data generated by the

forward model and measured spectra. It is motivated by the fact that the result of the

recovery process improves as the generated and measured spectra get closer. Consequently,

most existing parameter recovery techniques that use forward models rely on two main

ideas:

1. The forward model used to describe light interaction with the tissue is assumed to

reflect all available information about the tissue.

2. The required parameters are those that minimise the difference between the mea-

sured spectra and the one generated by the forward model.

There exist various optimisation algorithms that can be used as part of the parameter re-

covery process. In this chapter, we describe a number of such optimisation algorithms and

review some application-specific methods before introducing three estimation techniques

that may be used to recover the optical properties of a biological tissue.

Prior to that, we provide concise definitions to a number of keywords, often used

throughout this thesis. These definitions are adapted from those in (Weise, 2007).

Definition 3.2.1 (Problem Space). The problem space Θ of an optimisation problem is

the set of possible solutions θ.

Definition 3.2.2 (Search Space). The search space G is the set of elements (called geno-

types hereafter) searched during the optimisation algorithm.

Definition 3.2.3 (Solution Candidate). A solution candidate is an element of the search

space Θ of the optimisation problem.

Definition 3.2.4 (Single Objective Functions). In the case of optimising a single criterion

f , an optimum is either its maximum or minimum, depending on what we are looking for.
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Definition 3.2.5 (Population). A population P is the set of individuals p used during the

optimisation process.

Definition 3.2.6 (Fitness). The fitness value v(θ∗) ∈ V of an element θ∗ corresponds to

its utility or priority in the subsequent steps of the optimisation process.

Definition 3.2.7 (Mutation). Mutation is a process used to create a new element (geno-

type when used in genetic programming) by modifying an existing one. This process can

either be randomised or deterministic depending on the application in which it is being

used.

Definition 3.2.8 (Duplication). This operation duplicate creates an exact copy of an

existing element and often occurs to strengthen the presence of a given type of elements

in a population.

Definition 3.2.9 (Crossover). The crossover operation is used to create a new element

by combining the characteristics of two existing ones.

3.3 Common Optimisation Algorithms

In this section, we describe a number of optimisation techniques that could be used as

part of the parameter recovery process. We also describe their usage and limitations.

3.3.1 Hill Climbing

Hill climbing is one of the simplest optimisation algorithms to implement. As a result,

it is widely used in areas such as artificial intelligence (Russel and Norvig, 2003). The

algorithm consists of a loop, in which the currently known best estimate θ∗ is used to

produce one offspring θnew by incrementally changing a single element of θ∗. If this new

individual is better than its parent, it replaces it and the cycle restarts. The first solution

candidate is usually random as the algorithm uses a parameter-less search operation to

produce it (Russel and Norvig, 2003).
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However, this algorithm suffers an important limitation: premature convergence. This

occurs when the algorithm reaches a flat area of the search space where all nearby solutions

are the same. The algorithm then stops running as it believes that it reached the optimal

solution when the latter may exist in another area of the search space. Consequently,

although the algorithm may always be able to find the local optimum, it may not always

reach the global one. Nevertheless, the behaviour of the algorithm may be improved by

implementing a few modification such as prohibiting the revisit of recently viewed elements

or restarting the search at different parts of the search space. Other variants have been

suggested such as the dynamic (Yuret and de la Maza, 1993) and stochastic hill climbing

approaches (Russel and Norvig, 2003).

This method is sometimes used for the recovery of optical parameters but rarely those

of a biological medium. A modified version of the hill-climbing technique was used to

calculate the optical properties of thin metallic films from reflectance and transmittance

measurements (Ward et al., 1969). Kutavichus et al. also used reflectance and trans-

mittance spectra to calculate the optical parameters and thickness of weakly absorbing

thin films. The authors used the hill climbing technique to provide accurate and unique

solutions to the inverse problem (Kutavichus et al., 2006).

3.3.2 Gradient Descent

The gradient-descent technique -sometimes called steepest descent- is an optimisation

method that aims to find the local minimum of a function f . As described in (Snyman,

2005; Nocedal and Wright, 1999), the algorithm works by starting at an initial guess θ0

and iteratively taking small steps relative to the negative of the gradient γ at the current

estimate θi such that θi+1 = θi − γ∇f(θi) where ∇ is the step size. The step size can

either be fixed or change at every iteration. The value of ∇ can be chosen by a number

of methods such as Cauchy’s and Barzilai and Borwein’s as described in (Yuan, 2008).

Note that the gradient-descent method can also be adapted to find the local maximum by

taking the positive gradient of the function instead of the negative one.
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In (Arridge and Schweiger, 1998), the authors demonstrated a simple means to calculate

the gradient of an objective function directly, which allowed them to apply a gradient-based

optimisation method. They used an objective function based on the sum of squared differ-

ence of the data to their forward model. They successfully reconstructed the absorption

and scattering coefficients of simulated data, but suggested that further work was needed

to evaluate their method on complex data such as neonatal head models (Arridge and

Schweiger, 1998).

In fact, though effective when the optimisation problem is well defined, the rate of

convergence of gradient descent is often below that of many other methods, as it follows

a zigzagging path of decreasing step size (Snyman, 2005). Consequently, the method may

not converge to a local minimum within an acceptable number of steps. Other methods,

such as the conjugate gradient technique, could be used in such instances (Snyman, 2005).

In addition, this method can only be used to find a local minimum which means that if

the objective function is multimodal, this method may result in an incorrect estimate.

3.3.3 Gauss-Newton

The Gauss-Newton method could be seen as an adaptation of Newton’s method for

solving non-linear equations which states that (Fletcher, 2001):

θi+1 = θi −
f ′(θi)
f(θi)

where the next estimate θi+1 is obtained using the current best estimate θi iteratively and

f ′(θi) is the first derivative of f . Unlike Newton’s method, however, the Gauss-Newton

algorithm can only be used to solve problems that involve minimising the sum of squares

of residuals (Fletcher, 2001; Bjõrck, 1996).

Consequently, the method is often used to solve non-linear least squares problems where

the aim is to find parameters that produce the best possible fit between modelled and

measured data. As described in (Fletcher, 2001; Bjõrck, 1996; Nocedal and Wright, 1999),

each step towards the optimal solution provided by the Gauss-Newton method is defined
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as follows:

θi+1 = θi + ∆ with ∆ = f ′(θi)T f(θi)
f ′(θi)T f ′(θi)

or using matrices ∆ = (JT
f
J
f
)−1JT

f
f(θi)

Where f = (f1 , ..., fn) is the sum of squares of differences between simulated and

measured data and J
f
is the Jacobian of function f , and each entry of the Jacobian is

defined in (3.1). The Gauss-Newton method suffers from a slow rate of convergence and

may, sometimes, not converge at all if the initial guess θ0 is not sufficiently close to the

solution or when the matrix JT
f
J
f
is ill-conditioned (Fletcher, 2001; Nocedal and Wright,

1999).

(J
f
)
jk

=
∂fj (θ)
∂θ

k

(3.1)

3.3.4 Levenberg-Marquardt

The Levenberg-Marquardt algorithm aims to minimise a non-linear function over a pa-

rameter’s space. It is used to minimise the least-square error (See Section 3.6.2) and is

widely adopted in a broad spectrum of disciplines that require an efficient solution to gen-

eral curve fitting problems (Levenberg, 1944; Marquardt, 1963). Levenberg-Marquardt

combines the steepest descent and the Gauss-Newton methods as described in (Gavin,

2013). Although it might be slower than Gauss-Newton method when the objective func-

tion is well behaved, it is more robust because it will reach a local solution regardless of

how far off it starts (Levenberg, 1944; Marquardt, 1963; Gill and Murray, 1978).

To achieve its goal, this algorithm iteratively attempts to minimise the sum of squared

differences between the measured (x) and modelled (R(θ)) spectra described as
n∑
i=1

(xi −

Ri(θ))2. It begins with an initial value for the unknown parameter θ which can either be

based on an informed or uninformed guess. In each iteration, the value of θ∗ is replaced by

an estimate (θ∗+ δ) until the minimum of the sum of squares is reached. This is achieved

if the reduction of sum of squares from the latest value of (θ∗+ δ) falls below a predefined

limit, causing the iterations to stop and the value of θ̂ = θ∗ + δ to be returned as the
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solution (Levenberg, 1944; Marquardt, 1963; Gill and Murray, 1978).

The Levenberg-Marquardt method is often used to recover the properties of biological

tissues. For instance, Zonios et al. (Zonios et al., 2001) analysed diffuse reflectance spectra

from skin in order to recover the concentration of haemoglobin and melanin, as well as the

scattering coefficient of the skin. To that aim, they used the Levenberg-Marquardt method

to minimise the squared difference between their model and experimental data for the

entire wavelength range of 460−820 nm. Their results seem promising as the haemoglobin

content and scattering coefficient showed only small variations between different tissue

types from white Caucasian to black African while the melanin content showed the greatest

correlation with the tissue type (Zonios et al., 2001).

3.3.5 Evolutionary Algorithms

An important class of probabilistic metaheuristics is evolutionary algorithms. Despite

being numerous, they are all considered to be either variations or extensions to Algo-

rithm 3.1 which uses nature-inspired mechanisms such as duplication (Definition 3.2.8),

crossover (Definition 3.2.9) and mutation (Definition 3.2.7) in order to iteratively refine a

set of solution candidates (Weise, 2007).

Algorithm 3.1 Example Evolutionary Algorithm
1: Data: P: the population, i: a counter, Mate: the mating pool, v: the fitness function
2: Output: Θ∗: The set of the best elements found
3: begin
4: i := 0
5: P := populate()
6: while (!terminate()) do
7: Mate := select(P, v)
8: i := i+ 1
9: P := reproduce(Mate)

10: end while
11: return getOptSolutions(P)
12: end

The process starts with the creation of an initial (non-empty) population P of parameter

vectors using the populate() function. Until the function terminate returns true, the
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algorithm should repeatedly assign a fitness value to all candidate solutions and choose

the candidates to put in the mating poolMate from P accordingly. The reproduce(Mate)

function generates a new population from the elements in the mating pool by means of

duplication, crossover and mutation. Then, it replaces the population with the newly

selected one.

After the termination criterion is reached, the optimal individuals p∗ are extracted from

P, and the set of their corresponding solutions θ∗ is returned. Common termination

criteria include finding the required solution; reaching a maximum number of iterations

or allocated resources budget; or reaching a flat search area where a better solution could

not be produced.

Genetic Algorithms

Genetic algorithms (Weise, 2007; Keller and Banzhaf, 1996; Stadler) form a branch of

evolutionary algorithms where the elements of the search space are represented as arrays

of elementary types (e.g. as binary strings). They are often used to solve optimisation and

search problems in various areas such as bio-informatics (Gondro and Kinghorn, 2007),

computer automated designs (Li et al., 2004) as well as finance and economics (Kearney

et al., 2000).

Genetic algorithms use a number of techniques inspired by natural evolution, such as

inheritance, mutation (Definition 3.2.7), duplication (Definition 3.2.8) and crossover (Def-

inition 3.2.9). Like most iterative methods, genetic algorithms can become prohibitively

expensive when the search space becomes too large (due to multiple mutations) or when

the number of repeated fitness function evaluations grows too big. It is also often the case

that genetic algorithms tend to converge towards a local optimum rather than a global

one (Weise, 2007; Keller and Banzhaf, 1996; Stadler).

Cruzado et al. presented an iterative method that compared measure reflectance and

transmittance spectra with data generated using MCML (Cruzado et al., 2013). This

was aimed at recovering the optical properties of turbid media with slab geometry. The
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authors used a genetic algorithm as a basis for their search procedure. They compared

their results with those obtained using the Inverse Adding Doubling algorithm and found

that, in general, both methods retrieve similar values. However, they also noted that one of

the main disadvantages of this method was the computation time which is greatly affected

by the properties of the sample and the number of photons used in MCML (Cruzado et al.,

2013).

3.3.6 Neural networks

An artificial neural network is a computational paradigm inspired by biological nervous

systems that can be used to solve computational problems such as optimisation (Alek-

sander and Morton, 1995). It consists of large number of “neurones” that are highly

interconnected and that process information in parallel to solve problems. Unlike other

methods, neural networks do not require a pre-set list of steps they need to follow in order

to arrive at the required solution. Rather, they are trained on a predetermined set of ex-

amples and thus, adapt and learn how to solve similar problems (Aleksander and Morton,

1995).

Consequently, neural networks suffer from two main drawbacks. The first is the choice

of training set. In fact, neural networks require a reasonably large training set that is

carefully chosen to represent the problems to be solved, otherwise the network may not

learn how to find the right solution. Secondly, as it does not follow a pre-determined set

of instructions, the result can be unpredictable. Consequently, even if a solution is found,

it may not be possible to prove that it is correct or to even understand it.

Neural networks can also be used as an optical parameter recovery technique. After an

original attempt by Farrel et al (Farrell et al., 1992a), Kienle et al investigated the use of

neural networks to recover the optical parameters from tissue phantoms as well as bovine

(muscle, adipose and liver) and chicken (muscle) tissue (Kienle et al., 1996). During the

course of their research, they also compared the results of using an approximative diffusion

model to generate analytical expressions for the reflectance, against a more statistical ap-
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proach, namely Monte-Carlo. Their results showed that although the analytical approach

could reduce the processing time, relatively large errors were incurred in the process.

Consequently, it was established that a more statistical, albeit computationally ex-

pensive, method was more appropriate. Thus, the neural network was trained on the

results of Monte-Carlo simulations with estimates containing larger errors in µa than

µ′s (13.6% vs. 2.6% in tissue phantoms). Their results also showed that using neural

networks considerably reduced the computational time of retrieving optical parameters

(Kienle et al., 1996). Neural networks were also used in (Jagajothi and Raghavan, 2009)

in combination with laser reflectometry to recover the optical parameters and successfully

detect abnormalities in human skin (Jagajothi and Raghavan, 2009).

3.4 Optimisation Methods in Biomedical Optics

Optical properties are typically obtained using solutions of the radiative transport equation

that express such properties in terms of measurable quantities such as reflectance and

transmittance. In this section, we describe a number of techniques targeted specifically at

the area of biomedical optics and the recovery of optical parameters from spectra.

3.4.1 Hybrid Techniques Based on Inverse Monte-Carlo

An inverse Monte-Carlo technique is an iterative method that attempts to fit Monte-

Carlo simulated data to measured reflectance or transmittance spectra. The simulated

spectra is generated using a forward Monte-Carlo algorithm for a vector of given optical

properties (µa, µ′s, g). The fit can then be obtained using any optimisation algorithm but

is often achieved using non-linear techniques such as least squares estimation.

However, obtaining an accurate representation of optical spectra using Monte-Carlo

requires the use of a large number of photons, making the forward simulation a com-

putationally expensive operation. The iterative nature of the inversion process further

increases the computational cost as multiple forward simulations are required to generate
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the spectra that will be compared with measured data. This can therefore, hinder the use

of such inverse Monte-Carlo techniques especially if the result of the inversion process is

required in real-time.

Consequently, many hybrid techniques have emerged that use a combination of Monte-

Carlo methods with other less expensive techniques to solve the inversion problem (Yaroslavsky

et al., 1996). Such techniques incorporate a Monte-Carlo algorithm and an analytical

method to provide accurate results while saving computation time. One such method

uses Kubelka-Munk equations to obtain a crude first estimate of the optical properties of

the sample. These values then become the initial guesses that will be used by the delta-

Eddington method (Hammer and Schweitzer, 1976) to simulate spectra as part of the

inversion part of the algorithm. This reduces the number of Monte-Carlo forward compu-

tations required and was proved to provide accurate results without the prohibitive cost of

multiple Monte-Carlo simulations (Yaroslavsky et al., 1996; Salomatina and Yaroslavsky,

2008; Hammer et al., 1995).

Hammer et al. (Hammer et al., 1995) used the double integrating sphere technique with

inverse Monte-Carlo simulations to calculate µa, µs and g from in vitro measurements

of reflectance and transmittance on the ocular fundus. They were able to determine

the anisotropy factor g for longer wavelengths and assumed the values to hold for the

entire wavelength range. The results were reproducible for the same individual with ±2%

variations in the parameters. However, the inter-individual difference reached ±20% for

the absorption and scattering coefficients and ±5% for the anisotropy factor. This was due

to the rigidity of the model as it did not cater for the individual differences in thicknesses

and blood and water content (Hammer et al., 1995).

Hidovic and Rowe (2004) devised an error correction method that combines the speed

of the Kubelka-Munk method and the accuracy of MCML to solve the inversion problem.

They initially set the error correction model to be zero, and solve the inverse problem

using the Kubelka-Munk model. They then run a Monte-Carlo based model near the

solution obtained in the previous step and use this to update the error correction model.
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They then attempt to solve the inverse problem again using the Kubelka-Munk model,

plus the updated error model and repeat this process as many times as necessary (Hidovic

and Rowe, 2004; Hidovic-Rowe et al., 2006). This hybrid method is used in our work and

is described in details in Chapter 6 and Appendix B.

3.4.2 Inverse Adding Doubling (IAD)

The Inverse Adding-Doubling method consists of three main steps (Prahl, 1993). Firstly,

an initial set of the optical properties is provided to the algorithm. For instance, if the

parameters to be recovered are µa and µ′s, then the forward algorithm is run with pre-set

initial values for these parameters (µa0 , µ′s0). A careful choice of these guesses can lead to

fewer iterations, and thus, a quicker convergence.

However, a poor starting point will often increase the possibility of the minimisation

algorithm converging to a local rather than a global minimum. To deal with this possibility,

the IAD algorithm provides the option of checking the acquired minimum against a pre-

set tolerance threshold (Prahl, 1993). If the minimum exceeds the threshold, it is deemed

incorrect, discarded and the iteration process is restarted.

The second step is to calculate the reflection and transmission using the forward adding-

doubling method. Like other indirect methods however, the main problem with the re-

covery process stems from the fact that errors may be introduced at this stage. This is

due to inaccuracies in the forward model caused by the use of crude estimates when the

properties of the tissue are not well documented (Prahl, 1993).

Finally, the values calculated using the forward model are compared with the mea-

sured reflectance and transmittance, then the previous steps are repeated until a set of

parameters that can generate the measured spectra is reached (Prahl, 1993). This set will

subsequently be considered as the set of optical properties of the medium.

This method was initially suggested by Prahl (Prahl et al., 1991, 1993a,b). It was later

used by Hammer and Schweitzer to calculate the concentrations of xanthophyll in the
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retina; the melanin in the retinal pigment epithelium and choroid; and haemoglobin in

the choroid from fundus reflection spectra (Hammer and Schweitzer, 1976). According to

Prahl, “the results obtained using the IAD method are accurate for all optical properties

and can be made arbitrarily precise at the cost of increased computation time” (Prahl et al.,

1993b). In fact, the IAD method generates results with a maximum error value of 2-3% for

most reflection and transmission quantities. Furthermore, the validity of the IAD method

for samples where the absorption and scattering coefficients are close is worth noting as

most other inversion methods (based on the diffusion approximation) fail in this situation

(Prahl et al., 1993b).

3.5 Other Optical Parameter Recovery Methods

Other methods used to recover the optical parameters of biological tissues include itera-

tively improving the fit between time-resolved spectra and modelled data as demonstrated

by Matcher et al in (Matcher et al., 1997). In (Corlu et al., 2003, 2005), Corlu et al. de-

scribe their technique for inverting continuous-wave data in multi-spectral diffuse optical

tomography. Much work was also done to develop physics based approaches that make

use of multi-spectral imaging, and the knowledge that the colouration of the medium

varies with differing tissue histology (Claridge and Preece, 2003; Preece and Claridge,

2004; Preece et al., 2005; Styles et al., 2006). The aim of these methods is to estimate

the quantities of chromophores at each pixel and show how they are distributed across the

image. This can allow the early detection of anomalies in the tissue structure.

Patterson et al (Patterson et al., 1989, 1991) developed a simple model based on the

diffusion approximation of the radiative transport equation which resulted in analyti-

cal expressions for temporal and spacial dependence of reflected and transmitted light.

There results were in accordance with preliminary in vivo experiments and Monte-Carlo

simulations. However, the only parameters recovered were µa and µ′s rather than the

chromophores concentrations and scattering anisotropy factor.
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Some reports on the use of Monte-Carlo forward simulations with look-up table for pa-

rameter recovery appear in the literature. A Monte-Carlo model for light transport is used

to generate simulated spectra using a set of all possible values of the optical parameters.

These spectra are then stored as a look-up table and the measured spectra is iteratively

compared with the stored data until a best fit is obtained. This method makes use of

the accuracy of Monte-Carlo forward modelling while reducing the computational cost of

multiple simulations in the inversion process. It was used by (Simpson et al., 1998) to re-

trieve the absorption and scattering coefficients, as well as the anisotropy factor of ex-vivo

human skin and subcutaneous tissues from reflectance and transmittance measurements

obtained using a single integrating sphere.

The accuracy of this method was shown to be acceptable for retrieving the optical

parameters of different tissue types such as tissues from limbs, the head and the abdomen.

This was checked for solid phantom data by comparing the coefficients produced using

his method against the analysis of the time point spread function (TPSF). The retrieved

scattering coefficients were in good agreement with a 5% variability while the absorption

coefficient showed errors of up to 20% (Simpson et al., 1998).

While most existing method are successful in retrieving the absorption and scattering

coefficient of tissues whose physical properties are well defined, they may not perform as

well when such properties are missing or not precise. This is because such methods rely

on the correctness and accuracy of the forward model used during the inversion process

and assume a very low level of uncertainty.

In addition, estimating the unknown optical coefficients of a tissues is sometimes achieved

by first recovering the absorption and scattering coefficients from reflectance and transmit-

tance spectra. This is followed by fitting a linear combination of the extinction coefficients

of known chromophore to the absorption spectra to recover the chromophore concentra-

tions. This requires the absorption coefficient to be recovered at many wavelengths. A sim-

ilar process is used to recover the scatterer size and density which are calculated through

fitting the scattering coefficient estimated from measured spectra. This, in combination
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with the uncertainty inherently present in the model used, could amplify errors while

quantifying the parameters of the tissue.

In order to address these problems, we propose to develop an inversion method that

provides estimates for the properties of a biological tissue even if some of its physical

characteristics are not well known by using Bayesian estimation. Additionally, the optical

properties of the tissue are estimated directly from reflectance and / or transmittance

spectra. This is achieved by re-parameterising the model so that the unknown entities are

the chromophore concentrations and scatterer size and density instead of the absorption

and scattering coefficients. We thus have fewer values to recover, which leads to fewer mea-

surements being required. The next section offers a brief introduction to some estimation

techniques that could be used in the inversion process.

3.6 Introduction to Estimation Theory

Estimation theory is used as the basis of many signal processing systems such as radar

systems, biomedicine and image analysis (Stewart, 1999; Kwee, 1999; De Pierro and Am-

agishi, 2001; Hanson, 1993). In these domains, the goal is often to estimate the values of

certain parameters such as an object’s position or a tissue’s characteristics from measured

data such as signals and images. An estimator may be thought of as a rule that assigns

a value to the unknown parameter θ for each realisation of the data. In general, the un-

known parameter is used to describe a set of properties that affect the distribution of the

measured data. Thus, the goal of the estimator is to find the most probable value for θ

that provides the best fit between measured and modelled data.

For the remainder of this section, we will need to define a few components that will

be used in the choice and construction of our estimator. For the problems of interest in

this thesis, the first component describes the observed data x which represent reflectance

measurements as a vector of observation samples x = (x[λ0], x[λ1], . . . , x[λN−1])T where

x[λi] is the measured reflectance at wavelength λi. Secondly, we may need to retrieve

more than a single parameter. Consequently, θ will represent a scalar parameter (in case
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of a single unknown) while θ will represent a vector of all unknown parameters if there

are more than one. We write θ = (θ1, θ2, . . . , θm)T with θj describing the jth unknown

parameter.

As stated earlier, the goal of an estimator is to find the most probable value for θ given

a realisation of x. That is, the value of θ that maximises p(x; θ), the probability density

function (PDF) parameterised by θ and defined as p(x; θ) = p(x|θ)p(θ) where p(x|θ) is

a conditional PDF that abstracts the knowledge provided by the data x conditioned on

knowing θ and p(θ) is the prior abstracting our knowledge about θ before x is observed.

One of the main requirements for our method is for the PDF to be robust, i.e., slight

alterations to our forward model will not severely affect the performance of the estimator.

The rest of this section describes a number of popular estimation techniques that can be

used to recover parameter values.

3.6.1 Minimum Variance Unbiased Estimation (MVU)

An intuitive estimator is one that minimises the mean-squared error, that is, the ex-

pected squared deviation of the estimated parameter value from the true one. For a scalar

parameter, the mean-square error is defined by (3.2):

mse(θ̂) = E[(θ̂ − θ)2]

= var(θ̂) + bias2(θ) where (3.2)

var(θ̂) = E(θ̂ − E(θ̂))2 (3.3)

bias(θ) = E(θ̂)− θ (3.4)

However, such estimators do not generally exist as they depend on the bias (3.4), which

is a function of θ. As a consequence, the optimal value of the estimator will depend on θ,

making the estimator unrealisable. One possible alternative is to find an estimator that

minimises the variance (3.3) with the bias being set to zero. Such methods are called

Minimum Variance Unbiased estimators (MVUs).
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An estimator θ̂ is called unbiased if its bias is zero for all values of the unknown param-

eter θ. In other words, for any value of θ in the range [a, b], our estimator will yield the

true value of θ (on average). It is important to note that although bias will always result

in a poor estimator, an unbiased one is not necessarily good, but it is guaranteed to reach

the true value of the unknown parameter (on average).

E(θ̂) = θ for a < θ < b

However, minimum variance unbiased estimators do not always exist as it is often the

case that no single estimator can have a minimum variance for all values of θ. Nevertheless,

there exist methods that would enable us to find such estimators when they exist such as

the Cramer-Rao Lower Bound and the concept of sufficient statistics. These methods will

not be used in this thesis but further information about these concepts can be found in

(Kay, 1993; Gibson, 2005; Olive; Faris, 2009).

3.6.2 Least Squares Estimation (LSE)

As stated in 3.6.1, designing an estimator might be reduced to minimising the dis-

crepancy between the estimate and the true value of the parameter θ (Kay, 1993). An

alternative to this method is the Least Squares Estimation. This method uses a forward

model of the studied system, and attempts to minimise the squared difference between

the observed data x and the noiseless data x′ produced by the model (Kay, 1993).

When applied to our problem, we use a forward model of light propagation within the

biological tissue we wish to study and aim to minimise the squared difference between the

measured reflectance R or transmittance T and the data produced by our forward model.

Because the model will depend on the unknown parameter θ, we choose the realisation of

θ that makes the value x′ produced by the model closest to the observed data x. This can

be abstracted by the LSE criterion as:

LSE (θ) =
N∑
i=1

(x[λi]− x′(θ, λi))2 (3.5)
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and the value of θ that minimises LSE (θ) is the LS estimate (Kay, 1993).

Although no claims can be made about its optimality, as this depends on the quality

of the forward model, this method is widely used (particularly in signal processing) due

to its ease of implementation. For linear models, this method can also be easily extended

to a vector parameter by describing x′ as x′ = Mθ with M being a known N ×m matrix

often referred to as the observation matrix (Kay, 1993).

When applied to our inversion problem, however, we note that the model x′(θ) can not

be expressed directly in terms of Mθ, as it is non-linear. The minimisation of LSE can

thus only be achieved iteratively. The minimisation process can be completed using any

of the techniques described in sections 3.3.3, 3.3.4 and 3.3.5.

3.6.3 Maximum Likelihood

When MVU estimators do not exist or cannot be found, the most popular alternative is

the Maximum Likelihood estimation method (Kay, 1993). This method is mostly used to

obtain practical estimators instead of focusing on optimal ones. The likelihood function,

upon which this method is based, is the PDF viewed as a function of θ with a fixed value

of x. Because an actual realisation of x is used, the likelihood function varies according

to the outcome of the measurement process such that two different outcomes of the same

experiment will lead to two different likelihood functions (Kay, 1993).

The maximum likelihood estimator (Kay, 1993; MacKay, 2003) is defined as the value of

θ̂ that maximise the p(x; θ) for a realisation x0 of x. This maximisation will be performed

over the allowable range of θ. When the PDF is evaluated for an actual realisation x0, the

value of p(x = x0; θ) for each θ will give us the probability of observing x in the region

centred around x0 assuming the given value of θ (Kay, 1993; MacKay, 2003).

θ̂ = argmax p(x; θ) (3.6)
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Due to its practicality, most estimators are based on the maximum likelihood principle.

In addition, it is believed that for large data records, a maximum likelihood estimator

is both efficient and unbiased, making it an “optimal” estimator (Kay, 1993). Another

advantage of the MLE is that for a given data set, it can always be found numerically. This

is because the maximum likelihood estimator finds the maximum of a known function (the

likelihood function) (MacKay, 2003). However, because the likelihood function is based on

a realisation of x, a change in the data set will undoubtedly lead to a change in estimator.

Consequently, the use of a new set of data will require running the maximisation algorithm

(often based on a grid search) again (Kay, 1993).

Although both the least-squares and maximum-likelihood methods will provide good

estimators, it is believed that their accuracy could be improved by incorporating any prior

knowledge one might have about the unknown parameter. For example, when trying to

estimate the thickness of a biological tissue, we might know that it falls within a known

interval. Thus, any good estimator will only produce estimates within this range. However,

the unknown parameter θ (in all previous methods) was assumed to be a deterministic

variable, an assumption that makes it hard to incorporate any prior knowledge that we

might have about θ into our estimator (Jagajothi and Raghavan, 2009; Kay, 1993).

To address these issues, we will consider an example of the Bayesian approach to estima-

tion, namely the maximum a posteriori method where the parameter θ will be thought of

as a random variable, making it possible to assign a prior PDF p(θ) to it. As suggested by

the name, Bayesian estimation is inspired by Bayes theorem which describes the posterior

probability of a hypothesis θ in terms of the prior probabilities of θ and observed data x,

and the likelihood of x given θ (Jagajothi and Raghavan, 2009).

3.6.4 Maximum A Posteriori Method (MAP)

The maximum a posteriori estimator for θ in terms of x is MAPθ = argmax p(θ|x) with

p(θ|x) described by equation (3.7) (Hanson, 1993; Kay, 1993). The posterior PDF p(θ|x)

refers to the PDF of θ after the data has been observed when p(θ) =
∫

p(x, θ)dx represents
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the prior PDF

p(θ|x) = p(x|θ)p(θ)
p(x) (3.7)

= p(x|θ)p(θ)∫
p(x|θ)p(θ)dθ

As shown in equation (3.7), the goal of MAP is to maximise the posterior probability

density function. It can also be observed that the maximisation of p(θ|x) can be achieved

by maximising p(x|θ).p(θ) or equivalently, maximising ln p(x|θ) + ln p(θ).

θ̂ = argmax(p(x|θ).p(θ)) (3.8)

To extend this method to the vector case θ, it suffices to define the estimator θ̂ as

a vector (θ̂0, θ̂1, θ̂2, ... , θ̂m−1)T with θ̂i = argmax p(θi|x) and i = 0, 1, 2...,m − 1 (Kay,

1993) which will also minimise the cost function C(θ, θ̂) which determines the cost of an

estimate θ̂ when the truth is θ (Kay, 1993).

Nevertheless, using this estimator removes an important advantage belonging to the

scalar parameter case. This advantage is that to numerically determine the estimator, one

needs only to maximise p(x|θ)p(θ). However, p(θi|x) can only be calculated by equation

(3.9) (Kay, 1993) making integration necessary to maximise the PDF, and thus losing an

important advantage of maximum a posteriori.

p(θi|x) =
∫
. . .

∫
p(θ|x)dθi+1...dθm (3.9)

Another version of the MAP estimator for vector parameters, which attends to this

issue, can be described by equation (3.10). The posterior PDF for the vector parameter

is directly maximised, and thus eliminating the need for integration to obtain PDFs for

each component of θ.

θ̂ = argmax p(θ|x)

= argmax p(x|θ)p(θ) (3.10)
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3.7 Applications of Estimation Theory in Biomedical Imag-

ing

Estimation theory is often used in medical image analysis to various goals such as

noise reduction, image reconstruction and parameter recovery. For instance, maximum

likelihood is often used in emission tomography to construct images with superior noise

characteristics. One of the earliest application of estimation in medical image analysis

was to single photon emission tomography by Geman and McClure who reconstructed a

profile of isotope intensity from observations of photon emissions (Geman and McClure,

1985). Geman and McClure experimented with an expectation maximisation (EM) algo-

rithm (Dempster et al., 1977) to find the maximum likelihood estimates; and maximum a

posteriori (Geman and McClure, 1985).

Also in emission tomography, DePierro and Yamagishi (De Pierro and Amagishi, 2001)

proposed an extension to the ordered subsets expectation maximisation algorithm devel-

oped by Hudson and Larkin based on the expectation maximisation algorithm (Hudson

and Larkin, 1994). The aim was to solve the maximum a posteriori model for emission

tomography (De Pierro and Amagishi, 2001).

In 1999, Doornbos et al measured the in vivo human tissue optical properties and

chromophore concentrations from diffuse reflection measurements using the diffusion ap-

proximation to the RTE and a non-linear least-square fitting algorithm (Doornbos et al.,

1999; Press et al., 1989). Fitting the data resulted in the calculation of the absorption and

reduced scattering coefficients. The singular value decomposition and related (covariance)

algorithms (Press et al., 1989) were then used to estimate the chromophore concentrations.

Williams et al also used estimation techniques to recover tissue parameters in (Williams

and Noble, 2004; Williams et al., 2005). They initially recovered the parameters of interest

using Bayesian Factor Analysis - Markov Random Field method (Williams and Noble,

2004). Williams et al then used maximum a Posteriori to analyse myocardial blood flow

and reserve by estimating the two quantitative perfusion indices (Williams et al., 2005).
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Their results were used to identify abnormalities in the different regions of the myocardium,

and their accuracy was improved by the inclusion of the prior information obtained from

the BFA model.

3.8 Conclusion

In this chapter, we described how parameter recovery could be reduced to an optimisa-

tion problem where the aim is to minimise the difference between modelled and measured

spectra. We also introduced a number of optimisation algorithms that can be used to re-

cover a tissue’s parameters and outlined the various limitations of using these algorithms.

Finally, we briefly introduced three estimation techniques, namely: least-squares, maxi-

mum likelihood and maximum a posteriori methods and described how they can be used

to solve parameter recovery problems.

In the remainder of this thesis, we apply a method based on the maximum a posteriori

technique to simulated reflectance spectra, transmittance and reflectance data from gelatin

phantoms as well as multi-spectral images of the human colon and analyse the results to

evaluate the potential of our technique for parameter recovery in tissues where uncertainty

is high.



Chapter 4

Application to Simulated Data: Human

Skin

4.1 Introduction

The skin is probably one of the most investigated biological tissues as demonstrated

by the large number of related literature (Anderson et al., 1981a; Bashkatov et al., 2011;

Cotton et al., 1999, 1997; Dawson et al., 1980; Meglinski and Matcher, 2003; Sandby-

Moller et al., 2003; Jacques, 1998; Ryan, 1991; Simpson et al., 1998; Van Gemert et al.,

1989; Yudovsky and Pilon, 2011; Zonios et al., 2001). There exist numerous optical models

aimed at studying the quantification and spacial distribution of the skin’s component.

It is also a medium that has often been used to illustrate the effectiveness of parameter-

recovery methods due to the ease of access to samples of different types (normal, lesions

and cancerous tissues). However, the characteristics of human skin can vary enormously

amongst individuals from colour to thickness, which introduces uncertainty when recover-

ing its optical properties. It is, thus, a good example of a biological medium that can be

used to demonstrate the potency of our estimation technique.

This chapter describes how we use the human skin to demonstrate the feasibility and

accuracy of our inversion method. We first give a detailed description of the structure of the

human skin. We also describe how light reflectance is modelled in the skin and the various

parameters required to construct such a model. We then apply our inversion method

to reflectance spectra simulated using the aforementioned model. Finally, we analyse

45
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the results in comparison with classical estimation techniques, namely: least squares and

maximum likelihood.

4.2 Structure of the Human Skin

As shown on Figure 4.1, skin is essentially a collection of three layers: The epidermis,

dermis and hypodermis (Anderson et al., 1981a). The epidermis can be further divided

into a stratum corneum and a living epidermis. The stratum corneum contains dead cells

and no absorbing agents and is thus responsible for specular reflection. Any light that was

not reflected at the skin-air interface is scattered forward into the remaining layers.

The living epidermis contains melanocytes and keratin fibres making epidermal absorp-

tion mainly dependent on melanin absorption. The light that does not get absorbed or

reflected in this layer is transmitted to the dermis (Ryan, 1991).

Figure 4.1: The Cutaneous Layers (Quade, 2008)
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The dermis mainly consists of connective tissue and blood vessels; and can be divided

into papillary and reticular regions (Cotton et al., 1997). The papillary dermis consists

of loose areolar connective tissue and is separated from the reticular dermis by a thin

superficial vascular network. The reticular region is composed of dense irregular connective

tissue, and receives its name from the dense concentration of collagenous, elastic, and

reticular fibres that weave throughout it (Cotton et al., 1997; Ryan, 1991). The dermis is

separated from the hypodermis, a layer containing cells responsible for fat storage, by a

vascular networks of larger blood vessels (Ryan, 1991).

In vitro, bloodless dermis was found to be highly scattering due to the presence of

collagen fibres and none of the incident light was absorbed (Anderson et al., 1981a).

Consequently, haemoglobin and oxyhaemoglobin are believed to be the main absorbing

agents in the dermis in vivo. The light that is not absorbed by haemoglobin is either

scattered forward towards the hypodermis or backward towards the epidermis. In the

latter case, some of it is absorbed by melanin pigment where the remaining exits from

the stratum corneum. This results in the brown colour of the skin. However, the light

that reaches the hypodermis will either be absorbed or travel through this thick layer.

Consequently, it will not contribute to the amount of light reflected, and the hypodermis

can thus be ignored (Meglinski and Matcher, 2003).

As a result, we take epidermal melanin and dermal haemoglobin and oxy-haemoglobin

to be the only absorbing agents present in our medium in the visible light range. This

makes the parameter to be estimated θ = (CHB∗ ,CMel)T where CHB∗ and CMel represent

the concentrations of haemoglobin and melanin per unit volume of tissue. Note that the

terms “concentration” and “volume fraction” will be used interchangeably throughout this

thesis.

Figure 4.2 shows the extinction coefficients of skin pigments as reported in (Cotton

et al., 1997; Prahl, 2007a). Also in the visible spectral range, the collagen fibres in the

dermis and keratohyalin granules are responsible for most of the scattering that occurs

inside the skin (Meglinski and Matcher, 2003). In fact, the scattering in the epidermis is
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much lower than dermal scattering due the comparatively small thickness of the epidermis,

and is thus ignored (Matcher, 2001).

Figure 4.2: Molar extinction coefficient spectra for melanin, oxy- and deoxy-haemoglobin
(Data from Prahl (2007a))

4.3 The Forward Model

Using our knowledge of the multi-layered structure of the skin, we develop a model of

light propagation by considering some of the various instances present in the literature.

One such model of colour formation in the skin, based on the Kubelka-Munk theory for

inhomogeneous materials, was developed by Cotton (Cotton et al., 1997; Cotton, 1998;

Cotton et al., 1999; Claridge et al., 2003). It presumes that the skin consists of four

layers: stratum-corneum, epidermis, papillary dermis and reticular dermis. In this model,

the first layer is responsible for specular reflectance, the second and third for melanin
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and blood absorption respectively; and the last for general scattering. Cotton’s model

was successfully used for physics-based interpretation of images of pigmented skin legions

(Claridge et al., 2003).

Meglinski and Matcher also developed a skin model as part of their parameter recovery

technique, which was described in (Meglinski and Matcher, 2003). Their model uses

a wavelength-independent scattering coefficient and wavelength dependent haemoglobin

and water absorption coefficients. The spatial distribution of blood, melanin and water

(as the main absorbents) within the different layers are taken into account to accurately

model light propagation in skin. Unlike Cotton’s model, these coefficients are converted to

reflectance intensity using a Monte-Carlo based method. The resulting reflectance curves

are then fitted using a multi-linear regression algorithm in order to recover the optical

properties of interest (Matcher, 2001).

When investigating the possible effects of photon behaviour on spectral images of the

human skin, Binzoni et al. also described a model of the human skin. They used a Monte-

Carlo based algorithm to convert the absorption and scattering coefficients into diffuse

reflectance spectra. The model is described in details in (Binzoni et al., 2008). Binzoni’s

model is heavily based on Meglinski and Matcher’s (Meglinski and Matcher, 2003) with

the main difference being the inclusion of the hypodermis and its scattering coefficient.

We therefore combine the findings of the aforementioned works, by modelling the skin as

the multi-layered structure described in Meglinski and Matcher’s and Binzoni et al. works.

We then apply the Kubelka-Munk method to convert the optical properties into reflectance

spectra. We choose this model due to its simplicity and the fact that it has been shown to

be suitable for modelling light travel in the human skin as reported in (Anderson et al.,

1981b; Van Gemert et al., 1989; Cotton, 1998). However, such a simplified skin model can

only be used under some assumptions. Firstly, we accept that the skin can be modelled

as a collection of a fixed number of layers, six in this instance. Secondly, we assume that

each layer is homogeneous.
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Unlike the models described in (Binzoni et al., 2008) and (Meglinski and Matcher, 2003),

we take the scattering coefficient of the skin to be wavelength-dependent and consists of

both Mie and Rayleigh scattering components. The physical properties of each layer are

described in Table 4.1 where d (µm) is the layer thickness, CHB∗ is the haemoglobin concen-

tration, S is the oxygen saturation, CMel is the melanin concentration, g is the anisotropy

factor and n is the refractive index for each later.

Layer d (µm) CHB∗ S CMel g n

Stratum corneum 20 0.00 0.00 0.00 0.86 1.50
Living epidermis 80 0.00 0.00 CMel0

0.80 1.34
Papillary dermis 160 CHB∗0

0.98 0.00 0.90 1.40
Upper blood dermis 100 CHB∗0

0.98 0.00 0.95 1.34
Reticular dermis 1400 CHB∗0

0.98 0.00 0.80 1.40
Deep blood dermis 100 CHB∗0

0.98 0.00 0.95 1.38

Table 4.1: Skin Model Parameters as summarised by Binzoni et al. (2008). CHB∗0
and CMel0

represent the haemoglobin and melanin concentrations for the skin layers. Note that no single
value is given as CHB∗0

and CMel0
will be varied to simulate various sets of reflectance data while

all other parameters remain fixed.

In the remainder of this section, we will describe the absorption and scattering coef-

ficients of individual layers, and the various equations used to derive these parameters.

Throughout this chapter, all optical coefficients and reflectance/transmittance spectra is

assumed to be given for wavelengths between 300 nm and 800 nm.

4.3.1 Absorption

As stated in Section 4.2, the stratum corneum is free of absorbing agents with the

exception of water. Binzoni et al. (2008) found that the absorption coefficient for the

stratum corneum µsc
a can be calculated by Equation (4.1) where CH2O = 5% and µH2O

a

are the volume fraction and absorption coefficient of water, respectively. We take µbase
a to

represent the absorption coefficient of skin free of any absorbents. Binzoni et al. (2008)

show that this quantity can be estimated at each wavelength λ as µbase
a (λ) = 7.84 ×
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108λ−3.255 cm−1.

µsc
a (λ) = ((0.1− 3× 10−5λ) + 0.125µbase

a (λ))(1− CH2O) + CH2Oµ
H2O
a (λ) (4.1)

The remaining layers can each be abstracted as a base layer with an absorption co-

efficient µbase
a , with a certain concentration of haemoglobin and/or melanin (CHB∗ and

CMel respectively). The absorption coefficient µk
a of layer k can therefore be described

as the sum of the absorption coefficients of its components, and calculated by Equation

(4.2) where µHb
a , µHbO2

a and µmel
a represent the absorption coefficients of haemoglobin,

oxyhaemoglobin and melanin, respectively.

µk
a(λ) = µbloodk

a (λ) + µmelanink
a (λ) +µbase

a (λ)

= ln(10).Ck
HB∗

(
(1− Sk)µHb

a (λ) + SkµHbO2
a (λ)

)
+ Ck

Melµ
mel
a (λ) +µbase

a (λ) (4.2)

As the data available in the literature only provides values for the extinction coefficients

of oxy- and deoxy-haemoglobin, these are converted to absorption coefficients using Equa-

tion (4.3) where 64500 g/mole is the molecular weight of haemoglobin, and 150 g/L is the

standard concentration of haemoglobin per litre of blood in the skin (Prahl, 2007a).

µHb∗
a = 150 (g/l)

64500 (g/mole) . εHb∗ (4.3)

The values for εHb and εHbO2
are available from the Oregon Medical Laser Center’s web-

site (Prahl, 2007a) as look-up tables. The absorption coefficient of melanin is calculated as

described by Prahl (2007b) using µmel
a (λ) = 1.70 ∗ 1012λ−3.48(cm−1) as this was shown to

be a close approximation to the melanin absorption coefficient recorded using an in-vivo

optical fibre spectrometer (Prahl, 2007b).

4.3.2 Scattering

As stated in Section 4.1, the thinness of the epidermis makes the details of the epider-

mal scattering coefficient of minor importance in the visible light range. Consequently,

dermal scattering can be used to describe skin scattering in this instance (Binzoni et al.,
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2008). We use Equation (4.4) to describe the reduced scattering coefficient for both the

living epidermis and the dermis while we calculate the reduced scattering coefficient of the

stratum corneum as µ′scs = 103 ∗ (1− gsc) cm−1 where gsc = 0.86 (Meglinski and Matcher,

2003). Note that although the scattering coefficient of the stratum corneum normally

decreases between 450 and 700 nm, we accept the value cited by Meglinski and Matcher

(2003) as an approximation that would simplify the forward model without having a large

effect on our results.

µ′s(λ) = µ′Rayleighs (λ) + µ′Mie
s (λ) where (4.4)

µ′Mie
s (λ) = 2 ∗ 105λ−1.5 (cm−1)

µ′Rayleighs (λ) = 2 ∗ 1012λ−4 (cm−1)

Next, we convert the individual layer’s absorption and reduced scattering coefficients to

diffuse reflectance spectra for the whole medium. To that aim, we extend the Kubelka-

Munk equations in Section 2.4.2 to cater for the multi-layered structure of the skin. As

described by Dawson et al. (Dawson et al., 1980), this can be achieved for a four-layered

structure, described in Figure 4.3, by assuming a two flux model in which light from

layer i is either reflected back, or transmitted forward to layer i + 1 such that the inten-

sity of the reflected light is given by Equation (4.5) where Io is the initial intensity of light.

I = Io(R1 + T 2
1R2 + T 2

1 T
2
2R3 + T 2

1 T
2
2 T

2
3R4) (4.5)

Consequently, we use the following equations developed by Cotton (Cotton, 1998),

which, in a multi-layered structure, provide the reflectance and transmittance coefficients

of a layer recursively:

R12...n = R12...n−1 + T 2
12...n−1Rn

1−R12...n−1Rn
(4.6)

T12...n = T12...n−1Tn
1−R12...n−1Rn

(4.7)

We take R12..i and T12..i to be the reflectance and transmittance intensities of the com-

bined layers up to layer i. Ri, Ti, Ai and Bi are the quantities defined in Section 2.4.2
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updated for each layer. These equations are used to generate the diffuse reflectance spec-

tra with predetermined values for θ. A white Gaussian noise of a signal-to-noise ratio of

50 is then added to the simulated spectra to mimic the noise that is always present in real

measurements, yet keep the strength of the signal high enough to ensure that our results

are not skewed by noise.

Figure 4.3: Reflected light by each layer of the skin(Dawson et al., 1980)

4.4 The Inversion Algorithm

We aim to recover the volume fractions of melanin and haemoglobin in skin from sim-

ulated diffuse reflectance spectra. We use three estimation methods: Least squares, max-

imum likelihood and maximum a posteriori estimation techniques and compare their ac-

curacy and stability. In addition to adding Gaussian noise to our reflectance spectra,

we also introduce uncertainty in a single known parameter of the model. We choose the

epidermal thickness to be the uncertain parameter as it is the property with the widest

range of possible values, and thus the most variability in real life [20 - 150µm] (Yudovsky

and Pilon, 2011). This is achieved by modelling the epidermal thickness using a normal

distribution with mean depi = 0.008 cm and a standard deviation of σ
d

= 8e−4 cm. The

thicknesses of the remaining layers are set to the values provided in Table 4.1.
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The recovery process is performed for various values of volume fractions of melanin and

haemoglobin. Consequently, we generate reflectance spectra for discrete values of CHB∗

and CMel ranging between 0.5% and 9.5%, and for each value of depi drawn from the afore-

mentioned distribution. We will, henceforth, refer to simulated reflectance spectra by x0

and to the noiseless spectra generated by the forward model as part of the inversion process

by Ri(θ). The process of generating the simulated spectra for each tuple (depi,CHB∗ ,CMel)

is depicted in Figure 4.4 and this is repeated for discrete wavelengths between 300 and

800 nm at 2 nm intervals. In order to be able to use the Kubelka-Munk method, we

assume that the light source is diffuse. We then estimate θ using the LSQ, ML and MAP

techniques.

Figure 4.4: Flowchart of the experimental process

Unlike the classical estimators (LSQ and ML), the Bayesian approach requires the use

of a prior in order to calculate the posterior probability distribution of the unknown
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parameter θ. This is an essential part of the parameter recovery operation as it allows us

to include as much information about the tissue as possible. When considering the skin,

the literature indicates that both the absorption coefficients and the pigments volume

fractions are often retrieved from reflectance data.

However, the volume fractions of pigments cannot always be recovered directly from

reflectance spectra in the case of other biological tissues. Consequently, these volume

fractions are often assumed to have constant values to aid the recovery of µa rather than

estimated directly. When these volume fractions are retrieved from the absorption co-

efficient, other assumptions about the remaining properties of the tissue are introduced.

Consequently, obtaining usable and reasonable prior information becomes very difficult,

and more importantly, prone to errors.

As a result, we propose not to rely on the available literature to determine the prior

distribution of haemoglobin and melanin volume fractions in the skin. Rather, we generate

the prior data in two different ways and compare the results of the estimation process when

using each set of prior information. This will allow us to verify the effect of changing the

prior distribution on the result of the estimation process.

The first method uses results from the classical estimation techniques as one set of

prior data. When using this method, we have very limited control over the variability of

the prior data points. The second set of prior data is generated by assuming a mean θ̄

between [0.5%, 0.5%] and [9.5%, 9.5%] and standard deviation σ
θ

= 30% to represent a

normal distribution ∼ N(θ̄, σ2
θ
). Because the unknown parameters (blood and melanin

concentrations in this instance) are independent variables, their joint probability distribu-

tion, and thus p(θ) can be calculated by equation (4.8) where p(θi) is the prior probability

distribution of parameter θi calculated using σ2 andµ the variance and mean of the prior

data collected from previous experiments.

p(θ) =
m∏
i=1

p(θi) with p(θi) = 1√
2πσ2

exp
[
−(θi − µ)2

2σ2

]
(4.8)
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Let p(θi) represent the probability distribution of the ith component of θ (in this case

either CHB∗ or CMel). As the prior knowledge in this experiment is essentially the results

of previous estimation process, the previous equation can be expanded as:

p(θ) =
exp

[
−(CHB∗ − µHB∗)2

2σ2
HB∗

]
√2πσHB∗

2 .

exp
[
−(CMel − µmel)2

2σ2
mel

]
√2πσmel

2 (4.9)

In addition to the effects of uncertainty on the quality of the estimators, we also investi-

gate the effect that the amount of prior data can have on the parameter recovery process.

Consequently, we execute the inversion algorithm with two sets of prior data points of sizes

(sizep =)10 and 100. Finally, we suggest some modifications to the maximised function

in maximum likelihood and maximum a posteriori . This is to reduce the time and com-

plexity of the calculations required in these methods. These modifications are explained

in details in the following section.

4.4.1 Maximum Likelihood

As described in Chapter 3, the maximum likelihood method aims to recover the value

of θ that maximises the probability density function (PDF) described by Equation (4.10).

p(x; θ) = 1
(2πσ2)N2

exp
[
− 1

2σ2

N∑
n=1

(xn − Ri(θ))2
]

(4.10)

However, maximising the PDF is equivalent to maximising ln (p(x; θ)) which can be

obtained using equation (4.11)

ln (p(x; θ)) = ln
(

1
(2πσ2)N2

exp
[
− 1

2σ2

N∑
n=1

(xn − Rn(θ))2
])

= ln
(

1
(2πσ2)N2

)
− 1

2σ2

N∑
n=1

(xn − Rn(θ))2 (4.11)

Because 1
(2πσ2)N2

is not dependant on θ, we conclude that maximising the natural loga-

rithm of the probability density function is equivalent to minimising 1
2σ2

N∑
n=1

(xn−Rn(θ))2
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Consequently, the optimisation process can be reduced to the following equation:

θ̂ = arg max
θ

[ln (p(x; θ))] = arg min
θ

[ 1
2σ2 (xn − Rn(θ))2

]
(4.12)

4.4.2 Maximum A Posteriori

Similarly, the maximum a posteriori estimate can be obtained by maximising the nat-

ural logarithm arg maxθ (ln (p(x|θ)× p(θ))), which is equivalent to maximising the sum

of logarithms ln (p(x|θ)) + ln(p(θ)). Expanding ln (p(θ)) would result is Equation 4.13 as

detailed below:

ln (p(θ)) = ln
m∏
i=1

p(θi)

= ln

 m∏
i=1

1√
2πσ2

θi

exp
[
−

(θi − µθi )
2

2σ2
θi

]
=

m∑
i=1

ln

 1√
2πσ2

θi

exp
[
−

(θi − µθi )
2

2σ2
θi

]
= m× ln

 1√
2πσ2

θi

− m∑
i=1

[
(θi − µθi )

2

2σ2
θi

]
(4.13)

Finally, we substitute Equation (4.11) and Equation 4.13 in the formula ln (p(x|θ)) +

ln(p(θ)) and we obtain:

ln (p(x|θ)) + ln(p(θ)) =

ln
(

1
(2πσ2)N2

)
− 1

2σ2

N∑
n=1

(xn − Rn(θ))2 +m× ln

 1√
2πσ2

θi

− m∑
i=1

[
(θi − µθi )

2

2σ2
θi

]
=

ln
(

1
(2πσ2)N2

)
+m× ln

 1√
2πσ2

θi

− [ 1
2σ2

N∑
n=1

(xn − Rn(θ))2 +
m∑
i=1

(θi − µθi )
2

2σ2
θi

]

(4.14)
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As the term

ln
(

1
(2πσ2)N2

)
+

m∑
i=1

ln

 1√
2πσ

θi

2


 is not dependant on θ, the max-

imisation process can safely ignore this term, and consequently, the maximum a posteriori

estimator can be simplified as

MAPθ = arg min
θ

[
1

2σ2

N∑
n=1

(xn − Rn(θ))2 +
m∑
i=1

(θi − µ)2

2σ2
θi

]
(4.15)

Consequently, we use equations (3.5), (4.12) and (4.15) as the objective functions to

be minimised in order to estimate the unknown parameter θ using LSQ, ML and MAP

respectively. We use the Global Optimization Toolbox (MathWorks) to complete the

minimisation process, which uses the Levenberg-Marquardt algorithm described in Section

3.3.4.

To generate the set of priors based on previous estimation results, we use Algorithm

4.1 which outlines the data and steps required to estimate the parameter θ using the

maximum likelihood and least-squares methods. Note that we also use the true epidermal

thickness of the simulated skin samples when generating the reflectance spectra. This is

done for 100 values of depi for each value of θ. For the inversion step, however, we always

assume that depi = depi in order to include uncertainty in our model. Once the estimation

using ML and LSQ is completed, we follow the procedure described in Algorithm 4.2 to

estimate θ using the various prior sets generated previously.
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Algorithm 4.1 Estimation Process Using ML and LSQ
Data:
depi: mean thickness, used as assumed sample thickness during the estimation process
∼ N(depi, σ2

depi
): distribution of true thicknesses,

RANGECHB∗
= [0.5 : 0.5 : 9.5%]: Range of possible values of CHB∗ ,

RANGECMel
= [0.5 : 0.5 : 9.5%]: Range of possible values of CMel ,

RANGE
λ

= [300 : 2 : 800] nm: Range of wavelengths used,
runKM(λ, d, θ): function to calculate the reflectance spectra at wavelength range λ,
thickness d and parameter vector θ,
σ2: Variance of the measured spectra (or in this case, the variance of runKM(λ, θ) +
noise
begin
for all CHB∗ ∈ RANGECHB∗

do
for all CMel ∈ RANGECMel

do
θ := (CHB∗ ,CMel)T
for all depi ∈∼ N(d̄epi, σ2

depi
) do

Rsimulated := runKM(RANGE
λ
, depi,θ) + noise

θ̂ML = arg minθ

[
1

2σ2

N∑
n=1

(Rsimulated − runKM(RANGE
λ
,θ))2

]

θ̂LSQ = arg minθ

[
N∑
n=1

(Rsimulated − runKM(RANGE
λ
,θ))2

]
end for

end for
end for
end
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Algorithm 4.2 Estimation Process using MAP
1: Data:
2: depi: mean thickness, used as assumed sample thickness during the estimation process
3: ∼ N(depi, σ2

depi
): distribution of true thicknesses,

4: µCHB∗
, σCHB∗

: theoretical mean and standard deviation of prior haemoglobin volume
fractions,.

5: µCMel
, σCMel

: theoretical mean and standard deviation of prior melanin volume frac-
tions,

6: µML
CHB∗

, σML

CHB∗
: mean and standard deviation of haemoglobin volume fractions esti-

mated using ML,
7: µML

CMel
, σML

CMel
: mean and standard deviation of melanin volume fractions estimated

using ML,
8: µLSQ

CHB∗
, σLSQ

CHB∗
: mean and standard deviation of haemoglobin volume fractions esti-

mated using LSQ,
9: µLSQ

CMel
, σLSQ

CMel
: mean and standard deviation of melanin volume fractions estimated

using LSQ
10: RANGECHB∗

= [0.5 : 0.5 : 9.5%]: Range of possible values of CHB∗ ,
11: RANGECMel

= [0.5 : 0.5 : 9.5%]: Range of possible values of CMel ,
12: RANGE

λ
= [300 : 2 : 800] nm: Range of wavelengths used,

13: runKM(λ, d, θ): function to calculate the reflectance spectra at wavelength range λ,
thickness d and parameter vector θ,

14: σ2: Variance of the measured spectra (or in this case, the variance of runKM(λ, θ) +
noise

15: begin
16: for all CHB∗ ∈ RANGECHB∗

do
17: for all CMel ∈ RANGECMel

do
18: θ := (CHB∗ ,CMel)T
19: for all depi ∈∼ N(d̄epi, σ2

depi
) do

20: Rsimulated := runKM(RANGE
λ
, depi,θ) + noise

21: θ̂MAP := arg minθ

[ 1
2σ2

N∑
n=1

(Rsimulated − runKM(RANGE
λ
,θ))2+

22:
(θ1 − µCHB∗

)2

2σ2
θCHB∗

+
(θ2 − µCMel

)2

2σ2
θCMel

]

23: θ̂
ML

MAP := arg minθ

[
1

2σ2

N∑
n=1

(Rsimulated − runKM(RANGE
λ
,θ))2+

24:
(θ1 − µML

CHB∗
)2(√

2σML
CHB∗

)2 +
(θ2 − µ

ML

CMel
)2(√

2σML
CMel

)2

]

25: θ̂
LSQ

MAP := arg minθ

[
1

2σ2

N∑
n=1

(Rsimulated − runKM(RANGE
λ
,θ))2+

26:
(θ1 − µ

LSQ
CHB∗

)2(√
2σLSQ

CHB∗

)2 +
(θ2 − µ

LSQ

CMel
)2(√

2σLSQ
CMel

)2

]
27: end for
28: end for
29: end for
30: end
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4.5 Results and Discussion

Using Algorithm 4.1 and Algorithm 4.2, we estimate the unknown parameter θ using

LSQ, ML and MAP estimation techniques. At the completion of the experiment, we note

that both the maximum likelihood and the least-squares estimators produce relatively

good results with the mean values of estimates being close to the expected values of θ.

Figure 4.5 summarises the results of estimating θ when CHB∗ = 8.0% and CMel varies

between 2% and 8%; and when CMel = 2% and CHB∗ varies between 2 and 8%. We also

observe that the standard deviation of estimates of CHB∗ varies between 1.20% and 25.7%

for LSQ; and 0.39% and 25.7% for ML. The results are similar for CMel where the standard

deviation of the estimates varies between 0.28% and 18.2% when using LSQ; and 0.23%

and 22.1% when using ML.

In contrast, we note that the distribution of MAP estimates is much narrower than

that of ML and LSQ estimates. In fact, the standard deviations have a maximum value

of 0.002% for CHB∗ estimates even when only 10 prior data points are used, as shown on

Figure 4.6 and Figure 4.7. Moreover, we observe that the mean estimates produced by

MAP are often closer to the expected value of θ than ML and LSQ results. However, the

results are slightly different when considering estimates of CMel . Although the mean MAP

estimates of CMel are more accurate than those produced by ML and LSQ, they are less

so than CHB∗ estimates. Furthermore, the distributions of the results are slightly wider

for CMel with a maximum value of 0.09%.

As shown in Algorithm 4.2, we also run the MAP estimator with an independent set

of prior data that was not generated from the results of other estimators. This allows us

to easily control the mean and variance of the data points used and therefore investigate

the effect of this variations on the estimator. This is depicted in Algorithm 4.2: Lines 4,

5, 21, 22. We note that the results are very similar to those obtained by using previous

estimates as priors. We then increase the variance of the prior data to a value higher than

seen in the previously used prior datasets by setting 30% ≤ σ
θ
≤ 60%.
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We observe that the results are still as close to the expected values as those obtained

from estimates based prior data sets. However, the error level was higher than previously

observed for MAP estimates, but still much smaller than noted in ML and LSQ estima-

tions results. Table 4.2 summarises the error levels of MAP estimates when the standard

deviation of the prior data is increased. Note that when the prior data distribution is wide

(40%), the error level of the MAP estimates is significantly higher than that recorded for

smaller prior distributions (5 and 15%). This strongly suggests that the width of the prior

distribution can have a significant impact on the result of the MAP estimation process.

Haemoglobin Melanin
Prior

Standard MINerror MEANerror MAXerror MINerror MEANerror MAXerror
Deviation (%) (%) (%) (%) (%) (%)

5% 3.44 3.84 4.23 3.29 3.87 5.43

15% 5.79 9.60 13.44 6.64 9.38 12.84

40% 7.17 22.47 99.57 11.17 30.12 97.82

Table 4.2: Error levels recorded for varying values of standard deviations of prior data. Note that
the error level increases with larger variability in prior data. This suggests that a wider prior can
lead to a decrease in the accuracy of the MAP estimation method.

In addition to evaluating the MAP estimator against the ML and LSQ methods, we

examine the effects of varying the prior data on our estimator’s accuracy. To that aim,

the experimental process described in Algorithm 4.2 is repeated for two prior data sizes:

10 and 100. The prior data is generated as described in Section 4.4.2. Figure 4.6 and

Figure 4.9 depict the results of the estimation process when the size of the prior data is

10 and 100 respectively.

When using only 10 prior data points, we can see, in Table 4.4 and Table 4.5, that the

mean estimates produced by MAP are still closer to the expected value of θ than ML

and LSQ. The distribution of the results is also much narrower than that of LSQ and
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ML as depicted by Figure 4.6. After increasing the prior data size to 100 data points, we

note that the standard deviations of MAP estimates show a slight increase to 0.003% as

a maximum value for σ(CHB∗
) but remain much lower than the non-Bayesian estimates.

The same remains true for CMel MAP estimates where the standard deviation is slightly

higher with a maximum value of 0.15% as depicted in Table 4.3. Figure 4.8 and Figure

4.9 show a sample of the results of estimating θ with a prior data set of size 100.

Sizep θi LSQ ML MAP

CHB∗ [2.33− 14.1%] [2.30− 14.8%] [0− 0.005%]
10

CMel [2.49− 21.7%] [2.52− 25.9%] [0− 0.14%]

CHB∗ [2.33− 14.1%] [2.30− 14.8%] [0− 0.007%]
100

CMel [2.49− 21.7%] [2.52− 25.9%] [0− 0.15%]

Table 4.3: Standard Deviations of Estimation Results

Furthermore, we note that for both CHB∗ and CMel , the mean estimates provided by

10 priors were more accurate than those produced using 100 prior data points. When

investigating this further, we observed that the standard deviation of the 10 data points

sample was smaller than that of the full 100 points sample. This confirms that the quantity

of prior data is not the main factor affecting the quality of the Bayesian estimation. Rather,

the distribution of the prior data has a much more important effect on the quality of the

Bayesian estimator.
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4.6 Conclusion

In this chapter, we showed how a technique based on a combination of the maximum a

posteriori method and a Kubelka-Munk based forward model can be used to recover the

parameters of a tissue from reflectance spectra. The reflectance spectra was simulated for

various values of θ and depi . θ was estimated using three different methods, namely: least-

squares, maximum likelihood and maximum a posteriori. The results of the estimations

were compared and we observed that the MAP estimates were often more accurate than

their ML and LSQ counterparts. We also observed that the MAP results were more

stable than those generated by ML and LSQ as demonstrated by the very small standard

deviation (≤ 0.15%).

We also investigated the effects of prior data on the results of our estimator. This was

achieved by varying both the number of data points and their standard deviation. We

concluded that the number of data points in the prior does not affect the results of the

estimation process. We also showed that varying the standard deviation of the prior data

can have an effect on the accuracy of the MAP estimator. This was demonstrated by a

slight increase in the results’ standard deviation when the variance of the prior data is

increased. We therefore suggest that the presence of uncertainty in both the known (depi)

and unknown (CHB∗ and CMel) parameters does not dramatically decrease the accuracy of

MAP in comparison with ML and LSQ.

Our findings suggest that this method is promising and can be used to accurately re-

cover the parameters of a biological tissue whose properties are well defined. However,

the effects of increasing the level of uncertainty in the model on our estimator need to be

investigated further. Following the encouraging results that we observed with simulated

reflectance data, we apply our estimation method to actual spectral measurements as de-

scribed in the following chapters.
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(a) CHB∗ = 8.0

(b) CMel = 2.0

Figure 4.5: These plots represent the results of recovering θ using LSQ, ML, and the MAP based
estimator. The plots entitled MAP from ML and MAP from LSQ illustrate the MAP estimates
obtained using prior data sets from ML and LSQ estimates respectively. The results are displayed
with one parameter fixed (CHB∗ in 4.5a and CMel in 4.5b) while varying the other in order to
show the estimates produced for different values of θ. Each box outlines the estimates θ̂ for a 100
values of depi (drawn from a normal distribution with a standard deviation of 20%) and a single
combination (CHB∗ , CMel) using five attributes. The top and bottom of each box represent the 75th
and 25th percentile while the band near the middle of the box denoted the median estimate. The
whiskers denote the minimum and maximum of all estimates.
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Figure 4.6: Estimation result when CHB∗ = 5.0% and CMel is varied between 1 and 10. The
estimation process is run with a prior data size of 10. The plots represent (from bottom-left
to upper-right): Estimation results from ML, LSQ, MAP with prior data from ML and LSQ
estimates respectively. Each box outlines the estimates θ̂ for a 100 values of depi (drawn from a
normal distribution with a standard deviation of 20%) and a single combination (CHB∗ , CMel) using
five attributes. The top and bottom of each box represent the 75th and 25th percentile while the
band near the middle of the box denoted the median estimate. The whiskers denote the minimum
and maximum of all estimates. Note that the box plots for MAP results appear as a single red
line due to the results’ standard deviation being very close to 0.
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Figure 4.7: Estimation result when CMel = 4.5% and CHB∗ is varied between 0.5 and 9.5. The
estimation process is run with a prior data size of 10. The plots represent (from bottom to top)
estimation results from LSQ, ML, MAP with prior data from LSQ and ML estimates respectively.

Figure 4.8: Estimation result when CMel = 6.5% and CHB∗ is varied between 0.5 and 9.5. The
estimation process is run with a prior data size of 100.
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(a) CHB∗ = 9%

(b) CMel = 9.5%

Figure 4.9: Estimation results when CHB∗ = 9% (4.9a) and CMel = 9.5% (4.9b). The estimation
process is run with a prior data size of 100. Note that even when the estimation results of ML
and LSQ vary widely as shown in 4.9b, the variance of MAP estimates remains very small as
demonstrated by their appearance as a flat red line or a very thin box in Figure 4.9b



Chapter 5

Application to Gelatin Phantoms

5.1 Introduction

In Chapter 4, we demonstrated that our inversion algorithm succeeded in retrieving the

pigments volume fractions from simulated skin data. The next step would be to investigate

the performance of our estimator when applied to data acquired from a biological tissue.

However, we are not able to completely control the level of uncertainty in the forward

model representing said tissue. We therefore use an intermediate step where apply the

same inversion method in a controlled experimental setting. This allows us to develop a

forward model whose level of complexity and introduced uncertainty can be controlled.

To that aim, we apply the inversion method described in Chapter 4 to gelatin phantoms

of known properties. This allows us to control the quantity of absorbing and scattering

agents in the phantoms, as well as the uncertainty level present in the forward model. This

chapter describes how the phantoms were constructed, as well as the results of our esti-

mation technique on actual measurements taken on scattering and non scattering gelatin

phantoms.

5.2 Non-Scattering Phantoms

We prepare phantoms with different quantities of absorbing agents to mimic a single

layer turbid medium. We use a gel of known composition as a base and commercially avail-

able blue (SKU: 130010427), red (currently unavailable) and natural red (SKU: 130010443)

71
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food colourants (Dr. Oetker, Bielefeld, Germany) as the main absorbing agents. Note that

the two red dyes were never combined in any of the phantoms we prepared. We take the

phantoms to be described by a finite set of parameters, namely: the thickness of the sam-

ple d, the concentration of gelatin Cgel, the concentrations of food dyes Cb, Cred and the

extinction coefficients εred, εblue, εgel of the red and blue colourants; and gelatin respec-

tively.

As there are no scatterers present in the phantoms, we assume that the only reflected

light is the result of specular reflection caused by the difference in refractive indices between

the gel and the petri dish/air. As such, we use the transmitted signal as our measured

data. Let T(λi,θ) be the transmittance calculated with tissue parameters θ at wavelength

λi. We use the Beer-Lambert law to model light transport in our samples. Let T(λ,θ) =

e−abs(λ,θ)∗d where abs(λ,θ) = µgel
a (λ)+∑n

i=1 θiεi(λ), and θi and εi(λ) are the concentration

and extinction coefficient of the ith dye.

As part of the estimation process, we define the unknown parameter θ = (CHB∗ , CMel)T

to be the vector representing the chromophore concentrations in the samples. All other

parameters are assumed known and are provided to the estimator as predefined input

arguments. The known parameters are therefore: the thickness of the sample d, the

concentration of gelatin Cgel, and the extinction coefficients εred, εblue, εgel of the red and

blue colourants; and gelatin respectively.

In order to acquire the transmittance spectra, light from a high intensity halogen light

source (ThorLabs, OSL1-EC) is passed through a long-pass coloured glass filter (Thor-

Labs, FGL435). This blocks light of wavelengths lower than 435 nm, thus suppressing the

known fluorescence of the dyes. The light is then directed towards the sample platform by

a highly reflective mirror (ThorLabs, CM1-P01). All light transmitted by the phantom is

then collected by a CCD spectrometer and the spectra is recorded for wavelengths between

450 and 700 nm. This setup is described in Figure 5.1.
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Figure 5.1: Transmittance Spectra Acquisition Setup

The extinction coefficients εred, εnat−red, εblue, εgel of the colourants and gelatin were

extracted from absorbance spectra of various solutions containing water and a single dye.

The absorbance spectra was measured using a computer driven Cary 50 UV-VIS spec-

trophotometer and are shown in Figure 5.2a and Figure 5.2b. As the liquid samples only

contain water and dye, we take the absorbance of the solutions to be µsolution
a = µ

H2O
a +µdye

a .

The absorption coefficients of the dyes are thus calculated as µdye
a =

(
µ

solution
a − µH2O

a

)
. We

then apply regression analysis to the absorption coefficients in order to extract the extinc-

tion coefficients of the dyes. We prepared various solutions containing different volume

fractions of dyes, and thus obtained a number of possible extinction coefficients due to

noise in the measurements. We thus apply regression to get the extinction coefficients

shown in Figure 5.3 which depicts the extinction coefficients of gelatin and food dyes used

in the phantoms.

Figure 5.4 represents the gelatin phantoms’ transmittance spectra. As illustrated by

Tables 5.1 and 5.2, the transmittance was measured for different thicknesses and con-

centrations of dyes. The concentration of gelatin, however, remained relatively constant

(≈ 28.5± 0.19 g/L (0.68 %))
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(a) Blue Samples

(b) Red Samples

Figure 5.2: The plots show the absorption coefficients of the blue 5.2a and red 5.2b dye solutions
as recorded using the Cary 50 UV-VIS spectrophotometer. A number of solutions were prepared
with varying volume fractions of dyes. The absorption coefficients were later used to calculate the
extinction coefficients of the dyes.
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Figure 5.3: Extinction Coefficients of Gel Base and Food Dyes as calculated by the regression
analysis performed on absorbance spectra

We prepare 30 gelatin phantoms containing different quantities of dyes, and of different

thicknesses. The phantoms are classified by the number of dyes mixed in with the base

solution into three categories: samples with blue dye only, samples with red dye only and

samples with both blue and red food colourants. Tables 5.1, 5.2 and 5.3 describe the

specifications of all samples used in our experiments. Note that the samples NR9, NR10

and NR11 from Table 5.2 contain natural red dye while the other samples described in

Table 5.2 include red dye instead.

We assume that the thickness d and concentration of gelatin in the base solution Cgel

are uncertain. This uncertainty is introduced artificially in the parameter d by sampling

the thicknesses of the phantoms from a normal distribution with mean 4.58 mm and stan-

dard deviation 1.07 mm (23.33%) as these were the mean and standard deviation of our

samples set. Uncertainty is also present in our measurements of the extinction coefficients

εblue, εred and εgel as these values were approximated from multiple measurements using

regression analysis. This is demonstrated by a standard deviation in the calculated ex-



76 CHAPTER 5. APPLICATION TO GELATIN PHANTOMS

tinction coefficients ranging between 5.86 and 90.83% for blue dye, and 0.73 and 91.9% for

red dye. We use the following values for our uncertain parameters: µd = 4.58 mm, Cgel =

30 g/L as these are the actual mean thickness and gelatin concentration of our gelatin

phantoms.

Figure 5.4: Transmittance spectra collected from the gelatin phantoms we prepared. The data is
normalised to the signal transmitted through an empty petri dish. As illustrated by Table 5.1, Table
5.2 and Table 5.3, the transmittance was measured for different thicknesses and concentrations of
dyes. The concentration of gelatin, however, remained relatively constant (≈ 28.5 ± 0.19 g/L
(0.68%))

In addition, we define the prior dataset as a normally distributed random variable with

mean θp and a standard deviation σ
p{θp} with θp being the vector representing the mean

concentrations of colourants in samples within a chosen sample subset and σ
p{θp} the

standard deviation within the same subset. For instance, we take θp = 2.5227 g/L and

σ
p{θp} = 1.3365 g/L (53%) if we aim to estimate the concentration of dye in all samples

with blue dye only. The variance of the noise signal is evaluated using the signal to noise
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Sample d (mm) Cgel(g/L) Cb(g/L)
B1 3.941 28.59 0.8119
B2 3.928 28.59 2.3417
B3 3.909 28.59 3.1623
B4 3.835 28.59 3.1623
B5 4.925 28.40 0.7913
B6 3.576 28.40 1.7952
B7 4.441 28.40 2.6468
B8 2.878 28.40 4.7665
B9 4.441 28.40 2.6468
B10 2.878 28.40 4.7665
B11 3.494 28.63 1.5569
B12 4.724 28.63 1.5569
B13 3.433 28.63 1.5569
B14 3.494 28.63 4.1923
B15 4.724 28.63 4.1923
B16 3.433 28.63 4.1923

Table 5.1: Parameters describing
gelatin phantoms that only contain a
gel base and blue dye.

Sample d(mm) Cgel(g/L) Cred(g/L)
R1 3.273 28.59 0.2626
R2 3.435 28.59 0.9490
R3 4.272 28.59 1.4104
R4 4.802 28.59 2.6433
R5 4.574 28.40 0.4043
R6 4.801 28.40 0.9341
R7 4.881 28.40 1.5620
R8 5.010 28.40 2.7908
NR9 4.753 28.63 0.5493
NR10 6.277 28.63 0.5493
NR11 3.702 28.63 0.5493

Table 5.2: Parameters describing
gelatin phantoms that only contain a
gel base and red dye.

Sample d (mm) Cgel(g/L) Cb(g/L) Cred(g/L)
M1 3.906 28.40 0.5478 0.1643
M2 4.695 28.40 0.8023 0.5464
M3 5.786 28.40 2.2240 1.2555

Table 5.3: Parameters describing gelatin phantoms that contain a gel base and a mixture of blue
and red dyes

ratio. The SNR was estimated through repeated measurements of transmittance spectra

as SNR = µ

σnoise
where µ is the mean recorded signal and σnoise is the deviation within

the set of repeated measurements. This was found to have an average of 75, 40 and 15 for

blue, red and mixed samples respectively;

Results and Discussion

In order to evaluate the results of our estimator, we compare them against a more

classical method that could also be used to solve the problem at hand, namely least-

squares. In fact, the forward model we used (Beer-Lambert) is simple, and clearly defined,

making LSQ an appropriate choice for the purpose of estimating the unknown parameter

θ. We note that the transmittance spectra computed from MAP and LSQ estimates match
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the measured data as demonstrated by Figure 5.5. This figure shows the transmittance

spectra computed when θ = (2.34 g/L, 0) and θ = (0, 0.9490 g/L) in 5.5a and 5.5b

respectively.

As can be seen from Figure 5.5, the spectra computed from our estimates are very

close to the expected values of θ. After further analysis of the data, however, we note

two significant findings. Firstly, although the measured transmittance spectra and those

computed from the LSQ and MAP estimates are often identical, the estimates provided by

MAP are often closer to the expected values of θ than their LSQ counterpart as illustrated

by Figure 5.6.

(a) Gelatin Phantom Containing Blue Dye (b) Gelatin Phantom Containing red Dye

Figure 5.5: These plots represent examples of measured transmittance spectra (solid line) against
the spectra calculated using LSQ and MAP estimates.

In addition, we note that the advantages of using a Bayesian estimator are clearer when

dealing with values that lead to the signal analysed being very low or when more than

one value can be mapped to the measured signal. Sample R4 provides a good example

as θ̂redLSQ = 3.6939 and θ̂redMAP = 2.1508 when θred = 2.64 g/L. The difference between the

actual value of θ and the LSQ estimate can also be seen in Figure 5.6. The results of

the experiment support the claim that using a Bayesian estimation method could improve

the accuracy of the estimate. For samples M1, M2 and M3, we note that MAP provides
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slightly better estimates than LSQ as depicted by Figure 5.7.

(a) Estimation Results: Blue Samples (b) Estimation Results: Red Samples

Figure 5.6: This figure aims to evaluate the results of MAP and LSQ estimation in comparison
with the actual values of θ. Figure 5.6a depicts the results of estimating the concentration of blue
dye in sample B1-B11 while Figure 5.6b shows the estimates of red dye concentrations in samples
R1-NR11. Note that for larger volume fractions of blue and red dyes, the estimates recorded using
LSQ and MAP are less accurate than those obtained for smaller concentrations. This is due to the
transmitted signal being weak at these high concentrations due to the relatively large absorbance
of the samples.

Finally, we observe that the results of the MAP estimator on the gelatin phantoms are

not as accurate as those obtained from the simulated data. This is due to two major factors.

Firstly, we acknowledge that the levels of noise and uncertainty present in our system are

much higher than those introduced in the simulated data. The collected transmitted signal

includes an inherent level of errors, which comes from multiple sources. These include the

light redirection using the mirror, the distance between the sample and light collection

apparatus and the values used for the extinction coefficients of the various absorbing

agents.

Secondly, the prior information used by the MAP estimator does not provide a significant

advantage to the estimator over other classical methods. This is because the distribution

of the prior data is very wide. In fact, all the prior data sets used in the estimation

process have large ranges with standard deviations ranging between 65 and 88% of the
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chromophore concentrations. In addition, the volume fractions of dyes used to prepare

the samples often fell within the tails of the distribution rather than closer to the mean.

(a) Estimates of Cb for Samples M1,M2 and M3 (b) Estimates of Cred for Samples M1,M2 and M3

Figure 5.7: These plots represent the results of the estimation process using samples containing
both red and blue dye (M1, M2 and M3). The difference between Map and LSQ estimates is
smaller than that noted in samples with a single dye. This is mainly due to the weakness of the
transmitted signal as the presence of two dyes in the phantoms leads to a large fraction of the light
being absorbed.

Consequently, the prior probability is always low, regardless of whether or not the

actual value of the unknown parameter is in close proximity to the mean of the prior data

set. Therefore, the wider the prior distribution is, the closer MAP’s estimate will be to

the results of classical estimation techniques. A possible solution is to gather as much

information about the unknown parameter as possible, thus making the prior distribution

sharper.

5.3 Scattering Phantoms

We prepare another set of gelatin phantoms, similar to the ones described in Section 5.2,

but with the addition of milk as a known scattering medium. We use the same apparatus

depicted in Figure 5.1 to collect the transmitted light from the scattering phantoms.

We use the Kubelka-Munk method described in Section 2.4.2 to calculate the phantoms
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transmittance spectra from estimated optical parameters. To that aim we require a number

of input parameters, namely:

• Volume fractions of red and blue dyes.

• Extinction coefficients of dyes.

• Absorption coefficient of the gelatin solution.

• Reduced scattering coefficient of milk

• Refractive index of the sample.

• Sample thickness.

We use the same extinction coefficients and gelatin absorption coefficient that were used

to estimate the parameters of the non-scattering phantoms and use commercially available

skimmed milk as a scattering medium. We thus use a MATLAB program developed by

Matzler (Matzler, 2002) to calculate the scattering cross section using Mie theory. This is

then used in equation (5.1) to calculate the scattering coefficient where ρi is the density

of scattering particles i and σi is the scattering cross section which depends on the size

and shape of the particles i, as well as the refractive index of the scattering particles and

medium (Mourant et al., 1997).

µsi(λ) = ρi.σi(λ) (5.1)

Figure 5.8a and Figure 5.8b show the reduced scattering coefficient of milk as calculated

using Matzler’s program as well as the reduced scattering coefficients of various milk

samples as reported in (Qin and Lu, 2007). During sample preparation, only a small

quantity of milk (∼ 8 g) is mixed with the gelatin solution which greatly reduces the

number of scattering particles in our samples. Consequently, we cannot directly use the

reported values of milk reduced scattering coefficient as they do not correctly reflect the

milk content in the samples. We therefore use Matzler’s program to estimate the reduced

scattering coefficient of the diluted milk solution. The following section describes how the
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reduced scattering coefficient of milk was determined.

(a) (b)

Figure 5.8: Reduced scattering coefficients of milk obtained from two different sources. (a): The
reduced scattering coefficient is calculated using Matzler’s program. This value was generated
for a sample containing 100% skimmed milk. As reported on the milk container, 100 ml of milk
contains 0.3g of fat and 3.6g of protein. These values are consequently used to construct the volume
fractions of scattering particles in milk. (b): Values reported by Qin in and obtained directly from
the authors.

5.3.1 Scattering Properties of Milk

As described by Qin in (Qin and Lu, 2007), fat globules and casein micelles are believed

to be the main contributors to light scattering in milk. Milk also contains whey proteins,

however, they are far too small to have a substantial effect on scattering events in milk

(Qin and Lu, 2007). As mentioned earlier, we use commercially available skimmed milk

that contains 0.3 g of fat and 3.6 g of protein per 100 ml of milk. To model the volume

fractions of fat and protein in our samples, we first calculate w
fat

and wcasein , the weights

of fat and casein within our samples using the following equations:

w
fat

= w
milk
∗ 0.3 g

100 ml wcasein = w
milk
∗ 0.76 ∗ 3.6 g

100 ml (5.2)

Note that we use the factor 0.76 to calculate the weight of casein, as casein micelles

form about 76% of the protein volume fraction of milk (Frisvad et al., 2007; Fox and

McSweeny, 1998). We can now transform these quantities to volume fractions using the
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following equations, where ρ
fat

= 0.915 g/ml is the density of milk fat, ρprotein = 1.11 is

the density of milk protein and ρ
milk

= 1.03 is the density of milk (Frisvad et al., 2007;

Walstra and Jenness, 1984)

vf
fat

=
w
fat
/ρ

fat

w
sample

/ρ
milk

vfcasein =
wcasein/ρprotein
w
sample

/ρ
milk

(5.3)

We set the refractive index of fat globules in milk to 1.46 and casein micelles to 1.503 as

reported in (Frisvad et al., 2007; Attaie and Richtert, 2000). We then calculate the scat-

tering coefficient using the parameters above as input arguments to Matzler’s MATLAB

program (Matzler, 2002) as described in Section 5.3. We note that Matzler’s software

(Matzler, 2002) calculates the scattering coefficient µs and anisotropy factor g for each

scattering particle. Consequently, we still need to determine the optical properties of the

medium as a whole (milk) rather than the components it contains.

To that effect, we accept that we can sum up the scattering coefficients of the particles to

calculate the combined scattering coefficient as described in (Van De Hulst, 1981; Frisvad

et al., 2007). This is only possible because we assume that the various particles scatter

light independently of each other (Frisvad et al., 2007). Once the scattering properties of

the individual particles, and the scattering coefficient of the medium are calculated, we

can use equation (5.4) to calculate the anysotropy factor of the medium (Frisvad et al.,

2007).

g
milk

=
g
fat
.µsfat + gcasein .µscasein

µsmilk
(5.4)

Let the unknown parameter be θ = (cblue, cmilk)T. All other parameters required for our

forward model are provided as predefined input arguments. We accept that uncertainty is

present in various input parameters such as the properties of milk, the extinction coeffi-

cients of the dyes and the absorption coefficients of the gelatin base. We also introduce an

additional level of uncertainty by setting d to an average value drawn from the distribution

of sample thicknesses.
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We prepare a set of six phantoms containing a gelatin solution, milk and a small amount

of blue dye. All samples contain the same type of milk (from the same container) but with

slightly varying quantities of dye. Table 5.4 describes the quantities used to prepare the

phantoms in terms of volume fractions of dye, milk and gelatin as well as sample thickness.

Similarly to the experiments described in Section 5.2, we estimate the unknown parameter

θ using two techniques: maximum a posteriori and least-squares methods, then compare

the results.

Sample cblue (%) w
milk

(g) cgelatin (%) d (cm)
B1 1.91 e−2 3.23 3.47 0.41
B2 4.10 e−2 3.23 3.47 0.39
B3 6.63 e−2 3.22 3.47 0.43
B4 9.69 e−2 3.22 3.47 0.43
B5 0.15 3.22 3.47 0.44
B6 0.19 3.22 3.47 0.37

Table 5.4: Structure of Blue Gelatin Phantoms in terms of the main absorbers (blue dye and
gelatin base) and scatterers (milk)

Results and Analysis

As depicted in Figure 5.9, the MAP estimates are not as accurate as those obtained

from applying the same inversion method to non-scattering phantoms or to simulated skin

data. For instance, when considering the estimates of dye volume fraction, we note that

the values returned by the least-square method are often closer to the expected values

than their MAP counter part. We also note that both LSQ and MAP estimates of dye

volume fractions have an unacceptably high error level ranging between [4 − 53%] and

[26− 135%] for MAP and LSQ respectively.

However, the MAP estimates for milk concentration are often more accurate than LSQ

estimated values as depicted in Figure 5.9. Figure 5.9 also shows that although closer to

the expected values than their LSQ counterparts, MAP estimates are quite inaccurate and

the error levels, summarised in Table 5.5 are far beyond the values observed when using
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cmilk cmilk
Sample LSQ Error (%) MAP Error (%)

1 59.06 24.70
2 26.28 52.84
3 94.33 3.87
4 114.56 11.30
5 135.18 24.99
6 35.49 48.31

Table 5.5: Estimation errors generated from LSQ and MAP based methods applied on measured
transmittance from the blue gelatin phantoms. These errors are calculated for the blue dye volume

fraction estimates as
√

(cmilk − ĉmilk)2

cmilk

simulated data as described in Chapter 4.

Figure 5.9: Estimates of Milk Volume Fractions in Samples

We thus have to consider these results with caution as they may not accurately reflect

the performance of our estimation method due to the high level of inaccuracy in our model.

In fact, we believe that the inaccuracy of the forward model is one of the main reasons

behind the high level of errors in both estimation methods (LSQ and MAP). Figure 5.10



86 CHAPTER 5. APPLICATION TO GELATIN PHANTOMS

depicts the measured vs. calculated transmittance spectra, where the expected value of θ

is used to generate T. One can see that the measured spectra does not accurately match

the measured data.

Figure 5.10: Measured transmittance spectra from Sample 5 plotted against reconstructed spectra
from the expected value of θ. Transmittance was reconstructed using two methods: a Kubelka-
Munk based model and an MCML model. Note that the spectra are considerably distant making
both forward models inherently inaccurate.

This is not due to the modelling method used (Kubelka-Munk vs. MCML for example)

as both methods were initially used to generated transmittance spectra, and their results

were comparable, but equally inaccurate in comparison with the measured data. This

is due to the large amount of noise that exists within the imaging setup, as well as the

large uncertainty within the absorption spectra used as demonstrated by Figure 5.2a and

Figure 5.2b. In fact, obtaining consistent values for these parameters was one of the main

challenges encountered during these experiments, which made it very difficult to validate
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the forward model.

It is worth noting that although the MAP based estimation is meant to deal with

uncertainty within the forward model, it is not meant to solve problems that are incorrectly

specified. That is to say, uncertainty in the model’s parameters is only tolerated if the

underlying model is correct. We can further show that the inaccuracy of the estimates

may be due to the high level of inaccuracy in the forward model. This is achieved by

estimating the same parameters using spectra reconstructed from ground truth values

with added noise. We ensure that the added noise has a high level where SNR ≈ 50.

Figure 5.11 shows that both MAP and LSQ estimates are very close to the expected

values when generated from reconstructed spectra where error levels are in the range

5 − 36%. We also observe that in this instance, MAP based estimation provides results

that are as accurate, if not more accurate than LSQ estimates. This suggests that our

inversion method performs well on the simulated data as the model accurately describes

the tissue. However, when the model does not match the physical reality, we note that

our method does not perform as well as previously observed. One solution would be

to use a more advanced model to describe our gelatin phantoms, such as MCML. This

would involve defining a larger number of parameters such as the physical and optical

characteristics of the petri dishes used to prepare the phantoms.

We also investigated the effect of prior data on MAP estimation for all samples. We

note that the original prior data used in this experiment had acceptable ranges of stan-

dard deviations of [26− 34%] of mean volume fractions. Reducing the width of the prior

distribution to ∼ 20% does not improve the accuracy of the results in this case. This is

also due to the fact that reducing the width of the distribution makes the expected values

fall on the tails of the probability distribution curves, rather than closer to the mean. This

further suggests that even though uncertainty in the model’s parameters is tolerated by

our method, the underlying model must be right for the inversion method to succeed.
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Figure 5.11: Estimates of the value fractions of blue dye in samples. These estimates are obtained
from simulated transmittance spectra + Gaussian noise rather than measured data. This is to
investigate whether the inaccuracies of the previous estimates where due to the estimation method,
prior data, uncertainty level in input parameters or the inaccuracy of the forward model.

5.4 Conclusion

We demonstrated that the use of a Bayesian based method to recover the optical proper-

ties of a medium can lead to a substantial increase in the accuracy of the recovery process.

We have established that in the presence of a certain level of uncertainty in the underlying

model of the tissue, the MAP based estimator provides accurate results both in terms

of the recovered parameter and variation. Maximum a posteriori also successfully recov-

ers unknown parameters where other classical methods (LSQ) fail. This is potentially

important when applied on tissues who’s physical characteristics are not described with

high precision, or in the presence of variations within the information about the unknown

parameter.

However, we note that the accuracy of Bayesian estimation is strongly reliant on the

quality of the data contained in the prior information set. In fact, a largely flat prior
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distribution, resulting from wide variations within the data, may not lead to any improve-

ment over other statistical methods such as maximum likelihood. This is due to the fact

that a wide distribution of the prior data would lead to a very small prior probability even

when the estimate is close to the prior mean. This, in turn, suggests that in such cases,

the MAP estimator becomes equivalent in its performance to a maximum likelihood based

estimator. It is thus important to choose a prior that describes the unknown parameter

as accurately as possible.

We also observe that although our inversion method aims to be robust against high levels

of uncertainty, it is still important that the forward model is correct. As seen in Section

5.3.1, the use of a model that does not correctly capture the properties of the tissue would

lead to inaccurate estimation results. This is not a limitation of the inversion method as

one of the fundamental assumptions when using a model-based inversion method is that

the model can be defined with some accuracy. It is therefore important to verify that the

forward model used is correct even if some of the parameters are uncertain.

We conclude that our inversion method provides excellent results when applied to sim-

ulated data. It also provides good results when applied to experimental data when the

underlying model is correctly defined, but some parameters are uncertain. However, our

inversion method does not overcome the limitations of having the forward model incor-

rectly describes the physical properties of the sample. We have therefore shown that two

main factor that could affect the performance of our estimator are:

• A prior distribution that provides as much information about the parameters as

possible.

• A forward model that, albeit open to uncertainty in the parameters, correctly cap-

tures the properties of the tissue.

In the next chapter, we describe how we apply our inversion algorithm to measurements

collected from colon samples. These same samples were used to validate a model of the
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human colon in a previous study (Hidovic-Rowe, 2006), thus removing the effects of using

an incorrect forward model as part of the estimation process.



Chapter 6

Application to Multispectral Images of

the Colon

6.1 Introduction

The colon is a good example of a multi-layered biological medium that has often been

studied due to the fact that colorectal cancer is the third most common cancer (GLOBO-

CAN, 2008). It is also an excellent example of a medium for which the mapping between

its optical properties and its reflectance data is not one-to-one (Hidovic-Rowe, 2006). This

makes it very challenging to extract the parameters of the tissue using commonly used

inversion methods. We therefore apply our inversion algorithm to multispectral images of

the colon in order to recover the mucosal thickness, haemoglobin volume fraction as well

as size and density of scattering particles.

In this chapter, we will describe the structure of the colon tissue and some of the

disorders that might occur and cause the tissue’s parameters to change. We also give a

brief description of the forward model that was initially developed by (Hidovic-Rowe, 2006)

and used to model light reflectance in the human colon tissue. We will then describe how

our inversion method was applied to the simulated and experimental data and evaluate

the results obtained.

91
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6.2 Structure of the Human Colon

The colon tissue consists of four layers: the mucosa, submucosa, muscularis propria, and

serosa (Day et al., 2003). The mucosa is the innermost layer of the colon. Its thickness

varies between 395 and 600 µm in a normal tissue and it can also be broken down into

the epithelium, lamina propria and muscularis mucosa (Huang et al., 2004; Hidovic-Rowe,

2006). The epithelium is a single layer of epithelial cells with a diameter of 10 − 20µm,

making up a thickness of approximately 25µm. It is followed by the lamina propria,

a layer of loose connective tissue that mainly consists of thin collagen fibrils as well as

various other cell types. This layer also has a dense network of small blood capillaries

that nourish the epithelium and which become larger deeper in the mucosa. Finally, the

muscularis mucosa is a thin and smooth muscle layer that separates the mucosa from the

submucosa.

The submucosa is a 415 − 847µm thick layer of dense connective tissue beneath the

mucosa. It contains large collagen fibres and blood vessels that are significantly larger

than those found in the mucosal layer. It is followed by the muscularis externa (propria),

a smooth muscular layer with a thickness of 600− 1100µm (Huang et al., 2004; Hidovic-

Rowe, 2006). It consists of a layer of circular muscle, wrapped around the colon that

is aimed at moving waste material through the colon. It also contains an outer layer of

longitudinal muscle, that runs lengthwise along the colon and works along the circular

muscle to create the wavelike motion. Finally, the serosa is the outermost layer of the

colon and consists of a squamous epithelium, loose connective tissue and large blood

vessels (Huang et al., 2004; Hidovic-Rowe, 2006).

6.3 Reflectance Model of the colon

When the tissue is exposed to light, it first interacts with the epithelium layer (in the

mucosa). As the epithelium layer is very thin, and is characterised by an anisotropy factor

of 0.98, the epithelium acts as a strong forward scatterer. This means that most of the

light that interacts with the epithelium is propagated to the deeper layers (Hidovic and
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Rowe, 2004).

Once the light enters deeper into the mucosa, it is scattered by the loosely connected

collagen fibrils. Within the mucosa, a proportion of the light is also absorbed by the

oxy- and deoxy haemoglobin present in the capillaries. A small fraction of the light is

then reflected at the submucosa boundary while most of it travels deeper into the sub-

mucosa which, as previously mentioned, mainly consists of collagen fibres. This makes

the submucosa strongly forward scattering (Hidovic-Rowe and Claridge, 2005). Light is

further absorbed at this layer due to the haemoglobin present in the arteries and veins.

The proportion of light that reaches the muscular layer is further absorbed or scattered

with an anisotropy factor estimated to be 0.96 (Hidovic-Rowe, 2006). The large number

of scattering events that occur in this layer means that only a very small fraction of the

light in the muscular layer reaches the deeper layers of the colon.

Figure 6.1: Multi-layer structure of the human colon ∗

Hidovic-Rowe and Claridge (2005) have shown that the exclusion of the epithelium

layer and the serosa from a computational model of light propagation in the colon had no

significant effect on the amount of light remitted at the colon surface. Consequently, the

forward model of light transfer in the colon can be simplified to only include three layers:
∗Structure of the Human Colon, http://www.babymed.com/cancer/colon-cancer-diagnosis-and-staging
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The mucosa, submucosa and muscularis externa. As the model described in (Hidovic-

Rowe, 2006; Hidovic-Rowe and Claridge, 2005) has been validated against real data, we

use it with no modifications as part of our inversion process, i.e. to generate the reflectance

spectra R. We also use the Monte-Carlo method described in Section 2.4.3 to model light

transport in the tissue. To that effect, we require five input parameters for each layer,

namely: The absorption and scattering coefficients, refractive index, anisotropy factor

and layer thickness. As the scattering and absorption coefficients for the mucosa and

submucosa are not readily available in the literature, we model both of these quantities

as described in the following section and discussed in detail in (Hidovic-Rowe, 2006). All

the property values used in this thesis were collected from (Hidovic-Rowe, 2006).

6.3.1 Modelling absorption

The composition of the colon, as outlined in Section 6.1, indicates that haemoglobin

is the main absorber in the colon. We can therefore use Equation (6.1) to represent the

absorption coefficient of the various layers of the colon, where i is the layer index, CiHB∗

is the volume fraction of blood in the ith layer, Si is the oxygen saturation and µHb
a and

µHbO2
a are the absorption coefficients of haemoglobin and oxy-haemoglobin respectively.

As described in (Hidovic-Rowe, 2006), we will use a value of 120 g/L to represent the

concentration of haemoglobin per unit volume of blood in the colon and we use the molar

extinction coefficients published by Prahl (Prahl, 2007a).

µai(λ) = ln(10).CiHB∗

(
(1− Si)µHb

a (λ) + Siµ
HbO2
a (λ)

)
(6.1)

6.3.2 Modelling Scattering

We assume that scattering particles within the various layers of the colon are homoge-

neous spheres by average size and density. This assumption, though not strictly true, can

be used as an approximation as recent studies by Chen et al. (Chen et al., 2004) suggest

that this is a valid approximation and is generally accepted as a method of modelling

scattering in biological tissues. We thus use Metzler’s MATLAB program as described

in Section 5.3 to calculate the scattering cross section using Mie theory (Matzler, 2002).
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This is then used in (5.1) to calculate the scattering coefficient (Mourant et al., 1997).

Throughout the modelling process, we make a number of assumptions regarding the

scattering coefficient of the colon. We assume that the absorbance of the scattering parti-

cles is negligible, and thus the imaginary part of the refractive index is set to 0. We also

assume that the refractive indices of the scattering particles and surrounding medium are

equal for all wavelengths in the range of visible light.

Parameter Mucosa Submucosa Muscularis Externa

Blood Volume Fraction 1− 10% 5− 20% −
Haemoglobin Saturation 50− 75% 50− 80% −

Size of Scattering Particles (µm) 0.1− 1.74 1− 6 −
Density of Scattering Particles 4− 20% 15− 60% −

Thickness (µm) 395− 603 415− 847 900
Anisotropy Factor 0.5− 0.95 0.95− 0.99 0.96

Refractive Index of Medium 1.38 1.36 1.36
Refractive Index of Particle 1.46 1.38 −

Table 6.1: Summary of ranges used as model input parameters to generate colon reflectance spectra
(Hidovic-Rowe, 2006)

To further simplify the model, we assume that all organelles present in the mucosal

layer contribute a negligible amount to scattering, and we thus only use the properties of

collagen fibrils in the mucosa to model the parameters of the mucosal layer. Finally, we

assume that the sizes, shapes and densities of the scattering particles are the same within

each layer. The remaining parameters have been described in details in (Hidovic-Rowe,

2006) and their values and ranges are summarised in Table 6.1.

As stated in (Hidovic-Rowe and Claridge, 2005), the parameters of the mucosa had the

highest effect on the reflectance spectra while varying the parameters of the submucosa did

not have a significant effect on the shape of the reflectance spectra. It was thus concluded

that using a set of predetermined constant values (rather than ranges) for the submucosal

parameters would result in a less complex forward model while still maintaining its cor-

rectness. This would of course introduce a small error but it was judged to be acceptable
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for our purposes. Consequently, we used the values described in Table 6.2 to describes the

parameters of the submucosa.

Volume fraction Oxygen saturation Diameter of Volume fraction of Thickness
of blood scatterers scatterers

20% 75% 3.5 µm 50% 700 µm

Table 6.2: Parameters used to model the submucosal layer of the colon. The parameters are within
the reported acceptable ranges 6.1. These values were chosen to 1. simplify the forward model used
in the estimation process, 2. to introduce uncertainty in the inversion process by taking default
values of uncertain parameters rather than taking their exact values, or estimating them as part
of the inversion process

6.4 Histological Changes in Cancerous Tissue

For the purposes of this research, we take colorectal adenocarcinoma as the main exam-

ple of cancer that effects the colon tissue, as 95 % of colorectal cancers are of this type.

In this section, we summarise the main changes that occur in the colon due to colorec-

tal adenocarcinoma as described in (Hidovic-Rowe, 2006). Further details about some of

the most common histological changes in the colon are described in (Hidovic-Rowe, 2006;

Skinner et al., 1995; Ge et al., 1998; Hilska et al., 1998; Furuya and Ogata, 1993; Turnay

et al., 1989).

Colorectal adenocarcinoma is thought to develop over a number of years, and is often

preceded by a number of changes in the mucosa lining of the colon or rectum. These

changes are characterized by cell proliferation and nuclei enlargement (Hidovic-Rowe,

2006). They are also accompanied by changes in the structure and organization of other

components, such as the blood and collagen content and thickness of the mucosa. Skinner

et al (Skinner et al., 1995) found that the blood vessels within a carcinoma would be dis-

organised, with an increased size and density compared with a normal tissue which leads

to an increased blood flow.

Haemoglobin saturation was also found to change in abnormal tissue as depicted in

(Hidovic-Rowe, 2006; Ge et al., 1998). In addition, Hilska et al report in (Hidovic-Rowe,
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2006; Hilska et al., 1998) that the collagen structure is also disturbed in abnormal tissue.

This was also supported by Furuya and Ogata (Furuya and Ogata, 1993) whose main

finding was that the density of collagen increases in the central region of the cancer, while

it decreases towards the margins of the tumour due to the presence of looser networks of

thinner collagen fibrils.

This was also confirmed by (Turnay et al., 1989) who found that the collagen content

increases in the first stages of adenocarcinoma, and decreases during its development.

Finally, the thickness of the mucosal layer can also be affected in the early stages of

cancer development, especially if the tumour develops from polyps, in which case, the

thickness will increase (Hidovic-Rowe, 2006). However, the mucosal layer will have a

smaller thickness in a tumour that developed from suppressed lesions on the tissue surface

(Hidovic-Rowe, 2006).

In summary, we note that only four of the parameters used to model light reflectance

in the colon tissue exhibit a change between normal and abnormal tissues, namely: blood

volume fraction, scatterer density, scatterers diameters and thickness of the mucosal layer.

Consequently, we aim to recover these four parameters using our inversion method. This

is achieved in two steps. First, we apply our inversion method to simulated reflectance

data of the human colon. This allows us to evaluate the accuracy of our method in a

controlled setting as described in Section 6.5. We then apply the inversion algorithm to

reflectance spectra extracted from multispectral images of the colon. Note that all images

used in this thesis were obtained by Hidovic-Rowe in (Hidovic-Rowe, 2006). The details of

the image acquisition setup and the algorithm used in (Hidovic-Rowe and Claridge, 2005;

Hidovic-Rowe et al., 2006) to extract reflectance spectra are summarised in Section 6.6.

6.5 Simulated Data

As the first stage of our inversion process, we generate simulated reflectance data from

the human colon. We use the forward model summarised in Section 6.3 and described

in details in (Hidovic-Rowe, 2006) to describe the colon. We take our unknown param-
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eter vector to be θ = (CHB∗ ,diamclg ,Cclg , d)
T . We use the MCML program to generate

reflectance spectra for 144 values of θ. The values of CHB∗ , diamclg ,Cclg and d are chosen

from the range of normal values described in Table 6.1. We use the values in Table 6.2 and

those summarised in the ”muscularis externa” column of Table 6.1 as input arguments to

the MCML program.

To that aim, we generate an MCML input file for each value of θ, describing the re-

fractive indices for the top and bottom ambient layers, namely: air (1.0). The input files

also provide the parameters describing each layer of the colon: the refractive index, the

absorption coefficient (cm), the scattering coefficient (cm), the anisotropy factor, and the

thickness (cm). The absorption and scattering coefficients are calculated using the values

of θ as described in sections 6.3.1 and 6.3.2. Note that when using MCML, we assume

that the photons are injected orthogonally into the tissue, leading to collimated beam of

photons.

We therefore generate 144 reflectance spectra for wavelengths λ = [480, 506, 514, 522,

540, 548, 560, 564, 568, 574, 580, 586, 594, 610, 620, 630, 640, 676, 700]. We also use the

same ranges listed in Table 6.1 as the prior data required for our MAP based estimator as

depicted in Table 6.3. Once the simulated reflectance is generated, we add Gaussian noise

of a known variance σ2
noise

.

θi MEAN STD (%)

CHB∗ 5.40 2.55 (47.21%)
Cclg 12.20 4.63 (37.94%)
diamclg (µm) 0.4264 0.1826 (42.82%)
d (cm) 0.0501 0.0060 (11.89%)

Table 6.3: Basic statistical properties of the prior data used in the estimation process. The prior
distribution is assumed normal and these values were chosen to include the range of allowed values
described in Table 6.1

Next, we apply the inversion method to the simulated data which, as demonstrated

in Section 4.4.2, can be reduced to the minimisation problem represented by Equation
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(4.15). We use the MATLAB function LSQNONLIN† (Optimization Toolbox) with the

Levenberg-Marquardt algorithm, to minimise our objective function. LSQNONLIN is a

function provided as part of the MathWorks Optimisation Toolbox to solve non-linear

least-squares problems, including non-linear data-fitting problems (?).

We also use the Parallel Computing Toolbox (MathWorks) to parallelise the process,

and thus reduce the time required for the completion of the optimisation procedure. We

take xn to be the noisy simulated data, Rn(θ) as the reflectance spectra and σ2
noise

to be

the variance of noise we introduced to the reflectance spectra. We summarise the process

used to generate the simulated reflectance spectra and apply our inversion method in Al-

gorithm 6.1.

objFunc = 1
2σ2

noise

N∑
n=1

(xn − Rn(θ))2 +
m∑
i=1

(θi − µ)2

2σ2
θi

(6.2)

†LSQNONLIN, http://www.mathworks.co.uk/help/optim/ug/lsqnonlin.html
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Algorithm 6.1 MAP Estimation Process
1: Data:
2: ∼ N(µCHB∗

, σ2
CHB∗

): Prior distribution of haemoglobin volume fraction in the mucosa
3: ∼ N(µdiamclg

, σ2
diamclg

): Prior distribution of collagen diameter in the mucosa
4: ∼ N(µCclg

, σ2
Cclg

): Prior distribution of collagen density in the mucosa
5: ∼ N(µ

d
, σ2

d
): Prior distribution of mucosal thickness

6: RANGECHB∗
= [0.04; 0.07; 0.1]: Values of haemoglobin volume fractions used.

7: RANGEdiamclg
= [0.1; 0.3; 0.5; 0.74]: Diameters of scattering particles used.

8: RANGECclg
= [0.04; 0.1; 0.15; 0.2]: Volume fractions of scattering particles used.

9: RANGE
d

= [0.0395; 0.0595; 0.0603]: Mucosal thicknesses
10: RANGE

λ
= [480, 506, 514, 522, 540, 548, 560, 564, 568, 574, 580, 586, 594, 610, 620,

630, 640, 676, 700]: Wavelengths (nm)
11: runMCML(λ, θ): function to calculate the reflectance spectra at wavelength range λ

and parameter vector θ,
12: σ2: Variance of the measured spectra (or in this case, the variance of

runMCML(λ, θ) + noise
13: begin
14: for all CHB∗ ∈ RANGECHB∗

do
15: for all diamclg ∈ RANGEdiamclg

do
16: for all Cclg ∈ RANGECclg

do
17: for all d ∈ RANGE

d
do

18: Rsimulated := runMCML(RANGE
λ
,θ) + noise

19: θ̂MAP := arg minθ

[ 1
2σ2

N∑
n=1

(Rsimulated − runMCML(RANGE
λ
,θ))2+

20:
(θ1 − µCHB∗

)2

2σ2
θCHB∗

+
(θ2 − µdiamclg

)2

2σ2
θdiamclg

+
(θ3 − µCclg

)2

2σ2
θCclg

+ (θ4 − µd)2

2σ2
θ
d

]
21: end for
22: end for
23: end for
24: end for
25: end
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6.5.1 Results and Discussion

Using Algorithm 6.1, we estimate the unknown parameter θ = (CHB∗ ,diamclg ,Cclg , d)
T

from simulated reflectance spectra. We therefore collected 48, 36, 48 and 36 estimates for

each value of CHB∗ , Cclg , diamclg , and d respectively used in our simulations. The results

are summarised in Table A.1.

An initial visual inspection of the results indicates that the estimation process did not

yield results as accurate as those obtained from simulated skin reflectance data. As shown

in Figure 6.2, we note that the range of estimates was much larger than previously reported

for simulated skin data. Table 6.4 shows that even though the mean values of the estimates

were not very close to the expected values, the distribution of the estimates was reasonably

narrow as demonstrated by standard deviation numbers ranging between 6 and 27%. This

behaviour was expected due to the wide prior distributions used in our estimator as shown

in Table 6.3.

Expected MEAN STD ERROR ERROR
mean % min-max %

4.0 4.69 1.21 (25.86%) 26.56 2.3− 76.00
CHB∗(%) 7.0 6.65 1.01 (15.23%) 12.33 0.36− 36.01

10.0 7.84 1.05 (13.48%) 21.54 5.55− 46.24

4.0 3.97 1.07 (27.21%) 22.06 0.56− 55.43
Cclg 10.0 8.60 2.13 (24.75%) 20.48 0.42− 55.97

15.0 11.19 2.74 (24.46%) 25.49 0.5− 60.48
20.0 13.61 3.27 (24.06%) 31.92 7.56− 63.77

0.10 0.44 0.06 (14.60%) — —
diamclg 0.30 0.45 0.03 (7.19%) 50.14 32.05− 67.82

0.50 0.44 0.03 (6.0%) 10.62 2.30− 20.62
0.74 0.45 0.03 (6.63%) 39.05 31.14− 45.68

0.0395 0.0438 0.0099 (22.69%) 24.05 0.06− 52.86
d 0.0595 0.0498 0.0104 (20.89%) 16.47 0.059− 65.94

0.0603 0.0498 0.0109 (21.81%) 17.50 0.007 − 64.34

Table 6.4: A summary of a basic statistical analysis of the estimation results in terms of mean,
standard deviation and range of errors.
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Table 6.4 also shows that the level of errors in the estimates was high. This was exhibited

more prominently when the expected values were on the edges of the prior distribution

rather than closer to the mean. This can be observed, for example, when diamclg = 0.1

where the mean of the prior data is 0.4264. We observe that the error level is well beyond

100% which renders the estimate unacceptable. In these circumstances, the PDF is very

low, making the MAP estimation almost equivalent to non-Bayesian estimation techniques

such as Maximum Likelihood. This is consistent with the results obtained from reflectance

in gelatin phantoms, where we observed the same behaviour when the prior distribution

is wide. Consequently, we maintain that the results of MAP based estimation are greatly

affected by the quality of the prior data used in the estimator.

Finally, we note that the colon model is much more complex and less well characterised

than the skin model described in Chapter 4. Consequently, we cannot make any conclu-

sions regarding the accuracy of our method when applied to colon data in comparison

with skin reflectance spectra. It would therefore be more meaningful to compare our esti-

mates with those obtained from non-Bayesian estimation techniques such as least-squares

or maximum likelihood.

Due to time limitations, however, this could not be achieved within the time frame

available. We therefore suggest applying the inversion process described in Algorithm 6.1

to simulated colon reflectance spectra while replacing the MAP-based estimation technique

with both ML and LSQ. We would then compare the results of the MAP-based inversion

with ML and LSQ results and investigate whether or not the inclusion of prior information

offers a significant improvement over classical estimation techniques.
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(a) CHB∗ Estimates (b) Cclg Estimates

Figure 6.2: Box plots representing basic statistical information about CHB∗ (6.2a) and Cclg (6.2b)
estimates. The estimates are grouped by their respective expected values.

6.6 Multispectral Images of the Colon

We now apply our inversion method to multispectral images of the human colon. All

images used in this study were provided by Hidovic-Rowe (Hidovic-Rowe, 2006), and were

used as part of her research into the validation of a model of colon reflectance. Note

that this section builds on the work previously completed by Hidovic-Rowe and described

in details in (Hidovic and Rowe, 2004; Hidovic-Rowe and Claridge, 2005; Hidovic-Rowe,

2006; Hidovic-Rowe et al., 2006). In this section, we describe the imaging setup they

used to acquire the colon images and the algorithm they devised to extract reflectance

spectra from image values. We then describe how our inversion method was applied to

the extracted reflectance and analyse the results.

6.6.1 Modelling the Imaging Setup

For this thesis, we use the colon images acquired by Hidovic-Rowe et al in order to test

our inversion method. The imaging system used by the authors is described as consisting

of “a Retiga EXi (QImaging, Canada) 12 bit monochrome camera, VariSpec (CRI) liquid

crystal tunable filters, and an Integrating Sphere (ProLite, UK) with a Satellite Sphere

Illuminator (model SSI-030, Pro-lite, UK)” (Hidovic-Rowe, 2006). The setup allows the

selection of Gaussian-shaped filters of half-width 5-7 nm in the range from 400 to 700 nm.
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An integrating sphere was placed between the camera+filter apparatus and the sample as

described in Figure 6.3.

The light that originates from the integrating sphere light source is filtered through the

VariSpec filter after having interacted with the sample. The camera then collects the light

with the desired wavelengths, which in this case were 480, 506, 514, 522, 540, 548, 560,

564, 568, 574, 580, 586, 594, 610, 620, 630, 640, 676, 700. All wavelengths below 450 nm

were ignored as the signal-to-noise ratio in this range was low.

The authors used an integrating sphere with a 30 cm diameter where only the illumina-

tion port, the sample port and the detector port were left open. All other ports were closed

to ensure light would not escape from the sphere. The sample and illumination ports were

2.5 cm in diameter while the detector port had a diameter of 4 cm. The internal wall of

the sphere was coated with Spectraflect, a highly reflective form of barium sulphate with

a nominal reflectance of 97%− 98% in the 400− 700 nm range.

Hidovic-Rowe used a camera to detect the reflected signal from the sample, and an

integrating sphere as a light source. Consequently, calculating the diffuse reflectance of

the tissue was more complicated. In fact, the author needed to model the signal detected

in each CCD cell as a function of the reflectance of the sample part that was imaged by

that particular cell (Hidovic-Rowe et al., 2006). As portions of the light reflected by the

sample may be further reflected by the internal sphere walls before being detected by the

camera, Hidovic-Rowe used Markov chains to model the imaging setup as described in

(Hidovic-Rowe et al., 2006; Hidovic-Rowe, 2006).

A Markov chain is a system that consists of various states where for all possible pairs of

states, there exists a fixed probability of the system passing from one state to the other.

As described in (Hidovic-Rowe et al., 2006), states in a Markov chain can be either ab-

sorbing or non-absorbing, where an absorbing state is a state in which the probability of

switching to another state is zero (Hidovic-Rowe et al., 2006; Hidovic-Rowe, 2006). For

the purposes of this study, we wish to calculate the reflectance at each point of the tissue
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as we accept that the colon is a non-uniform medium where the diffuse reflectance may

differ at various points. We also calculate the the reflectance of the whole sample as it

represents the mean probability of the light being reflected.

Figure 6.3: Imaging Setup

As described in (Hidovic-Rowe et al., 2006), the imaging system used by Hidovic-Rowe

can be modelled as a Markov system that contains the following states:

1. Absorbed by the CCD pixel corresponding to the point of interest.

2. Absorbed by the rest of the camera.

3. Absorbed by the sphere’s holes.

4. Absorbed by the sample(excluding the point of interest)

5. Absorbed by the point of interest

6. Absorbed by the sphere walls

7. Reflected by the sample excluding the point of interest

8. Reflected by the sample at the point of interest

9. Reflected by the sphere walls (excluding all ports)



106CHAPTER 6. APPLICATION TO MULTISPECTRAL IMAGES OF THE COLON

As suggested by the name, the first six stages are absorbing states so a photon that en-

ters any one of these stages cannot enter into another stage (Hidovic-Rowe et al., 2006;

Hidovic-Rowe, 2006). Hidovic-Rowe (Hidovic-Rowe et al., 2006) give the transition matrix

as:

1 2 3 4 5 6 7 8 9
1 1 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 0
3 0 0 1 0 0 0 0 0 0
4 0 0 0 1 0 0 0 0 0
5 0 0 0 0 1 0 0 0 0
6 0 0 0 0 0 1 0 0 0

7 0 c

1− s
h

1− s 0 0 (1− w)α
1− s 0 0 wα

1− s

8 c

1− s 0 h

1− s 0 0 (1− w)α
1− s 0 0 wα

1− s

9 0 c h (1− r̄)(s− p) (1− r
k
)p (1− w)α r̄(s− p) r

k
p wα

Table 6.5: Transition matrix for non-uniform samples

Where d is the area of the detector, s is the area of the sample, h is the area of other

holes, w is the reflectance of the sphere walls. Note that the various areas described here

are relative areas that were calculated in reference to the total area of the integrating

sphere walls (Hidovic-Rowe, 2006; Hidovic-Rowe et al., 2006). Additionally, p represents

the size of the point of interest, c is the size of the camera aperture, α = 1 − (s + c + h)

is the area of sphere walls excluding all holes, r
k
is the reflectance at the point of interest

and r̄ is the mean reflectance of the sample (Hidovic-Rowe, 2006).

As stated in (Hidovic-Rowe et al., 2006), the amount of light detected by cell k of the

CCD (m
k
) can be expressed as a function of mean and local reflectance. Equations (6.3),

(6.4) and (6.5) describe the amount of light collected by the kth cell, the sample mean

reflectance r̄ and the local reflectance r
k
respectively. Further details about the Markov

model and how these equations were constructed are available in (Hidovic-Rowe, 2006;

Hidovic-Rowe et al., 2006).
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m
k

= c r
k
pw

(1− s)(1− wα)− r
k
pw α− r̄ w α (s− p) (6.3)

r
k

= Ak[(1− s)(1− wα)− r̄w α (s− p)] (6.4)

r̄ = (1− s)(1− wα)∑N
k=1Ak

N + wα (s− p)∑N
k=1Ak

where Ak = m
k

pw (c+m
k
α) (6.5)

We use the same model parameters used in (Hidovic-Rowe, 2006), namely: w = 97%,

p = 1.7941e−7, s = 0.0017, c = 0.0011 and h = 0.0051. As done in (Hidovic-Rowe, 2006),

the images are also corrected for gain and exposure using Equation (6.6)

image
corrected

=
image

original
− offset

gain ∗ exposure
(6.6)

Hidovic-Rowe also used a scaling factor that converts the signal recorded by the CCD

camera into a number representing the fraction of collected photons. The factor was

calculated using a 50% reflectance standard as its reflectance is well documented by the

manufacturer. This is necessary as the conversion factor relates image values to the signal

modelled by the Markov system m which requires the prior knowledge of the tissue’s

reflectance. Consequently, we set c50 = image50

modelled50
. This is then used to convert corrected

image values to reflectance signal and vice versa (Hidovic-Rowe, 2006).

Figure 6.4 depicts a map constructed from reflectance values at wavelength 574 nm at

each point in the sample images. These reflectance maps are constructed for each sample

type (cancer, normal and transitional tissue) at various wavelengths between 480 and 700

nm. These maps are then used in the inversion process to extract the values of the un-

known optical parameters vector θ.
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(a) Cancerous Sample (b) Transitional Tissue Sample

(c) Normal Sample

Figure 6.4: Reflectance values at wavelength 574 nm. These maps represent the reflectance values
at every point in the sample images. The image cubes of the three samples were first constructed
by aligning all sample images with 50% reflectance standard images. The images are then corrected
for different gains and exposure times before the conversion factor c50 described above is applied
to the resulting multispectral cube. A mask is applied to all images to only keep the reflectance
spectra from the colon tissue which is why the area around the central circles appears in these
figures as having a 0 reflectance. Equations (6.4) and (6.5) are then applied to generate these maps

6.6.2 The Inversion Algorithm

As described in Section 6.4, tumours in the colon can be characterized by changes in

the blood volume fraction, scatterer density, scatterer size and thickness of the mucosa.

We thus take these parameters to be of most significance when studying the physiology

of the colon and decide whether it is normal or not. Consequently, we aim to recover

these parameters from multispectral images of the colon, making our unknown variable

θ = (CHB∗ , diamclg ,Cclg , d)
T .
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To that aim, we construct multispectral cubes from the colon images we acquired from

Hidovic-Rowe. The images were taken ex vivo of three tissue sites: normal, cancerous

and transitional tissue right next to the tumour. The sample were categorised as normal,

cancerous and transitional following a histological analysis at the Department of Pathology

at the University of Birmingham. This categorisation was then used as the ground-truth

against which our results are compared. All images provided by Hidovic-Rowe were taken

using the same imaging setup and from the same patient in order to ensure that any

differences in the recovered parameters were due to differences in tissue structures rather

than inter-subject variability.

We first use the MathWorks Image Processing toolbox to align all colon images with

those taken of the 50% reflectance standard. This is necessary for applying the conversion

factor mentioned in Section 6.6.1 and which allows us to convert the image values we used

to a signal that can be converted to reflectance spectra. We then recover the sample mean

reflectance as well as the local reflectance spectra at the area of interest from the spectral

cube using equations (6.4) and (6.5).

Ideally, the estimation should be done at every point on the surface, in order to gather

a complete representation of the distributions of parameters in the tissue. However, re-

covering θ at every point is an extensively time consuming process. In fact, constructing

a full parametric map of a single sample would require recovering θ at 9503 points, with

the recovery process at each point lasting for between 3− 4 hours on an average personal

computer. This is because recovering θ at a single point requires 100 − 400 iterations as

part of the optimisation process.

In each iteration, MCML is used to evaluate the reflectance spectra, which takes a

number of minutes to complete. Due to limitations in the currently available computing

resources, we opt to do the recovery at a limited number of points. Consequently, we

apply the inversion process to 30 points from each cube, as well as on the sample mean

reflectance r̄.
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As described in Section 6.5, the inversion algorithm we use aims to minimise the ob-

jective function described by Equation (6.2). As in Section 6.5, we use the MATLAB

function LSQNONLIN function with the Levenberg-Marquardt algorithm to minimise the

objective function. We use the data in the first column of Table 6.1 as the prior informa-

tion required for our algorithm. Our inversion method also involves the use of a forward

model.

In (Hidovic-Rowe and Claridge, 2005), Hidovic-Rowe demonstrated that the MCML

method described in Section 2.4.3 can be used to generate reflectance spectra of the colon.

However, our inversion method requires a large number of function evaluations as part

of the minimisation process. Each evaluation is essentially a run of the MCML program

which takes several minutes to complete. This makes the inversion a very computationally

expensive process, and thus, a direct inversion using MCML as a forward model highly

inefficient.

As an alternative, we considered using the Kubelka-Munk method as a forward mod-

elling technique as it is much faster than the MCML based model. However, the results of

modelling reflectance using the Kubelka-Munk and MCML methods are very different as

depicted in Figure 6.5. We therefore decide not to use the Kubelka-Munk based model as it

was not validated and its results vary significantly from the MCML based model. Instead,

we use the error correction method described in (Hidovic and Rowe, 2004) which combines

the speed of the Kubelka-Munk method and the accuracy of MCML. This algorithm is

summarised in Appendix B.

In conclusion, the process of applying our inversion algorithm to multispectral images

of the colon can be summarised as follows:

1. Construct multispectral image cubes of three colon samples (normal, cancerous and

cancer surrounding tissue).

2. Extract the mean reflectance and local reflectance spectra at 30 different points on

each sample using equations (6.3), (6.4) and (6.5). For each of these points, apply

the steps below for 20 iterations.
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(a) Set S = K Where K evaluates the reflectance spectra using the Kubelka-Munk

method.

(b) Estimate θt using Equation (4.15) where R is substituted by S.

(c) Evaluate F (θ̂t) = M(θ̂t) − S(θ̂t) where M evaluates the reflectance spectra

using MCML.

(d) Evaluate A and B as described in Appendix B

(e) Set S = K + F (θt) and repeat steps (b)− (e)

Figure 6.5: Measured vs. reconstructed reflectance spectra using θ = (0.049, 0.38, 0.13, 0.049)T.
This parameter vector was estimated by our inversion method using the MCML based technique
as a forward model. The reflectance spectra is reconstructed using two methods based on Kubelka-
Munk and MCML respectively. Both methods use exactly the same input parameters and model
the tissue as described in Section 6.3. We note that the MCML generated spectra is much closer
to the measured reflectance than the Kubelka-Munk based reflectance. However, we also observe
that there might be a varying offset between Kubelka-Munk reflectance and the measured spectra.
This is discussed further in Chapter 7.

6.6.3 Results and Discussion

As described earlier, we aim to recover the blood volume fraction, diameters of scattering

particles, scatterer density and thickness of the mucosal layer from multispectral images
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of the colon. We first construct multispectral cubes from colon images taken of three

distinct samples: A sample from a normal, cancerous and transitional tissues from the

same subject. The samples were imaged ex vivo using the setup described in Section 6.6.

We then extract reflectance spectra at each point on the cube’s surface as described in

Section 6.6.1. Finally, we apply our inversion method to individual reflectance spectra

and analyse the results. Due to limitations in the currently available computing resources,

we opted to recover the unknown parameter θ at 30 distinct points on each sample as

depicted by Figure 6.6.

Figure 6.6: Image of the cancer tissue sample taken at wavelength 574 nm. The dots that appear
on the image represent the points at which the inversion algorithm was applied. Note that not
many points lie on what appears to be the largest abnormality in this tissue. In addition, the
points are not spread equally over the whole sample.

As we recover the unknown parameter θ from real measurements, we cannot verify

the accuracy of our inversion method in the same manner that we used with simulated
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data. This is due to the fact that we do not know exactly what the value of θ should

be. Consequently, we do not aim to verify that the estimation results are accurate by

comparing them against ground-truth values. Rather, we first ensure that the estimated

values are within the allowed ranges described in Table 6.1. We then analyse the recovered

values of θ in order to differentiate the normal from abnormal tissue samples.

As a result of our inversion method, we obtain a total of 90 estimates of θ, 30 for each

sample. Table 6.6 shows some basic statistics obtained from analysing the three sets of

data points corresponding to the three samples. Based on a visual analysis of the results,

we observe that with the exception of mucosal thickness, the mean values gathered from

cancerous and transitional tissue samples are quite similar, and differ from the parameters

describing the normal sample. This, however, is not sufficient to claim, with any certainty,

that we can safely differentiate between the normal and abnormal samples. We therefore

apply a number of statistical tests in order to evaluate the significance of the differences

observed.

Sample Parameter Mean Standard Deviation Min Max

CHB∗ 0.0381 0.0169 (44.5%) 0.00 0.0663
Cancer diamclg (µm) 0.6379 0.1706 (26.7%) 0.0583 0.7399

Cclg 0.0833 0.0316 (38%) 0.0183 0.1300
d (cm) 0.0482 6.375 e-4 (1.32%) 0.0473 0.0497

CHB∗ 0.0447 0.0114 (25.6%) 0.0238 0.0763
Normal diamclg (µm) 0.4636 0.1592 (34.3%) 0.1800 0.7399

Cclg 0.1105 0.0296 (26.8%) 0.0240 0.1354
d (cm) 0.0488 7.908 e-4 (1.6%) 0.0472 0.0506

CHB∗ 0.0372 0.010 (26.9%) 0.0106 0.0494
Transitional diamclg (µm) 0.6864 0.0697 (10.2%) 0.5121 0.7397

Cclg 0.0891 0.0312 (35%) 0.0291 0.1363
d (cm) 0.0480 3.955 e-4 (0.8%) 0.0473 0.0490

Table 6.6: Table summarising basic statistical information about the three samples used in the
estimation process. We used 30 data points from each sample to generate the statistics summarised
in this table.
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We also note that all recovered parameters, including those obtained from the cancerous

sample, had values within the acceptable ranges described in 6.1. However, this does not

mean that the recovery process yielded incorrect results. In fact, the ranges in Table 6.1 are

intentionally wide in order to accommodate for inter-subject variabilities. Consequently,

we cannot expect the parameters recovered from cancerous tissue to necessarily fall outside

these ranges. However, we can aim to differentiate between normal and abnormal tissue

samples taken from the same patient as is the case with the colon images used in our

analysis. We therefore aim to differentiate between the three tissue samples: normal colon

sample, cancerous colon sample, and transitional tissue.

Figure 6.7 represents a box plot‡ of our estimates grouped by tissue type with each group

containing 30 data points. We observe that with the exception of blood volume fraction,

the mean values of all other parameters are very close in cancerous and transitional tissue,

but different for the normal samples. This suggests that we can use these results to

differentiate normal and abnormal samples. However, we can use statistical methods to

decide whether the difference is indeed statistically significant or not.

We use the Kruskal-Wallis test to examine whether the observations taken from the three

samples have similar distributions or whether these groups are significantly different. The

Kruskal-Wallis test is a version of the classical one-way ANOVA. It works by comparing

the medians of the analysed data groups to determine whether or not the samples come

from the same population or different populations with the same distribution (Corder and

Foreman, 2009). Note that this test is not meant to tell which sample is significantly

different from the others. Rather, it is used to tell whether at least two groups are

significantly different.

To that aim, we use the MATLAB function KRUSKALWALLIS§, a part of the Math-

Works Statistics Toolbox, to complete the Kruskal-Wallis test. This function returns the

p value for the hypothesis that the data comes from the same distribution, as well as an
‡BOXPLOT, http://www.mathworks.co.uk/help/stats/boxplot.html
§KRUSKALWALLIS, http://www.mathworks.co.uk/help/stats/kruskalwallis.html
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(a) Estimated blood volume fractions (b) Estimated diameters of scattering particles

(c) Estimated volume fractions of scattering particles (d) Estimated sample thicknesses

Figure 6.7: Box plots representing a basic statistical analysis of the recovered parameters in all three
samples. The data is grouped by tissue type, and each box represents 30 data points. On each box,
the central mark is the median, the edges of the box are the 25th and 75th percentiles, the whiskers
extend to the most extreme data points not considered outliers, and the red (+) marks represent
outliers. The plots indicate that the means recovered from cancerous and transitional tissue samples
are different from those obtained from the normal sample. We apply further statistical analysis to
establish whether this difference is statistically significant.

ANOVA table and a box plot. The significance level used by the function is 0.01, which

indicates that the probability of wrongly rejecting the null hypothesis is 1%. This means

that recording a value p that is lower than the significance level 0.01 allows us to doubt

the hypothesis that all observations come from a distribution with the same mean.

We also apply the Kruskal-Wallis for individual parameters rather than for the complete

unknown parameter θ. As a result, we record p values of 0.051, 5.370 e-6, 0.0007 and 0.0003
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for blood volume fraction, diameter of scattering particles, scatterer volume fraction and

thickness respectively.

We note that p < 0.05 for all parameters but for the blood volume fraction, which is in

accordance with the findings recorded in Figure 6.7. This suggests that we can differentiate

between the three samples in terms of all properties but the blood volume fraction. This

is not consistent with the histological changes reported in Section 6.4 which suggests that

a change in the blood volume fraction is often reported in cancerous tissue. These results

are further confirmed by conducting the same test but on individual pairs rather than on

the triple of all three samples. The results are summarised in Table 6.7.

Pair p(CHB∗) p(diamclg) p(Cclg) p(d)

Normal vs. Cancer 0.2089 1.95e-4 3.66 e-4 0.0033
Normal vs. Transitional Tissue 0.0071 1.73 e-6 0.0039 9.49 e-5
Cancer vs. Transitional Tissue 0.5742 0.5249 0.4871 0.7562

Table 6.7: Summary of Kruskal-Wallis test results conducted for individual parameters on each
pair of tissue samples

These results indicate that the normal and transitional tissue samples are significantly

different in terms of all parameters. It also indicate that we cannot accurately differentiate

between cancer and transitional tissue samples. However, we also observe that the cancer

and normal samples can not be differentiated in terms of blood volume fraction alone. This

result is interesting as it suggests that differentiation might be more accurate if performed

in terms of a combination of parameters rather than single ones.

Consequently, analysing the statistical difference between samples in terms of a change

in a single parameter rather than the change in θ may not correctly reflect the differences

between three samples. Consequently, we analyse the statistical difference between the

samples in terms of the vector θ. To that aim, we use K-mean clustering to separate
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the estimates into clusters matching the three samples used. This is performed in MAT-

LAB, where all estimates are gathered as a single set of data, and the clustering function

KMEANS is applied to the full set of observations.

We initially aim to separate the results into three groups matching our three samples.

However, we note that this results in the estimates from cancerous and transitional samples

being grouped in the same cluster. Consequently, we run the clustering again with the goal

of having two clusters matching normal and abnormal tissues with the abnormal group

containing both cancerous and transitional samples. The results are summarised in Figure

6.8 which shows a clear distinction between the two clusters.

Figure 6.8: Result of K-Mean clustering applied to the set of observations from all samples. Note
that most cancer and transitional tissue estimates fall within the same cluster (Cluster1) while
normal tissue estimates are part of a different cluster (Cluster1). We also notice that there were
estimates that were incorrectly classified.

An initial analysis of the results indicates that 87% of points recovered from transitional

tissue and 77% of those estimated from cancer samples fall within the same cluster (Cluster

1) while 77% of estimates recovered from the normal sample fall within the second cluster.
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This is consistent with the expected behaviour where the structure of a normal colon

should differ from cancerous tissue or a tissue that has undergone significant changes.

However, we also note the presence of estimates that were incorrectly classified as depicted

in Figure 6.8 by the presence of normal observations (∗) within Cluster 2 (�), and cancer

and transitional tissue observations (M, +) within Cluster 1 (O).

We complete further analysis of the results to verify whether the classification we em-

ployed was reliable. To that aim, we conduct a basic receiver operating characteristics

(ROC) analysis on the results of our clustering operation. We focus on the classification

of estimates as being part of the abnormal tissue cluster. We use equations (6.7), (6.8),

(6.9), (6.10), (6.11) to calculate common performance metrics that can be used to evaluate

our clustering operation as described in (Fawcett, 2006).

FPrate = FP
N

(6.7)

TPrate = TP
P

(6.8)

precision = TP
TP + FP (6.9)

recall = TP
P

(6.10)

accuracy = TP + TN
P +N

(6.11)

Let cluster A be the cluster describing the observations recovered from cancerous and

transitional tissue samples. We take TP to be the number of observations correctly clas-

sified as belonging to A, FP to be the number of observations incorrectly classified as

members of A, TN to be the number of observations correctly classified as not belonging

to A and FN to be the number of observations incorrectly classified as not belonging to

A. We also take P = TP + FN and N = FP + TN be the total numbers of positives and

negatives respectively.

The results of the ROC analysis indicate a true positive rate of 81.67% and a false pos-

itive rate of 23.33%. We also note an accuracy rate of 80% and a precision of 87.5%. The
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results are positive, and indicate that we can differentiate between normal and abnormal

tissue samples based on the recovered parameter vector θ. However, these results should

be taken with caution for a number of reasons. Firstly, the number of points used in the

statistical analysis is quite small compared with the number of observations that can be

made from each samples.

In fact, the analysis was performed on only 90 observations (30 points from each sample)

which may not be enough to draw conclusions about the significant differences between

the full samples. Though this was done due to limited computational resources, it may

have an effect of the results of our analysis. Secondly, the points used in the analysis were

spread around the samples rather than focused on specific areas of interest as depicted by

Figure 6.6. However, they are not equally distributed around the sample.

6.7 Conclusion

In this chapter, we briefly described the forward model we used as part of our inversion

process. We then outlined how our MAP-based inversion method was applied to simulated

data representing colon reflectance spectra. Finally, we applied our inversion method to

multispectral images of the colon that were obtained from Hidovic-Rowe as part of the

work they completed in (Hidovic-Rowe, 2006).

As stated earlier in this chapter, the inversion method was first applied to simulated

reflectance spectra. The aim was then to evaluate the accuracy of our inversion method

by comparing the estimates with ground truth values. This process indicated that our

method could recover the unknown parameter θ from reflectance spectra with an error

level ranging on average between 7 and 40%. We also noted that the inversion method

returned better results when the expected value was nearer to the mean of the prior data,

and when the prior distribution had a small standard deviation. This confirms the findings

described in Section 5.3.1 which indicated that our method is greatly affected by the prior

data used.
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We then applied the inversion method to reflectance data extracted from multispectral

images of the colon. In this instance, we could not compare the estimates with ground-

truth values as those were not available. However, we used the possibility of differentiating

normal from abnormal tissues based on the estimates as a way to evaluate our inversion

method. We noted that based on the samples used, we could classify the estimates into two

categories: normal and abnormal clusters with the abnormal group containing estimates

recovered from both the cancerous and transitional tissues samples.

However, we note that when using multispectral colon images, the inversion was con-

ducted on a limited number of samples that were all taken from the same patient. The

results described in this chapter indicate that this method has the potential of supporting

the diagnosis of abnormalities in human cancer. This is especially true considering that

the differentiation and changes reported by the inversion method are consistent with his-

tological changes in the colon tissues reported in the literature. However, we note the use

of ex-vivo tissues only, and the limited number of points on which the statistical analysis

of the results was conducted. These factors render our analysis insufficient to categorically

demonstrate that our inversion method could be used to distinguish between normal from

abnormal tissue samples.

Ideally, this method should be tested on a larger number of samples, from different

patients, and on tissue samples that have undergone various changes, rather than just

focusing on adenocarcinomas. We also propose that the method be always applied to

differentiate samples taken from the same patient only, i.e. the classification of a tissue

as being abnormal should be based on it being compared with a normal sample from the

same patient only. This would have two main benefits.

Firstly, this can help ensure that any significant differences between the tissue samples

are due to changes in the structure of the tissue, rather than inter-subject variabilities.

This is because a parameter value that is considered normal in one patient, may be con-

sidered abnormal in another. Secondly, if one recovers the optical properties of a normal

tissue sample from a patient, this information can be used as prior data for the inversion



6.7. CONCLUSION 121

process when applied to the abnormal area of the colon. This would allow us to tailor the

inversion process on a per-patient basis, making the prior distribution relevant to each

patient separately. This would therefore result in a narrow distribution of the prior data,

and should, in effect, improve the results of the estimation process when conducted on an

abnormal tissue area. This would also help in the tissue classification efforts as the range

of normal values for a given person would be much narrower than a range accounting for

inter-subject variabilities.
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Chapter 7

Conclusions and Future Work

7.1 Summary of Work Presented

We proposed a Bayesian based inversion method that estimates a number of optical

properties parameterising a biological tissue even if some of its underlying physical at-

tributes are uncertain. This method had two main objectives:

1. To retrieve the optical properties of a biological tissue from reflectance or transmit-

tance measurements.

2. To succeed in retrieving the aforementioned values even when the physical attributes

of the said tissue are uncertain.

The maximum a posteriori estimator was first applied to simulated skin reflectance

spectra. The optical properties of interest in that case were the concentrations of chro-

mophores present in the skin, namely melanin and haemoglobin. We generated reflectance

spectra using a skin model based on the works described in (Cotton et al., 1997; Matcher,

2001; Meglinski and Matcher, 2003). Gaussian noise was then added to the simulated

spectra, and uncertainty was introduced in the inversion method by setting the thickness

of the sample to a distribution mean rather than the actual value of the parameter.

To evaluate our estimator, we compared its results with estimates obtained from two

widely used techniques: maximum likelihood and least-squares methods. The results

obtained from simulated data were very promising as they indicated that MAP-based es-

timates were more accurate than their ML and LSQ-based counterparts in most instances.

123
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The estimation method was also applied to a number of non-scattering gelatin samples

that were constructed in order to test the method on measured rather than simulated data.

In this instance, we collected the transmitted light and applied the inversion method on the

measured spectra. We also applied our inversion method to scattering gelatin phantoms

where we introduced scattering events by adding milk to our gel. We then collected

reflectance spectra and compared the results of our estimation technique with LSQ based

estimates.

When using simulated spectra and non-scattering phantoms, we demonstrated that the

use of a Bayesian-based method to recover the optical properties of tissues can lead to a

substantial increase in the accuracy of the recovery process. We have established that even

in the presence of some level of uncertainty in the underlying tissue model, the MAP-based

estimator provides accurate results. This is potentially important when applied to tissue

samples whose physical characteristics are not described with high precision. However,

we also noted that the quality of the prior data used in the estimation process can have

a significant effect on the accuracy of the results. In fact, we observed that using a prior

data set with a wide distribution shows little improvement over other estimator methods

such as maximum likelihood. This was particularly notable when the expected value of

the unknown parameter falls on the tail of the prior distribution rather than closer to the

mean.

Furthermore, we observed that the results of the estimation process when applied to

scattering gelatin phantoms were less accurate than those collected from simulated data

and non scattering phantoms. This was attributed to the inaccuracy of the forward model

itself, rather than the estimation method, the prior information used or the uncertainty

level of the known physical properties used in the model. In fact, we demonstrated that

the effects of model mismatch cannot be attenuated by our estimation method regardless

of the quality of the prior data. We thus concluded that more work needed to be done to

validate the forward model describing such phantoms. Due to time limitations, we decided

to concentrate our time and efforts to test our method on measurements obtained from

human tissue samples whose forward model has already been validated, namely the colon.



7.1. SUMMARY OF WORK PRESENTED 125

To that aim, the MAP-based estimator was applied to multispectral images of the human

colon. This was performed on three samples: normal colon tissue, cancerous colon and

transitional tissue surrounding the tumour. The original aim was to extract reflectance

spectra from every point on the image, and recover the values of parameters of interest

from each spectra. Consequently, this would allow us to recover the values of our optical

parameters at each point on the image. However, we were unable to complete that for all

three samples due to time limitations. We thus opted to apply the inversion method to a

limited set of points within the images.

The multispectral images were therefore used to extract reflectance spectra at every

point on the image. Thirty spectra from each sample were then used to estimate the op-

tical parameters of interest, namely: blood volume fraction, density and size of scattering

particles and thickness of the mucosa. A statistical analysis of the results was then per-

formed in order to decide whether the samples were statistically different or not. We noted

that we could not, with any certainty, distinguish between the cancerous and transitional

tissue samples based on the recovered parameters. However, we could clearly differentiate

between normal and abnormal tissue types even using only a small data set. Note that

both cancerous and transitional tissues were grouped together in the “abnormal” category.

The observed differences were statistically significant, and consistent with the fact that

the structure of a normal colon differs from cancerous tissue or its surrounding transitional

colon.

These findings are important as they indicate that our inversion method could poten-

tially be more accurate than its classical counterparts in recovering the optical parameters

of a biological tissue. This, in turn, could be of great importance in diagnosing ab-

normalities in said tissue. The following section describes improvements that could be

implemented and used to overcome some of the limitations of this work.
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7.2 Future Work

A number of limitations were noted in the previous chapters, namely, the limited number

of samples that were used as part of the inversion process and the time required for the

estimation process. The following sections describe possible steps that could be used to

resolve these limitations.

Larger Experimental Study

When applied to colon images, we noted three main limitations. Firstly, all images

were taken ex vivo. This can lead to inaccurate results if the sample undergoes important

changes due to loss of blood. These changes should therefore be reflected in the forward

model of the colon. Alternatively, the inversion method should be applied to in vivo

images whenever these are available. This would ensure that any parameter values deemed

abnormal are not due to changes resulting from tissue extraction.

In addition, only a small number of data points from three samples was used in the

inversion process. The results obtained from using these three samples suggest that our

inversion method could be used to differentiate normal and abnormal tissue areas. This

was based on the statistical analysis conducted on all estimates, namely: 144 data points.

However, we would require a larger number of data points in order to make systematic

conclusions about the performance of our method. For instance, we believe that the usage

of a larger number of estimates from points randomly located on the tissue surface would

help ensure that the observations are representative of a wider spectrum of tissues.

Finally, we only differentiated between normal, transitional and adenocarcinoma ridden

samples where the histological changes are expected to be relatively large. Our MAP-

based inversion method should also be tested on tissues with other abnormalities, that

may present with a smaller number of histological changes such as benign epithelial polyps.

Consequently, the inversion method should ideally be tested on a larger number of samples,

from different patients and with various abnormalities in order to objectively evaluate its

capabilities and limitations.
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Validating the Transmittance Model of the Gelatin Phantoms

We previously noted that our MAP based estimation was applied to a number of gelatin

phantoms. Only a small number of phantoms were prepared, and an even smaller number

was designed to exhibit light scattering properties. Furthermore, the absorption coeffi-

cients of food dyes and gelatin used in these phantoms may have included a large level

of error. This was due to the lack of any information about the optical properties of the

food dyes used in the experimental process, and the limited availability of resources that

would allow us to safely validate the recovered values. In addition, applying our inversion

method to such a small number of samples greatly affects the possibility of accurately

verifying the performance of our estimator. In fact, the use of such a small number of

estimates reduces the credibility of any statistical analysis of the results.

Consequently, we suggest the use of different absorbers to prepare the phantoms. In

particular, the use of absorbers with well documented optical properties such as blood,

methylene blue or indocyanine green would be highly beneficial as their properties are

well documented in the literature. If food dyes are to be used, a more structured analysis

of their absorption coefficients has to be completed before being used in the forward

model. The forward model describing light transfer in the gelatin phantoms should also

be carefully validated against measurements to ensure that the estimation process is not

affected by incorrect assumption.

Speeding Up the Inversion Process

One of the main challenges encountered during the application of our inversion process

was the time required to recover the parameters of interest from a single spectrum. This

is particularly relevant when the Monte-Carlo method is used as part of the forward

modelling phase. As stated earlier, A Monte-Carlo based forward model is often the

most accurate mean of modelling light transfer in a multi-layered medium. However, a

single run of the MCML software requires a few minutes, depending on the number of

wavelengths and photons used. Consequently, the parameter recovery process can be very

computationally expensive as demonstrated in the Chapter 6.
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There exist a number of possible solutions to overcome this limitation such as the use of

high performance clusters, GPUs and the error correction algorithm described in (Hidovic

and Rowe, 2004). As part of our research, we only investigated the use of one of these

methods, namely, the error correction algorithm designed by Hidovic-Rowe. However, we

observed that the time improvements that this method brought was insufficient for our

inversion method to be used in real-time. The effects of using this method could be further

enhanced by reducing the time required for each evaluation of the forward model. This

can be achieved by making use of new advances in GPU computing (MCX (Fang and

Boas, 2013)) and high performance clusters for example.

Another option would be to use a simple forward model, such as Kubelka-Munk, and

estimate the mismatch between it and the measured data as part of the inversion process.

In Chapter 6, we noted that when modelling light travel in the human colon, the reflectance

spectra reconstructed using Kubelka-Munk showed a noticeable offset from the measured

spectra. The offset varied depending on the values of θ used for data reconstruction

and could therefore not be be directly corrected for. However, we believe that further

investigation into this offset and how it can be included in the forward model as another

parameter would allow us to speed up the estimation process. This would be achieved

through removing the need for a more accurate, but also more computationally expensive

method such as MCML, without compromising the accuracy of our estimation.

In conclusion, we advance that although further work needs to be completed before it

can be used in real-time, this inversion method shows great promise in its potential to

accurately recover the optical properties of a tissue when some of its parameters are not

accurately known. In addition, this method could also be used as part of classification

efforts aiming to differentiate normal from abnormal tissues. Furthermore, we observed

that our method could be applied to any type of biological medium as long as we are

able to construct a forward model of light transport in that tissue. We thus suggest that

this work could be extended to assist diagnosticians in the early, non-invasive detection of

various tissue abnormalities if the limitations described above are addressed.



Appendix A

Estimation Results from Simulated

Reflectance Spectra

This table summarises the results of the estimation process conducted on simulated re-

flectance spectra of the human colon. We first use the forward model summarised in Sec-

tion 6.3 to generate the reflectance spectra using various values of θ = (CHB∗ ,diamclg ,Cclg , d)
T .

We then apply the inversion method to the generated data. This process is summarised

in Algorithm 6.1.

CHB∗ ĈHB∗ diamclg
ˆdiamclg Cclg Ĉclg d d̂

4.0 2.6197 0.1000 0.5459 4.0 2.5184 0.0395 0.0325

4.0 2.9768 0.1000 0.5277 10.0 8.1986 0.0395 0.0186

4.0 1.4453 0.1000 0.5500 15.0 5.9279 0.0395 0.0351

4.0 3.1518 0.1000 0.3623 20.0 8.2901 0.0395 0.0332

4.0 6.8433 0.1000 0.4365 4.0 4.8760 0.0595 0.0203

4.0 5.6960 0.1000 0.3500 10.0 7.9459 0.0595 0.0270

4.0 4.4565 0.1000 0.3697 15.0 8.5137 0.0595 0.0344

4.0 3.6295 0.1000 0.3577 20.0 9.1972 0.0595 0.0408

4.0 6.8780 0.1000 0.4171 4.0 4.6694 0.0603 0.0215

4.0 7.0717 0.1000 0.4137 10.0 9.7090 0.0603 0.0215

4.0 3.8708 0.1000 0.3603 15.0 8.0441 0.0603 0.0362

4.0 4.8758 0.1000 0.3890 20.0 11.8477 0.0603 0.0319

4.0 5.1420 0.3000 0.5027 4.0 4.9583 0.0395 0.0363
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4.0 4.7865 0.3000 0.4292 10.0 10.6671 0.0395 0.0395

4.0 3.8265 0.3000 0.4224 15.0 12.9812 0.0395 0.0473

4.0 3.3194 0.3000 0.4053 20.0 15.0381 0.0395 0.0530

4.0 5.0121 0.3000 0.5035 4.0 5.4534 0.0595 0.0464

4.0 5.2484 0.3000 0.4176 10.0 12.2062 0.0595 0.0509

4.0 4.1662 0.3000 0.4154 15.0 14.8891 0.0595 0.0544

4.0 3.4834 0.3000 0.4642 20.0 18.4883 0.0595 0.0559

4.0 6.1183 0.3000 0.4853 4.0 6.2171 0.0603 0.0423

4.0 5.0804 0.3000 0.4422 10.0 12.4221 0.0603 0.0497

4.0 4.1123 0.3000 0.4263 15.0 15.0757 0.0603 0.0554

4.0 3.6272 0.3000 0.4054 20.0 17.3520 0.0603 0.0603

4.0 4.7586 0.5000 0.5115 4.0 4.1311 0.0395 0.0419

4.0 4.1054 0.5000 0.4438 10.0 8.9184 0.0395 0.0442

4.0 4.2479 0.5000 0.4230 15.0 13.0823 0.0395 0.0466

4.0 3.6127 0.5000 0.3992 20.0 14.8039 0.0395 0.0532

4.0 6.1707 0.5000 0.4810 4.0 5.6209 0.0595 0.0440

4.0 5.4670 0.5000 0.4278 10.0 12.0520 0.0595 0.0489

4.0 4.1814 0.5000 0.4307 15.0 14.5755 0.0595 0.0542

4.0 3.7616 0.5000 0.4328 20.0 17.1844 0.0595 0.0597

4.0 6.4548 0.5000 0.4737 4.0 5.8032 0.0603 0.0432

4.0 5.4692 0.5000 0.4253 10.0 11.9739 0.0603 0.0501

4.0 4.6106 0.5000 0.4134 15.0 15.2597 0.0603 0.0550

4.0 3.8447 0.5000 0.3969 20.0 17.3354 0.0603 0.0597

4.0 5.1447 0.7400 0.4988 4.0 3.6858 0.0395 0.0393

4.0 4.5949 0.7400 0.4453 10.0 8.3500 0.0395 0.0405

4.0 4.2817 0.7400 0.4226 15.0 11.4447 0.0395 0.0448

4.0 3.8772 0.7400 0.4224 20.0 14.0779 0.0395 0.0479

4.0 6.0951 0.7400 0.4760 4.0 4.7090 0.0595 0.0445

4.0 6.0146 0.7400 0.4195 10.0 10.9263 0.0595 0.0472

4.0 4.8585 0.7400 0.4019 15.0 13.5157 0.0595 0.0545
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4.0 4.0919 0.7400 0.4124 20.0 15.7375 0.0595 0.0584

4.0 7.0306 0.7400 0.4931 4.0 5.4428 0.0603 0.0394

4.0 5.8721 0.7400 0.4163 10.0 10.8844 0.0603 0.0473

4.0 4.9166 0.7400 0.4154 15.0 13.8138 0.0603 0.0539

4.0 4.1923 0.7400 0.4272 20.0 16.2799 0.0603 0.0557

7.0 8.7602 0.1000 0.4093 4.0 3.0455 0.0395 0.0254

7.0 5.8719 0.1000 0.3576 10.0 4.8053 0.0395 0.0317

7.0 6.9518 0.1000 0.3702 15.0 8.3649 0.0395 0.0245

7.0 4.4792 0.1000 0.3505 20.0 7.2455 0.0395 0.0355

7.0 5.4903 0.1000 0.5283 4.0 2.8809 0.0595 0.0339

7.0 7.8529 0.1000 0.3891 10.0 6.1562 0.0595 0.0319

7.0 6.7538 0.1000 0.4521 15.0 8.3427 0.0595 0.0325

7.0 6.6867 0.1000 0.4247 20.0 9.7017 0.0595 0.0359

7.0 4.9924 0.1000 0.4914 4.0 2.8180 0.0603 0.0315

7.0 4.7679 0.1000 0.4935 10.0 5.1888 0.0603 0.0363

7.0 5.6360 0.1000 0.3756 15.0 6.4321 0.0603 0.0423

7.0 7.2107 0.1000 0.3957 20.0 9.9918 0.0603 0.0357

7.0 6.1864 0.3000 0.4988 4.0 3.7908 0.0395 0.0450

7.0 6.0125 0.3000 0.4336 10.0 8.4399 0.0395 0.0473

7.0 5.7857 0.3000 0.4104 15.0 11.6835 0.0395 0.0506

7.0 5.2245 0.3000 0.4054 20.0 14.0654 0.0395 0.0551

7.0 7.6209 0.3000 0.4783 4.0 4.7511 0.0595 0.0495

7.0 7.0591 0.3000 0.4362 10.0 9.9585 0.0595 0.0549

7.0 6.2797 0.3000 0.3961 15.0 12.8547 0.0595 0.0598

7.0 5.9429 0.3000 0.4387 20.0 16.9391 0.0595 0.0595

7.0 7.9742 0.3000 0.4887 4.0 5.1518 0.0603 0.0475

7.0 6.9467 0.3000 0.4557 10.0 10.2497 0.0603 0.0558

7.0 6.6034 0.3000 0.4251 15.0 13.8922 0.0603 0.0588

7.0 5.6144 0.3000 0.4543 20.0 16.5804 0.0603 0.0597

7.0 7.8417 0.5000 0.4568 4.0 3.8047 0.0395 0.0430
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7.0 6.6363 0.5000 0.4516 10.0 8.7481 0.0395 0.0449

7.0 5.8776 0.5000 0.4343 15.0 11.4364 0.0395 0.0507

7.0 5.2348 0.5000 0.4344 20.0 13.7045 0.0395 0.0543

7.0 8.1276 0.5000 0.4781 4.0 4.5709 0.0595 0.0499

7.0 7.6344 0.5000 0.4522 10.0 10.3154 0.0595 0.0543

7.0 6.7473 0.5000 0.4254 15.0 13.1876 0.0595 0.0593

7.0 6.3252 0.5000 0.4688 20.0 17.7008 0.0595 0.0566

7.0 8.2423 0.5000 0.4711 4.0 4.5686 0.0603 0.0510

7.0 7.4158 0.5000 0.4148 10.0 9.4779 0.0603 0.0573

7.0 6.9750 0.5000 0.4300 15.0 13.7133 0.0603 0.0585

7.0 6.3921 0.5000 0.4411 20.0 17.0936 0.0603 0.0587

7.0 6.3548 0.7400 0.5070 4.0 2.8994 0.0395 0.0476

7.0 6.8418 0.7400 0.4794 10.0 7.9344 0.0395 0.0432

7.0 6.3752 0.7400 0.4325 15.0 10.4173 0.0395 0.0477

7.0 5.6447 0.7400 0.4221 20.0 12.2113 0.0395 0.0525

7.0 8.7533 0.7400 0.4982 4.0 4.1723 0.0595 0.0490

7.0 7.3606 0.7400 0.4547 10.0 8.5901 0.0595 0.0543

7.0 6.8219 0.7400 0.4468 15.0 11.9169 0.0595 0.0557

7.0 6.0518 0.7400 0.4506 20.0 14.2296 0.0595 0.0597

7.0 8.0802 0.7400 0.4766 4.0 3.8412 0.0603 0.0504

7.0 7.3907 0.7400 0.4626 10.0 8.6984 0.0603 0.0548

7.0 7.0499 0.7400 0.4227 15.0 11.7948 0.0603 0.0588

7.0 6.4497 0.7400 0.4403 20.0 14.8459 0.0603 0.0593

10.0 6.1102 0.1000 0.4850 4.0 2.1580 0.0395 0.0324

10.0 5.9313 0.1000 0.4870 10.0 5.0589 0.0395 0.0264

10.0 6.7517 0.1000 0.4530 15.0 6.8171 0.0395 0.0277

10.0 7.1897 0.1000 0.4405 20.0 8.1725 0.0395 0.0302

10.0 6.4573 0.1000 0.4934 4.0 2.3937 0.0595 0.0356

10.0 5.3762 0.1000 0.5218 10.0 4.4035 0.0595 0.0402

10.0 7.0181 0.1000 0.4383 15.0 6.2134 0.0595 0.0398
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10.0 7.9236 0.1000 0.4270 20.0 8.3358 0.0595 0.0384

10.0 6.3143 0.1000 0.5608 4.0 2.3217 0.0603 0.0404

10.0 7.6233 0.1000 0.4965 10.0 5.6637 0.0603 0.0318

10.0 7.3716 0.1000 0.4492 15.0 6.6316 0.0603 0.0375

10.0 6.6128 0.1000 0.4930 20.0 7.9196 0.0603 0.0416

10.0 8.5930 0.3000 0.5014 4.0 3.7873 0.0395 0.0450

10.0 7.4563 0.3000 0.4553 10.0 7.7042 0.0395 0.0503

10.0 6.7316 0.3000 0.4688 15.0 10.6572 0.0395 0.0530

10.0 6.3142 0.3000 0.4424 20.0 12.7619 0.0395 0.0571

10.0 8.8241 0.3000 0.4993 4.0 4.1557 0.0595 0.0543

10.0 8.8233 0.3000 0.4319 10.0 8.8598 0.0595 0.0602

10.0 7.6648 0.3000 0.4696 15.0 12.4001 0.0595 0.0588

10.0 7.7783 0.3000 0.4727 20.0 16.7783 0.0595 0.0583

10.0 8.8301 0.3000 0.4803 4.0 4.0222 0.0603 0.0557

10.0 8.1032 0.3000 0.4734 10.0 8.8226 0.0603 0.0602

10.0 8.5979 0.3000 0.4594 15.0 13.5619 0.0603 0.0579

10.0 7.6996 0.3000 0.4202 20.0 15.1840 0.0603 0.0603

10.0 7.8364 0.5000 0.4695 4.0 2.9607 0.0395 0.0508

10.0 7.4755 0.5000 0.4653 10.0 7.2268 0.0395 0.0517

10.0 7.6255 0.5000 0.4249 15.0 10.3207 0.0395 0.0545

10.0 6.4433 0.5000 0.4076 20.0 11.5881 0.0395 0.0588

10.0 9.0187 0.5000 0.4860 4.0 3.7687 0.0595 0.0558

10.0 8.9417 0.5000 0.4640 10.0 8.7709 0.0595 0.0598

10.0 8.1527 0.5000 0.4581 15.0 12.0069 0.0595 0.0602

10.0 8.2100 0.5000 0.4502 20.0 15.7493 0.0595 0.0594

10.0 9.3466 0.5000 0.4815 4.0 3.8352 0.0603 0.0562

10.0 8.9149 0.5000 0.4750 10.0 8.9595 0.0603 0.0582

10.0 7.4900 0.5000 0.4474 15.0 10.8364 0.0603 0.0603

10.0 8.1815 0.5000 0.4643 20.0 15.9920 0.0603 0.0595

10.0 8.9305 0.7400 0.4223 4.0 2.5091 0.0395 0.0510
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10.0 7.3537 0.7400 0.4692 10.0 6.0731 0.0395 0.0521

10.0 7.2295 0.7400 0.4471 15.0 8.7062 0.0395 0.0534

10.0 7.2033 0.7400 0.4378 20.0 11.2786 0.0395 0.0560

10.0 9.1491 0.7400 0.4696 4.0 3.1286 0.0595 0.0556

10.0 8.9681 0.7400 0.4565 10.0 7.3421 0.0595 0.0598

10.0 9.1938 0.7400 0.4692 15.0 11.6826 0.0595 0.0576

10.0 8.1225 0.7400 0.4413 20.0 13.0905 0.0595 0.0603

10.0 9.4143 0.7400 0.5095 4.0 3.3582 0.0603 0.0552

10.0 9.4256 0.7400 0.4722 10.0 7.9732 0.0603 0.0569

10.0 9.4452 0.7400 0.4791 15.0 12.0159 0.0603 0.0564

10.0 8.4490 0.7400 0.4181 20.0 13.3582 0.0603 0.0603

Table A.1: Results of the estimation process conducted on simulated reflectance spectra of the

human colon



Appendix B

Error Correction Algorithm

In this chapter, we summarise the error correction algorithm devised by Hidovic-Rowe

and described in details in (Hidovic-Rowe, 2006; Hidovic-Rowe et al., 2006). We use K

to represent the fast, yet not suitably accurate, Kubelka-Munk based model. We also

represent the far more accurate but also more computationally expensive model (MCML)

asM . We thus define the error function E as the function describing the difference between

M and K: E(θ) = M(θ)−K(θ). We then define a surrogate model S that encapsulates

our knowledge of the error function as S = K(θ) + E(θ). When estimating the error

function for the next cycle, we need to find the differential dE at θ as A, which we the

use to define the vector b = E(θ)−A(θ), making the error function E(x) = A(x)+ b. We

update the surrogate model at each cycle using the following algorithm:

1. Initially set A and b to a matrix and vector of zeros respectively. This makes our

surrogate model identical to the Kubelka-Munk based function.

2. At cycle t, find an estimate θ̂ using our inversion method, and S as the forward

model required.

3. Let F (θ̂) = M(θ̂) − S(θ̂) be the surrogate error function, between the accurate

model M and the present surrogate S at point θ̂ found in the previous step.

4. Estimate the differential dF at θ̂ by the matrix B which can be calculated using the

following algorithm:

For each parameter k:

• Set e
k
as a zeros vector of the same length as θ̂. Set the element at position k

to be one.

135



136 APPENDIX B. ERROR CORRECTION ALGORITHM

• To determine the kth column of matrix B, we simply approximate F so F (θ̂ +

δe
k
) = B(δe

k
+ θ̂ − θ̂) + F (θ̂). Each column can therefore be defined as:

B(:, k) = 1
δ
(M(θ̂ + δe

k
)− S(θ̂ + δe

k
)− F (θ̂))

where the accurate model M and the surrogate S are run on the perturbed

vector θ̂ + δe
k
, and δ is small compared with the bounds chosen for θ̂.

5. Set A = A + B

6. Set b = b+ F (θ̂) + B(θ̂)

7. Repeat steps 2− 5 as often as necessary

This means that each cycle requires n + 1 runs of the accurate model M where n is the

number of parameters in our unknown vector θ. We run 20 iterations of this algorithm,

with each run requiring n+1 evaluations of M , making the inversion process far less time

consuming than a direct inversion that may require around 200 - 300 iterations.



References

Igor Aleksander and Helen Morton. Introduction to Neural Computing. Cengage Learning
EMEA, 1995.

R. Anderson, , and J.A. Parrish. The optics of human skin. Journal of Invistigative
Dermatology, 77:13–19, 1981a.

R. Anderson, B. S. Parrish, and J. Parrish. The optics of human skin. The Journal of
Investigative Dermatology, 77(1), 1981b.

S. R. Arridge and M. Schweiger. A gradient-based optimisation scheme for optical tomog-
raphy. Optics Express, 1998.

S. R. Arridge and M Schweiger. Use of multiple data types in time-resolved optical ab-
sorption and scattering tomography. volume 2035, 1993.

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy. A finite element approach for
modeling photon transport in tissue. Medical Physics, 20:299–309, 1993.

S.R. Arridge. Optical tomography in medical imaging. Inverse Problems, 15:R41–R93,
1999.

S.R. Arridge and J.C. Hebden. Optical imaging in medicine: II. modelling and reconstric-
tion. Physics in Medicine and Biology, 42:841–853, 1997.

R. Attaie and R. L. Richtert. Size distribution of fat globules in goat milk. Journal of
Dairy Science, 83:940–944, 2000.

Andrew P Bagshaw, Adam D Liston, Richard H Bayford, Andrew Tizzard, Adam P
Gibson, A Thomas Tidswell, Matthew K Sparkes, Hamid Dehghani, Colin D Binnie,
and David S Holder. Electrical impedance tomography of human brain function using
reconstruction algorithms based on the finite element method. NeuroImage, 20(2):752–
764, 2003.

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin. Optical optical properties of skin,
subcutaneous, and muscle tissues: A review. Journal of Innovative Optical Health
Sciences, 4(1):9–38, 2011.

T. Binzoni, A. Vogel, A.H. Gandjbakhche, and R. Marchesini. Detection Limits of Multi-
spectral Optical Imaging under the Skin Surface. Physics in Medicine and Biology, 53:
617–636, 2008.

Ake Bjõrck. Numerical Methods for Least Squares Problems. Society for Industrial and
Applied Mathematics, 1996.

137



Abhĳit J Chaudhari, Felix Darvas, James R Bading, Rex A Moats, Peter S Conti,
Desmond J Smith, Simon R Cherry, and Richard M Leahy. Hyperspectral and mul-
tispectral bioluminescence optical tomography for small animal imaging. Physics in
medicine and biology, 50(23):5421, 2005.

Z. Chen, A. Taflove, and V. Backman. Concept of equiphase sphere for light scattering by
non-spherical dielectric particles. J. Opt. Soc. Am. A. Opt. Image. Sci. Vis., 21:88–97,
2004.

W. F. Cheong, S. A. Prahl, and A. J. Welch. A review of the optical properties of biological
tissues. IEEE Journal of Quantum Electronics, 26(12):2166–2185, 1990.

E. Claridge and S.J Preece. An inverse method for the recovery of tissue parameters from
colour images. Information Processing in Medical Imaging, LNCS 2732:306–317, 2003.

Ela Claridge, Symon Cotton, Per Hall, and Marc Moncrieff. From colour tissue histology:
Physics-based interpreation of images of pigmented skin lesions. Medical Image Analysis,
7:489–502, 2003.

G. W. Corder and D. I. Foreman. Nonparametric Statistics for Non-Statisticians. John
Wiley & Sons, 2009.

A. Corlu, T. Durduran, and R. Choe. Uniqueness and wavelength optimisation in
continuous-wave multispectral diffuse optical tomography. Optics Letters, 28:2339–2341,
2003.

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S.R. Arridge, E.M.C Hillman,
and A.G. Yodh. Diffuse optical tomography with spectral constraints and wavelength
optimization. Applied Optics, 44:2082–2093, 2005.

S. Cotton, E. Claridge, and P. Hall. A skin imaging method based on a colour formation
model and its application to the diagnosis of pigmented skin lesions. In Proceeding of
Medical Image Understanding and Analysis, 1999.

Symon Cotton, Ela Claridge, and Per Hall. Assisting diagnosis of melanoma through the
“noninvasive” biopsy of skin lesions. In Proceedings of Medical Image Understanding
and Analysis, 1997.

Symon D’Oyly Cotton. A non-invasive imaging system for assisting in the diagnosis of
malignant melanoma. PhD thesis, School of Computer Science.
The University of Birmingham, 1998.

Beatriz Morales Cruzado, Sergio Vazquez y Montiel, and Jose Alberto Delgado Atencio.
Genetic algorithms and mcml program for recovery of optical properties of homogeneous
turbid media. Biomed Opt Express, 4(3):433–446, 2013.

J. B. Dawson, D. J. Barker, J. D. Ellis, E. Grassam, J.A. Cotterill, G. W. Fisher, and
J.W. Feather. A theoretical and experimental study of light absorption and scattering
by in vivo skin. Phys. Med. Biol, 25:695–709, 1980.

D. W. Day, J. R. R. Jass, A. B. Price, N. A. Shepherd, J. M. Sloan, N. J. Talbot, G. T.
Williams, and B. F. , Warren. Morson and Dawson’s Gastrointestinal Pathology. Wiley-
Blackwel, 2003.

H. C. Van de Hulst. Multiple Light Scattering. Academic Press, New York, 1980.



A.R. De Pierro and M.E.B. Amagishi. Fast EM like methods for maximum ”A Posteriori”
estimates in emission tomography. IEEE Transaction on Medical Imaging, 20:280–288,
2001.

Hamid Dehghani, Brian W Pogue, Steven P Poplack, and Keith D Paulsen. Multiwave-
length three-dimensional near-infrared tomography of the breast: initial simulation,
phantom, and clinical results. Applied Optics, 42(1):135–145, 2003.

Hamid Dehghani, Matthew E Eames, Phaneendra K Yalavarthy, Scott C Davis, Subhadra
Srinivasan, Colin M Carpenter, Brian W Pogue, and Keith D Paulsen. Near infrared
optical tomography using nirfast: Algorithm for numerical model and image reconstruc-
tion. Communications in numerical methods in engineering, 25(6):711–732, 2009.

A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from incomplete data
via the EM algorithm. Journal of the Royal Statistical Society. Series B, 39:1–38, 1977.

R.M.P. Doornbos, R. Lang, M.C. Aslders, F.W. Cross, and H.J.C.M. Sterenborg. The
determination of in vivo human tissue optical properties and absolute chromophore con-
centrations using spacially resolved steady-state diffuse reflectance spectroscopy. Physics
in Medicine and Biology, 44:967–981, 1999.

F. A. Duck. Physical Properties of Tissue: A Comprehensive Reference Book. Academic
Press, London (1990), 1990.

W. G. Egan and T. W. Hilgeman. Optical Properties of Inhomogeneous Materials. Aca-
demic Press, 1979.

J. P. Elisee. Innovative Boundary Integral and Hybrid Methods for Diffuse Optical Imaging.
PhD thesis, Department of Computer Science. University College London, 2011.

Qianqian Fang and David A. Boas. Monte carlo simulation of photon migration in 3d
turbid media accelerated by graphics processing units. Opt. Express, 17:20178–20190,
2013.

W.G. Faris. Lectures on statistics. http://math.arizona.edu/ faris/stat.pdf, July 2009.

T.J. Farrell, M.S. Patterson, and B. Wilson. The use of a neural network to determine tis-
sue optical properties from spatially resolved diffuse reflectance measurements. Physics
in Medicine and Biology, 37(12):2281–2286, 1992a. URL http://stacks.iop.org/
0031-9155/37/2281.

T.J. Farrell, M.S. Patterson, and B. Wilson. A diffusion theory model of spacially resolved,
steady-state diffuse reflectance for the noninvasive determination of tissue optical prop-
erties in vivo. Medical Physics, 19:879–888, 1992b.

Tom Fawcett. An introduction to roc analysis. Pattern Recogn. Lett., 27(8):861–874,
June 2006. doi: 10.1016/j.patrec.2005.10.010. URL http://dx.doi.org/10.1016/j.
patrec.2005.10.010.

M. Firbank, S. R. Arridge, M. Schweiger, and D. T. Delpy. An investigation of light
transport through scattering bodies with non-scattering regions. Physics in Medicine
and Biology, 41(4):767, 1996.

R. (Roger) Fletcher. Practical methods of optimization. Wiley-Interscience, 2001.

http://stacks.iop.org/0031-9155/37/2281
http://stacks.iop.org/0031-9155/37/2281
http://dx.doi.org/10.1016/j.patrec.2005.10.010
http://dx.doi.org/10.1016/j.patrec.2005.10.010


P. F. Fox and P. L. H. McSweeny. Dairy Chemistry and Biochemistry. Blackie Academic
and Professional, London, 1998.

J. R. Frisvad, N. J. Christensen, and H. W. Jensen. Computing the scattering properties of
participating media using lorenz-mie theory. In ACM Transactions on Graphics (TOG)
- Proceedings of ACM SIGGRAPH, volume 26(3), 2007.

Y. Furuya and T. Ogata. Scanning electron microscopic study of the collagen networks
of the normal mucosa, hyperplastic polyp, tubular adenoma and adenocarcinoma of the
human large intestine. Tohoku Journal of Experimental Medicine, 169:1–19, 1993.

Henri P. Gavin. The levenberg-marquardt method for nonlinear least squares curve-fitting
problems. 2013.

E. Ge, K. T. Schomacker, and N. S. Nishioka. Identification of colonic dysplasia and
neoplasia by diffuse reflectance spectroscopy and pattern recognition techniques. Applied
Spectroscopy, 52:833–839, 1998.

S.C. Gebhart, W.C. Lin, and A. Mahadevan-Jansen. In vitro determination of normal and
neoplastic human brain tissue optical properties using inverse adding-doubling. Physics
in Medicine and Biology, 51:2011–2027, 2006.

S. Geman and D.E. McClure. Bayesian image analysis: An application to single photon
tomography. In Proceedings of the AMerican Statistical Society, pages 12–18, 1985.

A.P. Gibson, J.C. Hebden, and S.R. Arridge. Recent advances in diffuse optical imaging.
Physics in Medicine and Biology, 50:R1–R43, 2005.

Gavin J Gibson. Statistical inference : Notes, tutorials and solutions. 2005. URL http:
//www.ma.hw.ac.uk/~gavin/stats5/.

P.E. Gill and W. Murray. Algorithms for the solution of the nonlinear least-squares prob-
lem. SIAM Journal on Numerical Analysis, 15:977–992, 1978.

GLOBOCAN. Colorectal cancer incidence, mortality and prevalence worldwide in 2008.
GLOBOCAN 2008, 10 2008. URL http://globocan.iarc.fr/factsheet.asp.

C. Gondro and B.P. Kinghorn. A simple genetic algorithm for multiple sequence alignment.
Genetic Molecular Research, 6:964–82, 2007.

J.A. Gualtieri and B.K. Pursi. Solving inversion problems with neural networks. Neural
Networks, 3:955–960, 1990.

M. Hammer and D. Schweitzer. Quantitative reflectance spectroscopy at the human ocular
fundus. Journal of Atmospheric Sciences, 33:2452–2459, 1976.

M. Hammer, A. Roggan, D. Schweitzer, and G. Muller. Optical properties of ocular
fundus tissues - an in vitro study using the double integrating sphere technique and
inverse Monte Carlo simulation. Physics in Medicine and Biology, 40:963–978, 1995.

K.M. Hanson. Introduction to bayesian image analysis. In Medical Imaging: Image Pro-
cessing, number 1898 in SPIE, pages 716–731, 1993.

L. G. Henyey and J.L. Greenstein. Diffuse radiation in the galaxy. Astrophysical Journal,
93:70–83, 1941.

http://www.ma.hw.ac.uk/~gavin/stats5/
http://www.ma.hw.ac.uk/~gavin/stats5/
http://globocan.iarc.fr/factsheet.asp


D. Hidovic and J. E. Rowe. Validating a model of colon colouration using an evolu-
tion strategy with adaptive approximations. In Genetic and Evolutionary Computation
Conference, pages 1005–1017, 2004.

D. Hidovic-Rowe and E. Claridge. Model based recovery of histological parameters from
multi spectral images of the colon. In Flynn M.J., editor, Proceedings SPIE, volume
5745, pages 127–137, 2005.

Dzena Hidovic-Rowe. Model based analysis of colon reflectance. PhD thesis, School of
Computer Science. The University of Birmingham, 2006.

Dzena Hidovic-Rowe, Jonathan E. Rowe, and Manuela Lualdi. Markov models of inte-
grating spheres for hyperspectral imaging. Applied Optics, 45(21):5248–5257, 2006.

M. Hilska, Y. Collan, J. Peltonen, R. Gullichsen, H. Paajanen, and M. Laato. The dis-
tribution of collagen types i, iii and iv in normal and malignant colorectal mucosa.
European Journal of Surgery, 164:457–464, 1998.

Z. Huang, W. Zheng, S. Xie, R. Chen, H. Zeng, D. I. McLean, and H. Lui. Laser induced
autofluorescence microscopy of normal and tumor human colonic tissue. Int. J. Oncol,
24:59–63, 2004.

H.M. Hudson and R.S. Larkin. Accelerated image reconstruction using orderd subsets of
projection data. IEEE Transactions on Medical Imaging, 13:601–609, 1994.

S. L. Jacques, C. A. Alter, and S. A. Prahl. Angular dependence of hene laser light by
human dermis. Laser Life Science, 1:309–333, 1987.

Steven Jacques. Skin Optics, 1998. http://omlc.ogi.edu/news/jan98/skinoptics.html
(February 2008).

G. Jagajothi and S. Raghavan. Estimation and measurement of biological tissues using
optical simulation method. Progress In Electromagnetics Research M, 6:155–165, 2009.

Steven M. Kay. Fundamentals of Statistical Signal Processing: Estimation Theory. Prentic
Hall, 1993.

P. Kearney, R. E. Smith, C. Bonacina, and T. Eymann. Integration of computational
models inspired by economics and genetics. BT Technology Journal, 18:150–61, 2000.

Robert E. Keller and Wolfgang Banzhaf. Genetic programming using genotype-phenotype
mapping from linear genomes into linear phenotypes. In Genetic Programming 1996:
Proceedings of the First Annual Conference, pages 116–122. MIT Press, 1996.

A. Kienle, L. Lilge, M.S. Patterson, R. Hibst, R. Steiner, and B.C. Wilson. Spatially
resolved absolute diffuse reflectance measurements for noninvasive determination of the
optical scattering and absorption coefficients of biological tissue. Applied Optics, 35(13):
2304–2314, 1996.

A. Kienle, M.S. Patterson, N. Dognitz, R. Bays, G. Wagniere, and H. Van den Berg.
Noninvasive determination of the optical properties of two-layered turbid media. Applied
Optics, 37:779–791, 1998.

Alwin Kienle and Michael S. Patterson. Improved solutions of the steady-state and the
time-resolved diffusion equations for reflectance from a semi-infinite turbid medium.
Journal of Optics Society, 14:246–254, 1997.



Vitaly P. Kutavichus, Valery V. Filippov, and Vitali H. Huzouski. Determination of
optical parameters and thickness of weakly absorbing thin films from reflectance and
transmittance spectra. Appl. Opt., 45(19):4547–4553, Jul 2006. doi: 10.1364/AO.45.
004547. URL http://ao.osa.org/abstract.cfm?URI=ao-45-19-4547.

Ivo W. Kwee. Towards a Bayesian Framework for Optical Tomography. PhD thesis,
Department of Medical Physics and Bioengineering, University College London, 1999.

Kenneth Levenberg. A method for the solution of certain non-linear problems in least
squares. The Quarterly of Applied Mathematics, 2:164–168, 1944.

Y. Li, K.H. Ang, G.C.Y. Chong, W. Feng, K.C. Tan, and H Kashiwagi. Cautocsd-
evolutionary search and optimisation enabled computer automated control system de-
sign. International Journal of Automation and Computing, 1:76–88, 2004.

David MacKay. Information Theory , Inference And Learning Algorithms. Cambridge
University Press, 2003. ISBN 9780521670517. URL http://www.inference.phy.cam.
ac.uk/itila/book.html.

Donald Marquardt. An algorithm for least-squares estimation of nonlinear parameters.
SIAM Journal on Applied Mathematics, 11:431–441, 1963.

S. J. Matcher. Handbook of Optical Biomedical Diagnostics, chapter 9:Signal Quantifica-
tion and Localization n Tissue Near-Infrared Spectroscopy. SPIE Optical Engineering
Press, 2001.

S.J. Matcher, M. Cope, and D.T. Delpy. In vivo measurements of the wavelength de-
pendence of tissue scattering coefficients between 760 and 900 nm measured with time
resolved spectroscopy. Applied Optics, 36(1):386–396, 1997.

Christian Matzler. Matlab functions for mie scattering and absorption. Technical report,
Universitas Bernensis, 2002.

I. V. Meglinski and S. J. Matcher. Computer simulation of the skin reflectance spectra.
Computer Methods and Programs in Biomedicine, 70:179–186, 2003.

J.R. Mourant, T. Fuselier, J. Boyer, T.M. Johnson, and I.J. Bigio. Predictions and mea-
surements of scattering and absorption over broad wavelength ranges in tissue phantoms.
Applied Optics, 36:949–957, 1997.

James H Nobbs. Kubelka-Munk Theory and the Prediction of Reflectance. Review of
Progress in Coloration and Related Topics, 15:66–75, 1985.

Jorge Nocedal and Stephen Wright. Numerical Optimization. Springer Series in Operations
Research and Financial Engineering. Springer, 1999.

D.J. Olive. A course in statistical theory. http://www.math.siu.edu/olive/irun.pdf.

G.M. Palmer and N. Ramanujam. Monte Carlo-based inverse model for calculating tissue
optical properties. part i: Theory and validation on synthetic phantoms. Applied Optics,
45(5):1062–1071, 2006.

G.M. Palmer, C. Zhu, T.M. Breslin, F. Xu, K.W. Gilchrist, and N. Ramanujam. Monte
Carlo-based inverse model for calculating tissue optical properties. part ii: Application
to breast cancer diagnosis. Applied Optics, 45(5):1072–1078, 2006. URL http://ao.
osa.org/abstract.cfm?URI=ao-45-5-1072.

http://ao.osa.org/abstract.cfm?URI=ao-45-19-4547
http://www.inference.phy.cam.ac.uk/itila/book.html
http://www.inference.phy.cam.ac.uk/itila/book.html
http://ao.osa.org/abstract.cfm?URI=ao-45-5-1072
http://ao.osa.org/abstract.cfm?URI=ao-45-5-1072


M.S. Patterson, B. Chance, and B.C. Wilson. Time resolved reflectance and transmittance
for the noninvasive measurement of tissue optical properties. Applied Optics, 28(12):
2331–2336, 1989.

M.S. Patterson, J.D. Moulton, B.C. Wilson, K.W. Berndt, and J.R. Lakowicz. Frequency
domain reflectance for the determination of the scattering and absorption properties of
tissue. Applied Optics, 30(31):4474–4476, 1991.

T.J. Pfefer, L.S. Matchette, C.L. Bennett, J.A. Gall, J.N. Wilke, A.J. Durkin, and M.N.
Ediger. Reflectance-based determination of optical properties in highly attenuating
tissue. Journal of Biomedical Optics, 8:206–215, 2003.

S. Prahl. Optical-Thermal Response of Laser Irradiated Tissue, chapter 5, pages 101–129.
Plenum Press, 1995a.

S. A. Prahl. Optical absorption spectra for haemoglobin. Oregon Medical Laser Centre,
10 2007a. URL http://omlc.ogi.edu/spectra/hemoglobin/index.html.

S. A. Prahl. Optical absorption spectra for melanin. Oregon Medical Laser Centre, 12
2007b. URL http://omlc.ogi.edu/spectra/melanin/mua.html.

S. A. Prahl. A user’s manual for the inverse adding-doubling program: a compendium of
worries. 1993.

S. A. Prahl. The adding-doubling method. In A. J. Welch and M. J. C. van Gemert, editors,
Optical-Thermal Response of Laser Irradiated Tissue, chapter 5, pages 101–129. Plenum
Press, 1995b.

S. A. Prahl, M. Keĳzer, S. L. Jacques, and A. J. Welch. A Monte Carlo model of light
propagation in tissue. In G. J. Müller and D. H. Sliney, editors, SPIE Proceedings of
Dosimetry of Laser Radiation in Medicine and Biology, volume IS 5, pages 102–111,
1989.

S. A. Prahl, M. J. C. Van Gemert, N. Van Wieringen, and A. J. Welch. Iterated adding-
doubling to determine optical properties. San Jose, nov 1991.

S. A. Prahl, M. J. C. Van Gemert, and A. J. Welch. Determining the optical properties
of turbid media by using the adding-doubling method. Appl. Opt., 32:559–568, 1993a.

S.A. Prahl, M.J.C. Van Gemert, and A.J. Welch. Determining the optical properties of
turbid media using the adding-doubling method. Applied Optics, 32:559–568, 1993b.

S.J. Preece and E. Claridge. Physics-based approach to geometry-insensitive recovery
of quantitative scene parameters from images. Technical report, School of Computer
Science. The University of Birmingham, 2004.

S.J. Preece, I.B. Styles, S.D. Cotton, E. Claridge, and A. Calcagni. Medical Image Comput-
ing and Computer-Assisted Intervention, volume 3750/2005 of Lecture Notes in Com-
puter Science, chapter Model Based Parameter Recovery from Uncalibrated Optical
Images, pages 509–516. Springer Berlin / Heidelberg, 2005.

W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling. Numerical Recipes in
Pascal: The Art of Scientific Computing. Cambridge University Press, 1989.

http://omlc.ogi.edu/spectra/hemoglobin/index.html
http://omlc.ogi.edu/spectra/melanin/mua.html


J. Qin and R. Lu. Measurement of the absorption and scattering properties of turbid
liquid foods using hyperspectral imaging. Applied Spectroscopy, 61(4):388–396, 2007.

Gustav Quade. Cutaneous layers, 2008. URL http://www.meb.uni-bonn.de/Cancernet/
CDR0000062713.html.

T. Reuter, S. Karl, M. Hoffmann, B. Dietzek, and J. Popp. Determination of the optical
properties of native joint cartillage with nir-spectroscopy. Biomed Tech, 58(Suppl. 1),
2013.

Stuart J. Russel and Peter Norvig. Artificial Intelligence: A modern Approach. Upper
Saddle River, New Jersey: Prentice Hall, 2003.

T. J. Ryan. Physiology, Biochemistry and Molecular Biology of the Skin, volume 1, chapter
Cutaneous Circulation, pages 1019–84. Oxford University Press, 1991.

E. Salomatina and A. N. Yaroslavsky. Evaluation of the in vivo and ex vivo optical
properties in a mouse ear model. Phys. Med. Biol, 53:2797–2807, 2008.

Jane Sandby-Moller, Thomas Poulsen, and Hans Christian Wulf. Epidermal thickness at
different body sites: Relationship to age, gender, pigmentation, blood content, skin type
and smoking. Acta Derm Benereol, 83:410–413, 2003.

M. Schweiger, S.R. Arridge, M. Hiraoka, and D.T. Delpy. The finite element method for
the propagation of light in scattering media: boundary and source conditions. Medical
physics, 22(11):1779–1792, 1995.

Martin Schweiger and Simon Arridge. The toast++ software suite for forward and inverse
modeling in optical tomography. Journal of Biomedical Optics, 19(4):040801, 2014. URL
http://web4.cs.ucl.ac.uk/research/vis/toast/intro.html.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope. Near-infrared optical properties of
ex vivo human skin and subcutaneous tissues measured using the monte carlo inversion
technique. Phys. Med. Biol, 43:2465–2478, 1998.

S. A. Skinner, G. M. Frydman, and P. E. O’Brien. Microvascular structure of benign and
malignant tumors of the colon in humans. Digestive Diseases and Sciences, 40:373–384,
1995.

Jan A. Snyman. Practical Mathematical Optimization: An introduction to basic opti-
mization theory and classical and new gradient-based algorithms. Springer, Cambridge,
Massachusetts, 2005.

Subhadra Srinivasan, Brian W Pogue, Shudong Jiang, Hamid Dehghani, and Keith D
Paulsen. Spectrally constrained chromophore and scattering near-infrared tomography
provides quantitative and robust reconstruction. Applied optics, 44(10):1858–1869, 2005.

Peter F. Stadler. Genotype-phenotype maps.

C.V. Stewart. Robust parameter estimation in computer vision. SIAM Review (Society
for Industrial and Applied Mathematics), 41:513–537, 1999.

I.B. Styles, A. Clacagni, E. Claridge, F. Orihuela-Espina, and J.M. Gibson. Quantitative
analysis of multispectral fundus images. Medical Image Analysis, 10(4):578–597, 2006.

http://www.meb.uni-bonn.de/Cancernet/CDR0000062713.html
http://www.meb.uni-bonn.de/Cancernet/CDR0000062713.html
http://web4.cs.ucl.ac.uk/research/vis/toast/intro.html


T. Tarvainen, M. Vauhkonen, V. Kolehmainen, and J. P. Kaipio. Finite element model
for the coupled radiative transfer equation and diffusion approximation. International
journal for numerical methods in engineering, 65(3):383–405, 2006.

Valery Tuchin. Tissue Optics: Light Scattering methods and Instruments for Medical
Diagnosis. SPIE PRESS, 2000.

J. Turnay, N. Olmo, J. G. Gavailanes, and M. A. Lizarbe. Collagen metabolism in human
colon adenocarcinoma. Connective Tissue Research, 23:251–260, 1989.

H. C. Van de Hulst. A new look at multiple scattering. Technical report, NASA Institute
for Space Studies, New York, 1962.

H. C. Van De Hulst. Light Scattering by Small Particles. Dover Publications, Inc., New
York, 1981.

H. C. Van de Hulst and K. Grossman. Multiple light scattering in planetary atmospheres.
Gordon and Breach Science Publishers Inc, New York, 1968.

M. J. C. Van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, and W. M. Star. The optics
of human skin. IEEE Transactions on Biomedical Engineering, 36(12):1146–1154, 1989.

P. Walstra and R. Jenness. Dairy Chemistry and Physics. John Wiley and Sons, New
York, 1984.

L. Wang, S.L. Jacques, and L. Zheng. MCML - Monte Carlo modeling of light transport
in multi-layered tissues. Computer Methods and Programs in Biomedicine, 47:131–146,
1995.

L. V. Wang and H. I. Wu. Biomedical Optics: Principles and Imaging. John Wiley, 2007.

Lihong Wang and Steven L. Jacques. Monte Carlo Modeling of Light Transport in Multi-
layered Tissues in Standard C.

Q. Wang, H. Yang, A. Agrawal, N.S. Wang, and T.J. Pfefer. Measurement of internal
tissue optical properties at ultraviolet and visible wavelengths: Development and im-
plementation of a fiberoptic-based system. Optics Express, 16(12):8685–8703, 2008.

L Ward, A Nag, and L C W Dixon. Hill-climbing techniques as a method of calculating
the optical constants and thickness of a thin metallic film. Journal of Physics D: Applied
Physics, 2(2):301, 1969. URL http://stacks.iop.org/0022-3727/2/i=2/a=419.

Thomas Weise. Global Optimization Algorithms - Theory and Application. Thomas Weise,
2007-05-01 edition, 2007.

A. J. Welch and M. C. J. Van Gemert, editors. Tissue Optics. Academic Press, New York
(1992), 1992.

Q.R. Williams and J.A. Noble. A spatio-temporal analysis of contrast ultrasound image
sequences for assessment of tissue perfusion. In MICCAI (2), pages 899–906, 2004.

Q.R. Williams, J.A. Noble, A. Ehlgen, and H. Becher. Tissue perfusion diagnostic clas-
sification using a spatio-temporal analysis of contrast ultrasound image sequences. In
IPMI, pages 222–233, 2005.

http://stacks.iop.org/0022-3727/2/i=2/a=419


Wiscombe. Doubling initialization revisited, w. j. J. Quant. Spectrosc. Radiat. Transfer,
18:245–248, 1977a.

W. J. Wiscombe. On initialization, error and flux conservation in the doubling method.
J. Quant. Spectrosc. Radiat. Transfer, 16:637–658, 1976.

W. J. Wiscombe. The delta-M method: Rapid yet accurate radiative flux calculations for
strongly asymmetric phase functions. J. Atmos. Sci., 34:1408–1422, 1977b.

I. V. Yaroslavsky, A. N. Yaroslavsky, T. Goldbach, and H. J. Schwarzmaier. Inverse hybrid
technique for determining the optical properties of turbid media from integrating-sphere
measurements. Applied Optics, 35:6797–6809, 1996.

K. M. Yoo, Feng Liu, and R. R. Alfano. When does the diffusion approximation fail to
describe photon transport in random media? Phys. Rev. Lett., 64:2647–2650, May 1990.

Y. Yuan. Step-sizes for the gradient method. AMS/IP Studies in Advanced Mathematics,
42:785, 2008.

D. Yudovsky and L. Pilon. Retrieving skin properties from in vivo spectral reflectance
measurements. Applied Optics, 4:305–314, 2011.

Deniz Yuret and Michael de la Maza. Dynamic hill climbing: Overcoming the limitations
of optimization techniques. In The Second Turkish Symposium on Artificial Intelligence
and Neural Networks, 1993.

George Zonios, Julie Bykowski, and Nikiforos Kollias. Skin Melanin, Haemoglobin, and
Light Scattering Properties Can Be Quantitatively Assessed In Vivo using Diffuse Re-
flectance spectroscopy. Investigative Dermatology, 117:1452–1457, 2001.


	Introduction
	Motivation
	Problem Specification
	Proposed Solution
	Thesis Structure

	Fundamentals of Tissue Optics
	Introduction
	Absorption
	Scattering
	Transport Theory
	The Diffusion Approximation
	The Kubelka-Munk Model
	Monte Carlo Simulation for Multi-Layered Media
	Adding-Doubling Method
	Finite Elements Method

	Conclusion

	Model-Based Parameter Recovery
	Introduction
	Introduction to Optimisation Algorithms
	Common Optimisation Algorithms
	Hill Climbing
	Gradient Descent
	Gauss-Newton
	Levenberg-Marquardt
	Evolutionary Algorithms
	Neural networks

	Optimisation Methods in Biomedical Optics
	Hybrid Techniques Based on Inverse Monte-Carlo
	Inverse Adding Doubling (IAD)

	Other Optical Parameter Recovery Methods
	Introduction to Estimation Theory
	Minimum Variance Unbiased Estimation (MVU)
	Least Squares Estimation (LSE)
	Maximum Likelihood
	Maximum A Posteriori Method (MAP)

	Applications of Estimation Theory in Biomedical Imaging
	Conclusion

	Application to Simulated Data: Human Skin
	Introduction
	Structure of the Human Skin
	The Forward Model
	Absorption
	Scattering

	The Inversion Algorithm
	Maximum Likelihood
	Maximum A Posteriori

	Results and Discussion
	Conclusion

	Application to Gelatin Phantoms
	Introduction
	Non-Scattering Phantoms
	Scattering Phantoms
	Scattering Properties of Milk

	Conclusion

	Application to Multispectral Images of the Colon
	Introduction
	Structure of the Human Colon
	Reflectance Model of the colon
	Modelling absorption
	Modelling Scattering

	Histological Changes in Cancerous Tissue
	Simulated Data
	Results and Discussion

	Multispectral Images of the Colon
	Modelling the Imaging Setup
	The Inversion Algorithm
	Results and Discussion

	Conclusion

	Conclusions and Future Work
	Summary of Work Presented
	Future Work

	Estimation Results from Simulated Reflectance Spectra
	Error Correction Algorithm
	References

