227 research outputs found

    A Comparative Study on Denoising Algorithms for Footsteps Sounds as Biometric in Noisy Environments

    Get PDF
    Biometrics is the automated identification of a person based on distinctive characteristics, such as fingerprints, face, voice, or the sound of footsteps. This last characteristic has significant challenges considering the background noise present in any real-life application, where microphones would record footsteps sounds and different types of noise. For this reason, it is crucial to consider not only the capacity of classification algorithms for recognizing a person using foostetps sounds, but also at least one stage of denoising algorithms that can reduce the background sounds before the classification. In this paper we study the possibilities of a two-stage approach for this problem: a denoising stage followed by a classification process. The work focuses on discovering the proper strategy for applying combinations of both stages for specific noise types and levels. Results vary according to the type and level of noise, e.g., for White noise at signal-to-noise ratio level, accuracy can increase from 0.96 to 1.00 by applying deep learning based-filters, but the same option does not benefit the cases of signals with low level natural noises, where Wiener filtering can increase accuracy from 0.6 to 0.77 at the highest level of noise. The results represent a baseline for developing real-life implementations of footstep biometrics.Universidad de Costa Rica/322–B9-105/UCR/Costa RicaUCR::VicerrectorĂ­a de Docencia::IngenierĂ­a::Facultad de IngenierĂ­a::Escuela de IngenierĂ­a ElĂ©ctric

    Human activity data discovery based on accelerometry

    Get PDF
    Dissertation to Obtain Master Degree in Biomedical Engineerin

    Privacy-Protecting Techniques for Behavioral Data: A Survey

    Get PDF
    Our behavior (the way we talk, walk, or think) is unique and can be used as a biometric trait. It also correlates with sensitive attributes like emotions. Hence, techniques to protect individuals privacy against unwanted inferences are required. To consolidate knowledge in this area, we systematically reviewed applicable anonymization techniques. We taxonomize and compare existing solutions regarding privacy goals, conceptual operation, advantages, and limitations. Our analysis shows that some behavioral traits (e.g., voice) have received much attention, while others (e.g., eye-gaze, brainwaves) are mostly neglected. We also find that the evaluation methodology of behavioral anonymization techniques can be further improved

    Multimodal person recognition for human-vehicle interaction

    Get PDF
    Next-generation vehicles will undoubtedly feature biometric person recognition as part of an effort to improve the driving experience. Today's technology prevents such systems from operating satisfactorily under adverse conditions. A proposed framework for achieving person recognition successfully combines different biometric modalities, borne out in two case studies

    Voice-signature-based Speaker Recognition

    Get PDF
    Magister Scientiae - MSc (Computer Science)Personal identification and the protection of data are important issues because of the ubiquitousness of computing and these have thus become interesting areas of research in the field of computer science. Previously people have used a variety of ways to identify an individual and protect themselves, their property and their information. This they did mostly by means of locks, passwords, smartcards and biometrics. Verifying individuals by using their physical or behavioural features is more secure than using other data such as passwords or smartcards, because everyone has unique features which distinguish him or her from others. Furthermore the biometrics of a person are difficult to imitate or steal. Biometric technologies represent a significant component of a comprehensive digital identity solution and play an important role in security. The technologies that support identification and authentication of individuals is based on either their physiological or their behavioural characteristics. Live-­‐data, in this instance the human voice, is the topic of this research. The aim is to recognize a person’s voice and to identify the user by verifying that his/her voice is the same as a record of his / her voice-­‐signature in a systems database. To address the main research question: “What is the best way to identify a person by his / her voice signature?”, design science research, was employed. This methodology is used to develop an artefact for solving a problem. Initially a pilot study was conducted using visual representation of voice signatures, to check if it is possible to identify speakers without using feature extraction or matching methods. Subsequently, experiments were conducted with 6300 data sets derived from Texas Instruments and the Massachusetts Institute of Technology audio database. Two methods of feature extraction and classification were considered—mel frequency cepstrum coefficient and linear prediction cepstral coefficient feature extraction—and for classification, the Support Vector Machines method was used. The three methods were compared in terms of their effectiveness and it was found that the system using the mel frequency cepstrum coefficient, for feature extraction, gave the marginally better results for speaker recognition

    Voice signature based Speaker Recognition

    Get PDF
    Magister Scientiae - MSc (Computer Science)Personal identification and the protection of data are important issues because of the ubiquitousness of computing and these havethus become interesting areas of research in the field of computer science. Previously people have used a variety of ways to identify an individual and protect themselves, their property and their information

    EEG-based biometrics: Effects of template ageing

    Get PDF
    This chapter discusses the effects of template ageing in EEG-based biometrics. The chapter also serves as an introduction to general biometrics and its main tasks: Identification and verification. To do so, we investigate different characterisations of EEG signals and examine the difference of performance in subject identification between single session and cross-session identification experiments. In order to do this, EEG signals are characterised with common state-of-the-art features, i.e. Mel Frequency Cepstral Coefficients (MFCC), Autoregression Coefficients, and Power Spectral Density-derived features. The samples were later classified using various classifiers, including Support Vector Machines and k-Nearest Neighbours with different parametrisations. Results show that performance tends to be worse for crosssession identification compared to single session identification. This finding suggests that temporal permanence of EEG signals is limited and thus more sophisticated methods are needed in order to characterise EEG signals for the task of subject identificatio

    Human activity recognition with accelerometry: novel time and frequency features

    Get PDF
    Human Activity Recognition systems require objective and reliable methods that can be used in the daily routine and must offer consistent results according with the performed activities. These systems are under development and offer objective and personalized support for several applications such as the healthcare area. This thesis aims to create a framework for human activities recognition based on accelerometry signals. Some new features and techniques inspired in the audio recognition methodology are introduced in this work, namely Log Scale Power Bandwidth and the Markov Models application. The Forward Feature Selection was adopted as the feature selection algorithm in order to improve the clustering performances and limit the computational demands. This method selects the most suitable set of features for activities recognition in accelerometry from a 423th dimensional feature vector. Several Machine Learning algorithms were applied to the used accelerometry databases – FCHA and PAMAP databases - and these showed promising results in activities recognition. The developed algorithm set constitutes a mighty contribution for the development of reliable evaluation methods of movement disorders for diagnosis and treatment applications

    Multimodal Biometric Analysis for Monitoring of Wellness

    Get PDF
    Biometric data can provide useful information about person's overall wellness. The focus of this dissertation is wellness monitoring and diagnostics based on behavioral and physiological traits. The research comprises of three studies: passive non-intrusive biometric monitoring, active monitoring using a wearable computer, and a diagnostics of early stages of Parkinson's disease. In the first study, a biometric analysis system for collecting voice and gait data from a target individual has been constructed. A central issue in that problem is filtering of data that is collected from non-target subjects. A novel approach to gait analysis using floor vibrations has been introduced. Naive Bayes model has been used for gait analysis, and the Gaussian Mixture Model has been implemented for voice analysis. It has been shown that the designed biometric system can provide sufficiently accurate data stream for health monitoring purposes.In the second study, a universal wellness monitoring algorithm based on a binary classification model has been developed. It has been tested on the data collected with a wearable body monitor SenseWearÂźPRO and with the Support Vector Machines acting as an underlying binary classification model. The obtained results demonstrate that the wellness score produced by the algorithm can successfully discriminate anomalous data.The focus of the final part of this thesis is an ongoing project, which aims to develop an automated tool for diagnostics of early stages of Parkinson's disease. A spectral measure of balance impairment is introduced, and it is shown that that measure can separate the patients with Parkinson's disease from control subjects
    • 

    corecore