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Abstract

The demand for objectivity in clinical diagnosis has been one of the greatest challenges in

Biomedical Engineering. The study, development and implementation of solutions that

may serve as ground truth in Physical Activity (PA) recognition and in medical diagno-

sis of chronic motor diseases is ever more imperative. This thesis describes a Human

Activity Recognition (HAR) framework based on feature extraction and feature selection

techniques where a set of time, statistical and frequency domain features taken from 3-

dimensional accelerometer sensors was designed. In the present study, machine learning

algorithms were applied in a non-supervised environment using feature representation

of accelerometer data to discover the activities performed by different subjects. A fea-

ture selection framework is developed in order to improve the clustering accuracy and

reduce computational costs. The features which best distinguish a particular set of ac-

tivities were selected from a 180th - dimensional feature vector through machine learn-

ing algorithms. The implemented framework achieved very encouraging results in hu-

man activity recognition: an average person-dependent Adjusted Rand Index (ARI) of

99.29% ± 0.5% and a person-independent ARI of 88.57% ± 4.0% were reached. Accu-

rate and detailed measurement of an individual’s PA is a key requirement for helping

researchers understand the relationship between motor activity and health.

Keywords: Human Activity Recognition, Sensor Signal Processing, Feature Extraction,

Feature Selection, Clustering Algorithms.
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Resumo

A procura pela objectividade no diagnóstico clínico tem sido um dos grandes desafios

na área da Engenharia Biomédica. O desenvolvimento e implementação de ferramentas

que podem servir de ground truth no estudo do comportamento humano e no diagnós-

tico médico de doenças crónicas é cada vez mais imperativo. Este trabalho descreve

uma ferramenta de reconhecimento de actividade humana com base na extracção e selec-

ção de características de sinais de acelerometria. São usadas técnicas de aprendizagem

automática baseadas num vector de características do domínio estatístico, temporal e

espectral. As características que melhor distinguem um determinado conjunto de activi-

dades foram seleccionadas através da aplicação de algoritmos de aprendizagem automá-

tica a um vector de 180 características. Foi desenvolvida uma ferramenta de selecção de

características com o objectivo de optimizar os resultados obtidos e diminuir os custos

computacionais. O algoritmo implementado apresenta resultados bastante promissores.

Foi alcançada uma performance de 99.29% ± 0.5% para testes dependentes do sujeito e

88.57% ± 4.0% para testes independentes do sujeito. Uma avaliação precisa e detalhada

da actividade física é um requisito fundamental para entender a relação entre comporta-

mento e o respectivo estado de saúde do indivíduo.

Palavras-chave: Reconhecimento de Actividade Humana, Processamento de Sinal, Ex-

tracção de Características, Selecção de Características, Algoritmos de Clustering.
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1
Introduction

1.1 Motivation

The constant concern with the human physical and psychological well-being has been

the drive for research studies that have led to a promising evolution of medicine and

engineering. In Biomedical Engineering, the demand for objectivity in clinical diagnosis

has been one of the greatest challenges. The study, development and implementation

of solutions that may serve as ground truth in the medical diagnosis of pathologies so

subjective and hard to trace such as Obsessive Compulsive Disorder (OCD) or Autism

Spectrum Disorder (ASD) is ever more imperative.

The change of motor activity is one of the essential signs of psychiatric disorders and

many of these, including Depression and OCD, exhibit diagnostic criteria that require an

assessment of the motor activity changes of the patient. The behavioural classification

usually relies on observation, therefore a highly experienced analyst is always needed,

which is the result of a too focused observation on small movements, causing difficul-

ties in long term experiences. Human body movement has up to 244 degrees of freedom

[1], making the modelling of structural and dynamic features for activity recognition of

such a tough object, a complex task. Analysing human action is particularly challeng-

ing because of the complex non rigid and self occluding nature of the articulated human

motion. There is a variety of methods to quantify levels of usual Physical Activity (PA)

1



1. INTRODUCTION 1.2. Objectives of the Current Work

during daily life, including objective measurements, such as Heart Rate, Heart Rate Vari-

ability (HRV) and Accelerometry (ACC).

In the medical and therapeutic field, the accelerometer is used in the evaluation of

human movement, detection of sleep disorders and fall detection, amongst other appli-

cations [2]. The aim of this research is to study and propose novel tools for ACC in hu-

man activity recognition. In the present study, the software OpenSignals [3] was used for

signal acquisition and signal processing algorithms were developed in Python Program-

ming Language [4] and Orange Software [5]. This dissertation was developed at PLUX -

Wireless Biosignals in collaboration with the Champalimaud Foundation - Champalimaud

Neuroscience Programme.

1.2 Objectives of the Current Work

The main focus of the present work is understanding signals produced by a Triaxial Ac-

celerometer (TA), interpreting them in the context of human movement and identifying

clinically relevant parameters from the data. Signal processing techniques are imple-

mented with the purpose of examining accelerometer data and finding new information

that would be difficult to identify directly from the raw data.

The hypothesis of the current work is that ACC is a suitable technique for moni-

toring movement patterns in free-living subjects over long periods of time and that it

can be used to measure quantitative parameters that can provide clinical insight into the

health status of the subject. A method for convenient monitoring of detailed ambulatory

movements in daily life, using a portable measurement device employing a single TA is

presented. The goal of this thesis is to extract information on statistical, temporal and

spectral domains of ACC signals for human activity recognition.

Tests will be made, based on machine learning methodologies, which will allow the

identification of different activities performed by different subjects. This tool is based on

an architecture of signal sensor processing, feature extraction, feature selection and clus-

tering algorithms. To achieve the proposed goals, the following steps were implemented:

1. Acquire and analyse the data produced by a TA, placed on different parts of the

body, during human movement: create a database and propose an annotation struc-

ture for PA data;

2
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2. Develop a framework for the interpretation of the data provided by an ACC moni-

toring system: design a set of time, statistical and frequency domain features from

several areas such as speech recognition and PA;

3. Develop algorithms to extract relevant information from the data;

4. Apply clustering algorithms based on feature representation of accelerometer data:

visualization of time series features - The Horizon Plot [6];

5. Explore the choice of features and signal window size on the performance of differ-

ent clustering algorithms;

6. Develop a framework to differentiate human activities, such as sitting, walking,

standing, running and lying;

7. Evaluate the use of the system in daily life settings and the data interpretation

framework: intra and inter subject context discovery;

8. Implement a new metric for assessing the obtained results from unsupervised tech-

niques: classification-based evaluation.

1.3 State of the Art : Brief Historical Perspective

In recent decades, there has been an increasing interest in the use of ACC to monitor hu-

man behaviour. The advance of Microelectromechanical Systems (MEMS) has helped the

development of small size and low cost accelerometers, making it a very convenient tool

for monitoring free-living subjects. Accelerometers are inexpensive, require relatively

low power [7], and are embedded in most of today’s cellular phones. Many HAR sys-

tems have been developed in the past which incorporate the use of accelerometers [8]

and nowadays, TA are, perhaps, the most broadly used sensors to recognize ambulatory

activities [9].

Those physical activity recognition systems recognize a variety of everyday postures,

physical and household activities and common exercise routines from a small set of wear-

able accelerometers using machine learning techniques. One of the key point is the di-

versity of areas where ACC has been used in the past. The most studied have been:

physical activity recognition (defining and comparing group of subjects with different

activity levels), balance and postural sway, metabolic energy expenditure (which is the

3
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standard reference for the measurement of physical activities), gait, detection of falls and

sit-to-stand transfers (which is an important indicator for postural instability). The use of

accelerometers has helped on diagnose and prevention of a number of diseases such as

Parkinson’s Disease (PD), OCD , ASD and Depression [10, 11, 12, 13, 14].

Obsessive Compulsive Disorder is one of the most debilitating neuropsychiatric dis-

orders, characterized by unreasonable thoughts (obsessions) that lead to repetitive be-

haviours (compulsions) [10]. The diagnosis of OCD is mostly based on descriptions of

the experiences lived by the patient, in the behaviours described by relatives and by

evaluating the patient’s mental state. The change of motor activity is one of the essential

signs of psychiatric disorders and many of these, including Depression and OCD, exhibit

diagnostic criteria that require an assessment of the motor activity changes of the patient.

Parkinson’s Disease was initially characterized by James Parkinson in 1817. PD is

classified as a chronic movement disorder. Predominant attributes of PD are rigidity from

an increase in muscle tone, shuffling gait, impaired balance and tremor during resting

status [11]. Accelerometers have been tested and evaluated for the characterization of

PD status, and the integration of accelerometer technology has the potential to further

advance treatment of PD [15].

Autism Spectrum Disorder is a disorder affecting a child’s social development char-

acterized by deficits in social skills, communication and repetitive or restricted interests.

Children with autism will often exhibit behaviours, such as vocal stutters and brief bouts

of vigorous activity (e.g., violently striking the back of the hands) to cope with everyday

life. Over the past few years, research in both physical activity and autism with ACC

has been rigorous, leading to more advanced methods of assessment and sampling [12].

Recognizing this behaviours via wearable sensors can provide valuable information re-

garding an individual’s degree of functional ability.

Depression is a major public health problem and is characterized by one or two im-

portant depressive episodes, such as lowered mood, increased sense of worthlessness,

fatigue, and preoccupation with death and suicide [13]. By using accelerometers, the ef-

fects of psychomotor retardation on the level of gross body movement can be measured.

Accelerometers can also be used to identify regions of physical activity, sleep, and seden-

tary behavioural states throughout the day [14].

One type of system designed for elderly people aims to detect potentially dangerous

situations in a person’s life in order to call for external help automatically. Such systems

4
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can be seen as a complement to traditional emergency systems such as smoke or fire

alarms, by detecting, for instance, when a person has fallen [16] or when vital body signs

indicate imminent health threats [17]. Other type of health-related system aims to use

context-information to promote a more active and thus healthy lifestyle, or to actively

support elderly or disabled people in performing everyday activities.

Physical-activity recognition via wearable sensors can provide valuable information

regarding an individual’s degree of functional ability and lifestyle. Even in the case of

healthy people, these movements can be highly individualistic. Nonetheless, there are a

set of basic parameters that are common to all instances of these movements. This allows,

through ACC, the identification and classification of certain behaviours of daily life. To

study daily life activities, accelerometers need to be able to detect accelerations between

±12 g, in general, and greater than ±6 g if placed at the waist [18].

Regarding the used classification systems, two approaches have been used to pat-

tern recognition. The first approach uses fixed-threshold classification while the second

approach uses reference-pattern-based classification. In fixed-threshold classification, ac-

tivities and postural orientations are discriminated by applying a threshold (derived em-

pirically) to the accelerometer signal. In reference-pattern-based classification, activity

patterns are compared to template reference patterns [19]. The traditional approach in

HAR for classifying a time series into physical activity, is to use regression-based thresh-

olds called cut-points [20] which allow researchers to estimate the time spent performing

physical activities at different intensity levels. Researchers, however, have found cut-

points to be inaccurate, and are turning to machine learning methods to identify physical

activity types and estimate energy expenditure more accurately [21].

Several papers have reported high recognition accuracy (92.25% [9], 95% [22], 97%

[23], and up to 98% [24]) under different evaluation methodologies. This work aims to

go beyond the state of the art in HAR, presenting solutions that address some of current

limitations: implement a novel set of features, test different signal segmentation methods,

selecting different window sizes and overlap percentage and propose a novel metric for

unsupervised methodologies.

The main objective of this study is to present a method for convenient monitoring

of detailed ambulatory movements in daily life, by the use of a portable measurement

device employing a single TA and machine learning techniques.

5



1. INTRODUCTION 1.4. Thesis Overview

1.4 Thesis Overview

The structure of this thesis is schematically represented in Figure 1.1.

In the first two chapters the basis that support the present research is reported. Chapter 1

provides a brief historical perspective, where objectives and motivation of this research

are clarified. The importance of objective monitoring human movement is discussed.

Also in this chapter, an overview on other studies about HAR with wearable sensors is

presented. In Chapter 2, different activities, sensors, and machine learning approaches

that have been proposed are discussed. Techniques for the assessment of human move-

ment are reviewed and the choice of ACC for unsupervised home monitoring is estab-

lished. The impact of the sensor specifications has also been analysed.

Chapter 3 presents a set of time, statistical and spectral domain features used in this

investigation. The choice of features is a fundamental first step in applying machine

learning methodologies to sensor data, and it can have a strong influence on the outcome

of any approach.

In Chapter 4, the composition of the TA signal is explained. The signal is made up

of several components, and each of these is examined. The proposed methodology and

the approach used in the work to extract and select features based on motion data is

described.

In Chapter 5, the carried out tests to pick the features which best distinguish a particu-

lar set of activities are described. The experimental evaluation of the ACC data collection

and interpretation system is discussed.

In Chapter 6, the results obtained from the investigation are presented. This chapter

draw the main conclusions from the work and provides recommendations for further

research.

The Appendix contains the paper accepted in the context of the presented research

work.
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Figure 1.1: Thesis Overview.
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2
Theoretical Background

Monitoring human movement can provide valuable information on a patient life style,

health status, rate of rehabilitation and other potentially useful clinical data. The present

work addresses these challenges in the context of wearable accelerometer-based simple

activity recognition. ACC is a method of movement kinematic analysis which allows,

through the use of an accelerometer, the quantification of caused or suffered accelera-

tions of the human body [25]. It has been pointed out that ACC, a technique that is

increasingly being used for monitoring human movement in laboratories and research

studies, is suitable for long term monitoring of human movement [21].

2.1 Activity Recognition based on Wearable Sensor

In signal acquisition, the sensor is the part of the instrument sensible to variations of

the physical parameter to be measured and must be specific to the nature of the signal

to be acquired [25]. Besides the fact that accelerometers usually lead to good results

in recognition of physical activities, they are small and cheap, require relatively little

energy, memory and processing power [26]. The basic principle of operation behind the

accelerometer based on MEMS is the displacement of a small proof mass etched into the

silicon surface of the integrated circuit and suspended by small beams [27]. Consistent

with Newton’s second law of motion, when a force is applied to the device, a developed
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acceleration displaces the mass. Acceleration can be defined as the rate of change of

direction or magnitude in the velocity of an object [25]. Therefore, its units are ms−2 or g

units, where 1g = 9.81ms−2. When choosing an accelerometer, it should be considered:

• Dynamic Range: the ± maximum amplitude that the accelerometer can measure

before distorting or clipping the output signal. Dynamic range is typically specified

units in g’s.

• Frequency Response: the frequency range to which the sensor will detect motion

and report a true output. Frequency response is typically specified as a range mea-

sured in Hertz.

• Sensitive Axis: accelerometers are designed to detect inputs in reference to an axis.

Single-axis accelerometers can only detect inputs along one plane. TA can detect

inputs in three orthogonal plans and are suitable for most applications.

• Size and Mass of an Accelerometer: these parameters can change the character-

istics of the tested object. The mass of the accelerometers should be significantly

smaller than the mass of the system to be monitored [25].

The most common accelerometers used in human activity research measure accelera-

tions either in the vertical plane (uni-axial), or in three planes (triaxial) and respond both

to frequency and intensity of the movement [28]. As the majority of human motion oc-

curs in more than one movement axis, TA are used to measure the acceleration in each

orthogonal axis. Table 2.1 presents some accelerometer specifications used in the present

investigation.

Table 2.1: Target Accelerometer System Parameters.
Parameter Target Value
Number of axes 3
Sampling Frequency 1.25 to 800 Hz

Maximum Acceleration Amplitude

12 bits 8 bits
±2 g 2/2048 2/128
±4 g 4/2048 4/128

and Acceleration Resolution (in bits and g) ±8 g 8/2048 8/128
Maximum Acceleration without Damage 5000 g

The reference point is usually chosen so that 0 g corresponds to a free-fall condition

and that the maximum output number corresponds to the maximum amount of g that
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the device can register. The output of an accelerometer worn on the body is dependent

on four factors: the position at which it is placed, its orientation at this location, the pos-

ture of the subject and the activity being performed by the subject [29]. If the subject is at

rest, the output of the accelerometer is determined by its inclination relative to the grav-

itational vector. If the orientation of the accelerometer relative to the person is known,

then the resulting accelerometer recordings can be used to determine the posture of the

subject relative to each direction [29].

2.2 Number and Body Position of the Accelerometer

The placement of the accelerometer is a relevant point of discussion. A device that is to

be worn over extended periods must be designed to be as simple to put on and com-

fortable to wear in order to encourage patient compliance [30]. A system with multiple

sensors placed across the body can provide superior data to a system that has only a sin-

gle sensor location. However, such system will be more time-consuming and thus, more

inconvenient to put on and wear, which will lead to reduced compliance rates.

One of the key points given is that in order to measure human acceleration, it is im-

portant to understand the motion of the human body and realize which physical property

one wishes to measure [31]. This is necessary in order to choose the right combination of

measurement range and accelerometer placement.

Generally, body motion can be measured with a single accelerometer placed close

to the body’s center of mass, which is located within the pelvis [32]. The advantage of

this placement is that attachment at the waist allows monitoring of accelerations near the

center of mass. Any movement of the body will cause the center of mass to shift [33].

There are other common placement locations such as chest or thigh [19]. Normally,

accelerometers are attached to the part of the body whose movement is being studied.

Ultimately, the optimal position to place the accelerometer depends on the application

and the type of activities to be recognized. The present study aims to develop a HAR

framework, for a waist mounted accelerometer based system.

2.3 Human Activities Acceleration

The magnitude of the acceleration tends to increase from the head to the ankle, and is

generally greater in the vertical direction [18]. Just as magnitude, frequency tends to
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decrease from the ankle to the head, and is greater in the vertical direction than in the

transverse plane [18].

The behaviour of the recognition accuracy as a function of the accelerometer sampling

rate was studied by Maurer et al. (2006) [34]. It was shown that no significant gain in

accuracy is achieved above 20 Hz for ambulation activities. Table 2.2, adapted from [18],

shows some amplitude intervals for some typical activities, all units are in g.

Table 2.2: Physical activities: Amplitude of the Movement with different Sensor Loca-
tions.

Motion
Vertical (g) Horizontal (g)

Head Body Ankle Head Body Ankle
Walking - -0.3; 0.8 -1.7; 3.3 -0.2; 0.2 -0.3; 0.4 -2.1; 0.4
Running 0.8; 4.0 0.9; 5.0 3.0; 12.0 - - -

Since the measurement ranges have an impact on the precision and cost of the ac-

celerometer, and the frequency determines the sampling rate of the device, this knowl-

edge becomes important when designing a sensor for clinical assessment.

2.4 Machine Learning Techniques for Activity Recognition

An efficient approach based on machine learning methods has been recently proposed in

several research projects with focus on activity recognition. Machine learning algorithms

based on the feature representation of accelerometer data have become the most widely

used approaches in PA prediction [35]. There are two main types of machine learning

algorithms: unsupervised and supervised learning. In this thesis, unsupervised learning

was chosen because of it collection of methods for grouping unlabelled data into subsets

(called clusters) that are believed to reflect the underlying structure of the data, based on

similarity groups within the data.

2.4.1 The K-Means Clustering Algorithm

K-means is a commonly used partitioning based clustering technique that searches for a

specified number of clusters, which are represented by their centroids, by minimizing an

error function [36]. This algorithm takes as input the number of clusters to generate, C,

and a set of observation vectors to cluster and returns a set of centroids, one for each of

the C clusters. The input data points are allocated to one of the existing clusters according

to the square of the Euclidean distance from the clusters, choosing the closest. The mean
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(centroid) of each cluster is then computed so as to update the cluster center. This update

occurs as a result of the change in the membership of each cluster. The processes of re-

assigning the input vectors and the update of the cluster centers is repeated until no more

change in the value of any of the cluster centers. An observation vector is classified with

the centroid index of the centroid closest to it.

The k-means algorithm tries to minimize distortion, which is defined as the sum of

the squared distances between each observation vector and its dominating centroid [37].

Each step of the k-means algorithm refines the choices of centroids to reduce distortion.

The change in distortion is used as a stopping criterion: when the change is lower than a

threshold, the k-means algorithm is not making sufficient progress and terminates. One

can also define a maximum number of iterations. If there is a set of observations vector

xj with j = 1, . . . , N , to be organized into Ci partitions with i = 1, . . . , k, then the squared

error criterion is defined by Equation 2.1:

J(M) =
k∑

i=1

N∑

j=1

‖xj −mi‖2 (2.1)

where mi is an element of the cluster prototype or centroid matrix M [38].

2.4.2 Clustering Distance Metric

A good clustering test will produce clusters in which the intra-class similarity is high and

the inter-class similarity is low. The K-Means Clustering Algorithm [39] gives a single

set of clusters, with no particular organization or structure within them. An important

component of a clustering algorithm is the distance measured between data points. If the

components of the data, for instance vectors, are all in the same physical units then it is

possible that the simple Euclidean distance metric is enough to successfully group similar

data instances. Another type of distance measurement that can be used is Hamming,

Manhattan or Pearson Correlation [39].

2.5 General Structure for Human Activity Recognition Systems

In the literature, there are many different methods to extract activity information from

raw sensor data [40]. The main steps can be categorized as: Preprocessing, Segmentation,

13



2. THEORETICAL BACKGROUND 2.5. General Structure for Human Activity Recognition Systems

Feature Extraction, Dimensionality Reduction and lastly, Clustering or Classification Pro-

cess. Figure 2.5 represents the general structure for HAR systems.

Preprocessing: Initial samples received from any type of sensor are called raw data.

Accelerometers respond to gravitational and body acceleration and the aim of filtering

the signal was to approximately separate the Body Acceleration Component and the

Gravitational Acceleration Component [41]. In the present study, in order to isolate the

Body Acceleration Component, a second-order Butterworth High-Pass filter with cut-off

frequency of 0.25 Hz was used.

Segmentation: Different segmentation methods can be applied to time-series data

which enhance relevant signal properties and enable the gather of useful information

from continuous stream of data: in the present study, timing windows and sliding win-

dows were considered as segmentation methods [40]. For activity recognition, where ac-

celerometer data from physical activity is windowed, the choice of the number of frames

is guided by a trade-off between two aspects: information and resolution. In the present

study, the accelerometer data was collected, cleaned, and preprocessed to extract features

that characterize 1000, 2000 and 4000 samples data windows with different overlap per-

centages.

Feature Extraction: Features can be defined as the abstractions of raw data since they

are reduced sets of original raw data which basically represent main characteristics and

behaviours of the signal. The reduced subset of large input data can be called as a fea-

ture vector, it contains important hints for the activity to be recognized and it is the main

input for clustering algorithms [40]. In the present investigation, features are grouped as

time, frequency and statistical domains.

Dimensionality Reduction: The aim of dimensionality reduction is to reduce the

computational complexity and increase the performance of the activity recognition pro-

cess. After the previous steps, collected data can be used directly in the clustering step.

But some part of data may not even contribute to the results of the clustering process.

Therefore, feature selection chooses distinguishing features from a set of candidates and

feature extraction uses data transformations to generate useful and novel features.

14



2. THEORETICAL BACKGROUND 2.6. Clustering Performance Evaluation

Clustering Algorithms: Clustering mechanisms separate and organize unlabeled data

into different groups whose members are similar to each other in some metric [42]. These

groups are called clusters. Being a method of unsupervised learning, the learner only

receives unlabeled inputs with no class information. A good clustering test will produce

clusters in which the intra-class similarity is high and the inter-class similarity is low. The

ultimate goal of clustering is to provide meaningful insights from the original data. In

the present work, K-Means Clustering Algorithm [39] was used.

Separate
Body and

Gravi-
tational

Acceleration

Feature
Extraction

Feature
Selection

Clustering
Algorithm

Best Cluster
Permutation

Processing Proposed
Evaluation

Proposed
Algorithm

Figure 2.1: General Structure for Human Activity Recognition Systems.

2.6 Clustering Performance Evaluation

Ideally, after a feature space clustering procedure, each cluster should contain samples

of only one activity. This would indicate that the data of the given feature was clearly

separable and thus, well-suited as an input for classification.

In the worst case, the clustering performance is equal to the probability of the per-

formed activity (∼ n−1 where n is the number of activities). This would imply that the

feature was not discriminative for the given set of activities and thus unlikely to be suited

for recognition [43]. The clustering performance should be higher than random guessing.

Evaluating the performance of a clustering algorithm is not as trivial as counting the

number of errors or the precision and recall of a supervised classification algorithm. In

particular, any evaluation metric should not take the absolute values of the cluster labels
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into account, but rather if this clustering define separations of the data similar to some

ground truth set of classes or satisfying some assumption such that members belong

to the same class are more similar that members of different classes according to some

similarity metric.

2.6.1 Adjusted Rand Index as a Metric for Comparing Partitions

Given the knowledge of the ground truth class assignment (labels true) and predicted

labels from the clustering algorithm, the ARI is a function that measures the similarity of

the two assignments, ignoring permutations and with chance normalization [39]. If C is

a ground truth class assignment and k the clustering labels, x and y are defined as:

• x, the number of pairs of elements that are in the same set in C and in the same set

in k.

• y, the number of pairs of elements that are in different sets in C and in different sets

in k.

The raw (unadjusted) Rand index is then given by Equation 2.2:

RI =
x+ y

C
nsamples

2

(2.2)

WhereCnsamples

2 is the total number of possible pairs in the dataset (without ordering).

However, the Rand Index (RI) score does not guarantee that random label assignments

will get a value close to zero (mainly if the number of clusters is in the same order of

magnitude as the number of samples) [39]. To counter this effect the expected of random

labels can be discounted by defining the adjusted Rand index shown in Equation 2.3:

ARI =
RI − E[RI]

max(RI)− E[RI]
(2.3)

2.7 Classification-based Evaluation: Proposed Metric

Evaluation of unsupervised approaches is usually difficult due to the lack of ground

truth to which one can compare the discovered structure [42]. The presented activity

recognition method includes three stages:
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• Clustering the data into homogeneous groups.

• Creating rules that connect instances to the correct clusters.

• Recognizing activities inside the clusters.

A confusion matrix contains information about true and predicted labels from a clus-

tering system. The performance of such systems is commonly evaluated using the data

in the matrix. Once the clustering algorithm randomly associates the clustering results

to non- annotated groups, the Algorithm 1, that links these groups to their corresponded

activity, was implemented.

Algorithm 1 Best Cluster Permutation.
1: dim← matrix.shape[0] . Compute matrix dimension
2: p← matrix.argmax(axis = 1) . Find maximum value index for each row
3: up← unique(p) . Sort unique index of p
4: if len(up) == dim then
5: return p . Check if there is only a maximum value per row
6: else
7: newP ← zeros(dim)− 1.0
8: for i in range(len(up)) do
9: ind← find(up[i] == p)

10: if len(ind) == 1 then
11: newP [ind]← up[i]
12: else
13: bInd← argmax(amax(m[ind, :], 1), 0) . Find the maximum index and

assign it
14: newP [ind[bInd]]← up[i]
15: end if
16: end for
17: ind← find(newP == −1) . Check labels not assigned
18: miss← range(dim)− set(up)
19: tempP ← bcp(matrix[ind, :][:,missing]) . Matrix is recursively built
20: newP [ind]← miss[tempP ] . Returns vector with true assignments
21: newCm← zeros((dim, dim))
22: for i in arange(len(newP )) do
23: newCm[i, :]← matrix[newP [i], :]
24: end for
25: return newCm . Returns Confusion Matrix
26: end if

This function receives the confusion matrix of random assignment and goes through

each row of the matrix and stores the index that contains the maximum value of each

row. It is checked whether the index is unique throughout the matrix. If the index is

unique, it makes the direct correspondence between the vector of true and predicted
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labels. Otherwise, it checks the index with the maximum value, and assigns it. The

process is recursively repeated. After obtaining the assignment vector, the matrix with

the labels already associated is reconstructed.
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3
Statistical, Temporal and Spectral

Domain Features

The choice of features is a fundamental first step in applying machine learning method-

ologies to sensor data, and it can have a strong influence on the outcome of any approach.

In the present work, each activity is model based on timing and sliding window strate-

gies. Specifically, the continuous sensor streams are divided into fixed length windows.

By choosing a proper window length, all the information of each activity can be extracted

from each single window. The information is then transformed into a feature vector by

computing a 180th - dimensional feature vector over the sensor data within each window.

Three sets of features which are incorporated in the recognition investigation framework

are now described. Figure 3 summarizes the list of features considered in this work.

3.1 Statistical Domain Features

A fundamental task in many statistical analysis is to characterize the location and vari-

ability of the time series. A further characterization of the data includes skewness, kur-

tosis and histogram. Histogram is an effective graphical technique for showing both the

skewness and kurtosis of a data set. The histogram of Body Acceleration (BA) component
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Features

Statistical Domain Temporal Domain Spectral Domain

Kurtosis

Skewness

Mean

Standard Deviation

Interquartile Range

Histogram

Root Mean Square

Median Absolute Deviation

Zero Crossing Rate

Pairwise Correlation

Autocorrelation

Maximum Frequency

Median Frequency

Cepstral Coefficients

Power Spectral Density

Mel-Frequency
Cepstral Coefficients

Fundamental Frequency

Power Bandwidth

Figure 3.1: Statistical, Temporal and Spectral Domain Features.

can be used to evaluate that variable as a predictor of static and dynamic activities. Kur-

tosis is a measure of whether the data are peaked or flat relative to a normal distribution

[44]. Skewness is a measure of the degree of asymmetry of the sensor signal distribu-

tion [44]. This function receives as inputs a n-dimensional array with data and the axis

along which skewness is calculated. Figure 3.2 represents a typical recording from the

accelerometer showing seven minutes of motion data, where the subject is asked to per-

form specific tasks. Time, in milliseconds, is represented in the x-axis and the magnitude

of the acceleration is represented, in g, in the y-axis. Histogram is a graphical representa-

tion of the distribution of data, Figure 3.3. This function groups data into bins, plotting

the number of members in each bin against the bin number. It receives the number of

bins and defines the number of equal-width bins in the given range (the lower and upper

range of the bins).
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Figure 3.2: Typical recording from the accelerometer showing seven minutes of motion

data where the subject is asked to perform specific tasks.

The result of a normalized histogram is the value of the probability density function

at the bin, normalized such that the integral over the range is 1 [44]. An array of different

number of bins is calculated for each axis, representing the distribution of acceleration

values. The amplitude, number of members in each bin, is considered as a new feature

to add to the feature vector.

Figure 3.3: Histogram representation of a typical recording from the accelerometer show-
ing seven minutes of recorded data where the subject is asked to perform specific tasks.
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Mean is the DC component (average value) of the signal over the window. There

have been various early uses of the mean metric in activity recognition [45, 46]. Several

researchers have used the mean to identify user posture (sitting, standing or lying) and

also to discriminate the type of activity as either dynamic or static [47]. The Standard

Deviation can give an indication of the stability of a signal, measuring the variability of

the signal over the window. The standard deviation of the acceleration signal is useful

in capturing the range of possible acceleration values to separate activities that may look

similar in nature but different in their speed and acceleration (e.g. walking vs. running).

In the past, Median Absolute Deviation was used in the automated detection of epileptic

seizures [48].

The Root Mean Square is the quadratic mean value of the signal over the window.

In the past, root mean square has been used to classify wavelet results by distinguishing

walking patterns [49] and is present in works of activity recognition [50]. Interquartile

Range represents a measure of the statistical dispersion, being equal to the difference

between the 75th and the 25th percentiles of the signal over the window. When the mean

values of different classes are similar, the interquartile range represents the dispersion of

the data and avoids the effect on range caused by extreme values in the data. As Median

Absolute Deviation, this feature was used in the automated detection of epileptic seizures

and in fall detection studies [48].

3.2 Temporal Domain Features

This section highlights the common uses of temporal-domain analysis for the recognition

of user activity from accelerometer data. Zero-crossing can be defined as the total number

of times that the signal changes from positive to negative or vice versa, normalized by

the window length. A non-zero threshold can be defined, which can be an extracted

mean value. Zero Crossing Rate is commonly applied to audio signals to identify the

surrounding environment or the type of sound such as music, speech, and noise [51]. In

this work, zero crossing rate is used in human activity recognition perspective.

Signal correlation is used to measure the strength and direction of a linear relationship

between two signals. In activity recognition, correlation is especially useful in differen-

tiating between activities that involve translation in a single dimension [52]. In order to

calculate the degree of correlation it is necessary to calculate the correlation coefficients
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between the signals for the various axes. The most commonly used is Pearson’s coeffi-

cient [53], ρx,y, also known as the sample correlation coefficient, calculated as the ratio

of the covariance of the signals along the x-axis and the y-axis to the product of their

standard deviations, as shown in Equation 3.1:

ρx,y =
cov(x, y)

σxσy
(3.1)

The sample correlation coefficient was applied in [52], in order to determine which are

the best classifiers (or combination of them) for recognizing activities, and which among

several features are the most relevant. The correlation among accelerometer axes is useful

in distinguishing activities that may appear similar but are performed in different dimen-

sions. Autocorrelation is a commonly used feature of activity recognition to apply in a

sliding window algorithm in order to measure the self-similarity of time series segments

[54].

3.3 Frequency Domain Features

Understanding the difference between the resulting vector of a Fourier transform and

the vector of accelerometer readings is crucial to understand the Fourier transform itself.

In order to derive frequency-domain features, the window of sensor data must first be

transformed into the frequency domain, normally using a Fast Fourier Transform (FFT).

The vector produced by the Fourier transform represents the distribution of values over a

range of frequencies. The output of a FFT gives the basis coefficients which represent the

amplitudes and phases of the frequency components of the signal and the distribution of

the signal energy. This section highlights the common uses of frequency-domain analy-

sis for the recognition of user activity from accelerometer data. Maximum and Median

Frequency are computed. The inputs of maximum frequency are the motion data and the

sampling frequency of the signal’s acquisition, Algorithm 2.

Algorithm 2: Maximum Frequency

Input: motion data and sampling frequency.

Output: maximum frequency point.
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This algorithm computes the FFT of the input signal and, from the obtained frequency

signal distribution, finds the frequency point where the FFT reaches its 95% of distribu-

tion. This value is considered the maximum frequency point. The pseudo code to com-

pute maximum frequency is shown below:

Algorithm 2 Maximum Frequency
1: f, fs← fft(signal, samplingfrequency) . Compute Fast Fourier Transform
2: cfs← cumsum(fs) . Cumulative Sum of the FFT elements
3: mag_index← find(cfs > cfs[−1] ∗ 0.95)[0] . Find index
4: max_freq ← f [mag_index] . Returns maximum frequency

Regarding median frequency, the inputs of this function are the motion data and the

sampling frequency. Like the previous algorithm, this one computes the FFT of the input

signal and finds the frequency point in which the FFT reaches its 50% of distribution.

This value is, by definition, the median frequency point.

Usage of Power Spectral Density (PSD) functions for extraction of features is a stan-

dard approach in various areas of pattern recognition, including activity recognition,

acoustics and imaging [55].

Algorithm 3: Power Spectral Density

Input: ACC signal and sampling frequency.

Output: maximum power and respective frequency peak.

First, this algorithm computes the PSD of the given signal. The PSD describes how

the power of a time series is distributed with frequency. This function returns an array

of frequencies ranging from 0 Hz to sampling frequency, and the power corresponding

to each frequency, Algorithm 3. With this information, the algorithm finds the maximum

peak power and returns its value and the frequency where it occurs. PSD reduces the

redundancy in signals by concentrating energy into smaller areas of the frequency do-

main. In the present work, a straightforward approach is to use magnitude averages of

PSD over a few frequency intervals. The inputs of this function are the motion data and

sampling frequency of the signal. The pseudo code to PSD is shown below:

Algorithm 3 Power Spectrum Density
1: power, freq ← psd(sig/std(sig), FS) . Compute Power Spectrum Density
2: maxPower ← max(power) . Find the maximum value of PSD
3: peakFreq ← freq[argmax(power)] . Return the respective frequency
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The cepstrum is defined as the inverse Fourier transform on the log-magnitude Fourier

spectrum [56]. The coefficients that make up the resulting cepstrum are known as the

Cepstral Coefficients. In the past, cepstral coefficients have only been used for the identi-

fication of echoes that are present in an acoustic signal [56] but later, cepstral coefficients

have been shown to be a feasible set of features for speaker identification and even for

musical instrument identification [57]. In the present work, cepstral coefficients are used

in human activity recognition perspective.

Stevens et al. (1937) proposed the mel scale, which is a scale of pitches judged to be

equal in distance from one another according to human perception [58]. Mel-frequency

cepstrum is mapped onto the mel scale before the log and inverse fourier transform is

taken. As such, the scaling in mel frequency cepstrum mimics the human perception of

distance frequency and its coefficients are know as the Mel-Frequency Cepstral Coeffi-

cients (MFCC). MFCC are now widely used in speaker recognition tasks [59] and has

been shown to yield excellent results [60], [61]. In [60], it is also shown that MFCC out-

performs normal cepstral coefficients for speaker recognition. MFCC are used today in

voice recognition areas - audio finger printing [62]. For the first time, these coefficients

appear in physical activity recognition and have revealed to be quite promising due to

the achieved performances.

The fundamental frequency, f0, of a periodic or quasi-periodic signal is the inverse

of the repeating period pattern length, which is the longer repeating unit of a signal.

Considering the signal as a superposition of sinusoids, the f0 is the lowest frequency

harmonic [63]. Regarding activity recognition, for example, as cycling involves a uni-

form movement of the legs, a frequency-domain analysis of thigh acceleration shows a

single dominant frequency. In contrast, running or walking may result in more complex

acceleration patterns and often displays many major FFT components.
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4
A Framework for Activity

Recognition

Most approaches to activity recognition, using body-worn accelerometers, involve a multi-

stage process. Firstly, the sensor signal is divided into a number of small time segments,

referred to as windows, each of which is considered sequentially. For each window, one

or more features are derived to characterize the signal. These features are then used as

input to a clustering algorithm which associates each window with a cluster. Before us-

ing the accelerometer system in any monitoring context and before the development of

algorithms to interpret data recorded by the system, it is necessary to understand the na-

ture of the signals produced by the TA unit. The signal is made up of several components

and each component is examined. The difficulties in distinguishing between the different

signal components are discussed.

4.1 Composition of Triaxial Accelerometer Signal

This section describes the composition of the TA signal. According to [41], the signal

measured by each fixed-body accelerometer is a linear sum of, approximately, three com-

ponents:
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• Acceleration resulting from body movement - Body Acceleration Component;

• Acceleration resulting from gravity - Gravitational Acceleration Component;

• Noise intrinsic to the measurement system.

The first two components provide different information about the wearer of the de-

vice: the Gravitational Acceleration (GA) provides information about the space orienta-

tion of the device, and the Body Acceleration (BA) provides information about the move-

ment of the device. The separation of the information regarding the movement of the

device - BA Component - is important, however these two components have overlap-

ping frequency spectra.

According to [41], the BA component ranges from above 0 Hz to possibly up 20 Hz,

but it is mostly contained in the range above 0 and below 3 Hz. This range overlaps the

area covered by the GA component, which goes from 0 to several Hertz. This makes the

identification of the signal parts which correspond to the BA or to the GA components,

difficult. It is possible to approximately separate the BA and the GA components with

some filtering. In [41], a wide range of different filters types with different characteristics

and different windowing percentages were tested, in order to determine their ability to

differentiate the components of the acceleration signal.

4.1.1 Body and Gravitational Acceleration Components

Accelerometers respond to Gravitational and Body Acceleration. The GA is also referred

to the static component, while acceleration due to body movement is referred to the dy-

namic component. According to [41], the BA component depends on three factors:

• The nature of the activity being undertaken;

• The location on the body at which the acceleration is measured;

• The orientation of the accelerometer relative to the body;

Considering that x, y, and z are the outputs of the TA along the x, y and z-axes respec-

tively, and that the GA component along the x-axis is represented by xGA, and similarly

for the y and z-axes, then:

x = xGA + xBA (4.1)
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y = yGA + yBA (4.2)

z = zGA + zBA (4.3)

The resultant acceleration, measured by an accelerometer, is the vector sum of all of

the accelerations acting on the device along the sensitive axis - Equations 4.1, 4.2, 4.3.

This is equal to the gravitational acceleration component plus the body acceleration com-

ponent, neglecting the effects of noise - Equation 4.4.

ρ =
√
x2 + y2 + z2 =

√
(xGA + xBA)2 + (yGA + yBA)2 + (zGA + zBA)2 =

=
√

(x2GA + y2GA + z2GA) + (x2BA + y2BA + z2BA) + 2(xGAxBA + yGAyBA + zGAzBA) =

=
√
ρGA + ρBA + 2(xGAxBA + yGAyBA + zGAzBA)

(4.4)

where ρ is the acceleration magnitude vector.

All human movement contains some postural reorientation, therefore, when the TA

is worn by a person, changes in the acceleration signals are made up of simultaneous

changes in the GA and BA components. As there are temporal and frequency overlaps

between the two components, it is not possible to perfectly separate them, and approxi-

mations must be made. In the present work, a cut-off frequency of 0.25 Hz was chosen,

as it is consistent with the frequencies used in other research works. For example, [64]

and [65] choose to use 0.5 Hz, while [66] choose 0.1 Hz.

Figure 4.1 illustrates the motion data processing of a typical recording from the ac-

celerometer, showing seven minutes of recorded data during a supervised test where the

subject is asked to perform specific tasks. In order to isolate the BA Component, a Butter-

worth High-Pass Filter was used. The acceleration signal in blue represents the original

signal (raw data), in red it is presented the GA component and the green color represents

the filtering result.
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Figure 4.1: Body and Gravitational Acceleration of Signal Accelerometer Sensor.

4.2 Feature Design

TA are made up of three separated accelerometer data time series, one time series for

acceleration on each axis ACCx, ACCy and ACCz . Complementary to the three axes

data, an additional time series, ACCtot, have been obtained by computing the magnitude

of the acceleration - Equation 4.5:

ACCtot =
√
ACC2

x +ACC2
y +ACC2

z (4.5)

Each time series ACCi, with i = x, y, z was filtered with a High-Pass Butterworth filter

in order to separate the low frequency component and the high frequency component, as

suggested in [41] and [67]. Algorithm 4 receives as inputs the original ACC signal, the

sampling frequency of data, the cut-off frequency and the order of the filter.

Algorithm 4: Body Acceleration Component

Input: ACC data, sampling frequency, cut-off frequency, filter

order.

Output: filtered signal.

This way, for each time series, three more time series BAi are obtained, with i = x, y,
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4. A FRAMEWORK FOR ACTIVITY RECOGNITION 4.3. Feature Extraction

z, representing the time series for body acceleration component. Finally, the features for

each time series are extracted.

4.3 Feature Extraction

Features can be defined as the abstractions of raw data since they are reduced sets of

original raw data which represent main characteristics and behaviours of the signal. The

reduced subset of large input data can be called feature vector, it contains important hints

for the activity to be recognized and it is the main input for clustering algorithms [40]. In

this section, tests are performed in order to assess the following parameters:

• The influence of the signal window size on the clustering performance.

• The influence of the free parameters in that same performance.

• The best feature combination that leads to a better performance of the implemented

algorithm.

4.3.1 Preprocessing Techniques: Domains and Approaches

The present study investigates a new method of feature extraction for clustering tech-

niques. A dictionary of features that were later extracted from the motion data, was cre-

ated, in a JavaScript Object Notation (JSON) [68]. Algorithm 5 describes how the feature

dictionary was built. The pseudo code to create this dictionary is shown below:

Algorithm 5 Feature Dictionary
1: data← jsonLoad(open(feature_Dictionary.Json)) . Load Feature Dictionary
2: domain← data.keys() . Find different domains
3: for feat in domain do . Goes through all features
4: DomainFeats← data[feat].keys()
5: for params in DomainFeats do . Collected all information
6: data[feat][params]← dict(Default.items() + data[feat][params].items())
7: end for
8: end for

For each feature, the following information is collected: Description, Imports, Use,

Free Parameters, Parameters, Number of Features, Function, Source and Reference, as

shown in Table 4.1.

Some of these parameters are common for a certain group of features. A default

dictionary was created with that information, and afterwards it was compared to the
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Table 4.1: Collected Information from each Feature.
Description Brief description of the information extracted from the feature.
Imports Necessary imports for the feature extraction properly work.
Function Function that allows the extraction of the respective feature.
Free Parameters Particular inputs of the function.
Parameters Inputs.
Number of Features The function’s number of outputs.
Use If, for a given clustering iteration, the feature is used or not.
Reference Code Reference.
Source Code Source.

features dictionary. For example, for the histogram, the extracted parameters are shown

in Figure 4.2

{"statistical domain":
{"histogram":

"description": "The grouping of data into bins.
Number of members in each bin against the bin number.",
"imports":"from openSignalsAccel.features import hist",
"function": "hist",
"free parameters":"nbins": [10, 20, 3], "r": [1,3,2],
"number of features": 3,
"source": "Python 2.7, Numpy Library",
"reference": "Python 2.7, Numpy Library"
}

}

Figure 4.2: Feature Dictionary: histogram collected information.

4.3.2 Relevant Features for HAR Systems

Recognizing human activities depends directly on the features extracted for motion anal-

ysis. People tend to perform the same movement in a variety of different ways which

can lead to substantial variability in the features derived from body-fixed sensor data.

Therefore, to achieve effective clustering, the identification of features with high discrim-

inative ability is of high importance. A good feature set should show little variation be-

tween repetitions of the same movements and across different subjects, but should vary

considerably between different activities.

The developed dictionary divides the features into the following categories: statisti-

cal, temporal and spectral. Some of them have been intensively investigated in previous
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studies and proved to be useful for activity recognition, as described in Chapter 3. Oth-

ers, like MFCC have appeared for the first time in PA recognition and have revealed to be

quite promising due to the achieved performances. By manipulating this dictionary, it is

possible the reproduction of clustering tests with different feature combination. Table 4.2

shows the list of features considered in the present work.

Table 4.2: Statistical, Temporal and Spectral Domain Features.

Statistical Domain

Kurtosis
Skewness
Mean
Standard Deviation
Interquartile Range
Histogram
Root Mean Square
Median Absolute Deviation

Temporal Domain
Zero Crossing Rate
Pairwise Correlation
Autocorrelation

Spectral Domain

Maximum Frequency
Median Frequency
Cepstral Coefficients
Power Spectrum
Mel-Frequency Cepstral Coefficients
Fundamental Frequency
Power Bandwidth

For each signal, three new vectors were created: one with the feature information

per window, another with the names of the features that were extracted in the respective

clustering test and another with the label of the activity that corresponds to each window.

This way, 180th - dimensional feature vector was obtained.

Algorithm 6 creates a matrix with n-samples by m-features. It also outputs an array

with feature names. This feature vector has the ability to describe all known character-

istics of any instance. Features are then fed to a module which implements a specific

clustering algorithm.
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The Horizon Plot

Algorithm 6: Feature Extraction

Input: motion data, window length, sampling frequency,

feature dictionary, matrix of free parameter combinations,

overlap percentage.

Output: feature vector and an array with feature names.

4.3.3 Feature Normalization

Features all have different magnitudes. This can cause problems for some machine learn-

ing algorithms, where features with higher magnitude will, a priori, be given a higher

emphasis. Applying a normalizing step before clustering can counter-act this unwanted

effect. Because the scale factors and units of the described features are different, before

proceeding to the feature selection stage, all features must be normalized to zero mean

and unit variance, using Equation 4.6:

fnormalized =
frow − µ

σ
(4.6)

where µ and σ are the empirical mean and standard deviation of a particular feature

across all activity classes.

4.4 Graphical Perception of Feature Visualizations:

The Horizon Plot

Some studies investigate techniques for the visualization of time series data and evaluate

their effect in value comparison tasks [6]. Line charts were compared with horizon graphs

- an efficient time series visualization technique across a range of chart sizes [6]. To study

the behaviour of each feature throughout different activities, horizon graphs were used.

This procedure ensures a visual perception of the features that better separate certain

activities, those who do not change their value between activities and those who only

add redundant information.

Figure 4.3 represents an example of a horizon graph generated for a feature vector,

resulting from an ACC signal composed by seven distinct activities: standing, sitting,

walking, running, lying down (belly up), lying down (right side down) and lying down

(left side down).
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Figure 4.3: Horizon Graph: Time Series Visualization Technique.

It is possible to analyse the behaviour of each feature in each activity. First, the area

between data curve and zero y-axis is filled in so that dark reds are very negative and

dark blues are very positive. Then, negative values are flipped and coloured red, cutting

the chart height by half [6]. Finally, the chart is divided into bands and overlaid, again

halving the height.

4.5 Feature Selection Techniques

To systematically assess the usefulness and identify the most important features for dis-

criminating different activities, a simple feature selection technique was implemented.

Not all features are equally important for a specific task and some of the variables may

be redundant or even irrelevant.

The feature selection stage chooses a smaller subset of the original features, which is

useful to identify the informative features, and to limit computational demands when

executing the recognition system on new observations. For each signal, different combi-

nations of features, free parameters of that features and signal window size are tested, in

order to obtain a better performance of the implemented algorithm. The set of the best

features are identified depending on the resulting clustering accuracies for each feature.

4.5.1 Choosing an Appropriate Window-Length

The choice of features acquired from a data set and the window length over which these

features are computed is of high importance. For activity recognition, where accelerome-

ter data from PA is windowed, the choice of the number of frames is guided by a trade-off
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between two aspects: information and resolution [69]. If the subject is performing a single

activity, then a long window will include more information about that activity. Choose

long windows is based on that the windowed data only contains a single activity, which

is how laboratory data usually is collected (long bouts of a single activity) [70]. However,

the assumption that the window, no matter how long, will only contain a single activity

is likely to be violated in daily life where activity changes are uncontrolled.

In the present study, no window size was stipulated, but a combination of different

values which grow in a logarithmic scale. According to Table 4.3, tests were performed

with window size ranging from 1000 to 4000 samples, in a logarithmic scale. For each

window size, different clustering performances were obtained that allow the choice of an

appropriate window size to feature extraction.

4.5.2 Free Parameters of HAR Features

After filtering and windowing the signal, features were extracted from data. In order to

make the implemented code versatile, a matrix with the values of all the possible com-

binations that these parameters can take, was created. Tests were made to determine

the free parameters in each activity that allow a better activity recognition performance.

Algorithm 7 computes the free parameters of features available in feature dictionary.

Algorithm 7 Free Parameters and respective Range of Values
1: domains← dictionary.keys() . Goes through each domain
2: total_free_parameters← {}
3: for i in range(0, length(signal) - 1) do
4: if dictionary[feat][parameters][′use′]! =′ no′ then . Verify used features
5: free_parameters← dictionary[feat][parameters][′free_parameters′]
6: end if
7: if free_parameters! = [empty] then . Add information
8: total_free_parameters.update(free_parameters)
9: end if

10: end for

This algorithm computes all the possible combinations of free parameters. For in-

stance, histogram receives as inputs the range and the number of bins. The value given

to these parameters will dictate the clustering algorithm performance. This way, a 486-

dimensional free parameter combination vector was obtained.
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Table 4.3: Different combinations of Free Parameters and Window Size of the Signal.

Free Parameter Minimum Maximum Number of Features

Windows Size (samples) 1000 4000 3

Bins of Histogram 10 20 3

Range of Histogram 1 3 2

Number of Cepstral C. 1 11 3

Number of MFCC 10 20 3

Power Bandwidth (samples) 10 20 3

4.6 Unsupervised Learning

The machine learning algorithms based on the feature representation of accelerometer

data have become the most widely used approaches in PA prediction [35]. In this work,

unsupervised learning is used to distinguish different activities. Clustering mechanisms

separate and organize unlabeled data into different groups whose members are similar to

each other in some metric. A good clustering process returns a set of clusters in which the

intra-class similarity is high and the inter-class similarity is low. The k-means algorithm

[39] gives a single set of clusters, with no particular organization or structure within

them. The clustering tests were performed, individually, for each subject and with the

respectively concatenated data.

4.6.1 Signal Annotation: Creating of a Ground Truth

In this work, an explored aspect of activity recognition is the method applied to annotate

sample data that can be used to compute the performance of the activity model.

Most of the researchers have published results of experiments in which the partic-

ipants are required to manually annotate each activity performed in a given moment

[71, 72]. In other cases, the experimenters told the participants in which order the spec-

ified activities should be performed, so the correct activity labels were identified before

the sensor data was even collected. In other cases, the raw sensor data was manually

inspected in order to annotate it with a corresponding activity label [73].

In an unsupervised approach, motion data has to be annotated to compute the per-

formance of the algorithm. If true class labels (ground truth) are known, the validity of a
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clustering can be verified by comparing the predicted labels and the true labels.

In this study, participants were continuously observed during experiments and an

observer was stating starting/ending time of each activity. The subjects know in which

order the specified activities should be performed and latter, raw sensor data was manu-

ally inspected in order to annotate it with a corresponding activity label . For each signal,

an annotation, in JSON format [68], was created, as shown in the Figure 4.4.

”Labels = [l1, l2, l3, . . . , li]

”Initial_Times” = [init1, init2, init3, . . . , initi]

”End_Times” = [end1, end2, end3, . . . , endi]

Figure 4.4: Ground Truth: Annotation Structure.

The annotation dictionary has information about the number and label of the move-

ments that took place and the time intervals that delimit them. The created file, with

the annotated signal, has .ann extension. Each label corresponds to one, and only one,

activity, regardless of the subject. To compute this annotation format, the implemented

function receives an array with the initial and the final times of each activity. It also re-

ceives as input the window size of the signal whose features will be extracted and the

overlap percentage of the signal to be considered.
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5
Performance Evaluation

The performance of the proposed HAR system was validated in two studies: subject-

independent context and subject-dependent context. Different features and free parame-

ter combinations were explored in order to improve the classification accuracy on phys-

ical activity from waist accelerometer data. The conditions in which data was collected

from movements performed in a supervised laboratory setting are described in this chap-

ter.

5.1 System Architecture and Data Acquisition

In the field of wearable sensor based recognition of bodily activities, recognition algo-

rithms can be evaluated on the basis of the complexity of the activities they recognize.

People perform a large number of different activities in daily life. The complexity of the

activities can vary and depends on different factors including the number of activities, the

types of activities and the complexity of the data collected for those activities (collected

either in the laboratory or free-living conditions).

Activities which are static in nature including postures, such as lying and standing,

are easier to recognize than the activities which are periodic in nature, such as running

and walking. However, postures that are highly similar, such as sitting and standing, are

also very hard to discriminate as they overlap significantly in the feature space.
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In this study, the experiments have been carried out with a group of 8 volunteers

within an age range of 16-44 years. The first test consisted in the performing of a gym

circuit, in a supervised atmosphere. Each person performed seven activities - standing,

sitting, walking, running and lying down (belly up, right side down and left side down)

- wearing an accelerometer on the waist. Each activity lasts about one minute. Table 5.1

enumerates the recorded movements of this investigation.

Using this system, data with 3-axial acceleration at a constant rate of 800 Hz and 12

bits of resolution was acquired. The data acquisition was performed with OpenSignals

platform [3] and saved in h5 format. The collected data was processed offline using

Python Programming Language [44].

Table 5.1: Recorded Movements.
Label of Movement Type of Movement Time of Movement
Label 0 Standing about 60 seconds
Label 1 Sitting about 60 seconds
Label 2 Walking about 60 seconds
Label 3 Running about 60 seconds
Label 4 Lying Down (belly up) about 60 seconds
Label 5 Lying Down (right side down) about 60 seconds
Label 6 Lying Down (left side down) about 60 seconds

Firstly, the clustering performance for each feature was obtained. Then, tests were

carried out with the best set of features. Given the knowledge of the ground truth class

assignments (labels true) and the clustering algorithm assignments of the same samples

(labels predicted), the ARI is a function that measures the similarity of the two assign-

ments, ignoring permutations and with chance normalization [39].

Once the clustering algorithm randomly associates the clustering results to non- anno-

tated groups, a function metric that links these groups to their corresponded activity, was

implemented. Clustering tests were performed, individually, for each subject and with

the respectively concatenated data: in a subject-dependent and a subject-independent

context.

5.1.1 Influence of Window Length on the K-Means Performance

Different segmentation methods can be applied to time-series data which enhance signal

behaviour and enable the gather of useful information from continuous stream of data.

The first step in the feature extraction process is to divide the acceleration stream in to
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frames. In the presented framework, each segment consists of 1000, 2000 or 4000 samples.

This time interval proved to be sufficient for analysing the proposed activities (walking,

sitting, standing, running, and lying down).

Table 5.2 shows the obtained performance for each value of window size, consider-

ing the best implemented set of features: mean, autocorrelation, root mean square and

MFCC. An average of the performances obtained for the 8 subjects was calculated.

Figure 5.1 shows the performance behaviour as a function of different window size

of motion data.
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Figure 5.1: Clustering Performance (mean value) as a function of different window length
extracted from the best set of features.

Based on these results, the HAR system reaches an accuracy between 89.73% ±0.4%
and 99.29% ±0.5%, with 1000 and 4000 samples, respectively.
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Table 5.2: Clustering Performance (mean value) as a function of different window length
extracted from the best set of features.

Window Size of the Motion Data Clustering Accuracy (%)
1000 samples 89.73% ±0.4%
2000 samples 97.42% ±0.9%
4000 samples 99.29% ±0.5%

If the subject is performing a single activity for a long time interval, a long window

will include more information about that activity. In this study, the windowed data con-

tains a single activity during about one minute, which is how laboratory data usually is

collected (long bouts of a single activity) so a long time interval allows a better clustering

performance.

5.2 Clustering Evaluation for Subject-independent Context

The subject-independent performance was evaluated with the K-Means Clustering Al-

gorithm. Even in the case of healthy people, the performed movements can be highly

individualistic. Nonetheless, there are a set of basic parameters that are similar to all

instances of these movements.

A person-independent accuracy of 88.57% and standard deviation of 4.0% were ob-

tained, with window size of 4000 samples and the best set of features: mean, autocorrela-

tion, root mean square and MFCC. Compared to the subject-dependent case, the accuracy

is much lower which can be explained by the variations in human motion for different

subjects.

A confusion matrix contains information about true and predicted labels done by a

clustering system. The performance of such systems is commonly evaluated using the

data in the matrix. Table 5.3 shows the confusion matrix for all subjects data, where label

i, with i = {1, 2, ...,7}, corresponds respectively to: standing, sitting, walking, running,

lying down (belly up), lying down (right side down) and lying down (left side down).

This experiment was repeated four times.

The algorithm successfully distinguish all activities, with exception of sitting and

standing activities, where in 37% of the time, the algorithm confuses sitting with standing

position.
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Table 5.3: Confusion Matrix, in percentage, for all subjects, where Lying Down(1) is lying
down (belly up), Lying Down(2) is lying down (right side down) and Lying Down(3) is
lying down (left side down).

Standing Sitting Walking Running Lying
Down(1)

Lying
Down(2)

Lying
Down(3)

Standing 90 0 0 0 8 1 1
Sitting 37 60 1 0 0 2 0
Walking 0 0 100 0 0 0 0
Running 0 0 0 100 0 0 0
Lying Down(1) 1 2 0 0 80 9 8
Lying Down(2) 0 0 0 0 1 90 9
Lying Down(3) 0 0 0 0 0 0 100

5.3 Clustering Evaluation for Subject-dependent Context

This procedure investigates how the recognizer performs in a subject’s dependent con-

text. To evaluate the subject-dependent accuracy of the proposed algorithm, the K-Means

Clustering Algorithm [39] was performed for each subject data.

An average person-dependent accuracy of 99.29% and standard deviation of 0.5%

were obtained, with window size of 4000 samples and the best set of features: mean,

autocorrelation, root mean square and MFCC. Table 5.4 shows the obtained clustering

performance (mean and standard deviation) for each subject with the best set of features.
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Table 5.4: Clustering Accuracy (mean and standard deviation) per subject.
Subject Clustering Accuracy (%)
Subject 1 99.78% ±0.2%
Subject 2 98.91% ±0.3%
Subject 3 99.46% ±0.2%
Subject 4 98.57% ±0.1%
Subject 5 99.86% ±0.1%
Subject 6 99.65% ±0.3%
Subject 7 99.40% ±0.4%
Subject 8 98.72% ±0.2%

Tables 5.5, 5.6, 5.7, 5.8, 5.9, 5.10, 5.11 and 5.12 show the confusion matrix for each

subject with the best set of features: root mean square, autocorrelation, mean and MFCC.

In order to find out which activities are relatively harder to be recognized, the confusion

matrices were analysed.

Table 5.5: Confusion Matrix, in percentage, for the first subject where Lying Down(1) is
lying down (belly up), Lying Down(2) is lying down (right side down) and Lying Down(3)

is lying down (left side down).
Standing Sitting Walking Running Lying

Down(1)
Lying
Down(2)

Lying
Down(3)

Standing 99 1 0 0 0 0 0
Sitting 2 98 0 0 0 0 0
Walking 0 0 100 0 0 0 0
Running 0 0 0 100 0 0 0
Lying Down(1) 0 0 0 0 100 0 0
Lying Down(2) 0 0 0 0 0 100 0
Lying Down(3) 0 0 0 0 0 0 100

Table 5.6: Confusion Matrix, in percentage, for the second subject where Lying Down(1) is
lying down (belly up), Lying Down(2) is lying down (right side down) and Lying Down(3)

is lying down (left side down).
Standing Sitting Walking Running Lying

Down(1)
Lying
Down(2)

Lying
Down(3)

Standing 100 0 0 0 0 0 0
Sitting 42 50 3 2 0 1 2
Walking 0 0 100 0 0 0 0
Running 0 0 0 100 0 0 0
Lying Down(1) 0 0 0 0 100 0 0
Lying Down(2) 0 0 0 0 0 100 0
Lying Down(3) 0 0 0 0 0 0 100
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Table 5.7: Confusion Matrix, in percentage, for the third subject where Lying Down(1) is
lying down (belly up), Lying Down(2) is lying down (right side down) and Lying Down(3)

is lying down (left side down).
Standing Sitting Walking Running Lying

Down(1)
Lying
Down(2)

Lying
Down(3)

Standing 100 0 0 0 0 0 0
Sitting 3 95 1 0 0 1 0
Walking 0 0 100 0 0 0 0
Running 1 11 0 85 0 3 0
Lying Down(1) 0 0 0 0 100 0 0
Lying Down(2) 0 0 0 0 0 100 0
Lying Down(3) 0 0 0 0 0 0 100

Table 5.8: Confusion Matrix, in percentage, for the fourth subject where Lying Down(1) is
lying down (belly up), Lying Down(2) is lying down (right side down) and Lying Down(3)

is lying down (left side down).
Standing Sitting Walking Running Lying

Down(1)
Lying
Down(2)

Lying
Down(3)

Standing 98 1 1 0 0 0 0
Sitting 3 95 1 2 0 0 0
Walking 0 0 100 0 0 0 0
Running 0 0 0 100 0 0 0
Lying Down(1) 0 0 0 0 100 0 0
Lying Down(2) 0 0 0 0 0 99 1
Lying Down(3) 0 0 0 0 0 0 100

Table 5.9: Confusion Matrix, in percentage, for the fifth subject where Lying Down(1) is
lying down (belly up), Lying Down(2) is lying down (right side down) and Lying Down(3)

is lying down (left side down).
Standing Sitting Walking Running Lying

Down(1)
Lying
Down(2)

Lying
Down(3)

Standing 98 1 1 0 0 0 0
Sitting 4 93 2 0 0 1 0
Walking 0 0 100 0 0 0 0
Running 0 0 0 100 0 0 0
Lying Down(1) 0 0 0 0 100 0 0
Lying Down(2) 1 1 0 0 0 95 3
Lying Down(3) 0 0 0 0 0 1 99
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Table 5.10: Confusion Matrix, in percentage, for the sixth subject where Lying Down(1) is
lying down (belly up), Lying Down(2) is lying down (right side down) and Lying Down(3)

is lying down (left side down).
Standing Sitting Walking Running Lying

Down(1)
Lying
Down(2)

Lying
Down(3)

Standing 97 1 1 0 0 1 0
Sitting 1 99 0 0 0 0 0
Walking 0 0 100 0 0 0 0
Running 0 0 0 100 0 0 0
Lying Down(1) 0 0 0 0 100 0 0
Lying Down(2) 0 0 0 0 1 98 1
Lying Down(3) 3 1 6 0 2 8 80

Table 5.11: Confusion Matrix, in percentage, for the seventh subject where Lying Down(1)

is lying down (belly up), Lying Down(2) is lying down (right side down) and Lying
Down(3) is lying down (left side down).

Standing Sitting Walking Running Lying
Down(1)

Lying
Down(2)

Lying
Down(3)

Standing 70 22 6 0 0 1 1
Sitting 8 90 0 0 0 1 1
Walking 0 0 100 0 0 0 0
Running 0 0 0 100 0 0 0
Lying Down(1) 0 0 0 0 100 0 0
Lying Down(2) 0 0 0 0 0 100 0
Lying Down(3) 0 0 0 0 0 0 100

Table 5.12: Confusion Matrix, in percentage, for the eighth subject where Lying Down(1)

is lying down (belly up), Lying Down(2) is lying down (right side down) and Lying
Down(3) is lying down (left side down).

Standing Sitting Walking Running Lying
Down(1)

Lying
Down(2)

Lying
Down(3)

Standing 99 1 0 0 0 0 0
Sitting 1 95 0 0 2 2 0
Walking 0 0 100 0 0 0 0
Running 0 0 0 100 0 0 0
Lying Down(1) 1 0 0 0 94 1 4
Lying Down(2) 0 0 0 0 0 100 0
Lying Down(3) 0 0 0 0 6 3 91
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5.4 Discussion

The experiment results suggest that using only one waist-worn accelerometer can ade-

quately identify user’s activities. Using only a minimal number of sensors in wearable

activity recognition system is a key success in system acceptance. The study investigated

several combinations of features used for activity recognition. The achieved findings sug-

gest that using four simple features from time and frequency domains can achieve high

recognition accuracy of 99.29%± 0.5% in a person-dependent context and 88.57%± 4.0%

in a person-independent context. Compared to the subject-dependent case, the accuracy

of all subjects is much lower which can be explained by the variations in human motion

for different subjects. Figure 5.2 shows the drawn diagram using Orange Software.

Figure 5.2: Orange Software Visualization Scheme

Figure 5.3 shows the structure of clusters according to the best set of features. In

unsupervised learning, unlabelled data is grouping into different clusters that reflect the

underlying structure of the data, based on similarity groups within the data. The input

data points are allocated to one of the existing clusters according to the square of the

Euclidean distance from the clusters, choosing the closest. This test produces clusters in

which the intra-class similarity is high and the inter-class similarity is low. After a feature

space clustering procedure, each cluster contains samples of only one activity. This would

indicate that the data of the given feature is clearly separable and thus, well-suited as an

input for classification.

Activities which are static in nature including postures, such as lying and standing,

are easier to recognize than the activities which are periodic in nature, such as running

and walking. However, postures that are highly similar, such as sitting and standing, are

also very hard to discriminate as they overlap significantly in the feature space.
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Figure 5.3: Structure of Clusters according to different domain features.
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Conclusions

To conclude this work, an overview of the general contributions that this research pro-

vided for the signal processing area are exposed in this final chapter. A summary of the

obtained results is also presented.

6.1 General Contributions and Results

The main contribution of this work is the design of a novel gesture recognition system

based solely on data from a single 3-dimensional accelerometer. A framework to cluster

daily physical activities using 3-dimensional ACC data was developed. In the presented

experiment, motion data described seven categories of PA and was collected by a wear-

able sensors worn on subjects’ waist to validate the effectiveness of the proposed HAR

clustering scheme.

A methodology to search for the best features able to distinguish physical activities

was presented. The results indicate that the choice of features is crucial for the success of

a recognition algorithm. The techniques that operate on the time domain and frequency

domains, as well as on data representations that can be used to discriminate between

user activities such as Horizon Plot were described.

The proposed PA clustering scheme, including static and dynamic activity analysis,

was capable of cluster the time-series data. The obtained results in clustering accuracy of
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human activities recognition were very encouraging: an average person-dependent ARI

of 99.29% and a person-independent ARI of 88.57% were reached.

Although several systems have been proposed in the past to monitor daily physical

activities using accelerometers, the presented framework is promising in several regards:

we propose a new set of features extracted from wearable data that are competitive from

computational point of view and able to ensure high classification results comparable

with the state of the art wearable systems.

The major achievements of the current work, compared to the state of the art are: the

presented study performs tests in intra and inter subject context; a set of 180 features is

implemented, which are easily selected to test different groups of subjects and different

activities and the implemented algorithm does not stipulate, a priori, any value for win-

dow length, or overlap percentage, but performs a search to find the best parameters that

define the specific data.

This study presents features of different domains, one previously studied in the recog-

nition of human activity, and others only used in other areas such as speech recognition.

A clustering metric based on the construction of the data confusion matrix is also

proposed.

6.2 Future Work

The presented research leaves a few opened aspects, which are going to be explored in

the future. In order to realize the full potential in HAR systems, some topics need further

investigation:

• More Data: Increase the number of subjects and applications.

• Concurrent and Overlapping Activities: The assumption that an individual only

performs one activity at a time can not be true. In general, human activities can

overlapping and even be concurrent. A person could be walking while brushing

their teeth, or watching TV while having lunch.

• More Computing Power: Use parallel computing infrastructures on the data col-

lected.

• Bigger Timespan: Week long acquisitions of movement.
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• Additional Sensors for Recognition of High-Level Activities: This work has

mainly investigated the use of acceleration sensors for activity recognition. This

type of sensor has many advantages, such as being versatile, well-understood,

small, lightweight, and proven to lead to good recognition results for many types of

physical activities. However, especially when moving towards high-level activities,

other sources of information can be helpful.

• More Discoveries: Detect the behaviour changes and annotate it.

In the future, this framework has to be tested on other intensity varying activities

and across more subjects. For example, test this framework on individuals running and

walking at a greater range of intensity levels.

ACC data obtained from wearable accelerometers can be synchronized with the ac-

tivity of daily living data recorded by such monitoring systems to better describe the

information of PA, human mobility, behavioural pattern, and functional ability that en-

compass the important parameters regarding the overall health status of an individual.

Other objective is to test different clustering algorithms: Affinity Propagation [74],

Density-based Spatial Clustering of Applications with Noise (DBSCAN) [75] and Optics

[76].

The continuously need to obtain more information, more efficient, more quickly and

with less intervention from an expert has led to a growing application of signal process-

ing techniques to motion data. The main challenge for future work in this area will be the

development of features and recognition strategies that can work in an ambient assisted

living under a wide variety of environmental conditions.
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7
Publications

In this appendix is presented the publication, Human Activity Recognition from Triaxial

Accelerometer Data: Feature Extraction and Selection Methods for Clustering of Physical

Activities which demonstrates the algorithm that was developed during this dissertation.

This article was accepted to BIOSIGNALS 2014, which is a conference – 7th International

Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2014),

held in Paris in March 2014.
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Abstract: The demand for objectivity in clinical diagnosis has been one of the greatest challenges in Biomedical Engi-
neering. The study, development and implementation of solutions that may serve as ground truth in physical
activity recognition and in medical diagnosis of chronic motor diseases is ever more imperative. This paper
describes a human activity recognition framework based on feature extraction and feature selection techniques
where a set of time, statistical and frequency domain features taken from 3-dimensional accelerometer sensors
are extracted. In this paper, unsupervised learning is applied to the feature representation of accelerometer
data to discover the activities performed by different subjects. A feature selection framework is developed in
order to improve the clustering accuracy and reduce computational costs. The features which best distinguish
a particular set of activities are selected from a 180th- dimensional feature vector through machine learning
algorithms. The implemented framework achieved very encouraging results in human activity recognition: an
average person-dependent Adjusted Rand Index (ARI) of 99.29%± 0.5% and a person-independent ARI of
88.57%±4.0% were reached.

1 INTRODUCTION

The constant concern with the human physical and
psychological well-being has been the drive for re-
search studies that have led to a promising evolution
of medicine and engineering. The study, development
and implementation of solutions that may serve as
ground truth in physical activity recognition and in
medical diagnosis of chronic motor diseases is ever
more imperative. In this paper, a Human Activity
Recognition (HAR) framework is developed using a
wearable 3-dimensional accelerometer sensor. The
main focus of this paper is to understanding the sig-
nals produced by a Triaxial Accelerometer (TA), in-
terpreting them in the context of human movement
and identifying relevant parameters from the data.
The versatility of the algorithm enables the identifica-
tion of relevant features able to recognize simple daily
activities. We obtain a 180th- dimensional feature
vector from statistical, time and frequency domains.
The dimensionality of the feature vector should be as
small as possible by reducing the amount of irrele-

vant and redundant information in the data, not only
to reduce the computation complexity, but also to ob-
tain better clustering performance. The remainder of
the paper is organized as follows: Section 2 describes
the background and related work. The importance of
objective monitoring human movement is discussed.
That section also presents an overview on other stud-
ies about HAR with wearable sensors. Section 3 ex-
plains the composition of the TA signal. The signal
is made up of several components, and each of these
is examined. The difficulties in distinguish between
the different signal components are discussed. Sec-
tion 4 describes the proposed methodology used in
this work to extract and select features based on mo-
tion data. Section 5 describes the architecture of the
acquisition system and the obtained results. Section 6
presents the conclusions obtained from the investiga-
tion and some future research directions.



2 BACKGROUND

In recent decades, there has been an increasing in-
terest in the use of Accelerometry (ACC) to moni-
tor human behaviour. Monitoring human movement
can provide valuable information on a patient and
some parameters of movement can provide informa-
tion of health status, rate of rehabilitation and other
potentially useful clinical data. The advance of tech-
nology has helped the development of accelerome-
ters of small size and low cost, making them a very
convenient tool for monitoring subjects. One of the
key point is the diversity of areas where ACC has
been used in the past. The most studied have be-
ing: metabolic energy expenditure, Physical Activity
(PA), balance and postural sway, sit-to-stand transfers
(which is an important indicator for postural instabil-
ity) and detection of falls. The use of accelerometers
has also allowed to help on diagnose of a number of
diseases such as Parkinson’s Disease (Palmerini et al.,
2013), Autism Spectrum Disorder, (Bandini et al.,
2013) and Depression (Phillips and McAuley, 2013).

3 TRIAXIAL ACCELEROMETER
SIGNAL

The signal measured by each fixed-body ac-
celerometer is a linear sum of, approximately, three
components (Mathie, 2003):

• Body Acceleration Component: acceleration re-
sulting from body movement;

• Gravitational Acceleration Component: accelera-
tion resulting from gravity;

• Noise intrinsic to the measurement system.

The first two components provide different infor-
mation about the wearer of the device: the Gravita-
tional Acceleration (GA) provides information about
the space orientation of the device, and the Body Ac-
celeration (BA) provides information about the move-
ment of the device. The separation of the information
regarding the movement of the device - Body Accel-
eration Component - is important, however these two
components have overlapping frequency spectra. The
BA component ranges from above 0 Hz to possibly
up 20 Hz, but is mostly contained in the range above
0 and below 3 Hz. This range overlaps the area cov-
ered by the GA component, which goes from 0 to
several Hertz. It is possible to approximately sepa-
rate the BA and the GA components with some filter-

ing. A wide range of different filters types with differ-
ent characteristics and different windowing percent-
ages were tested in previous studies, as in (Mathie,
2003), in order to determine their ability to differenti-
ate the components of the acceleration signal. In the
presented study, a cut-off frequency of 0.25 Hz was
chosen, as it is consistent with the frequencies used in
other research works. (Smeja and Muller, 1997) and
(Foerster and Fahrenberg, 2000) choose to use 0.5 Hz,
while (Khan et al., 2010) choose 0.1 Hz. In the pre-
sented study, in order to isolate the BA component,
a second-order Butterworth High-Pass filter with cut-
off frequency of 0.25 Hz is used. Figure 1 illustrates
each component of a typical recording from the ac-
celerometer showing seven minutes of motion data
where the subject is asked to perform seven specific
tasks.

The placement of the accelerometer is another im-
portant point of discussion. A device that is to be
worn over extended periods must be designed to be
as simple to put on and comfortable to wear in order
to encourage compliance of patients. General body
motion can be measured with a single accelerometer
placed close to the body’s center of mass, which is lo-
cated within the pelvis (Liu, 2013). The advantage of
placing the accelerometer attached to the waist is that
it allows the monitoring of accelerations near the cen-
ter of mass. Any movement of the body will cause the
center of mass to shift. This study aims to develop a
HAR framework, for a waist mounted accelerometer
based system.
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Figure 1: Body and Gravitational Acceleration for each axis
of accelerometer sensor.

4 PROPOSED METHODS

Different segmentation methods can be applied to
time-series data which enhance signal behaviour and
enable the gather of useful information from contin-
uous stream of data such as timing and sliding win-



dows. For activity recognition, where accelerome-
ter data is windowed, the choice of the number of
frames is guided by a trade-off between information
and resolution. The accelerometer data was collected,
cleaned, and preprocessed to extract features that
characterize different samples data windows. Cluster-
ing mechanisms separate and organize unlabeled data
into different groups whose members are similar to
each other in some metric. Different approaches gen-
erally lead to different clusters. Even for the same al-
gorithm, the parameter identification or the sequence
of input patterns may affect the final results. These
assessments should be unbiased. In this work, the
K-Means Clustering Algorithm (Lloyd, 1982) and a
squared Euclidean distance metric were used.

4.1 Feature Design

The HAR strategy depends essentially on the set of
features that are extracted from the signal. TA are
made up of three separated accelerometer data time
series, one time series for acceleration on each orthog-
onal axis ACCx, ACCy and ACCz. Complementary to
the three axes data, an additional time series, ACCtot ,
have been obtained by computing the magnitude of
the acceleration, Equation 1:

ACCtot =
√

ACC2
x +ACC2

y +ACC2
z (1)

Each time series ACCi, with i = x, y, z has been fil-
tered with a second-order Butterworth High-Pass fil-
ter with cut-off frequency of 0.25 Hz in order to sepa-
rate low frequencies component and high frequencies
component as suggested in (Mathie, 2003) and (Man-
nini and Sabatini, 2010). This way, for each time se-
ries, three extra time series BAi are obtained, with i =
x, y, z, representing the time series with body acceler-
ation component. Finally, features from each one of
the time series are extracted.

4.2 Accelerometer Signal Annotation

In unsupervised learning, the motion data has to be
annotated to compute the performance of the algo-
rithm. If true class labels are known, the validity of
a clustering can be verified by comparing the pre-
dicted labels and the true labels. An aspect of activ-
ity recognition that has been greatly explored is the
method of annotating sample data that can be used
to compute the performance of the clustering method.
Many experiments use unsupervised learning meth-
ods and apply manually annotated test data to eval-
uate their performances. In other cases, the experi-
menters told the participants in which order the spec-

ified activities should be performed, so the correct
activity labels were identified before the sensor data
was even collected. Still in other studies, the raw
sensor data is manually inspected in order to anno-
tate it with a corresponding activity label (Wren and
Tapia, 2006). In the presented study, participants were
continuously observed during experiments and an ob-
server was stating starting/ending time of each activ-
ity. The subjects know in which order the specified
activities should be performed and latter, raw sensor
data was manually inspected in order to annotate it
with a corresponding activity label. For each signal,
an annotation, in JavaScript Object Notation (JSON)
(Crockford, 2006) is created, with i the number of ac-
tivities, Scheme 2:

”Labels” : [l1, , . . . , li],
”Initial Times” : [init1, . . . , initi]
”End Times” : [end1, . . . ,endi]

(2)

The dictionary has information about the number
and label of the movements that took place and the
time intervals that delimit them. Each label corre-
sponds to one, and only one, activity, regardless of the
subject. The input is an array with the initial and fi-
nal times of each activity. It also receives as input the
window size and the considered overlap percentage.

4.3 Feature Extraction

Recognizing human activities depends directly on
the features extracted for motion analysis. A set of
features, which will most efficiently and meaning-
fully represent the information that is important for
analysis and the clustering process, is performed. In
this section, tests were made in order to assess the
following parameters:

• The influence of the signal’s window size on the
clustering performance.

• The influence of the free parameters in that same
performance.

• The best feature combination that leads to a better
performance of the implemented algorithm.

A dictionary of the extracted features from
the motion data, was created, in a JSON format
(Crockford, 2006). For each feature, the following
information was collected: Description, Imports,
Use, Metric, Free Parameters, Parameters, Number
of Features, Function, Source and Reference. Table 1
shows the high level list of features considered in the
presented study. The implemented dictionary divides



the features into statistical, temporal and spectral
domains. By manipulating this dictionary, the clus-
tering algorithm can be easily tested with a different
combination of features. To compute the feature
vector the following inputs are needed: motion data,
window length of the signal, sampling frequency of
the data acquisition, a feature’s dictionary, a matrix
of free parameter combinations and the considered
overlap percentage. For each ACC axis, this function
goes through each window of the signal, with the
considered window length and overlap percentage
and computes a feature matrix with n-samples by
m-features dimension. For each signal, three new
files were created: one with the features information
per window, one with the names of the features that
were extracted for the respective clustering test and
another with the label of the activity corresponding
to each window. The sensor acceleration signal is
made up of three separated accelerometer data time
series and complementary to the three axes data,
an additional time series have been obtained by
computing the magnitude of the acceleration, so four
signal vectors are considered. From each window, a
vector of features is obtained by calculating features
from the statistical, time and frequency domain.
This way, a 180th - dimensional feature vector is
obtained: from each one of the four signal vectors,
we compute fifteen features with only one output and
three features (histogram, cepstral coefficients and
mel-frequency cepstral coefficients (MFCC)) with
ten outputs each.

Table 1: Statistical, Temporal and Spectral Domain Fea-
tures.

Statistical Domain

Kurtosis
Skewness
Mean
Standard Deviation
Interquartile Range
Histogram
Root Mean Square
Median Absolute Deviation

Temporal Domain
Zero Crossing Rate
Pairwise Correlation
Autocorrelation

Spectral Domain

Maximum Frequency
Median Frequency
Cepstral Coefficients
Power Spectrum
MFCC
Fundamental Frequency
Power Bandwidth

Because the scale factors and units of the features
described above are different, all the features must
be normalized to zero mean and unit variance, before
proceed to the feature selection stage.

4.4 Feature Selection for Motion Data

A large number of features can usually be measured
in many pattern recognition applications. However,
not all features are equally important for a specific
task. For each signal, different combinations of fea-
tures, free parameters of these features and window
size of the signal can be tested, in order to evalu-
ate the performance of the implemented clustering al-
gorithm. Optimal features are identified depending
on the resulting clustering accuracies for each feature
subset.

4.4.1 Free Parameters of Features Set

In order to make the implemented code versatile and
the least subjective as possible, a matrix with the val-
ues of all the possible combinations that these param-
eters can take, was created. No window size value
was stipulated, but a combination of different values
from a growing logarithmic scale can be tested. Ac-
cording to Table 2, tests were made in which the win-
dow size ranged from 1000 to 4000 samples, in a log
scale. For each window size, different performances
were obtained. Tests were made to determine the free
parameters in each activity, that allow a better activity
recognition performance. Examples of free parame-
ters are the number of bins or the range of the im-
plemented histogram. The values given to these pa-
rameters will dictate the performance obtained by the
clustering algorithm. In this way, a 486-dimensional
free parameter combinations vector was obtained.

Table 2: Possible combinations of free parameters and win-
dow size values.

Free Parameter Range Combinations

Window Size [1000 ; 4000] 3
Bins of Histogram [10 ; 20] 3

Range of Histogram [1 ; 3] 2
Cepstral C. [1 ; 11] 3

MFCC [10 ; 20] 3
Power Bandwidth [10 ; 20] 3

4.4.2 Graphical Perception of Features
Visualizations

A technique for the visualization of time series data
and evaluate their effect in value comparison tasks



was described in (Heer et al., 2009). In order to visu-
ally analyse each feature’s behaviour throughout dif-
ferent activities, horizon graphs are used. This pro-
cedure ensures a visual perception of the features that
better separate certain activities, those which do not
change their value between activities and those which
only add redundant information. Figure 2 shows an
example of a horizon graph generated for a matrix of
features, resulting from an ACC signal composed by
seven distinct activities. Each activity lasts about one
minute and we consider 4000 samples for the win-
dow size of the signal. It is possible to quantitatively
compare the behaviour of each feature in each activ-
ity. First, the area between data curve and zero y-
axis is filled in so that dark reds are very negative and
dark blues are very positive. Then, negative values
are flipped and coloured red, cutting the chart height
by half. Finally, the chart is divided into bands and
overlaid, again halving the height.

4.5 Unsupervised Learning

Machine learning algorithms based on the feature rep-
resentation of accelerometer data have become the
most widely used approaches in PA prediction (I. H.
Witten, E. Frank and Hall, 2011). In this work, unsu-
pervised learning is used to distinguish different ac-
tivities. Clustering mechanisms separate and orga-
nize unlabeled data into different groups whose mem-
bers are similar to each other in some metric. This
method receives the number of clusters to form as
well as the number of centroids to generate. In the
presented study, the number of clusters was defined,
a priori, a priori, from the designed protocol of the
performed activities. A good clustering methodology
will produce clusters in which the intra-class similar-
ity is high and the inter-class similarity is low. The
K-Means Clustering Algorithm (Lloyd, 1982) gives a
single set of clusters, with no particular organization
or structure within them.

5 DATA ACQUISITION AND
RESULTS

The experiments have been carried out with a
group of 8 volunteers within an age range of 16-44
years. The test consists in performing of a gym cir-
cuit. Each person performs seven activities in se-
quence lasting about one minute each - standing, sit-
ting, walking, running, lying down (belly up), ly-
ing down (right side down) and lying down (left side
down), wearing an accelerometer on the waist. Us-

ing this system, data with 3-axial acceleration at a
constant rate of 800 Hz and 12 bits of resolution
was acquired. The data acquisition was performed
with OpenSignals platform (Gomes et al., 2012) and
saved in a h5 format. The collected data was pro-
cessed offline using Python Programming Language
(Oliphant, 2006). Clustering tests are performed,
individually, for each subject and with the respec-
tively concatenated data: in a subject-dependent and a
subject-independent context. To evaluate the subject-
dependent accuracy of the proposed algorithm, the K-
Means Clustering Algorithm (Lloyd, 1982) was per-
formed for each subject data. Given the knowledge
of the ground truth class assignments (labels true)
and the clustering algorithm assignments of the same
samples (predicted labels), the adjusted Rand index
(ARI) is a function that measures the similarity of
the two assignments, ignoring permutations and with
chance normalization. The ARI was calculated to ob-
tain the performance of the clustering method. An av-
erage person-dependent accuracy of 99.29% and stan-
dard deviation of 0.5% were obtained, with a win-
dow size of 4000 samples and the best set of features:
mean, autocorrelation, root mean square and MFCC.
High accuracies are reached for all subjects. The
subject-independent performance was also evaluated
with K-Means Clustering Algorithm (Lloyd, 1982).
A person-independent accuracy of 88.57% and stan-
dard deviation of 4.0% were obtained, with a win-
dow size of 4000 samples and the best set of features:
mean, autocorrelation, root mean square and MFCC.

Table 3: Clustering Performance (mean value) as a function
of different window length extracted from the best set of
features.

Window Size Adjusted Rand Index (%)
1000 samples 89.73% ±0.4%
2000 samples 97.42% ±0.9%
4000 samples 99.29% ±0.5%

Table 3 shows the obtained performance for each
value of window size, considering the best imple-
mented set of features: mean, autocorrelation, root
mean square and MFCC. An average of the perfor-
mances obtained for the 8 subjects was calculated.
Based on these results, the HAR system reaches
an accuracy between 89.73% ±0.4% and 99.29%
±0.5%, with 1000 and 4000 samples, respectively.

5.1 Classification-based Evaluation:
Proposed Metric

A new metric for assessing the obtained results
from unsupervised techniques, a classification-based



Figure 2: Horizon Graph - Time Series Visualization Technique.

evaluation metric, was developed. Initially, a confu-
sion matrix that contains information about true and
predicted labels done by a clustering method was
constructed. Once the clustering algorithm randomly
associates the clustering results to non-annotated
groups, the Algorithm, Best Cluster Permutation,
that links these groups to their corresponded activity,
was implemented. The presented Algorithm receives
the confusion matrix with a random assignment and
goes through each row of the matrix and stores the
index that contains the maximum value of each row.

Algorithm: Best Cluster Permutation
Input: Input: confusion matrix with a
random assignment.
Output: confusion matrix correctly
assigned.

It is checked whether the index is unique through-
out the matrix. If the index is unique, it makes the
direct correspondence between the vector of true and
predicted labels. Otherwise, it checks the index with
the maximum value, and assigns it. The process is re-
cursively repeated. After obtaining the swap vector,
the matrix with the labels already associated is recon-
structed. Table 4 shows the confusion matrix for this
study where label i, with i = {1, 2, ...,7}, corresponds
respectively to: standing, sitting, walking, running,
lying down (belly up), lying down (right side down)
and lying down (left side down). For the concatenated
data, the algorithm successfully distinguish all activi-
ties.

6 CONCLUSIONS AND FUTURE
WORK

The continuously need to obtain more infor-
mation, more efficient, more quickly and with less

intervention from an expert has led to a growing
application of signal processing techniques to motion
data. During the experiment, acceleration signals
were collected from a waist mounted accelerom-
eter based framework. In the presented study, a
methodology to search for the best features able to
classify different physical activities was presented.
The techniques that operate on the statistical, time
and frequency domains, as well as on data repre-
sentations that can be used to discriminate between
user activities such as Horizon Plot were described.
The obtained results in clustering accuracy of HAR
were very encouraging: an average person-dependent
ARI (Santos and Embrechts, 2009) of 99.29% and
a person-independent ARI of 88.57% were reached.
The major achievements of the current work, com-
pared to the state of the art are: the presented study
performs tests in intra and inter subject context; a set
of 180 features was implemented, which are easily
selected to test different groups of subjects and differ-
ent activities and the implemented algorithm does not
stipulate, a priori, any value for window length of the
signal or overlap percentage, but performs a search
to find the best parameters that define the specific
data. A clustering metric based on the construction
of the data confusion matrix was also proposed. The
presented research leaves a few opened questions, to
be explored in the future:

• Bigger Timespan: Week Long Acquisitions of
Movement.

• More Data: Increase the Number of Subjects and
Applications.

• More Computing Power: Use Parallel Comput-
ing Infrastructures on the Data Collected.

• More Discoveries: Detect the Behaviour changes
and annotate those changes.



Table 4: Confusion Matrix, in percentage, for concatenated data, where Lying Down(1) is lying down (belly up), Lying
Down(2) is lying down (right side down) and Lying Down(3) is lying down (left side down).

Standing Sitting Walking Running Lying
Down(1)

Lying
Down(2)

Lying
Down(3)

Standing 92.1±3.2 0.0±0.0 0.0±0.0 0.0±0.0 5.4± 2.3 1.3±0.9 1.1±0.8

Sitting 28.3±6.9 68.0±5.9 1.1±0.6 0.3±0.7 0.1± 0.3 1.6±0.7 0.6±1.3

Walking 0.0±0.0 0.4±0.5 99.5±0.5 0.1±0.3 0.0±0.0 0.0±0.0 0.0±0.0

Running 0.0±0.0 0.0±0.0 0.3±0.4 99.4±0.7 0.3±0.4 0.1±0.3 0.0±0.0

Lying Down(1) 0.9±0.6 2.0±1.1 0.1±0.3 0.0±0.0 82.1±1.9 7.5±1.4 7.4±1.3

Lying Down(2) 0.0±0.0 0.0±0.0 0.1±0.3 0.5±1.0 1.1±0.0 90.4±0.9 8.0±1.3

Lying Down(3) 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.1±0.3 0.4±0.5 99.5±0.5

In the future, this framework should be tested on
other intensity varying activities and across more sub-
jects. For example, test it on individuals running and
walking at a greater range of intensity levels. ACC
data obtained from wearable accelerometers can be
synchronized with the activity of daily living data
recorded by such monitoring systems to better de-
scribe the information of human mobility, behavioural
pattern and functional ability that encompass the im-
portant parameters regarding the overall health status
of an individual.

The main challenge for future work in this area
will be the development of features and recognition
strategies that can work in an ambient assisted living
under a wide variety of environmental conditions.
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