8 research outputs found

    Human gait recognition based on multiview gait sequences

    Get PDF
    Copyright © 2008 X. Huang and N. V. Boulgouris. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Most of the existing gait recognition methods rely on a single view, usually the side view, of the walking person. This paper investigates the case in which several views are available for gait recognition. It is shown that each view has unequal discrimination power and, therefore, should have unequal contribution in the recognition process. In order to exploit the availability of multiple views, several methods for the combination of the results that are obtained from the individual views are tested and evaluated. A novel approach for the combination of the results from several views is also proposed based on the relative importance of each view. The proposed approach generates superior results, compared to those obtained by using individual views or by using multiple views that are combined using other combination methods.European Commissio

    Gait and Locomotion Analysis for Tribological Applications

    Get PDF

    Predicción ordinal utilizando metodologías de aprendizaje automático: Aplicaciones

    Get PDF
    Artificial Intelligence is part of our everyday life, not only as consumers but also in most of the productive areas since companies can optimize most of their processes with all the different tools that it can provide. There is one topic that has been especially useful in the artificial intelligence implementation process which is machine learning, as it can be used in most of the practical applications that appear in real-life problems. Machine learning is the part of artificial intelligence that focuses on developing models that are able to learn a function that transforms input data into a desired output. One of the most important parts in machine learning is the model, and one of the most successful models in the state-of-the-art approaches is the artificial neural network. This is why the current thesis, for its first challenge, will study how to improve them to be able to learn more complex problems without needing to apply computationally costly training algorithms. The next important step to improve the model’s performance is to optimize the algorithms that are used to let them learn how to transform the inputs into the desired outputs, and the second challenge of this thesis is to optimize the computational cost of evolutionary algorithms, which are one of the best options to optimize ANNs due to their flexibility when training them. Ordinal classification (also known as ordinal regression) is an area of machine learning that can be applied to many real-life problems since it takes into account the order of the classes, which is an important fact in many real-life problems. In the area of social sciences, we will study how potential countries are helping the poorer ones the most, and then we will perform a deeper study to classify the level of globalisation of a country. These studies will be performed by applying the models and algorithms that were developed in the first stage of the thesis. After these first works, continuing with the ordinal classification approaches, we focused on the area of medicine, where there are many examples of applications of these techniques, e.g., any disease that may have progression is usually classified in different stages depending on its severity from low to high. In our case, this thesis will study how a treatment (liver transplantation) can affect different patients (survival time of the graft), and therefore decide which patient is the most appropriate for that specific treatment. The last chapter of the thesis will delve in ordinal classification to achieve ordinal prediction of time series. Time series have been usually processed with classical statistical techniques since machine learning models that focused on time series were too costly. However, currently, with the arrival of powerful computation machines together with the evolution of models such as recurrent neural networks, classic statistical techniques can hardly be competitive versus machine learning. In areas such as economics, social sciences, meteorology or medicine, time series are the main source of information, and they need to be correctly processed to be useful. The most common consideration when dealing with time series is to learn from past values to predict future ones, and the works in this last chapter will focus on performing ordinal predictions of WPREs in wind farms, creating novel models and methodologies. The thesis will conclude with a work that implements a deep neural network to predict WPREs in multiple wind farms at the same time; therefore, this model would allow predicting WPREs in a global area instead of in a specific geographical point

    Contributions to Gait Recognition Using Multiple-Views

    No full text
    This thesis focuses on identifying people by the way they walk. The problem of gait recognition has been addressed by using different approaches, both in the 2D and 3D domains, and using one or multiple views. However, the dependence on camera viewpoint (and therefore the dependence on the trajectory of motion) still remains an open problem. This dissertation addresses the problem of dependence on the trajectory through the use of 3D reconstructions of walking humans. The use of 3D models have several advantages that are worth mentioning. First, by the use of 3D reconstructions it is possible to exploit a greater amount of information in contrast to methods that extract descriptors from just 2D images. Second, the 3D reconstructions can be aligned along the way as if the subject had walked on a treadmill, thus providing a way to recognize people regardless the path. Three approaches are proposed in order to address the dependence on the trajectory: (1) using aligned 3D reconstructions of walking humans, (2) using unaligned 3D reconstructions of walking humans. (3) extracting a 3D description without using 3D reconstructions. Three gait descriptors are also proposed. The first focuses on describing gait by means of morphological analysis of 3D aligned volumes. The second makes use of the concept of entropy to describe the dynamics of human gait. The third aims to capture the dynamics of gait in a rotation invariant way, which makes it interesting for recognize people walking on both straight and curves path, and regardless direction changes. These approaches have been tested on the "AVA Multi-View Dataset (AVAMVG)" and on the "Kyushu University 4D Gait Database (KY4D)". Both databases are specifically designed to address the problem of dependence on the viewpoint, and therefore the dependence on the trajectory. Experimental results show that for the approach based on aligned volumetric reconstructions, the entropy-based gait descriptor achieved the best results compared to other closely related methods of the state-of-art. However, the rotation invariant gait descriptor achieves a recognition rate that overcomes the compared state-of-art methods without requiring the alignment of the 3D gait reconstructions

    Contributions to Gait Recognition Using Multiple-Views

    Get PDF
    This thesis focuses on identifying people by the way they walk. The problem of gait recognition has been addressed by using different approaches, both in the 2D and 3D domains, and using one or multiple views. However, the dependence on camera viewpoint (and therefore the dependence on the trajectory of motion) still remains an open problem. This dissertation addresses the problem of dependence on the trajectory through the use of 3D reconstructions of walking humans. The use of 3D models have several advantages that are worth mentioning. First, by the use of 3D reconstructions it is possible to exploit a greater amount of information in contrast to methods that extract descriptors from just 2D images. Second, the 3D reconstructions can be aligned along the way as if the subject had walked on a treadmill, thus providing a way to recognize people regardless the path. Three approaches are proposed in order to address the dependence on the trajectory: (1) using aligned 3D reconstructions of walking humans, (2) using unaligned 3D reconstructions of walking humans. (3) extracting a 3D description without using 3D reconstructions. Three gait descriptors are also proposed. The first focuses on describing gait by means of morphological analysis of 3D aligned volumes. The second makes use of the concept of entropy to describe the dynamics of human gait. The third aims to capture the dynamics of gait in a rotation invariant way, which makes it interesting for recognize people walking on both straight and curves path, and regardless direction changes. These approaches have been tested on the "AVA Multi-View Dataset (AVAMVG)" and on the "Kyushu University 4D Gait Database (KY4D)". Both databases are specifically designed to address the problem of dependence on the viewpoint, and therefore the dependence on the trajectory. Experimental results show that for the approach based on aligned volumetric reconstructions, the entropy-based gait descriptor achieved the best results compared to other closely related methods of the state-of-art. However, the rotation invariant gait descriptor achieves a recognition rate that overcomes the compared state-of-art methods without requiring the alignment of the 3D gait reconstructions

    Contributions to Gait Recognition Using Multiple-Views

    No full text
    corecore