157 research outputs found

    Foot placement variables of pedestrians in community setting during curve walking

    Get PDF
    Background: There is no precise description of changes of gait during curve walking. Research in curve walking is exclusively performed in clinical settings. Research question: Is there a difference in foot placement variables between the inner- and the outer leg during curve walking in a natural environment? And are these differences correlated with time or the curvature of the path? Method: During this observational study, camera footage was shot on a crossing where pedestrians were not aware of being filmed. Participants (n = 21, male, 18?40 yrs) were selected from this video footage. Using the software package ?Movieprocessing?, the kinematic variables (time, curvature, stride length, step length, step width and relative foot angle (RFA)) were extracted from the collected data. A MANOVA and Pearson correlation test were performed to explore the data. Results: MANOVA showed no significant differences in stride length and step length between inner- and outer leg. In contrast, a significant difference between the inner (M = 0.06, SD = 0.05) and outer leg (M = 0.10, SD = 0.06, F(20,256) = 3.577, p < .001) for the step width, and the inner (M = 11.72, SD = 7.99) and outer leg (M = 11.30, SD = 8.07, F(20,256) = 4.542, p < .001) for RFA was found. Pearson correlation was significant for curvature and step width for both legs pooled (r = .28, p < .01) and the outer leg (r = .64, p < .01), as well for time and RFA in the inner (r= -.25, p < .01) and outer leg (r = .213, p < .01). Significance: This research funds further research in curve walking in natural conditions, since curve walking is found to be performed non-symmetrically and not determined by geometrics but by choice. Foot placement variables change gradually and differently for both legs during walking a curve

    Modeling and simulation of pedestrian movement planning around corners

    Get PDF
    Owing to the complexity of behavioral dynamics and mechanisms associated with turning maneuvers, capturing pedestrian movements around corners in a mathematical model is a challenging task. In this study, minimum jerk and one-thirds power law concepts, which have been initially applied in neurosciences and brain research domains, were utilized in combination to model pedestrian movement planning around bends. Simulation outputs explained that the proposed model could realistically represent the behavioral characteristics of pedestrians walking through bends. Comparison of modeled trajectories with empirical data demonstrated that the accuracy of the model could further be improved by using appropriate parameters in the one-thirds power law equation. Sensitivity analysis explained that, although the paths were not sensitive to the boundary conditions, speed and acceleration profiles could be remarkably varied depending on boundary conditions. Further, the applicability of the proposed model to estimate trajectories of pedestrians negotiating bends under different entry, intermediate, and exit conditions was also identified. The proposed model can be applied in microscopic simulation platforms, virtual reality, and driving simulator applications to provide realistic and accurate maneuvers around corners. - 2019 by the authors.Acknowledgments: The publication of this article was funded by the Qatar National Library

    Dynamic surface topography and its application to the evaluation of adolescent idiopathic scoliosis

    Get PDF
    Dynamic surface topography is a method to quantify the surface and locations of features acquired from moving and distorting shapes against time. This thesis describes the application of the technique to the potential evaluation of adolescent idiopathic scoliosis patients. Scoliosis or curvature of the spine is one of the major skeletal diseases in adolescents where in the majority of cases the cause is unknown or idiopathic. The progression of the disease occurs in three dimensions with the spine simultaneously curving towards the arms and rotating as it collapses with the first indications usually being changes in body symmetry and back surface shape. Following diagnosis, most children do not exhibit any significant worsening of their condition and are routinely monitored using radiography as frequently as every three months whilst vertebral growth potential remains. In a small number of patients, the lateral curvature can unpredictably worsen requiring, in some cases, surgical intervention to prevent further deterioration and to diminish the deformity. Earlier work by many researchers concentrated on attempting to reduce patient exposure to ionizing radiation by investigating if there was a reliable correlation between progression of the scoliosis and changes in surface topography. The techniques have not gained acceptance as the relational algorithms were found to be insufficiently robust in all cases and measurements acquired from available technologies were prone to artefacts introduced by stance, breathing, 'posture and sway. For many patients the motivation in seeking treatment is for the improvement of their appearance rather than to correct the underlying deformity, so cosmetic concerns and an understanding of the psychosocial and physical impacts of the disease and treatments remain important factors in the clinical decision-making process. In the current environment of evidence based medicine there is a growing need to quantify back surface shape, general body asymmetry and patient capability with the objective of producing an agreed scoring to be used in developing treatment plans and assessing outcomes but to date many clinics continue to rely on qualitative methods to describe cosmetic deformity and ability. The aim of the research was to develop an original, low cost and inherently safe apparatus using well understood video based motion capture technology that overcame the disadvantages of earlier work by simultaneously acquiring multiple samples of back surface shape and the locations of bony landmarks to provide averaged results for a quantitative and reliable analysis of cosmetic defect and physical impairment. 172,650 data samples were acquired from thirty skeletally mature subjects not exhibiting any musculoskeletal disease to define normality limits for Page 2 established morphological measurements and to compare the specificity of the approach with existing single sample techniques. Three novel calculations of back paraspinous volumetric asymmetry were tested of which two were found to be potentially useful clinical indicators of deformity and an index was proposed and tested using simulated data that could offer a single value to describe patient back shape asymmetry. Previous research has found that there is a loss of trunk ranges of motion among postoperative patients that has a direct impact on their quality of life, function and physical capability. Data were acquired from the mature subjects and similar results were observed when compared with published data for preoperative scoliosis patients. This thesis has shown that using averaged tri-dimensional morphological and back shape data combined with measurement of dynamic capability acquired using an inherently safe apparatus have the potential to be clinically useful. The opportunity to routinely and safely quantify the cosmetic defect and trunk ranges of motion of adolescent idiopathic scoliosis patients should stimulate more important research to help improve the quality of life of many affected children throughout the world

    Bio-Inspired Robotics

    Get PDF
    Modern robotic technologies have enabled robots to operate in a variety of unstructured and dynamically-changing environments, in addition to traditional structured environments. Robots have, thus, become an important element in our everyday lives. One key approach to develop such intelligent and autonomous robots is to draw inspiration from biological systems. Biological structure, mechanisms, and underlying principles have the potential to provide new ideas to support the improvement of conventional robotic designs and control. Such biological principles usually originate from animal or even plant models, for robots, which can sense, think, walk, swim, crawl, jump or even fly. Thus, it is believed that these bio-inspired methods are becoming increasingly important in the face of complex applications. Bio-inspired robotics is leading to the study of innovative structures and computing with sensory–motor coordination and learning to achieve intelligence, flexibility, stability, and adaptation for emergent robotic applications, such as manipulation, learning, and control. This Special Issue invites original papers of innovative ideas and concepts, new discoveries and improvements, and novel applications and business models relevant to the selected topics of ``Bio-Inspired Robotics''. Bio-Inspired Robotics is a broad topic and an ongoing expanding field. This Special Issue collates 30 papers that address some of the important challenges and opportunities in this broad and expanding field

    Dynamic surface topography and its application to the evaluation of adolescent idiopathic scoliosis

    Get PDF
    Dynamic surface topography is a method to quantify the surface and locations of features acquired from moving and distorting shapes against time. This thesis describes the application of the technique to the potential evaluation of adolescent idiopathic scoliosis patients. Scoliosis or curvature of the spine is one of the major skeletal diseases in adolescents where in the majority of cases the cause is unknown or idiopathic. The progression of the disease occurs in three dimensions with the spine simultaneously curving towards the arms and rotating as it collapses with the first indications usually being changes in body symmetry and back surface shape. Following diagnosis, most children do not exhibit any significant worsening of their condition and are routinely monitored using radiography as frequently as every three months whilst vertebral growth potential remains. In a small number of patients, the lateral curvature can unpredictably worsen requiring, in some cases, surgical intervention to prevent further deterioration and to diminish the deformity. Earlier work by many researchers concentrated on attempting to reduce patient exposure to ionizing radiation by investigating if there was a reliable correlation between progression of the scoliosis and changes in surface topography. The techniques have not gained acceptance as the relational algorithms were found to be insufficiently robust in all cases and measurements acquired from available technologies were prone to artefacts introduced by stance, breathing, 'posture and sway. For many patients the motivation in seeking treatment is for the improvement of their appearance rather than to correct the underlying deformity, so cosmetic concerns and an understanding of the psychosocial and physical impacts of the disease and treatments remain important factors in the clinical decision-making process. In the current environment of evidence based medicine there is a growing need to quantify back surface shape, general body asymmetry and patient capability with the objective of producing an agreed scoring to be used in developing treatment plans and assessing outcomes but to date many clinics continue to rely on qualitative methods to describe cosmetic deformity and ability. The aim of the research was to develop an original, low cost and inherently safe apparatus using well understood video based motion capture technology that overcame the disadvantages of earlier work by simultaneously acquiring multiple samples of back surface shape and the locations of bony landmarks to provide averaged results for a quantitative and reliable analysis of cosmetic defect and physical impairment. 172,650 data samples were acquired from thirty skeletally mature subjects not exhibiting any musculoskeletal disease to define normality limits for Page 2 established morphological measurements and to compare the specificity of the approach with existing single sample techniques. Three novel calculations of back paraspinous volumetric asymmetry were tested of which two were found to be potentially useful clinical indicators of deformity and an index was proposed and tested using simulated data that could offer a single value to describe patient back shape asymmetry. Previous research has found that there is a loss of trunk ranges of motion among postoperative patients that has a direct impact on their quality of life, function and physical capability. Data were acquired from the mature subjects and similar results were observed when compared with published data for preoperative scoliosis patients. This thesis has shown that using averaged tri-dimensional morphological and back shape data combined with measurement of dynamic capability acquired using an inherently safe apparatus have the potential to be clinically useful. The opportunity to routinely and safely quantify the cosmetic defect and trunk ranges of motion of adolescent idiopathic scoliosis patients should stimulate more important research to help improve the quality of life of many affected children throughout the world.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    The archaeology of pilgrimage on the Camino de Santiago de Compostela, Spain: a landscape perspective

    Get PDF
    Theoretical perspectives on landscape and bodily engagement with place inform an approach to the medieval pilgrimage to Santiago de Compostela. Focused primarily, but not exclusively, on the central Middle Ages, this research confronts two core questions: how did transient, mobile groups perceive and experience the diverse terrain of the pilgrim route in northern Spain? And how may their ephemeral presence be traced in the archaeological record? This thesis is underpinned by the conviction that the journey of medieval pilgrims, as opposed to their destination, deserves greater scrutiny. Three topographically distinct Study Areas along the length of the Camino in Navarre, Burgos and Galicia from the basis for the analysis of localised sets of material culture. Within these areas, historical and geographical information, surviving monuments and structures, and a fieldwork plan designed to engage with the processes of making a linear journey, combine to form data-sets from which to tackle more refined contextual research questions. The main thrust of my argument is that large numbers of pilgrims were heavily influenced by contemporary medieval narrative tradition in which landscape was a powerful metaphor for religious meaning, experience and deportment. Material culture along the Camino speaks volumes about a powerful “culture of the route”, ritual performances, thresholds, transitions, and social relations across landscapes. The sum of evidence indicates a radical impact on local landscapes with some sectors of the community benefiting from the unfolding movement while others appear to distance themselves from the perpetual stream of pilgrims
    corecore