95 research outputs found

    KEER2022

    Get PDF
    Avanttítol: KEER2022. DiversitiesDescripció del recurs: 25 juliol 202

    Advances in Robot Navigation

    Get PDF
    Robot navigation includes different interrelated activities such as perception - obtaining and interpreting sensory information; exploration - the strategy that guides the robot to select the next direction to go; mapping - the construction of a spatial representation by using the sensory information perceived; localization - the strategy to estimate the robot position within the spatial map; path planning - the strategy to find a path towards a goal location being optimal or not; and path execution, where motor actions are determined and adapted to environmental changes. This book integrates results from the research work of authors all over the world, addressing the abovementioned activities and analyzing the critical implications of dealing with dynamic environments. Different solutions providing adaptive navigation are taken from nature inspiration, and diverse applications are described in the context of an important field of study: social robotics

    Evolutionary Legged Robotics

    Get PDF
    Due to the technological advance, robotic systems become more and more interesting for industrial and home applications. Popular examples are given by robotic lawn mower, robot vacuum cleaner, and package drones. Beside the toy industry, legged robots are not as popular, although they have some clear advantages compared to wheeled systems. With their flexibility concerning the locomotion, they are able to adapt their walking pattern to different environments. For instance they can walk over obstacles and gaps or climb over rubble and stairs. Another possible advantage could be a redundancy for locomotion. A faulty motor in one limb could be compensated by other motors in the kinematic chain. As well, multiple failing legs can be compensated by an adapted walking pattern. Compared to this, the more complex mechatronic systems represent a major challenge to the construction and the control. This thesis is dedicated to the control of complex walking robots. Genetic algorithms are applied to generate walking patterns for different robots. The evolutionary development of walking patterns is done in a simulation software. Results of various approaches are transferred and tested on existing systems which have been developed at RIC/DFKI. Different robotic systems are used to evaluate the generality of the applied methods. Eventually, a method is developed that can be utilized, with a few system specific modifications, for a variety of legged robots. As basis for the development and investigation of several methods, software tools are designed to generalize the application of applying genetic algorithms to legged locomotion. These tools include a simulation environment, a behavior representation, a genetic algorithm and a learning and benchmark framework. The simulation environment is adapted to the behavior of real robotic systems via reference experiments. In addition, the simulation is extended by a foot contact model for loose surfaces. The evaluation of the genetic algorithm is done on several benchmark problems and compared to three existing algorithms. This thesis contributes to the state of the art in many areas. The developed methodology can easily be applied to several complex robotic systems due to its transferability. The genetic algorithm and the hierarchical behavior representation provide a new opportunity to control the generation of the offspring in an evolutionary process. In addition, the developed software tools are an important contribution for their respective research fields

    The Future of Humanoid Robots

    Get PDF
    This book provides state of the art scientific and engineering research findings and developments in the field of humanoid robotics and its applications. It is expected that humanoids will change the way we interact with machines, and will have the ability to blend perfectly into an environment already designed for humans. The book contains chapters that aim to discover the future abilities of humanoid robots by presenting a variety of integrated research in various scientific and engineering fields, such as locomotion, perception, adaptive behavior, human-robot interaction, neuroscience and machine learning. The book is designed to be accessible and practical, with an emphasis on useful information to those working in the fields of robotics, cognitive science, artificial intelligence, computational methods and other fields of science directly or indirectly related to the development and usage of future humanoid robots. The editor of the book has extensive R&D experience, patents, and publications in the area of humanoid robotics, and his experience is reflected in editing the content of the book

    Advances in Human-Robot Interaction

    Get PDF
    Rapid advances in the field of robotics have made it possible to use robots not just in industrial automation but also in entertainment, rehabilitation, and home service. Since robots will likely affect many aspects of human existence, fundamental questions of human-robot interaction must be formulated and, if at all possible, resolved. Some of these questions are addressed in this collection of papers by leading HRI researchers

    The High Tech, Human Touch Magazine:2014 Edition

    Get PDF
    For the course Technolab in the master program Philosophy of Science, Technology, and Society, supervised by prof.dr.ir. M. Boon, we were assigned to write a magazine that covers three different research projects within the University of Twente. In the magazine, we examined the technological, social, and philosophical aspects of the research projects. Going through the magazine, we will take you along different technologies from outside the human body until cellular level. We can enhance the human body, enhance the way to detect illnesses in the human body, and enhance the human lifestyle. Do we really want to enhance the human being in all thinkable ways, or only enhance some aspects

    Desenvolvimento de ferramentas de treino para teleoperação háptica de um robô humanóide

    Get PDF
    Mestrado emEngenharia MecânicaIn robotics, the teleoperation of biped humanoids is one of the most exciting topics. It has the possibility to bypass complex dynamic models with learning demonstration algorithms using human interaction. For this procedure, the Humanoid Project at the University of Aveiro - PHUA, ingrained in the production of a 27 degree-of-freedom full body humanoid platform teleoperated by means of haptic devices. The current project also comprises a robot model that has be imported into the Virtual Robot Experimentation Platform: V-REP. The usage of the simulator allows multiple exercises with greater speed and shorted setup times, when compared to the teleoperation of the real robot, besides providing more safety for the platform and the operator during the tests. By using the simulator, the user can perform tests and make achievements towards the reproduction of human movement with the interaction of two haptic devices providing force feedback to the operator. The performed maneuvers have their kinematic and dynamic data stored for later application in learning by demonstration algorithms. However, the production of more complex and detailed movements requires large amounts of motor skill from the operator. Due to the continuous change of users in the PHUA, an adaptation period is required for the newly arrived operators to develop an a nity with the complex control system. This work is focused on developing methodologies to lower the required time for the training process. Thanks to the versatility of customization provided by V-REP, it was possible to implement interfaces which utilized visual and haptic guidance to enhance the learning capabilities of the operator. A dedicate workstation, new formulations and support tools that control the simulation were developed in order to create a more intuitive control over the humanoid platform. Operators were instructed to reproduce complex 3D movements under several training conditions (with visual and haptic feedback, only haptic feedback, only visual feedback, with guidance tools and without guidance). Performance was measured in terms of speed, drift from intended trajectory, response to the drift and amplitude of the movement. Findings of this study indicate that, with the newly implemented mechanisms, operators are able to gain control over the humanoid platform within a relatively short period of training. Operators subjected to the guidance programs present an even shorter period of training needed, exhibiting high performance in the overall system. These facts support the role of haptic guidance in acquiring kinesthetic memory in high DOFs systems.Em robótica, a teleoperação de robôs bípede humanóides é um dos tópicos mais emocionante. Tem a possibilidade de contornar modelos dinâmicos rígidos, com algoritmos de aprendizagem por demonstração utilizando interação humana. Para este procedimento, o Projeto Humanóide da Universidade de Aveiro - PHUA, empanha-se na produção de uma plataforma humanóide de corpo inteiro teleoperado com dispositivos hapticos. O estado presente do projeto apresenta um robô humanóide com 27 graus de liberdade. O projeto actual apresenta um modelo do robô importado para a Virtual Robot Exper- imentation Platform: V-REP. O uso do simulador permite vários exercícios com maior velocidade e tempos de preparação curtos, quando comparado com a teleoperação do robô real, além de proporcionar mais segurança para a plataforma e do operador durante os ensaios. Ao utilizar o simulador, o utilizador pode realizar testes à reprodução de movimento humano com a interacção de dois dispositivos de meios hápticos que fornecem força de retorno para o operador. As manobras realizadas têm os seus dados cinemáticos e dinâmicos armazenados para posterior aplicação na aprendizagem por algoritmos de demonstração. No entanto, a produção de movimentos mais complexos e detalhados requer grandes quantidades de habilidade motora do operador. Devido à mudança contínua de usuários no PHUA, um período de adaptação é necessário para os operadores recém-chegados a desenvolver uma a nidade com o complexo sistema de controlo. Este trabalho é focado no desenvolvimento de metodologias para diminuir o tempo necessário para o processo de formação dos utilizadores. Graças à versatilidade de personalização fornecidos pela V-REP, foi possível implementar interfaces que utilizaram orientação visual e haptica para melhorar as capacidades de aprendizagem do operador. Uma estação de trabalho, novas formulações e ferramentas de apoio que controlam a simulação foram desenvolvidos a m de criar um controle mais intuitivo sobre a plataforma humanóide. Os operadores foram instruídos a reproduzir movimentos complexos em 3D sob diversas condições de treino (com feedback visual e haptico, apenas feedback haptico, apenas feedback visual, com ferramentas de orientação e sem orientação). O desempenho foi medido em termos de velocidade, a desvio de trajectória pretendida, a resposta à desvio e o tempo gasto para a criação do movimento. Os resultados deste estudo indicam que, com os mecanismos recém-implementadas, os operadores são capazes de ganhar o controlo sobre a plataforma humanóide dentro de um período relativamente curto de treino. Operadores submetidos a programas de orientação apresentam um período ainda mais curto de formação necessária, exibindo alto desempenho no sistema global. Estes fatos justi cam o papel da orientação haptica em adquirir memória cinestésica em sistemas DOFs elevados

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp
    corecore