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Abstract

Due to the technological advance, robotic systems become more and more
interesting for industrial and home applications. Popular examples are given
by robotic lawn mower, robot vacuum cleaner, and package drones. Be-
side the toy industry, legged robots are not as popular, although they have
some clear advantages compared to wheeled systems. With their flexibil-
ity concerning the locomotion, they are able to adapt their walking pattern
to different environments. For instance they can walk over obstacles and
gaps or climb over rubble and stairs. Another possible advantage could be
a redundancy for locomotion. A faulty motor in one limb could be com-
pensated by other motors in the kinematic chain. As well, multiple failing
legs can be compensated by an adapted walking pattern. Compared to this,
the more complex mechatronic systems represent a major challenge to the
construction and the control.

This thesis is dedicated to the control of complex walking robots. Genetic
algorithms are applied to generate walking patterns for different robots.
The evolutionary development of walking patterns is done in a simulation
software. Results of various approaches are transferred and tested on ex-
isting systems which have been developed at RIC/DFKI. Different robotic
systems are used to evaluate the generality of the applied methods. Eventu-
ally, a method is developed that can be utilized, with a few system specific
modifications, for a variety of legged robots.

As basis for the development and investigation of several methods, soft-
ware tools are designed to generalize the application of applying genetic
algorithms to legged locomotion. These tools include a simulation envi-
ronment, a behavior representation, a genetic algorithm and a learning and
benchmark framework. The simulation environment is adapted to the be-
havior of real robotic systems via reference experiments. In addition, the
simulation is extended by a foot contact model for loose surfaces. The eval-
uation of the genetic algorithm is done on several benchmark problems and
compared to three existing algorithms.

This thesis contributes to the state of the art in many areas. The developed
methodology can easily be applied to several complex robotic systems due
to its transferability. The genetic algorithm and the hierarchical behavior
representation provide a new opportunity to control the generation of the
offspring in an evolutionary process. In addition, the developed software
tools are an important contribution for their respective research fields.





Zusammenfassung

Robotische Systeme erhalten durch den technologischen Fortschritt mehr
und mehr Einzug in das alltägliche Leben. Rasenmähroboter, Staubsauger-
roboter und auch Paketdrohnen sind bekannte Beispiele. Laufroboter sind
außerhalb der Spielzeugindustrie allerdings wenig verbreitet, obwohl sie ge-
genüber radgetriebenen Systemen einige Vorteile haben. Ihre große Stärke
ist die Flexibilität – sie können sich über ihr Laufverhalten an die Umge-
bung anpassen und so über Hindernisse oder Spalten laufen, über Geröll
klettern oder Treppen steigen. Ein weiterer Vorteil kann eine Redundanz bei
der Fortbewegung sein. Ein defekter Motor in einer Extremität kann zum
Beispiel durch andereMotoren in der kinematischen Kette kompensiert wer-
den. Ebenso können sogar mehrere ausfallende Beine durch ein angepasstes
Laufmuster ausgeglichen werden. Die im Vergleich komplexeren mechatro-
nischen Systeme der Laufroboter stellen jedoch große Herausforderungen
an Konstruktion und Steuerung dar.

Diese Arbeit widmet sich der Steuerung komplexer Laufroboter. Es werden
genetische Algorithmen eingesetzt, um Laufverhalten für verschiedene Ro-
boter zu generieren. Die Entwicklung der Laufmuster findet ausschließlich in
einer Simulationsumgebung statt. Die Ergebnisse unterschiedlicher Ansätze
werden auf drei amRIC/DFKI entwickelten Robotersysteme übertragen und
bewertet. Um Aussagen über die Allgemeingültigkeit der verwendeten Me-
thoden zu ermöglichen werden Roboter mit unterschiedlicher Komplexität
eingesetzt. Daraus folgt die Entwicklung einer Methodik, die mit gering-
fügigen, roboterspezifischen Anpassungen für eine Vielzahl von Systemen
einsetzbar ist.

Als Grundlage für die Entwicklung und Untersuchung verschiedenerMetho-
denwerden Software-Werkzeuge entwickelt, die die Anwendung genetischer
Algorithmen auf Laufroboter weitestgehend modularisieren und abstrahie-
ren. Zu den Werkzeugen gehören eine Simulationsumgebung, eine Verhal-
tensrepräsentation, ein genetischer Algorithmus und ein Lern- und Bench-
marking-Framework. Die Simulationsumgebung wird über Vergleichsexpe-
rimente an das Verhalten der realen Roboter angeglichen. Zudem wird die
Simulation um ein Modell für die Fuß-Boden-Interaktion auf losem Unter-
grund erweitert. Die Bewertung des genetischen Algorithmus’ erfolgt über
mehrere Benchmarkprobleme mit drei vergleichbaren Algorithmen.

Diese Arbeit erweitert den Stand der Technik in diversen Bereichen. Die ent-
wickelte Methodik lässt sich durch ihre Übertragbarkeit auf verschiedene
komplexe Robotersysteme anwenden. Der genetische Algorithmus und die
hierarchische Verhaltensrepräsentation bieten eine neuartige Möglichkeit,
die Generierung der Nachfahren im evolutionären Prozess zu kontrollieren.
Auch die entwickelten Software-Werkzeuge stellen in ihrem jeweiligen Ge-
biet einen wertvollen Beitrag dar.
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Chapter 1

Introduction

1.1 Motivation

Robotics is an interdisciplinary field with an increasing complexity of robotic systems due
to the progress of technology. This includes how a robotic system can perceive its envi-
ronment through an increasing sensor density and the opportunity to implement many
degrees of freedom without significantly scaling up the overall system’s size and weight.
The resulting complexity of robotic systems also increases the flexibility of their applica-
tions. Due to this flexibility the smart robotics field becomes more and more interesting
for industrial (Bogue (2012); Hvilshøj et al. (2012)) and home applications (Iocchi et al.
(2015); Riek (2017)). For example a fictitious complex bipedal robot could perform all
tasks in a home environment that a human can execute.

Flexibility concerning the locomotion of a robot in many environments is a qual-
ity shared by legged systems. Some examples can be found in Klaassen et al. (2002);
Sakagami et al. (2002); Spenneberg et al. (2005b); Albiez (2007); Raibert et al. (2008);
Zucker et al. (2010); Bartsch (2014); Kühn (2016). In contrast to wheeled systems they
can adapt better to different environmental settings like stairs of different step sizes and
also overcome obstacles by performing big steps or climbing above them. The main dis-
advantage of legged systems is the amount of control necessary for coordinating the legs
to move the robot in a desired direction or climb on objects by keeping the system sta-
ble. The control generally gets more complex with an increasing system complexity and
resulting flexibility.

The complexity of locomotion control is affected by the structural complexity of the
system, like the number of legs, the degrees of freedom per leg, and the mass distribution.
Other factors influencing the complexity are the dynamic properties of the system. This
includes, amongst others, properties maximal torque and velocity of the actuators, elec-
tromechanical compliance of the system that could compensate for non-optimal control
inputs, and properties concerning the interaction with the environment, mainly repre-
sented by the contact behavior of the feet on the ground surface.

The problem of controlling walking robots is tackled by many different approaches.
These approaches can represent any combination of three main classes. The first class
uses pure mathematical models to compute the actuator input by modeling the system
and its environment and accounting for the static and dynamic stability of the system, re-
ferred to as model-based control in this work. A comprehensive introduction is given in
Wieber et al. (2016). The second class, labeled bio-inspired control, represents a model of
locomotion control observed and analyzed from natural examples like stick insects, sala-
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2 CHAPTER 1. INTRODUCTION

manders, or cats. Prominent examples are given in Cruse et al. (1998); Ijspeert (2008);
Manoonpong et al. (2008); Spenneberg and Kirchner (2007). A third alternative is to gen-
erate the locomotion control by machine learning techniques or by utilizing evolutionary
principles, referred to as generated control. Examples can be found in Beer and Gallagher
(1992); Reil and Husbands (2002); Ito and Matsuno (2002); Clune et al. (2009).

Setting up the model-based or bio-inspired approaches for a new robotic system with-
out utilizing optimization techniques requires expert knowledge depending on the sys-
tem’s complexity, either for setting up and configuring the models or for tuning the bio-
inspired control parameters to fit the control to the robotic morphology and dynamic
properties. Generated control approaches, on the other hand, have the potential to pro-
duce solutions for any morphology without the need of an expert. Additionally, they
might be able to solve the problemwith less computational effort while intrinsically utiliz-
ing the system properties. However, the purely evolved control approaches do not scale
well with an increasing system complexity due to the massive explosion of the search
space, known as curse of dimensionality. Another difficulty arises from the structure of
the fitness landscape, which is spanned by the evaluation of the behaviors while moving
in the search space. An ideal fitness landscape guides the learning algorithm from every
point in the search space to a global optimum. The more noise and local optima the
fitness landscape includes, the more complex is the search for the global optimum. If the
fitness landscape reaches a certain degree of complexity, the search problem cannot be
solved with a feasible number of trials (test of single behaviors). Thus, the complexity for
a learning algorithm is defined by the structure of the fitness landscape which depends on
the search space defined by the kinematic complexity and the behavior representation,
the dynamic properties of the robotic system and the evaluation function.

Although some approaches successfully generated locomotion behaviors directly on
a real system (as done by Lewis et al. (1992); Gomi and Ide (1998); Kirchner (1998,
1999); Zykov et al. (2004); Röfer (2005)) there is a relatively high risk of breaking the
system when performing non-optimal actions. Thus many approaches are using a model
for the learning phase, utilizing a simulation tool (Reil and Husbands (2002); Valsalam
and Miikkulainen (2009); Peng et al. (2017); Gay et al. (2013)). But these models can-
not be perfect and therefor introduce a simulation-reality gap. This means a controller
that performs well in simulation can have a poor performance on the real system due to
properties that are not modeled. Unfortunately, these problems imply a learning expert
that understands the search space and the simulation-reality gap to be able to adapt the
setup for a given robotic system to allow the generation of usable controllers. Examples
of transferred behaviors from simulated robots to real systems are given in Jakobi et al.
(1995); Boeing et al. (2004); Lee et al. (2006); Spröwitz et al. (2013).

The power of evolution is demonstrated by the evolution of life on earth. Natural
evolution generated billions of specialized life forms that can survive in different and
also very rough environments. Figure 1.1 depicts a few examples of the variety of life
forms living on earth. Under the correct circumstances evolution can produce complex
fine-tuned results as presented in the examples. The very core principle of evolution is
the continuous adaptation of populations of agents or individuals to an environment.
The fittest individuals of a population are selected to generate a new population through
reproduction. In an ideal artificial world an artificial evolution could possibly come up
with an intelligent agent that has the ability to learn within its lifetime via an evolved
controller. This is a visionary view on artificial evolution, but the evolutionary principles
can also be applied on much simpler optimization problems, like parameter tuning of a
developed controller.
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Figure 1.1: The sub figures depict a few examples of specialized animals and plants. (a) Shows a
moth of the caligo species. It is camouflaged when sitting on a tree trunk, while its coloring of the
wings imitates the eyes of an owl and could deceive a possible predator. (b) Shows a polar bear in a
zoo. The polar bear can survive in the very cold desert of the arctic. With the white coloring of its
fur it is well camouflaged for approaching possible prey. In contrast, the skin underneath the fur
is black, absorbing the sun light and keeping the bear warm. (c) Depicts a leaf-tailed gecko, which
is nearly invisible when sitting on a tree trunk. (d) The cheetah is another example of the fastest
terrestrial animal. With its dynamic sprinting skills it can reach up to 100 kilometers per hour. (e)
Depicts a blue whale, which is, of about 170 tonnes of weight, the biggest creature known that
ever lived on earth. The blue whale is part of the marine mammal group, which adapted back
from land to the sea. (f) Shows an eagle which has one of the best eyes, being able to catch sight
of a mouse while gliding more than 100m above the ground. (g) and (h) depict plants that are
also specialized to attract insects or birds for transporting their seeds.
(a), (b), (g), and (h) Pictures are taken by the author
(c) https://commons.wikimedia.org/wiki/File:UroplatusSikoraeSameiti.png
(d) https://pixabay.com/de/gepard-afrika-namibia-katze-laufen-2859581
(e) https://commons.wikimedia.org/wiki/File:Anim1755_-_Flickr_-_NOAA_Photo_Library.jpg
(f) https://pixabay.com/de/weißkopfseeadler-vogel-raubtier-142685
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A general methodology that allows to evolve a locomotion controller in simulation,
either offline or while running on the robot, would reduce the effort required to develop
legged robotic systems. The same method could be used to adapt the robot’s behavior
to new environments or new circumstances. An evolutionary method that adapts the
behavior step by step could also be used continuously on a robotic system in the sense of
long-time learning.

1.2 Goal

As outlined in Section 1.1, the control of complex legged robots is a challenging task.
Evolutionary methods are able to solve the problem, but due to the enormous search
space and the resulting fitness landscape, the learning setup has to be tuned to allow the
evolution to succeed. This reduction of the search space is often done specifically for one
robotic system, for instance by limiting or reducing selected degrees of freedom of the
system. The main goal of the thesis focuses on this problem:

Goal: Reduce the search space for evolving locomotion controllers by:
1. predefining control modules that limit the control possibilities to a
useful range and can still be used by all systems. 2. defining an iterative
method with increasing complexity instead of dealing with the whole
search space at once.

Due to the fact that the search space and the fitness landscape cannot be defined analyti-
cally a series of experiments is necessary to achieve the main goal. For these experiments
it must be possible to control how the evolution operates in the search space. Therefore,
a set of subgoals is defined:

Subgoal 1: Develop a behavior representation that allows the definition of any kind
of control structure and that can be configured to control where and
how genetic mutations occur.

Subgoal 2: Develop a genetic algorithm that operates on the resulting behavior
structure. The new algorithm should have at least the same perfor-
mance as common genetic algorithms. In contrast to existing algo-
rithms, it has to allow the modification of selected behavior modules
simultaneously on different levels of the control hierarchy.

Subgoal 3: In order to evolve controllers for different real robotic systems, a sim-
ulation framework has to be developed that fulfills the requirements of
optimization applications. The simulation has to be precise enough to
allow the transfer of evolved behaviors to the real systems.

Subgoal 4: In order to perform the needed experiments and to verify the new algo-
rithms, a benchmarking framework has to be developed.

All tools developed for this thesis should be available for the research community to allow
a comparison of different approaches mainly for locomotion control on the exact same
problems implemented in the benchmarking framework.
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1.3 Structure of the Thesis

Figure 1.2 depicts the structure of the thesis which starts with Chapter 1 and 2 giving the
motivation and goals of this thesis and providing an overview on the research fields cor-
related to this work. Chapter 3 to Chapter 6 present the methods and implementations
done for this thesis. The chapters include single experiments to improve and bench-
mark the implemented methods. Since the simulation quality is a very important part
when designing and optimizing behaviors in simulation for real systems, a framework is
introduced in Chapter 3, which is designed to balance the trade-off between computa-
tional effort and simulation precision. Especially in the field of evolutionary robotics no
standard benchmarks and frameworks are available at this point in time and it is com-
plicated to compare results from different publications. Therefore a learning framework
is designed in Chapter 4 with special focus on performing automated benchmarks and
providing learning problems for the community.

Simulation MARS Learning Framework
BOLERO

Behavior Representation
BAGEL

Genetic Algorithm
SABRE

Introduction

Chapter 1

Introduction

Chapter 2

Background and
Related Work

Chapter 3 Chapter 4 Chapter 5

Chapter 6

Methods and Implementation

Application and Experiments

Conclusion

Chapter 7 Chapter 8

Central Pattern
Control Approach

Evolving Legged
Locomotion

Chapter 9

Conclusion and Outlook

Figure 1.2: Graphical overview showing the structure of the thesis.

For most robotic control frameworks a large implementation effort is needed to op-
timize one or multiple components simultaneously with evolutionary methods. In par-
ticular, this becomes complicated if evolutionary methods are used to modify control
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structures on multiple control layers. To allow a high flexibility in applying evolutionary
methods on robotic control problems, Chapter 5 introduces a novel graph-based multi-
layer control framework. Since the same flexibility has to be provided by the genetic
algorithm, Chapter 6 presents a novel genetic method and the interfacing of the control
framework with the genetic algorithm and the learning framework. The chapter also in-
cludes some benchmark results that compare the performance of the new method with
the most popular state of the art algorithm.

Chapter 7 and 8 present the methods and experiments to evolve the locomotion con-
trol for complex legged robots. First Chapter 7 experimentally analyses different joint
pattern representations. The focus of the chapter lies on the representation strength and
on how well the different approaches are suited for applying evolutionary methods to
modify the patterns. Afterwards Chapter 8 presents the main experiments performed
to generate locomotion control for different target systems. The chapter also includes
different approaches to deal with complex locomotion problems.

The last chapter (Chapter 9) summarizes the results of this thesis and the contribution
to the state of the art. Additionally, some ideas are presented in the chapter on how the
research can be continued.

1.4 Contributions

All publications listed in this section are peer-reviewed conference or journal papers. Until
2012 the author published his results with his family name Malte Römmermann. The
simulation-reality gap is published in the following paper:

Römmermann, M., Bartsch, S., and Haase, S. (2010). Validation of simulation-based
morphology design of a six-legged walking robot. In Emerging Trends in Mobile
Robotics, pages 895–902. World Scientific.

The simulation is extended by a leg-soil interaction model based on real experiments. The
extension is done to simulate a more realistic contact behavior. Different approaches,
experiments, and results are published in:

Yoo, Y.-H., Abdenebaoui, L., Rohn,M., Römmermann,M., andKirchner, F. (2009b).
Modelling and simulation of mobile six-legged robot with leg-soil contact. In Pro-
ceedings of the 11th European Regional Conference of the International Society for
Terrain-Vehicle Systems, ISTVS.

Römmermann, M., Kühn, D., Cordes, F., Yoo, Y.-H., and Kirchner, F. (2009a). Con-
cept evaluation of modeling terrain mechanics by a neural network. In Proceedings
of the 11th European Regional Conference of the International Society for Terrain-
Vehicle Systems, ISTVS.

Yoo, Y.-H., Jung, T., Römmermann, M., Rast, M., Rossmann, J., and Kirchner, F.
(2010). Developing a virtual environment for extraterrestrial legged robot with focus
on lunar crater exploration. In Proceeding of 10th International Symposium on
Artificial Intelligent, Robotics and Automation in Space, iSAIRAS.

Ahmed, M., Quack, L., Römmermann, M., and Yoo, Y.-H. (2011). Development
of a real and simulation testbed for legged robot soil interaction. In Proceedings of
the 17th International Conference of the International Society for Terrain-Vehicle
Systems, ISTVS.
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Römmermann, M., Ahmed, M., Quack, L., and Kassahun, Y. (2011). Modeling of
leg soil interaction using genetic algorithms. In Proceedings of the 17th International
Conference of the International Society for Terrain-Vehicle Systems, ISTVS.

Römmermann, M., Ahmed, M., Quack, L., and Kassahun, Y. (2011). An application
of genetic algorithms to model leg–soil interaction. In Proceedings of the 4th Inter-
national Workshop on Evolutionary and Reinforcement Learning for Autonomous
Robot Systems, ERLARS 2011.

The simulation tool was used to support the design of robotic systems and to optimize
controllers. In the following list the publications dealing with locomotion control are
excluded, since they are listed separately.

Kassahun, Y., de Gea, J., Römmermann, M., and Kirchner, F. (2009). On applying
neuroevolutionary methods to complex robotic tasks. In IEEE IROS Workshops on
Exploring new horizons in Evolutionary Design of robots, pages 26–30.

Yoo, Y., Ahmed, M., Römmermann, M., and Kirchner, F. (2009a). A simulation-
based design of extraterrestrial six-legged robot system. In 2009 35th Annual Con-
ference of IEEE Industrial Electronics, pages 2181–2186.

Kühn, D., Sauthoff, N., Grimminger, F., Römmermann,M., and Kirchner, F. (2009b).
Towards a biologically inspired ape-like robot. In Mobile Robotics, pages 165–172.

Bartsch, S., Birnschein, T., Cordes, F., Kühn, D., Kampmann, P., Hilljegerdes, J.,
Planthaber, S., Römmermann, M., and Kirchner, F. (2010). SpaceClimber: Devel-
opment of a six-legged climbing robot for space exploration. In ISR 2010 (41st In-
ternational Symposium on Robotics) and ROBOTIK 2010 (6th German Conference
on Robotics), pages 1–8.

Straube, S., Rohn, M., Römmermann, M., Bergatt, C., Jordan, M., and Kirchner,
E. A. (2011). On the closure of perceptual gaps in man-machine interaction: Virtual
immersion, psychophysics and electrophysiology. In Perception - ECVP Abstract
Supplement. European Conference on Visual Perception (ECVP-2011), volume 40,
pages 177–177.

Dettmann, A., Römmermann, M., and Cordes, F. (2011). Evolutionary development
of an optimized manipulator arm morphology for manipulation and rover locomo-
tion. In 2011 IEEE International Conference on Robotics and Biomimetics, pages
2567–2573.

The novel behavior representation is published in the following papers:

Langosz, M., Quack, L., Dettmann, A., Bartsch, S., and Kirchner, F. (2013). A
behavior-based library for locomotion control of kinematically complex robots. In
Nature-Inspired Mobile Robotics, pages 495–502.

Dettmann, A., Langosz, M., von Szadkowski, K. A., and Bartsch, S. (2014). Towards
lifelong learning of optimal control for kinematically complex robots. In Workshop
on Modelling, Estimation, Perception and Control of All Terrain Mobile Robots .
IEEE International Conference on Robotics and Automation (ICRA-2014). IEEE.
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Bartsch, S., Manz, M., Kampmann, P., Dettmann, A., Hanff, H., Langosz, M., von
Szadkowski, K., Hilljegerdes, J., Simnofske,M., Kloss, P., Meder,M., and Kirchner, F.
(2016). Development and control of the multi-legged robot MANTIS. In ISR 2016:
47st International Symposium on Robotics., pages 379–386, Berlin, Offenbach. VDE
VERLAG GmbH.

The genetic algorithm was used for the model development of the leg-soil interaction
listed above, while the algorithm itself is published in:

Langosz, M., von Szadkowski, K. A., and Kirchner, F. (2014). Introducing particle
swarm optimization into a genetic algorithm to evolve robot controllers. In Proceed-
ings of the Companion Publication of the 2014 Annual Conference on Genetic and
Evolutionary Computation, GECCO Comp ’14, pages 9–10, New York, NY, USA.
ACM.

Publications with the focus on evolving the locomotion control of legged robots:

Römmermann, M., Edgington, M., Metzen, J. H., de Gea, J., Kassahun, Y., and
Kirchner, F. (2008). Learning walking patterns for kinematically complex robots
using evolution strategies. In Rudolph, G., Jansen, T., Beume, N., Lucas, S., and
Poloni, C., editors, Parallel Problem Solving from Nature – PPSN X, pages 1091–
1100, Berlin, Heidelberg. Springer.

Kühn, D., Römmermann, M., Sauthoff, N., Grimminger, F., and Kirchner, F. (2009a).
Concept evaluation of a new biologically inspired robot “LittleApe”. In 2009 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 589–594.

Römmermann, M., Kühn, D., and Kirchner, F. (2009b). Robot design for space
missions using evolutionary computation. In 2009 IEEE Congress on Evolutionary
Computation, pages 2098–2105.

Bartsch, S., Birnschein, T., Römmermann, M., Hilljegerdes, J., Kühn, D., and Kirch-
ner, F. (2012). Development of the six-legged walking and climbing robot Space-
Climber. Journal of Field Robotics, 29(3):506–532.



Chapter 2

Background and RelatedWork

This chapter introduces the basics of legged locomotion and evolution. While targeting at
the control and development of artificial legged systems, also the biological background
and modeling is introduced. Since the development of the robotic systems, used to test
the results of this thesis, is not part of this work, the systems are explained in detail within
this chapter.

2.1 Legged Locomotion

Controlling the legs of a walking system poses a complex problem. The legs have to
support the robot’s weight and push it forward without acting against each other. At
the same time, they have to adapt their movements to the properties of the environment,
for instance the roughness, softness, or friction of the surface. This control problem can
be solved by a mathematical approach, referred to as model-based control in this work.
Alternatively, the control can be achieved by imitating the behaviors observed in nature,
referred to as bio-inspired approach. The two main methods have their pros and cons, as
will be presented in the following section. For many applications a combination of both
approaches represents an adequate solution.

2.1.1 Model-Based Control

In a purely model-based approach, mass distribution and leg loads are calculated based on
the dynamic model of the system, which is fed with the motor and posture sensors. Based
on the calculated center of mass, the zero moment point, and the feet contact points, the
space of possible next foot positions can be calculated. The exact next foot positions
are calculated by a planner, which needs a rather precise map of the environment and the
correct location of the robot in the map. The mapping and location is provided by SLAM1

algorithms, which are widely used for navigation planning of autonomous systems. Since
a leg is only allowed to be lifted up if the robot remains stable, a main problem can be the
decision which leg to move next. A multi-legged system can get stuck in a state where no
legs are allowed to move. Beside the challenge of coordinating the legs, the model-based
approaches need high computation effort and are generally limited by the precision of
the model and the perception of the environment needed for step planning. For details
on the model-based approaches see Garcia et al. (2003); Bretl et al. (2003); Vernaza et al.
(2009); Bombled (2011); Righetti et al. (2013); Herzog et al. (2016); Xin et al. (2018).

1SLAM: Self-localization and mapping

9
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2.1.2 Bio-Inspired Control

A large effort is spent in understanding how locomotion works in nature to optimize
motion sequences in sports, for rehabilitation practice, or to model and imitate locomo-
tion principles with artificial systems. To transfer locomotion concepts from nature to
artificial systems, two approaches are commonly used. The first one models the holis-
tically observed behavior, mostly of insects, by reflex chains. A common model of this
approach is the WALKNET as introduced in Cruse et al. (1998). Since it was initially in-
troduced WALKNET was adapted and extended in several ways. It is used on different
robots, as presented in Weidemann et al. (1994); Lewinger et al. (2006); Paskarbeit et al.
(2010). However, it is based on the locomotion of insects and it is unknown how well it
could represent the dynamic locomotion of mammals, like a cheetah, a horse or a human,
especially if sensory feedback is too slow for fast gaits (Schilling et al. (2013)).

On the other hand, locomotion patterns could be observed by experiments with dif-
ferent animals, leading to a central pattern generator (CPG) model for locomotion control
Minassian et al. (2017); Ijspeert (2008); Guertin (2009); Marder and Bucher (2001). In
the CPG approach, some base movement patterns are generated, that can, for example,
be modulated by the amplitude, the frequency, or an offset. These modifications allow,
for instance, to adapt the walking speed or provide a turning behavior. These base pat-
terns can be generated by simple recurrent artificial neural networks composed of only
two interconnected neurons, see review Ijspeert (2008) which lists many examples. Other
approaches, like Spenneberg (2006); Spröwitz et al. (2013), use modulated sine waves or
Bezier curves representing the patterns. The patterns are executed on or provided to the
legs with a defined phase shift resulting in a basic locomotion control. This phase shift
can be modeled by a rather static shift or through a phase coupling, which allows a tem-
porary adaption of the phase shift through sensory feedback. An additional adaptation
to the environment can be achieved by reflexes to correct the basic pattern if the sensory
readings do not fit well enough to the expectations.

Both approaches, the WALKNET and the CPG, are combined with the model-based
control, at least by using a kinematic model of the robot to control the robots in Cartesian
space instead of joint space, e. g. Schilling et al. (2012); Bartsch et al. (2012); Kühn et al.
(2009b); Kühn (2016). This makes the tuning of the approaches to a target system more
intuitive for a human developer and allows a reduction of the parameter space. The
basic concepts of both approaches are explained more in detail in this section. The last
part of this section discusses the bio-mechanical system (biomechanics), which plays an
important role for natural locomotion.

WALKNET

Schilling et al. (2013) provides a helpful overview of related publications and the con-
cept, development, and different versions of WALKNET. For the WALKNET model, the leg
movement is split into a swing and a stance phase. Two positions of the leg define where
the leg switches between the two states. The anterior extreme position AEP defines the
end position of the swing phase where the leg switches to the stance phase. The position
where the leg switches from stance to swing is defined by the posterior extreme position
PEP. The most important modules of WALKNET are three networks: the Stance-net, the
Swing-net, and the Target-net. For each leg one instance of the Stance- and Swing-net
is used, while multiple Target-nets can be used for different walking modes, for instance
forward or backward walking. The Stance- and Swing-net implement the leg control to
perform the movement according to the respective state. The Target-net defines the AEP
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Figure 2.1: The figure depicts the coordination rules of the WALKNET model for a stick insect.
The modules L1 to L3 and R1 to R3 are the single-leg controllers implementing the swing and
stance movement. The connections between the modules modify the transition between the leg
phases. [The figure is based on Schilling et al. (2013)].

position of the controlled leg. The PEP is modified via three coordination rules defined
between the legs, while Rule 4 influences the AEP. Rule 5 and 6 relay on force and tactile
sensory information and are not used in the default implementations of WALKNET. As a
result of the coordination rules a walking gait, a phase shift between the legs, is generated.
The six rules are defined as follows (compare Figure 2.1):

• Rule 1: As long as a leg is in the swing phase or within a velocity-dependent time
delay after the start of the stance phase, it inhibits the beginning of the swing phase
of connected legs by moving the PEP to the rear. The rule ensures that connected
legs do not start the swing phase until the controlling leg can support the body.

• Rule 2: For a defined time window in the stance phase the PEP of the connected leg
is moved forward. This rule excites the start of the swing movement of connected
legs.

• Rule 3: Similar to rule 2 but the “critical” window and the influence on the PEP
depends on the locomotion velocity. Additionally, the influence is different between
ipsilateral and contralateral legs.

• Rule 4: The rule is implemented by a specific version of the Target-net, forwarding
the current leg position to the Target-net of the connected leg, and thus defining the
AEP of the connected leg.

• Rule 5: Depending on the propulsion force or load on the leg, the forces of con-
nected legs is increased to distribute the overall load.

• Rule 6: The rule implements the treading-on-tarsus reflex, by performing a short
back step if the leg in front is touched at the end of the swing phase.

Central Pattern Generator

The research of central pattern generators is closely related to the research of neural net-
works. In contrast to reflex-based models, the focus lies on identifying and understanding
the neural circuit for generating locomotion motor commands. This section will only give
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Figure 2.2: The picture depicts the structure of a multipolar neuron. The dendrites transfer
incoming electrical or chemical signals that influence the voltage of the cell. On a high enough
voltage change an electrochemical pulse is generated and transferred via the axon. A neuron can
have multiple dendrites but only one axon that is connected at the axon hillock. However, the
axon can split into multiple branches connecting multiple neurons. The synaptic signals to a
neuron can either be excitatory or inhibitory.
[Source: https://commons.wikimedia.org/wiki/File:Blausen_0657_MultipolarNeuron.png]

a rough overview for a basic understanding of neural pattern generation, for details see
Minassian et al. (2017); Ijspeert (2008); Guertin (2009); Marder and Bucher (2001). The
very basic functionality of a neural cell is depicted in Figure 2.2. Different neurons, con-
tributing to pattern generation, were found that show different membrane properties, see
Figure 2.3 as examples. Beside synaptic control by other neurons, cell behaviors can also
be activated, deactivated, or modulated by the chemical environment of the cells.

I
Endogenous

bursting

Plateau

potentials

Postinhibitory

rebound

a) b) c)

Figure 2.3: Examples of different cell properties that can contribute to generate or modulate a
CPG. The upper graphs depicts the cell voltage, while the lower graphs show the current applied to
the cell. a) The cell intrinsically produces a pattern without being triggered from outside. b) The
cell voltage reacts to depolarizing current pulses with an increase of voltage (plateau potential).
The voltage is kept even if the depolarization is stopped. If hyperpolarizing current pulses are
applied, the voltage decreases to the rest state. c) A cell that reacts to inhibition with a rebound
voltage after the inhibition stops. [The drawing is based on Marder and Bucher (2001).]

https://commons.wikimedia.org/wiki/File:Blausen_0657_MultipolarNeuron.png


2.1. LEGGED LOCOMOTION 13

2

Transfer
function

w1

w

wn

Weights

x1

x2

xn

Inputs

Activation
function

Threshold

Weight

wo

Output
o

θ

∑ ϕ

Figure 2.4: The architecture of an artificial neuron with weighted inputs, a transfer function,
threshold based activation function, and a weighted output.

A commonly used model of a neuron in artificial neural networks is shown in Figure
2.4. The model summarizes the weighted input signals and produces an output if the sum
is above a defined threshold (Pth), as defined by:

x′ =
n

∑
i=0

xiwi (2.1)

f(x ) =

{

x′, if x′ ≥ Pth
0, else,

(2.2)

where xi are the input signals, wi the input weights, and th defines the threshold. The
model is far simpler than its biological template, since in nature the processes of generat-
ing a potential are more complex and many factors can influence and modulate the cells
behavior. One possibility to produce two alternating patterns as needed for cross gait lo-
comotion, is to combine two non-bursting neurons that are interconnected by inhibiting
connections. Another possible network structure found is a “pacemaker” combination
where one endogenous bursting neuron generates a pattern and another neuron, which
does not intrinsically produce a pattern, shows an alternating pattern if connected to the
first one (see Figure 2.5).

It is accepted that pattern-generating networks can be found in vertebrates and inver-
tebrates, but especially for mammals it is still an open question how these patterns con-
tribute to the final locomotion control. In some examples, the motor neurons, responsible
for muscle contraction and relaxation, forward or modify incoming CPG patterns or they
even represent a part of the pattern producing network. Especially for mammals, mod-
ulation of patterns have to be quite complex to allow an adaption to the environment.
It was shown that different networks can be responsible for different behaviors, where
single neurons can also contribute to more than one of these networks. There is strong
evidence that the locomotion control of mammals is much more complex than the control
of insects. This is also to be expected, as the evolutionary lineages of insects/arthropods
and mammals split before legs were evolved.

Biomechanics

Another important element of natural locomotion is the complex biomechanics involved.
A joint, such as a knee, is driven by multiple muscles. A muscle is attached to bones
via tendons which are elastic and thus can store energy. Muscles can connect two or
multiple bones. They are composed of multiple segments, each consisting of multiple
muscle fibers. The muscle fibers are the part that can contract the muscle to produce a
desired force. To allow a bidirectional joint movement, an agonist can move the joint in
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Figure 2.5: The schematic figure depicts two possibilities to generate alternating pattern by cou-
pling two neurons via inhibitory connections. In a) a pattern generating neuron (n1) is used
coupled with an non-bursting neuron (n2). To the left is the unconnected output, while the right
side depicts the coupled one. In b) two non-bursting neurons (n3 and n4) are coupled by two
inhibiting connections. [The drawing is based on Marder and Bucher (2001).]

one direction while the antagonist moves the joint in the opposite direction. By producing
a force with both muscles a stiffness of the joint can be achieved. The elasticity of the
muscles and tendons adds the compliance needed to passively adapt to the environment.
This allows for example to perform a smooth touchdown by absorbing the impulse forces.
The force to support the body weight can be generated after the main impulse forces are
absorbed. A commonly used model to simulate muscle forces is to split the muscles into
single strands between the attachment points of a muscle (see Lee et al. (2009); Pandy and
Andriacchi (2010)). How these segmented muscles contribute to the torque developed at
the joints is defined by a matrix. The equation for calculating the joint torques is given
by:
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where n is the number of joints, m the number of muscles, Tj is the torque of joint j,
FMi is the force produced by muscle i, and rji is the moment arm of muscle i about joint
j. A muscle can only produce a positive force, and its current force is calculated by its
length, contraction or strain of the muscle in parallel direction, and the change in length
(velocity). The contractile force is multiplied with the activation level of the muscle.

This kind of biomechanics modeling is also used to control characters and animals in
a physical rigid body simulation. The characters are controlled by applying torques to the
joints, while the model is fed back with the joint position to calculate the current muscle
length. This way, the characters show very compliant behaviors, stabilizing the whole
control. In comparison to a robotic system with classical electrical motors, a position or
speed command is used and the motor generates the torque needed to achieve the desired
target value. Compared to the muscles, the motors behave like agonist and antagonist
muscles producing as much stiffness as possible. However, many robotic systems nowa-
days measure the torque at the actuators and allow to control the torque generated by
the motor. With this torque controlled actuators the load distribution can be optimized
allowing to compensate for an uneven surface. But still the actuators have a relatively
high damping due to the mechanical gearing and the electrical coupling of the coils. A
mechanical behavior more similar to natural systems can be achieved with serial elastic
actuators combined with torque measurement. This way, a torque applied to the spring
(the elastic element in the actuator) can be used to compensate the damping of the actu-
ator. These actuators can absorb the impulse force at the touchdown phase and behave
more similar to the biological counterpart.
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2.2 Evolution and Optimization

2.2.1 Natural Evolution

A modern introduction of the theory of evolution is given by the book Almost Like a
Whale: The Origin of Species Updated authored by Steve Jones (Jones (2000)). This
section provides a short summary, roughly introducing the theory of evolution. A timeline
with key events in the development of life is shown in Figure 2.6. How life began is still
an unanswered question. The earth is approximately 4.5 billion years old and life started
about 3.8 billion years ago by creating first one-cellular life-forms which were able to
reproduce themselves. It took another 1.7 billion years until first multicellular life-forms
evolved. The next milestone was about 1.8 billion years ago, when first cells with a
nucleus evolved. The first arthropods evolved 570Mya followed by fish 530Mya. The
Cambrian explosion took place in the period from 545 to 495Mya. Within this period
all major forms of life evolved including animals that swam, crawled, hunted, and hid
away. Dinosaurs populated the earth for more than 150 million years within the period
of 225 to 65Mya. The human species evolved only 200 thousand years ago and thus
settled on the earth 0.13% the time dinosaurs lived and only 0.004% of the whole time
the earth exists.

Figure 2.6: The timeline of evolution of life.
[Source: https://commons.wikimedia.org/wiki/File:Timeline_evolution_of_life.svg]

The basis of all life is the genetic encoding (DNA) that came into place within the first
0.7 billion years. A bacterial cell is the simplest organism defined byDNA, which already
includes thousands of different protein molecules that have to work in a coordinated way
to enable the cell to survive. In contrast to bacterial cells, the cells of multi-cellular sys-
tems, like mammals, include a nucleus embedding the DNA. More than 300 different
types of cells can be found in the human body. Some cells produce or represent the
body, like bones, hair, or organs, while others produce substances the organism needs.

https://commons.wikimedia.org/wiki/File:Timeline_evolution_of_life.svg
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The substances are produced or processed by enzymes which are a collection of proteins
performing specific jobs. Proteins are molecules composed by a combination of twenty
different amino acids. Up to a few hundred amino acids can be combined into the struc-
ture of a protein. The sequence of the sub-units is defined by the DNA of the gene that
produces the protein.

DNA is made of four types of bases, which are aligned in a paired double-string in a
double-helix structure. The fruit-fly (Drosophila melanogaster), used for much research
in genetics, has about 14,000 genes with about 120 million letters ofDNA. HumanDNA
has about 25 times as many letters, while the number of different genes is still unknown.
Less than 2% of the humanDNA is responsible for coding the proteins and it is unknown
how much of the rest is important for the organism to live. Some of the non-coding
DNA is responsible for starting and stopping the production of proteins. The whole
DNA defines the plan of how the organism is created out of one single cell through the
cell division process, whereby each cell includes a full copy of the original maternal and
paternal DNA set. During the cell division process the DNA is first replicated within
the nucleus. Since the replication process is a chemical one, it can produce errors in the
copy. Within the process, enzymes verify the new DNA string and can correct errors.
After replication the copy is transferred out of the nucleus and the cell division process
continues. The errors that are produced and not corrected within the DNA replication
are the source of mutation. In the end, the probability of mutation with an influence on
the development of the organism differs between different functions. For instance, the
probability for albino mutations is much higher than the probability for an additional
extremity growing somewhere at the corpus. The difference of the same gene strings of
different people is less then 0.1% of the DNA letters, compared to about 1% difference
between human and chimpanzee. The principle of the complex machinery of the cells
with itsDNA, proteins, and cell division is shared between all multi-cellular life on earth.

Adaptation of a species is mainly driven by natural selection or survival of the fittest.
The individuals that produce more offspring either by reproducing themselves faster or
by living longer than others pass more of their genes to the next generation. This also
includes the ability to protect themselves from being caught by a predator and vice versa.
Another factor is genetic drift, which occurs if a mutation that has no influence on fitness
and is thus not selected against, spreads within a species over multiple generations. Alto-
gether, the adaptation of a population to its environment is a very slow process of many
small adaptations over many generations.

2.2.2 Artificial Evolution

The research on artificial evolution is done with different purposes. On one hand, mod-
els can be used to explain or understand the processes observed in nature. On the other
hand, evolutionary models can be used to solve many problems concerning design or
control . It has been shown for several applications that evolutionary methods can pro-
duce human competitive results, many examples are summarized by Koza (2010). The
umbrella term for the whole research field is commonly Evolutionary Computation or
Genetics Computation. The field can be split into four sub-groups, as shown in Figure
2.7. However, the subgroups are not clearly separated and a lot of research can be or-
dered in between different groups, illustrated by the overlapping areas in the overview.
While the subfields of Evolutionary Strategies and Genetic Programming focus predomi-
nantly on solving given design or control problems, the fields ofGenetics Algorithms and
Neuroevolution have many contributions for understanding natural processes. What all
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Figure 2.7: Overview of research fields of Evolutionary Computation.

subfields have in common is the basic principle of managing one or more populations
where every individual is evaluated and a subset of individuals is selected for generating
the followup populations. Whether one or more populations are managed and howmany
parents are selected depends on the specific methods used and is part of the research in
all subfields. The following subsections introduce the four groups more in detail. Finally
an overview of the application of artificial evolution applied to legged robotic systems is
given.

Evolutionary Strategies

Evolutionary Strategies were introduced by Rechenberg (1964, 1973) and are designed to
optimize real-valued vectors. They represent a heuristics search in the parameter space,
the search space for parameter optimization, able to find adequate global solutions for
many problems. In most implementations a step width σ is used to control how differ-
ent the offspring can become from its parents. Either the step width is constant or it is
adapted from one generation to the next. The most basic algorithm is given by the code
example Listing 1. More advanced implementations handle a separated step width for

1 Input: population P, step width σ
2 for xi in P do
3 xi ∼ U(0,1) # sample initial parameters from uniform distribution
4 end for
5 # evaluate parameter with f : R N → R

6 while True do
7 # select best individual as parent for the next population
8 p ← x0
9 for xi in P do
10 p ← (f(xi) < f(p)) ? xi : p

11 end for
12 # generate next population from selected parent
13 for xi in P do
14 xi ∼ xi +N(0, σ()2)
15 end for
16 end while

Listing 1: Basic optimization process of Evolutionary Strategies.
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N(0, σ2I ) N(0,C )

Figure 2.8: The two pictures depict the behavior of different mutation approaches. The grey
lines in the background illustrate the fitness landscape, which is improving in the direction of the
upper right corner. The first image shows two samples of a normal distribution with σ ∈ R

+ .
The second example depicts two samples using the covariance matrix.
[The drawing is based on Hansen and Ostermeier (2001).]

Figure 2.9: The two pictures illustrate two examples of a path taken in the search space. The
black arrows depict the single step taken by the search algorithm while the green arrow represents
the cumulative path which can be used to optimize the step width adaptation.
[The drawing is based on Hansen and Ostermeier (2001).]

every dimension of the parameter vector or even generate and update a covariance matrix
to learn parameter correlations. A very popular implementation is the Covariance Ma-
trix Adaptation Evolutionary Strategy (CMA-ES) introduced in Hansen and Ostermeier
(2001). The implementation adds two main features influencing how the algorithm op-
erates in the search space. The first feature uses a covariance matrix to learn parameter
correlations and influence the distribution of the offspring. Figure 2.8 depicts the influ-
ence of the covariance matrix in comparison to normal-distributed offspring. The second
feature makes use of a cumulative step width calculation to adapt the step width used to
generate a new offspring. This principle is illustrated in Figure 2.9.

Genetic Algorithms

Genetic Algorithms became popular with the work of Holland (1992) and represent the
most generic subfield of evolutionary computation. While the research originally focused
on evolving bit-strings representing the genotype, today it covers any kind of gene string
with a non-restrictive conversion of the genotype to the phenotype. The other subfields of
Evolutionary Computation differ mainly in the more restricted usage of the genotype, like
Evolutionary Strategies which use real-valued vectors as genotypes to perform parameter
optimization.

Common operations on the genotype used for reproduction are the mutation and the
crossover operations. In mutation, the properties of a single gene string that are stored
in the genes are varied randomly, mostly by adapting parameters similar to the ES meth-



2.2. EVOLUTION AND OPTIMIZATION 19

x
x x

x x
xx

xx

Figure 2.10: Two examples of the crossover operation. In each projection the upper two strings
are combined into the lower new ones by eliminating the marked edges and nodes.

ods. The crossover operation combines the genes of two parent strings. Two examples
of the crossover operation are illustrated in Figure 2.10. The genes in the genotype can,
for instance, decode the morphology and the control of a virtual creature as done a lot
in artificial life research, as done by Sims (1994); Mazzapioda et al. (2009); Auerbach
and Bongard (2011). Many contributions to the field use genetic algorithms in a biolog-
ical scientific context as done by Parsons et al. (1993); Izquierdo and Lockery (2010);
Custódio et al. (2014); Luque-Baena et al. (2014).

Genetic Programming

The field ofGenetic Programmingwas established by Koza (1992). Genetic Programming
has its focus on evolving computer algorithms. Therefore, the classical representation is a
tree structure composing mathematical operations (see Figure 2.11). Each node in the tree
can have two sub-trees and connects to one node on the above tree layer. Nodes that have
no sub-trees define inputs to the algorithm or can introduce constant parameters. The
root node in the tree represents the output of the overall algorithm. To allow multiple
outputs of an algorithm one tree can be evolved per output. Many contributions to
Genetic Programming are listed in Koza (2010).

+

*

x x

*

y 0.5

Figure 2.11: An example of a possible GP-tree representing the function f(x) = x2 + 0.5y.

Neuroevolution

In the field of Neuroevolution (Floreano et al., 2008; Yao, 1999) the phenotype is repre-
sented by an artificial neural network (ANN). The parameters, or structure, or both of the
ANN are developed by an evolutionary algorithm. Generally, neuroevolutionary meth-
ods are comparable to reinforcement learning algorithms, where the fitness value of an
individual is the accumulated reward received by the individual after it has operated in a
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given environment (Whitley et al., 1993). Therefore, the ANN input is the current state
of the reinforcement agent while the output of the network represents the action selected
by the current policy represented by the neural network. This way, Neuroevolution can
be applied to any episodic reinforcement learning tasks. Additionally, Neuroevolution is
one possible approach to apply reinforcement learning to continuous problems.

Many contributions successfully evolve only the parameters of an ANN by keeping
the structure (i. e. network topology) fixed (Wieland, 1991; Saravanan and Fogel, 1995;
Moriarty and Miikkulainen, 1996; Gomez and Miikkulainen, 1997; Igel, 2003; Gomez
et al., 2008; Heidrich-Meisner and Igel, 2009). However, the performance of these ap-
proaches highly depends on the human-designed network structure, which has to fit more
or less precisely to the specific application. On the other hand, methods that also evolve
the network structure can be subdivided by the mapping from genotype to phenotype
used, distinguishing between “external”, “explicit” or “implicit”. For external mapping
each gene in the genotype directly represents an element in the phenotype. The geno-
type could consist of node and edge genes representing ANN nodes and connections as
used by (Angeline et al., 1994; Stanley, 2004; Kassahun et al., 2007b). In case of explicit
encoding, the genotype represents a blueprint to generate the phenotype, while this de-
velopment process is specified in the genotype, as done by Kitano (1990); Sendhoff and
Kreutz (1999); Gruau (1994); D’Ambrosio and Stanley (2007); Koutník et al. (2013). Im-
plicit mapping has the strongest resemblance of natural evolution, where the phenotype
emerges from the interaction and activation patterns of the genes in the genotype (Vaario
et al., 1997; Nolfi and Parisi, 1991; Dellaert and Beer, 1996; Jakobi, 1995; Bongard and
Pfeifer, 2001; Reisinger and Miikkulainen, 2007; Bentley and Kumar, 1999; Mattiussi,
2005).

A commonly-used implementation for evolving ANNs is the NEAT algorithm which
can be applied to many optimization problems without the need to configure it to the
specific problem. NEAT stands for “NeuroEvolution of Augmenting Topologies” and was
developed to improve previous neuroevolutionary methods by creating network topolo-
gies in parallel with the parameter optimization starting with minimal topologies (see
Stanley and Miikkulainen (2002)). NEAT uses a direct encoding for its ANNs, managing
node genes and connection genes separately. Network structure is built up starting with
no hidden nodes at all and adding both nodes and connections between random nodes
through mutation. Connection weights are subject to mutations, too, thus allowing es-
tablished connections to be modified in order to optimize the network’s performance.
A specialty of NEAT are historical markers (innovation numbers) that are used to track
the generation of new genes, thereby allowing correct alignment upon recombination
of genomes. Using these gene identifiers, the population of networks is subdivided into
species by genome similarity, thus allowing structural innovations to evolve in a semi-
protective environment with less competition than in the whole population.

Since its initial conception, NEAT has been used in various ways to develop robot
controllers. An extension of NEAT is HYPERNEAT, which focuses on generating patterns
in the outputs of the evolved ANNs. HYPERNEAT uses a fixed-structure neural network
where the parameters are approximated by a compositional pattern-producing network
(CPPN) evolved with NEAT. The main advantage of CPPNs are their tendency to produce
symmetric patterns in the weights of the control network. That this can be useful for the
control of walking machines was demonstrated by Clune et al. (2009), who evolved a
simple quadruped robot controller.
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Evolution Applied onWalking Control

One of the first papers on the evolution of walking patterns is the work of Beer and Gal-
lagher (1992). In their work, artificial evolution was used to evolve a static gait for a sim-
ulated, kinematically simple six-legged robot. Each leg was controlled by a five-neuron,
fully-connected, continuous-time neural network, and the corresponding neurons of the
controllers of the neighboring legs were connected. The weights of the six controllers
were constrained to be identical, yielding a total of 50 parameters to be optimized. The
used genetic algorithm was able to evolve a tripod gait in all conducted runs.

Lewis et al. (1992) transferred the approach of Beer and Gallagher onto a physical
robot for the first time. While Lewis et al. did not perform the evolution itself in the
real world (but only tested the evolved gait on a physical robot), Gomi and Ide (1998)
evolved a gait for an octopod robot completely on-line. While the control architecture is
fixed in most approaches, Gruau and Quatramaran (1996) used the cellular encoding to
evolve both the weights and the structure of a controller for an octopod robot. Bongard
and Pfeifer (2002) investigated a method to measure the influence of morphology for the
development of behaviors, in which the simulated agents have the same neural network
architecture, number of sensors, and actuators. Bongard et al. (2006) described a method
based on self-models to assemble new behaviors to recover from damage.

In contrast to the approaches discussed above, in which a static gait was evolved,
Hornby et al. (1999) and Röfer (2005) evolved a dynamic gait for AIBO 2 robots. They
used a genetic algorithm to optimize the parameters, and evolution was performed on-
line on real robots as in the work of Gomi and Ide. Zhang and Chen (2007) achieved the
fastest gait for these robots by combining a learningmethodwith evolutionary techniques.
Hornby used a central pattern generator (CPG) model for the controller, which allowed
oscillatory patterns to be generated in the absence of external stimuli. This model was
also used by Reil and Husbands (2002), who used evolutionary methods to optimize
the parameters of CPGs on a simulated bipedal robot and showed that the quality of an
evolutionary method depends heavily on the chosen fitness function. Ito and Matsuno
(2002) used evolutionary techniques in a redundant, multi-legged robot, although only
simulated results were presented.

Related work using a “co-evolution” approach was done by Ventrella (1994) for an-
imated characters. In a simulation environment Sims (1994) evolved creatures that com-
pete in a three-dimensional world. The winner received a higher fitness value which
allowed it to survive and reproduce itself. Unlike in this thesis, the applications were
not meant to build real robots or were developed on less complex systems. Endo et al.
(2003) used co-evolution to develop the morphology and walking pattern for a humanoid
robot. Their aim was to walk on flat ground and the development of one walking pattern.
Altogether, little research deals with more than two or three degrees of freedom per leg.

2.2.3 Particle SwarmOptimization

Particle Swarm Optimization (PSO) is a heuristic method to optimize a set of parameters.
It was introduced by Kennedy and Eberhart (1995). It is quite robust and can deal with
an unstructured, noisy, and even time-dependent fitness landscape. PSO is inspired by the
behavior of swarm of birds and shoal. Individual particles move within the search space
and their direction is influenced by the best parameters of the individual particle (best
local position) and the best parameters of the whole swarm (best global position). The

2AIBO: Very popular quadruped robot from Sony.
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algorithm itself is rather simple including four strategy parameters, the number of parti-
cles N, the damping of the particle velocities ω, and the weights of the local and global
attraction points φp and φg. The parameters allow to control the exploration versus ex-
ploitation. Since PSO does not store any information about the fitness landscape other
than the local and global best positions, it can adapt to a dynamically changing fitness
landscape. Like in most heuristic methods, the strategy parameters have to be tuned to
the application to prevent the algorithm from converging too early to local optima. The
core of the PSO algorithm is the velocity update of a particle, which is defined by:

vi = ωvi + φprp · (pi − xi) + φgrg · (g − xi) , (2.4)

where pi is the local best position of the ith particle and and g is the global best position.
xi is the current position of the particle and vi its current velocity. rp and rg are normal-
distributed random vectors. The algorithm itself is shown in Listing 2.

1 Input: particle swarm P, damping ω, local and global attraction weight φp and φg
2 for xi in P do
3 xi ∼ U(0,1) # sample initial position from uniform distribution
4 vi ∼ U(0,1) # sample initial velocity from uniform distribution
5 pi ← xi # init local best
6 end for
7 # evaluate particles with f : R N → R

8 g ← argminif(P[i]) # init global best with best particle in P
9 while True do
10 for xi in P do
11 rp, rg ∼ U(0,1) # sample two uniform distributed vectors
12 vi ← ωvi + φprp · (pi − xi) + φgrg · (g − xi) # update particle velocity
13 xi ← xi + vi # update particle position
14 pi ← (f(xi) < f(pi)) ? xi : pi
15 g ← (f(xi) < f(g)) ? xi : g

16 end for
17 end while

Listing 2: Core algorithm of PSO.

2.3 Robotic Systems

This section describes the existing robotic systems that are used for the experiments ex-
ecuted on real systems. The three systems are SPOT, SPACECLIMBER, and CHARLIE. For
all three systems locomotion controllers are evolved in simulation and tested on the real
robots. The SPACECLIMBER system is also used to measure the quality of the simulation
MARS. The systems are selected due to their increasing complexity, which is also the
order of the subsections introducing them. The complexity is increasing concerning the
system’s number of dof as well as by the precision of the actuators and the consequential
required controller quality to prevent actuators working against each other.

2.3.1 SPOT

The four-legged robotic system SPOT was developed in the robotics laboratory at the
University of Bremen. The robot has a weight of about 35 kg and a size of 70 cm length,
45 cm width, and 60 cm height. Each of its four legs has six joints combined with two
neck and one hip joint, powered by two motors, amounting to 27 independently con-
trollable joints. The toe joints (joint 6 in Figure 2.12) have a diameter of 22mm and a
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Figure 2.12: Left: The four-legged robotic system SPOT. The joints of the front left leg are
labeled with numbers for reference in the experiment chapter. Right: SPOT performing dual-
arm manipulation to recognize objects with different weights and visual appearance. Source left:
Römmermann et al. (2008); Source right: Kassahun et al. (2007a)

peak torque of 3Nm. All other joints have a diameter of 38mm and a peak torque of
17Nm. The robot shares many similarities with the ARAMIES robot Spenneberg et al.
(2005a), with regard to the physical construction and the software architecture. The main
difference in the kinematic model is the introduction of the hip joint and the different di-
mensions of the robot’s corpus. The hip joint enables the robot to bend at the waist and
makes it possible, for instance, to sit on its hind legs or to climb steep slopes. For the con-
trol of the system, the robot’s micro-kernel M.O.N.S.T.E.R.3 (Spenneberg et al. (2005a))
is used, integrating the PCR control approach (Spenneberg (2006)). M.O.N.S.T.E.R. was
originally developed in the ARAMIES project as an operating system running on vari-
ous micro-controllers. It mainly combines properties of real-time operating systems with
behavior-based programming by featuring hard and soft periodic processes, preemptive
reflexes, behavior processes on different execution frequencies and a background pro-
cess. Within the PCR control approach, the CPG is realized by designing Bezier-Splines
to define rhythmic patterns of the joints. However, due to the six degrees of freedom
(dof) per leg of the SPOT, manually designing the Bezier-Splines is extremely complex
and time-consuming. On the other hand, due to the legs’ complexity, they can be used
not only for traversing a variety of terrains, but also for manipulating objects.

In Kassahun et al. (2007a) the system was used to distinguish between objects with
same shape but different visual appearance and of different weight. To compare the
performance of the classifier using exteroceptive and/or proprioceptive data to recognize
objects, different scenarios were used. To perform the experiments the robots corpus was
mounted on a frame to allow a reproducible test setup for the dual-arm manipulation as
shown in Figure 2.12 on the right hand side.

2.3.2 SPACECLIMBER

The SPACECLIMBER system is a six-legged walking robot developed at the RIC/DFKI
within the SPACECLIMBER project that was finished in 2010. SPACECLIMBER, shown in Fig-
ure 2.13, has a size of approximately 92.6 cm length, 94 cm width, and 36.5 cm height in
it’s default standing posture. It has four rotary actuators per leg with a repeatable peak

3Microkernel for scabrous terrain exploring robots
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Figure 2.13: The SPACECLIMBER system in an environment simulation the Mars surface.

torque of 28Nm at 50 rpm. The actuators have a length of 11 cm and a diameter of
6.4 cm. The morphology development of SPACECLIMBER was supported by an optimiza-
tion within the simulation. Therefore, a parameterized simulation model was set up by
simulating three leg pairs connected by bars as shown in Figure 2.14. For each pair of legs
the bar length and position together with the upper and lower leg lengths was adapted in
a given parameter range.

Figure 2.14: Illustration of the SPACECLIMBER morphology parameters to adapt it’s structure.
The parameters are the position (1) and the length (2) of each bar, the center of mass position (3),
and the link length of the first (4) and second leg segment (5). [Images source: Römmermann et al.
(2009b)]

Each morphology configuration (parameter set) was evaluated in three environments,
shown in Figure 2.15. The robot had to move forward in the test environments that only
differ in the inclination of the planar surface. In case of the flat environment the friction
properties of the surface changed every 2m. An individual was tested on the slopes
for 10 s and on the flat surface for 30 s. A model-based parameterized central pattern
approach was used to control the robot. A set of 13 control parameters were optimized
for every test environment separately, resulting in 17 parameters for the morphology
and 13 · 3 parameters for the control. The overall 56 parameters that represented one
individual are shown in Figure 2.16.

Five parameters were measured in the simulation to evaluate a parameter set: the
distance travelled d, the average torque ϑ and the average load l of the joints, a value g
indicating if parts of the robot other than the feet had ground contact, and the center of
mass of the robot mc. The fitness function was defined as the sum of four terms. The
first term −ϑ

d assessed the energy efficiency. The second term −l
d was based on the load

incurred on the joints over the covered distance. The third term −cnτ checks whether
parts of the robot other than the feet came into contact with the ground and a constant
negative reward was added in that case (cn = 1000; in case of a contact τ is 1 otherwise it
is 0). The last term mout

c was based on the percentage of time in which the center of mass
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Figure 2.15: To optimize the SPACECLIMBER morphology every parameter set was evaluated in
three environments with planar surfaces. The three setups differed in the angle of the surface with
-30°, 30°, and 0°. In the last 0° setup, the colored areas represented different friction properties.
[Images source: Römmermann et al. (2009b)]
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Figure 2.16: Graphical illustration of the parameter set, which was optimized. [Images source:
Römmermann et al. (2009b)]

was out of the stability margin, as depicted in Figure 2.17. The resulting fitness function
is described by the following equation:

fitness =
−ϑ

d
+
−l
d
− cng−mout

c . (2.5)

Over 85 single evolutions were performed. Every evolution produced a result which
was able to travel about 0.3m/s on the planar surface, about 0.3m/s on the 30° slope,
and more than $0.5 m/s with an inclination of -30°. The results were classified and the
resulting morphology of SPACECLIMBER was derived from an average morphology of the
best group.

Center of mass

Center of stability triangle

Figure 2.17: Using the stability margin as evaluation criteria. [Images source: Römmermann et al.
(2009b)]

Only the relevant parts of the SPACECLIMBER controller that are used to generate
locomotion behaviors in the experiment chapter of this work are described in detail.
A comprehensive description of the control concept is given in Bartsch (2014). The
SPACECLIMBER controller is a combination of different modules including, amongst oth-
ers, a posture controller, a state pattern generator, and a number of reflex behaviors. The
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Figure 2.18: Posture parameters of the SPACECLIMBER controller.

posture controller generates the initial posture of the system by defining the height of the
center frame and a base width and length of the polygon defined by the feet positions.
Additionally, the center frame can be shifted on the xy-plane (forward and lateral) and
orientations on all axes can be defined. Figure 2.18 depicts the defined base posture and
its parameters. The center frame of the robot is also used as a measurement point for
evaluation functions like tracking the robots speed or stability. The output of the posture
controller defines the foot positions relative to the center frame. An inverse kinematics
module is used to calculate the corresponding joint positions.

The model-based central pattern approach is implemented by a state machine running
for every leg. The values generated by the pattern generator are added to the values of
the posture controller, adapting the desired foot positions. The states implemented are a
stance, lift, shift, and a touchdown phase. The timings TLift, TShift, TDown, and TStep are
defined in milliseconds by parameters of the controller. The swing time TSwing is the sum
of the lift, shift and touchdown time, while the stance time TStance is given by the step
time minus the swing time according to Equation 2.6 to 2.7.

TSwing := TLift + TShift + TDown (2.6)

TStance := TStep − TSwing. (2.7)

During the stance phase, all feet are moved with the same velocity in the xy-plane for
linear movements and they are rotated by the same angle for rotations around the z-axis
of the robot’s center frame. The xy-velocities are defined by a forward and lateral step
size Rx and Ry given in meters, while Ryaw defines the orientation velocity in degrees per
step cycle. The calculations of the velocities are defined in Equation 2.8 to 2.10.

v̇x :=
Rx

TStep − TShift
(2.8)

v̇y :=
Ry

TStep − TShift
(2.9)

γ̇ :=
Ryaw

TStep − TShift
. (2.10)
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The swing phase is split into the lift, shift, and touchdown sub-phases. Within the lift
phase the movement of the stance phase is continued to prevent a slipping behavior before
the leg leaves the ground. A z-movement is added to the leg via linear interpolation of
the lift time and the desired step height Rheight. Within the shift phase, the leg is moved
to the next stance start position, the anterior extreme position AEP, given in Equation
2.11 to 2.13.

AEPx := FOx + 0.5Rx (2.11)

AEPy := FOy + 0.5Ry (2.12)

AEPyaw := 0.5Ryaw. (2.13)

The touchdown phase performs an inverted linear interpolation on the z-axis and applies
the stance velocity on the xy-plane as done in the lift phase. By already applying the
stance velocity, a smooth transition between the swing and stance phase can be achieved.
The phase shift between the legs is defined by the parameter PS used to calculate the phase
displacement for the legs PD0 - PD5 as defined in Equation 2.14 to 2.19.

PD0 := 0 (2.14)

PD1 := 0.5 (2.15)

PD2 := 0.5+
1
6
PS (2.16)

PD3 :=
1
6
PS (2.17)

PD4 :=
2
6
PS (2.18)

PD5 := 0.5+
2
6
PS. (2.19)

If the phase displacement between two legs i and j is zero (PDi = PDj) the leg phases
are aligned. The phases are maximally misaligned if |PDi − PDj| = 0.5, resulting in
an alternating gait between the two legs. The controller includes exception handling,
which is mainly needed when changing the locomotion parameters and thus performing
a transition between different walking gaits. This exception handling is mainly based on a
neighboring leg rule and it is not further explained in this work, since no gait transitions
are evaluated in the experiment chapter. The default parameters of the SPACECLIMBER

controller are given in the appendix Section A.1.1.

2.3.3 CHARLIE

The CHARLIE robot is a four-legged walking system developed at the RIC/DFKI within the
iSTRUCT 4 project that was finished in 2013. CHARLIE, shown in Figure 2.19, has a size
of approximately 66 cm length, 43 cm width, and 77 cm height in its default standing
posture. The overall mass is about 21.5 kg, whereby a single front leg has a mass of
about 3.4 kg and a rear leg about 4.1 kg. The morphology of the system is biologically
inspired, displaying ape-like properties in its body proportions and rear feet design. The
system introduces a 6 dof-spine that allows to increase the workspace of the legs and thus
supports the locomotion possibilities. The rear feet shape is inspired by the feet of apes
including two ankle joints, a passive heel joint, and two toe joints. Additionally, each

4iSTRUCT: https://robotik.dfki-bremen.de/de/forschung/projekte/istruct.html

https://robotik.dfki-bremen.de/de/forschung/projekte/istruct.html
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Figure 2.19: The CHARLIE robot climbing on the crater of the space exploration hall at the
RIC/DFKI.

rear foot can provide its own support polygon via pressure sensors in the sole and local
data processing. The actuator type in the hip, shoulders, and knees is a successor of the
SPACECLIMBER actuator providing about 25Nm with a maximal speed of about 60 rpm.

Figure 2.20 shows the degrees of freedom of the legs and the spine. To control the
parallel kinematics of the spine, an inverse kinematics solution is used that allows to
command the spine in all six dof at a reference coordinate system (spine frame). The
maximal range of motion of the spine is shown in Table 2.1. Also the head can be moved
by a similar parallel kinematic structure of the neck (neck frame). Since the dof of the
neck are not used for evolving a locomotion control in this work, the neck frame is not
shown in Figure 2.20. The frames of the force torque sensors at the feet and the frame of

Hip roll

Rear knee

Ankle pitch

Toe
Ankle roll

Front knee

Shoulder roll

Shoulder pitch

force torque sensordof 

Spine reference frame

6

Inertial measurement

unit frame

Shoulder yaw

Hip yaw

Hip pitch

Figure 2.20: Illustration of the CHARLIE’s degrees of freedom including the spine frame and the
force torque sensor frames.
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the inertial measurement unit (IMU) are displayed in Figure 2.20. The IMU provides the
orientation of the system’s front body and is used together with the force torque sensors
to evolve an adaptive behavior. The other sensors of CHARLIE, like the cameras or the
feet contact sensors, are not used within this thesis.

Table 2.1: The maximal range of motion of CHARLIE’s spine. The values on the single dof are
further limited by the current pose on the other axes.

Axis Translation (mm) Rotation
min / max min / max

x 0 / 44 -28° / 28°
y -60 / 60 -18° / 18°
z -52 / 56 -16° / 16°

For the control of the system, a similar concept is used as described in the introduction
of SPACECLIMBER. Only static locomotion behaviors are implemented, meaning the robot
is statically stable in any phase within the walking pattern. Therefore, a body shift is
used, moving the center of mass of the system towards the center of the support polygon
of the next three legs performing the stance phase, while the fourth leg can perform the
swing movement. Another difference is an interpolation used to smoothing the swing
trajectories of the legs. The control details are not further explained because the original
control is not used for the experiments of this thesis. For further details on the mechanical
design or the control concept see Kühn (2016).
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Chapter 3

SimulationMARS

As introduced in Chapter 1, a simulation is a powerful tool for testing and developing
approaches to generate locomotion behaviors for legged robots. Many experiments are
required to test and compare different learning methods and behavior representations,
which would be too time consuming on a real system. Additionally, due to the risk of
breaking the real system, the optimization process would be bounded to the mechanical
limits of the system. Whereby, in a simulation environment the mechanical stress could
be bigger at the beginning of an optimization, while being reduced at the end by the fine
tuning of the evolved behavior. Another possibility enabled by simulation is to separately
optimize behaviors for single elements of the robot.

If the simulation is used to generate results for real systems, it is important to minimize
the difference of the simulated robot and the real one. Optimizing this simulation-reality
gap allows to transfer simulation results to real systems. To fulfill this requirements the
software Simulation Machina Arte Robotum Simulans (MARS) is developed with spe-
cial focus on performance and flexibility for configuring optimization setups. Besides
the usage of MARS for this thesis, it is used in many projects at the RIC/DFKI. The
applications reach from generating virtual environments for head mounted displays or
multi-screen projections to launch multi-robot simulations or interactive scenarios where
the virtual environment is used as a user interface to generate robot commands or create
whole robotic missions.

This chapter will first introduce the simulation software itself which is a key software
tool for the experiments of this thesis. The transferability of behaviors is explicitly eval-
uated by comparing the holistic behavior of the simulated SPACECLIMBER with the real
behavior measured via a motion tracking system and the logged sensor data of the robot.
Another part of this chapter is the extension of the simulation by an leg-soil interaction
model. To generate this model multiple experiments performed in a soil test environment
are presented. The extended leg-soil interaction is used in the final experiment chapter –
evolving the controller for legged robots – to increase the quality of resulting behaviors
(see Chapter 8).

3.1 Software Architecture

MARS is a modular and flexible open-source simulation and visualization framework.
It mainly combines and manages three very commonly used libraries. It uses the Open
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Dynamics Engine library (ODE1) for rigid body simulation, QT2 for providing a graphi-
cal user interface (GUI), and OPENSCENEGRAPH (OSG3) for 3D visualization. The whole
functionality of MARS is split into several modules (libraries). An overview of these mod-
ules and the main architecture (grouping of modules) is presented in Figure 3.1. Except
for some small utility libraries, all libraries inherit from the lib_manager class which
provides functionality to dynamically load and unload modules. Additionally, it pro-
vides detailed information about a module, containing version information of the source
(address and exact version that was build) and whether the source has local modifications
or not. This information can be exported when experiments are performed to allow re-
producibility of the results. Every module loaded by the lib_manager gets a reference
to it, which enables the module to load further components or get references to already
loaded ones. This way an application setup can be constructed in a very modular way
and its behavior is defined by the modules loaded. Beside the modular concept, all core
modules of MARS are described by interfaces that are collected in the mars_interfaces
library. These interfaces define the MARS API for plugins and other modules. Plugins
are special modules that inherit from a PluginInterface and are managed in the MARS
update loops of the graphical and physical simulation thread.

3D Visualization

GUI

Core

mars_sim

ControlCenter

mars_graphics

mars_gui

data_brokercfg_manager

data_broker_gui data_broker_plottercfg_manager_gui

Plugins

EntityView Skydome Python

Connexion Constraints ...

main_gui

osg_material_manager

osg_terrain

osg_text
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lib_manager

mars_interfaces
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All libraries inherit from 
lib_manager who allows 
dynamically loading and 
management of the modules. �

All modules linked by 
ControlCenter are referenced 
by abstract interfaces defined 
in the mars_interfaces library. �

Figure 3.1: Main architecture overview of the MARS framework.

MARS Core

The core of MARS consists of the modules: ControlCenter, mars_sim, cfg_manager,
data_broker, mars_interfaces, lib_manager, and mars_app. ControlCenter is the
central class that is provided to any MARS plugin and the main MARS libraries. It holds
interfaces to the simulation core, the graphical user interface, 3D graphics, and other

1Open Dynamics Engine by Smith (2005): http://www.ode.org
2QT by Qt Group (2018): https://www.qt.io
3OPENSCENEGRAPH by Osfield (2018): http://www.openscenegraph.org

http://www.ode.org
https://www.qt.io
http://www.openscenegraph.org
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modules. The interfaces themselves are defined in the mars_interfaces library that has
no further dependencies. Thus, MARS components can be built without depending on
other modules and their corresponding dependencies. Especially, the dependencies of the
3D visualization and the graphical user interface can be excluded to decrease computa-
tional requirements, e.g. for running multiple simulations in parallel.

The mars_sim module is the main simulation library which manages the models, per-
forms the simulation updates and events, and includes the wrapping of the physics library
ODE. cfg_manager is a module that generically stores and provides configuration infor-
mation like preferences. It provides the functionality to store and load configurations to
and from files. Additionally, the cfg_manager includes a callback mechanism that allows
other modules to get notified if a configuration has changed.

The last core module is the data_broker, which is designed as a fast library providing
all modules required simulation data. Every module can push to or read data form the
data_broker. Also, modules can register themselves at the data_broker to periodically
produce or read data. This registration can be done on trigger or timer events that are
distinguished by labels. For example, one can register to the _REALTIME_ timer provided
by data_broker itself or to mars_sim/simTimer provided by mars_sim representing the
simulation time. The modules registered to the mars_sim/simTimer behave always cor-
rectly with respect to the simulation behavior independent of whether the simulation is
calculating faster or slower than real time. Modules, that update the graphical user inter-
face, may better synchronize with real time to avoid slowing down the physical simulation
itself. Another functionality of data_broker is the possibility to connect data items. By
connecting data items, the data flow of simulation modules can be defined without the
need to hard wire the data flow directly within the modules.

The mars_app module implements the setup and initialization of MARS. It starts the
GUI event loop and the simulation thread depending on whether a GUI is desired or not.
The module includes an executable to start MARS as a stand-alone application or it can
be used as a library to extend other applications withMARS, like it is done in the learning
framework presented in Chapter 4.

Graphical User Interface

A base library for the graphical user interface is main_gui which creates the QT main
window, manages the application menu and toolbar, and provides functionality to save
and restore window positions for GUI modules that inherit from main_gui. Addition-
ally, through inheriting main_gui, a docking and window mode is available. Most of the
simulation-specific GUI elements are implemented in the mars_gui module. The mod-
ules cfg_manager_gui, data_broker_gui, and data_broker_plotter provide generic
access to cfg_manager and data_broker, respectively.

3D Visualization

The 3D visualization is mainly implemented in the mars_graphicsmodule, which setups
the default scene and configurations for OSG. Amongst others, it provides interfaces for
loading objects, managing materials through osg_material_manager, handling text and
image overlays like camera overlays, and setting up multiple views. Since the 3D visual-
ization is not critical for the experiments in this thesis, it is not described in detail. Figure
3.3 shows an example live rendering of the MARS visualization.
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Figure 3.2: Example components of the MARS GUI. Most of the toolbar icons are generated by
mars_gui to load or save models, start, stop or step the simulation, and quickly add objects or
lights to the environment. The first of the three lower windows is the generic cfg_manager_gui
which allows to set configuration values, like the simulation update time or whether the simulation
should try to run in real time or faster. The window in the middle is the generic data_broker_gui
where the user can check the current simulation state or write values like control parameters. The
last of the three windows is the plotting tool for data_broker. The current content of the plotter
can be exported into a folder. The raw data is exported together with the chosen configuration,
like color or line width, and a PYTHON script is exported too, that can be used to generate a plot
image.

Figure 3.3: Example screenshot of the MARS 3D visualization showing the MANTIS robot
(Bartsch et al. (2016)) simulated on the moon. To create a more realistic rendering the background
is rendered by the Skydome plugin, shadows are generated, normal mapping is used on the moon
surface, and a noise filter is applied on the overall scene to generate more realistic face renderings.
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Plugin Architecture

A MARS plugin can extend the simulation core, the GUI, and the 3D visualization. The
EntityView for example extends the GUI to provide user access to all entities loaded in
the simulation. One can review the entities or even change parameters of the entities.
Skydome is an example that extends the 3D visualization by a rendering of a sky. Within
the initialization of the plugin it adds itself to the graphics update loop to refresh the sky
rendering. The Constraints plugin is an example of a core extension, that adds con-
straints to a loaded model and allows to change these constraints through cfg_manager.
An example constraint can be the position of the legs with respect to the corpus length of
a robot model. If the corpus length is changed via the cfg_manager constraint property,
the leg positions are updated, too. Thus morphology optimizations are possible, like it
was presented for the SPACECLIMBER in Section 2.3.2.

PYTHON Interface

The simulation is extended with a PYTHON interface via the Python plugin. The plugin
loads a given PYTHON script and expects two global functions in that script, which are
called from the Python plugin. The first function is an init() function and it is called in
the initialization process of the Python plugin or if the script is reloaded by the user. The
second function is update(), called by the Python plugin from within the MARS update
loop. The update() function of the script gets a PYTHON dictionary with requested sim-
ulation data. The MARS PYTHON interface provides functionalities such as requesting
simulation data, setting motor values, changing cfg_manager or data_broker values,
printing messages to the console, and rendering points, lines, and text into the 3D visu-
alization. One can also push new data to the data_broker which allows to debug the
scripted behavior via data_broker_plotter.

Configuration

Since MARS is very flexible, it needs to load a desired configuration for a target applica-
tion from a defined folder. A default folder is provided by the installation, which starts a
blank simulation with graphical user interface and some core plugins. Within the default
simulation a robot model and/or an environment can be loaded and the simulation can be
extended by dynamically loading other modules. Additionally, the PYTHON interface can
be used to write and test robot behaviors directly in the running simulation. However,
once the simulation is used in a bigger project scope, a specific configuration folder that
sets up MARS for the project saves development time and allows non-project experts to
use the software.

3.2 Open Dynamics Engine

The Open Dynamics Engine (ODE) is a rigid body dynamics simulation library. The li-
brary uses a first-order integrator which is fast and quite stable. A joint defines constraints
between two bodies, for example in case of a fixed joint the connected bodies should keep
the relative position and orientation to each other while calculating the next simulation
state. Also, contact points are internally handled as joints, adding the constraint that the
bodies should not penetrate each other. However, due to the integration and accumula-
tion of forces arises by other constraints, an error is produced. How big this error can
become depends on the simulation step size and the complexity and mass distribution of
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the model. The stability of ODE can be influenced by two parameters that define how
ODE handles these errors. The first parameter is the error reducing parameter (erp) and
defines how much force a joint can add to its connected bodies to reduce the error. An
erp value of zero means no correction forces are added and the bodies can potentially
drift apart. With a value of 1 the error is reduced in a single simulation step. If the
value is chosen too large the simulation can become unstable due to an oscillating behav-
ior. A second parameter, the constraint force mixing parameter (cfm), defines a tolerated
error. The tolerated error is proportional to the force required to fulfill the constraint.
Thus a value of zero would not allow an error while a value of one would neglect the
constraint. For both parameters a default value can be defined to fine-tune the trade-off
of simulation stability and precision. However, due to the fact that the simulation step
size and the simulated model define the “expected” errors, the default parameters have
to be customized respectively. On the other hand, these two parameters can be defined
for every joint individually to create “soft” constraints, like soft collision materials or
spring-damper joints. The “softness” can be controlled by a traditional spring constant
kp and a damping factor kd by calculating the corresponding cfm and erp values with the
following formula:

erp :=
hkp

hkp + kd
, (3.1)

cfm :=
1

hkp + kd
, (3.2)

where h is the simulation step size. MARS uses default parameters for the step size, cfm,
and erp that are a good starting point for robotic simulations with models in an order
of 2 kg to 90 kg and up to 50 joints. However, tuning these parameters for a given ap-
plication is beneficial in most cases, especially for an application such as distributed evo-
lutionary optimization. As friction model, ODE uses a Coulomb friction model with an
approximation of the friction cone by a pyramid aligned with the first and second friction
directions. The friction directions are calculated by ODE or can be defined externally,
which is useful for simulating wheels. For each friction direction a friction coefficient ca
be defined. As default, MARS takes one friction coefficient µ for both directions.

ODE allows to control a joint by either setting a joint velocity or defining the torque or
force of a joint. When setting the joint velocity, a maximum torque/force can be defined
limiting the joint velocity and acceleration depending on the load. In this case ODE cal-
culates the torque/force produced by a joint, which is in general more stable than setting
it directly. The default modeling in MARS uses the peak torque of a motor as maximum
torque of the joint in combination with a PID controller getting a target position and
producing the joint velocity.

3.3 Comparison of Simulated and Real Robot

To evaluate the simulation, the behavior of the simulated and real SPACECLIMBER robot is
compared. For this comparison, three experiments are performed where the robot has to
move a fixed period of time longitudinally, laterally, and rotationally. In each experiment
it has to move for the same period of time in the reverse direction. The step cycle time
is kept constant at 5 s. The time period for the movements is 60 s longitudinally and
laterally and 55 s turning. Within the first and last 10 s of each period, the target distance
to be covered in one step cycle is linearly increased and decreased, respectively. The target
distances per step cycle are 20 cm longitudinal, 10 cm lateral, and 10° turning. In the first
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Figure 3.4: Left: The SPACECLIMBER integration study equipped with markers for the motion
tracking system. Right: The simulation model with balls at the marker positions to compare the
real behavior with the simulated one. The yellow wireframe represents the pose of the real system.

experiment the robot should move approximately 2m, in the second 1m sideways, and
in the last experiment it should turn about 90°. SPACECLIMBER is equipped with reflecting
markers (see Figure 3.4) which are recorded by a motion tracking system. The simulation
model is equipped with markers at the same positions to allow a direct comparison. To
align the real and simulation data, a starting sequence is used, in which the robot has to
lift the front left leg up and down. The data alignment is done at the highest foot position
of the starting sequence.

Figure 3.5 shows the resulting positions and orientations measured in real and simula-
tion. Table 3.1 summarizes the distances traveled during the different experiment phases.
The main elements that influence the behavior of the real system are the joint controller,
the spring and damping properties of the lower legs, the contact behavior and the elas-
ticity in the whole mechanical structure resulting from the materials and the assembling.

Table 3.1: Covered distances within the three experiments.

Experiment Forward Forward Backward Backward
(real) (simulated) (real) (simulated)

Longitudinal (x) 185 cm 186 cm 198 cm 203 cm
Lateral (y) 97 cm 97 cm 95 cm 91 cm
Turning (yaw) 89° 86° 85° 85°

In simulation, the parameters of the joint controller are not related to the real ones
due to much lower control frequencies. Thus, the parameters of the simulation have
to be fitted to produce a similar joint behavior on the same higher level joint inputs.
The behavior of two step cycles of the front left thorax joint is compared in Figure 3.6.
Figure 3.7 shows a 20 s extract of the robot’s pitch and roll angle while walking. The
angles are mainly influenced by the characteristics of the lower leg suspension and weight
distribution.

The ground friction coefficient and the spring and damping constants of the lower
legs are manually adapted for the simulation model to produce a similar behavior of the
simulated robot as the tracked behavior. Since the lower leg of the real system could
get stuck, due to lateral forces, the spring and damping properties of the overall lower
leg compartment differ to the properties of the installed springs. This behavior is not
modeled in the simulation, therefore the spring and damping properties that approxi-
mate the real behavior best cannot directly be derived and have to be tuned manually.
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Figure 3.5: Position and orientation of the real and simulated robot over the experiment period.
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Figure 3.7: Pitch and roll orientation of the real and simulated robot over 20 s.

Additionally, the default cfm and erp parameters, introduced in Section 3.2, are tuned
to compensate for the elasticity in the real system. Due to mechanical asymmetry, the
real robot produces a drifting behavior to the right side. This effect is not analyzed in
detail and it is reproduced in the simulation by shifting the main body 5 cm to the right.
This does not represent the asymmetry correctly, and thus produces a different drifting
behavior of the robot. This difference is especially observed in the roll behavior of the
robot (see Figure 3.7). However, the overall behavior is closer to the real system with the
asymmetric adaptation and the simulated behavior is expected to be close enough to the
real behavior for transferring learning results from the simulation onto the real system.

3.4 Ground InteractionModel by Neural Network

To generate a more challenging and realistic simulation environment, the ground interac-
tion of ODE is extended by a soft soil contact model. Therefor, a series of experiments are
performed in a soil test-bed. Two “passive” experiments are performed where cylindrical
objects are dropped into a test soil referred to as the “Drop Experiment” and another, the
“Pull Experiment”, where the very same objects are pulled through the soil. The passive
experiments evaluate the general idea of adapting the contact model through a learned
adaptation of the ODE contact parameters. Two additional “active” experiments are per-
formed where a SPACECLIMBER foot is moved by an industrial robotic arm into another
more granular soil (“Push Experiment”) while a force/torque sensor measures the soil
interaction. The second active experiment moves again the test object through the soil
(“Move Experiment”) to measure the lateral ground interaction. In case of the passive
experiments the choice of the experiment parameters is related to the SCORPION system
(Spenneberg and Kirchner (2007)) which legs and feet have a cylindrical shape as can be
seen on the left hand side of Figure 3.8. The active experiments, on the other hand, are
designed to represent the soil interaction of the SPACECLIMBER system with ball shaped
feet, see right hand side of Figure 3.8.

3.4.1 Passive Experiments

Experiment Setup

The two parameters that define the softness of contact in the simulation are erp and cfm
introduced in Section 3.2. These two parameters and the friction coefficient can be gener-
ated by a neural network to model a more realistic soil interaction. The cylinder position
is tracked and the simulation is used to train a neural network to generate the same be-
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Figure 3.8: Left: The SCORPION robot with the leg zoomed in, illustrating the cylindrical shape
of the leg and feet. Right: The SPACECLIMBER leg with the default ball shaped foot.
[Source of the left picture: Römmermann et al. (2009b)]

havior in simulation as measured in the real reference experiments. The input values of
the neural network are diameter, velocity vector, and contact depth of the cylinder within
the substrate. The structure of the neural network is fixed. Four neurons are used that
receive all five inputs each. All four neurons are connected to three output neurons. The
first output neuron is linked to the erp parameter, the second to the cfm, and the third
output defines the friction coefficient. The neural network is a simple perceptron-based
model (see Section 2.1.2) with a weight for every edge and a threshold for the outputs
of the neurons. Figure 3.9 shows the structure of the neural network. To adapt the net-
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Figure 3.9: Illustration of the neural network architecture used to model the cylinder behavior
of the two passive experiment setups.

work to the obtained experiment data, the weights and the thresholds of the neurons are
optimized by the CMA-ES algorithm (see Section 2.2.2), resulting in 39 parameters. A
simulation model consisting of a cylinder, a ground plane, and a prismatic joint is used
for this optimization. In both experiment setups, the cylinder is mounted in the world
by the prismatic joint. The diameter and weight of the cylinder are defined by the pa-
rameters of the real experiment setup. The ground is located on the xy-plane and is used
to simulate the immersion of the cylinder into the soil. The contact parameters of the
plane/cylinder collision are defined by the neural network. To evaluate one network, the
position error of the virtual cylinder at defined time points is taken and the percentage
of the error to the position of the real cylinder is summarized while the network is tested
for all variations of cylinder diameter and test setups. Afterwards, the sum is divided by
the number of measured distances and the number of single tests, which gives the average
percentage position error that is used as a fitness value for the optimization algorithm.
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Figure 3.10: On the left hand side the drop experiment setup is shown and on the right hand side
a simple rebuild of the setup in simulation by a cylinder and a plane. The cylinder is mounted to
the world by a prismatic joint that is not visualized.
[Source of left picture: Römmermann et al. (2009b)]

Drop Experiment In this experiment, aluminum cylinders are dropped on a linear guid-
ance rail into the substrate. Five different cylinder diameters in the range of 10mm to
30mm with 5mm steps are used. The chosen diameters of the test cylinders resemble the
diameters in the SCORPION leg, see Figure 3.8, which is used as a reference system for this
experiment. For each cylinder an experiment series is performed including four different
initial heights and ten repetitions per height. Thus, altogether 5 · 4 · 10 = 200 data sets
are recorded. The experimental setup is shown in Figure 3.10.

The cylinders are dropped into a box filled with basalt chippings as test substrate. The
dimensions of the box are 40 cm× 30 cm× 25 cm. The basalt chippings is compacted by
shaking and giving shocks to the box. This procedure is repeated after every fifth single
experiment executions. The different weights of the cylinders are compensated with a
box on the test carriage, filled with additional load to align the mass with the heaviest
cylinder. A draw wire position transducer is fixed to the linear guidance rail. The wire
is extended when the test carriage, with the cylinder, moves down. After calibrating the
position transducer, three virtual markers are defined. The upper marker mu is used to
begin the time measurement of the experiment. A stop watch implemented on a micro-
controller starts when the test carriage passes this marker. The two markers mm and ml
are used to estimate the impact velocity of the cylinder into the substrate. In Figure 3.10
the blue lines depict the position of the markers for an experiment performed from the
highest drop position. The marker ml is adapted for each single experiment to represent
the contact position of the cylinder with the substrate. Additionally, the depth of the
immersion into the substrate is measured, referred to as the immersion marker mi, and
logged with the respective timestamp. The Equations 3.3 to 3.8 define the parameters
that are measured with the four markers.
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td = tml
− tmu = tml

td : drop time (3.3)

t2 = tml
− tmm t2 : time from mm to ml (3.4)

dd = mu −ml drop distance (3.5)

di = ml −mi immersion depth (3.6)

ti = tmi − tml
immersion time (3.7)

vi =
ml −mm

t2
impact velocity (3.8)

In the simulation setup (see Figure 3.10) used to optimize the network parameters,
the axis of the prismatic joint is identical to the global z axis. To generate a fitness value
of the simulated behavior four measuring points are defined. The first one is taken at the
timestamp when the cylinder reaches the deepest position in the real experiment. The sec-
ond measurement is taken 100ms after the first one. The third and fourth measurement
points are defined with 100ms offset to the second and 600ms offset to the third point.
The additional three points ensure that the cylinder is not passing the desired depth and
comes to a halt there.

Pull Experiment The same cylinders are used in this experiment as in the previous one,
starting with the diameter of 15mm. Resulting in four test cylinders with the diameters
15, 20, 25, and 30mm. The aluminum cylinders are pulled horizontally through the box
on a linear guidance rail. A weight of m = 0.5 kg is connected to the test carriage via a
deflection pulley. The weight generates a constant pulling force to the carriage in order
to accelerate it continuously. Figure 3.11 shows the setup of this experiment.

Linear guidance rail
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position
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Mass for 
acceleration

Platform for immersion
depth adaption

 

Figure 3.11: Traction Test Setup [Source: Römmermann et al. (2009b)]

To measure the experiment data, a draw wire position transducer in combination
with a micro-controller is used. The covered distance and the time from the starting
position to the end position is recorded. One starting position is used for all cylinders.
The carriage is moved through the box until the border of the box is reached. At fixed
way points, timestamps are measured to determine the velocity and acceleration of the
carriage. The experiments are performed with three immersion depths per cylinder and
twenty repetitions per depth, resulting in 4 · 3 · 20 = 240 data sets available for the
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analysis. The three immersion depths are di1 = 13, di2 = 20, and di3 = 25mm. For
the optimization in the simulation, the prismatic joint is aligned with the global x-axis
and the cylinder touches the ground plane. To simulate the acceleration of the cylinder a
positive constant force F is applied to the prismatic joint. Corresponding to the pulling
weight of 0.5 kg in the real experiment a constant force F = 9.81 · 0.5Nm = 4.905Nm is
used. To evaluate one neural network the RMSE at the defined way points is calculated.

Results

Altogether, twenty different setups are available from the drop experiment and twelve
different setups are measured by the pull experiment. All repetitions performed for each
setup are averaged to generate comparative data for the network evaluation. However,
due to too much variance in the measured data of the pull experiment only eight setups
could be used for training the neural network.

Table 3.2: The table shows the average result of 20 evolutions done for every experiment (column
1). A lower fitness value represents a better result. The data shown is the average fitness value
(column 2), the standard deviation (σ) of the average fitness value (column 3), the average of the
average distance error between the simulated cylinder and the real cylinder (column 4), and the
standard deviation of this error (column 5).

Experiment ⊘ Fitness (best) σ Error (m) (best) σ

dropa 3.66e-5 (6.275e-6) 7.42 (-5) 1.55e-8 (2.656e-9) 3.14 (-8)
dropb 11.181207 (8.26564) 1.986089 0.006775 (0.004771) 0.001212
pulla 9.444777 (9.0202) 0.530627 0.001794 (0.001582) 0.000106
pullb 13.94812 (10.6407) 3.714403 0.008933 (0.00526) 0.003151

droppull 16.28644 (10.692) 7.330551 0.011553 (0.006652) 0.008295

Five different network optimizations are performed in simulation. Every optimiza-
tion is repeated twenty times to calculate an average performance. Two optimizations
are done for the drop experiment (dropa and dropb), two for the pull experiment (pulla
pullb) and one network is generated representing both recorded behaviors (droppull). The
first network (dropa) is generated by using only one data set, representing one cylinder
diameter falling from a defined height. This network does not have to generalize and it
is used to get an idea of how precise the simulation combined with the neural network
can become. The second network (dropb) is generated by twelve data sets. Three sets
are used to test the performance of the network for input values that are not used for the
training. A similar procedure is used for the optimization of the networks for the pull
experiment (pulla and pullb). However, because only eight data sets are available, this
time all sets are used for the optimization of the network and no data set is available to
test the performance for input data that is not used by the training process. For the last
optimization (droppull) all data sets are used to train a network representing the drop and
the pull behavior. Table 3.2 shows the average and the best fitness values together with
the average and best position error of the cylinder in meters. Additionally, the standard
deviation (σ) for both values is given.

The best resulting network of the second drop experiment (dropb) is used on three
test data sets to test how well the neural network generalizes for the input data. Table
3.3 shows the fitness and the resulting average distance error for the three test cylinders.
The average of the three fitness values is higher than the average fitness value reached by
the network training (average test fitness: 10.7319, training fitness: 8.26564). However
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the average test fitness value is still lower than the average fitness value over all optimized
networks (average optimization fitness: 11.181207), and thus, it is still in a reasonable
range to approximate the drop behavior.

Table 3.3: Resulting fitness value (column 2) and average position error (column 3) of three test
cylinders (column 1) that are not used to optimize the parameters of the neural network.

Test Cylinder Fitness value ⊘ Position error (m)

Cylinder A 10.647 0.00609
Cylinder B 12.789 0.006387
Cylinder C 8.75972 0.008545

3.4.2 Active Experiments

Experiment Setup

Regarding the two active experiments, a sigmoid transfer function is used instead of a
threshold and the network structure is generate by a genetic algorithm implementing a
basic mutation and cross-over operation as introduced in Section 2.2.2. The genotype
is implemented by a graph structure, which is evolved by the genetic algorithm. The
phenotype is the network encoded by the nodes and connections. Each neuron has three
inputs: the penetration depth of the foot, a bias, and a variation parameter, thus all nodes
get a set of the whole network input. The variation parameter is used to model different
soil behaviors measured during the collection of real data. One node of the genotype
represents a neuron with the parameters: used transfer function, input bias, and weights
of the input and output signals. A connection of the genotype adds a new output to the
first referenced neuron and connects this output to a new input of the second referenced
neuron. The connection itself includes the references of the two nodes (neurons) that are
connected and two parameters that are used for the construction of the neural network:

1. The weight of the new output of the first node

2. The weight of the new input of the second node

Additionally, the connections define whether they connect to an existing node or if the
second referenced node is duplicated by the decoding of the genotype. Thus, also an
indirect decoding is possible as shown in Fig. 3.12. After the generation of the neural
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Figure 3.12: A possible indirect decoding from a genotype into a phenotype.

network, the last neuron created by the encoding gets an additional output, which repre-
sents the overall network output and is used in the simulation as the normal force of the
foot-soil contact, or the lateral resistance respectively.
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Schunk LWA-3

Force/Torque Sensor

S       C            FootPACE LIMBER
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Figure 3.13: Left: The experiment setup for measuring the real foot-soil behavior while pushing
into the soil. Middle: the spring mounted between the force/torque sensor and the foot. Right:
The spring construction composed of three single spring-loaded cylinders.

One network is evolved for the Push Experiment generating the normal force of the
contact depending on the immersion depth. Another network is generated for the Move
Experiment representing the friction, by mapping the immersion depth and the normal
force to a maximal lateral resistance force. A friction coefficient for the simulation can be
determined by the lateral resistance force and the normal force. For the friction network a
subset of the recorded data is used as training data and the rootmean square error (RMSE)
of the recorded data and the network outputs has to be minimized by the evolutionary
algorithm evolving the network. Concerning the normal force, all experiment data is used
for the training because of the small amount of recorded data. Again, the RMSE have to
be minimized by the evolutionary process. Since the networks are evaluated directly with
the recorded data, no simulation is needed to perform the optimization.

Push Experiment To actively push a SPACECLIMBER foot into the basalt chippings, the
Schunk LWA-3 robotic arm is used. A six axes force/torque sensor is mounted at the
end-effector of the arm, following by a cylinder with a SPACECLIMBER foot attached at
the lower end. The experimental setup is illustrated in Figure 3.13. After positioning the
foot above the substrate it is moved perpendicular to the surface into the soil at a constant
speed of 1mm/s. In between the individual experiment cycles, the substrate is manually
loosened and leveled, as reproducible as possible with a rake for loosening and a board
for leveling. Nevertheless, there is still a noticeable variance in the resulting forces due to
slightly different preconditioning of the substrate. However, this different precondition-
ing is expected in a real environment too, when penetrating the soil in different locations.
Thus, the resulting model has to contain some kind of variance.

Move Experiment To record ground interaction data for the SPACECLIMBER foot while
moving through the substrate, the experiment setup is extended by a force controller
that keeps a desired normal force simulating a constant load. To support this controller,
a spring is introduced between the force/torque sensor and the SPACECLIMBER foot, see
Figure 3.13. The experiment procedure is as follows: First the foot is placed above the
substrate. Then the force controller is activated with a target load of 50N. This results
in a movement down into the substrate until the target load is reached. The force con-
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troller has a time slot of five seconds to reach it’s final state. Afterwards, with a speed
of 5mm/s, the foot is moved 15 cm sideways through the substrate. Along the way,
the force controller is enabled to maintain a constant target load. For all experiments,
the joint angles, the force/torque sensor data, and the coordinates of the end-effector are
recorded with a corresponding timestamp.

Results
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Figure 3.14: The resulting measured forces of the performed fifteen experiment repetitions.

Push Experiment The data measured from the real experiments are shown in Figure
3.14. To obtain a variance parameter for every experiment run, the forces of the curves
at the maximum depth are linearly projected to a value between one and three. The min-
imum force value is projected to one and the maximum value to three. The value range is
empirically chosen to fit to an expected default value range of a neural network. Multiple
individual evolutions are performed to tune the parameters of the genetic algorithm. One
network is generated with the resulting configuration representing a single possible result
for this experiments. All experiment data sets are used for the network generation. The
resulting force curve for the specified variance value is shown in Figure 3.15, where every
experiment data set is plotted together with the corresponding network output. The gen-
eralization properties of the network are shown in Figure 3.16, where the whole network
output is plotted within the defined variance value range with a discretization into one
hundred steps.

Move Experiment The recorded data of five experiments are shown in Figure 3.17. Ev-
ery experiment data set is split into individual measurements. Six of the data sets are
selected to generate a neural network to project an immersion depth and a normal force
to a friction value. Figure 3.18 depicts the measurements of all six experiments, used for
training, including the immersion depth, the normal force, the friction value labeled as
desired friction, and the friction value generated by one resulting neural network. The
average percentage error per data point is about 3.67 %, which is a feasible generalization
compared to the variance in the measured data. Figure 3.19 includes a comparison of the
network output with the test data set not used for training. The average percentage error
of about 3.69 % for the test data is virtually identical compared to the training data set.
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Figure 3.15: Comparison between experiment data and output of one generated neural network.
The different plots are distinguished by a parameter obtained at the maximum depth of the ex-
periment run. The parameter is used as network input and the network generalizes not only over
the single runs but also over all experiments.
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Figure 3.16: The resulting network output for variance parameters from one to three in 100
steps. Each curve depicts the output of a corresponding variance value, whereby the lowest curve
correlates to a variance value of one and the highest curve to a value of three.
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Figure 3.17: Measured data of five performed horizontal foot-soil experiments. To obtain the
data for the network generation, individual measurements within the more or less smooth area
roughly between 7,5 s and 27 s are taken for a training and test data set.
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Figure 3.18: The graph compares the training data set with the resulting output of an evolved
neural network. The six individual segments in the plot correlate to the data measured in six of
the real experiments. Since the network cannot distinguish between the single experiment runs,
it has to approximate the input-output mapping for the whole data set. The average percentage
difference of the network output to the measured friction is 3.67 %.
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Figure 3.19: Comparison of six experiments of the test data set (not used for evolving the net-
work). Compared to the training data, set the average percentage error of 3.69 % is virtually
identical for the test data set.

3.4.3 Conclusion

The passive experiments have shown that using a neural network is a feasible concept to
map soil parameters to standard contact parameters in specific situations. The position-
ing error of about 0.008m is a good starting point to extend the approach. The relative
high positioning error of about 8 % – 13 % is due to the fact that the percentage error
includes measurements where a position error of 0.008m corresponds to a percentage
error of about 40 %. Regarding the active experiments, the neural network approach is
able to approximate the measured foot-soil behavior for the contact normal force and
friction. The neural network represents a generalization of the whole measured vari-
ance range for the normal force. The network approach can model the lateral forces,
too. However, the measured data is not sufficient to model a comprehensive amount
of use cases. For instance, no data is measured for immersion depths about 6 cm and
normal forces of about 20N, which could correlate to a situation where the load of one
SPACECLIMBER leg is reduced within the stance phase. To compensate for this lack of data

Figure 3.20: The SPACECLIMBER robot in the simulation with the new developed foot-soil inter-
action.
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in the simulation application, the immersion depth is linearly projected to the measured
normal force for the friction approximation, effectively mapping an immersion depth to
a friction value. Additionally, by scaling the network outputs it can be adapted to rep-
resent different conditions, such as feet size or soil compaction, while the general model
behavior is still based on real measured data. The calculation time of the networks is fast
enough to be used in an interactive real-time simulation on a standard desktop PC. Both
networks are implemented in a plugin, the neural_soil plugin, to extend the MARS
simulation. Whenever a new soil collision is detected by the plugin, it generates a ran-
dom variance parameter and saves the footprint information. If a collision is detected
within a footprint, the saved properties (variance parameter and displacement) are used
to calculate the contact behavior. Figure 3.20 shows the SPACECLIMBER in the simulation
with random variance parameters for the footprints. In the future, this approach could
be extended by using one neural network for different foot sizes, using the foot size as
additional network input. The passive experiments have already shown the capability to
generalize for different object sizes. The same might be possible for different soil proper-
ties, e. g. density and granularity. Therefore, the experiment setup should be improved by
a more specialized actuation and a more automated experiment execution, which should
allow to take more complete measurements.



Chapter 4

Learning Framework BOLERO

Slightly changing the simulation setup or parameters can significantly influence the fitness
landscape of a control problem. If simulation software, used for obtaining published
results is not available it is next to impossible to reproduce the results and to access the
scientific relevance of them. The goal of the learning framework Behavior Optimization
and Learning for Robots (BOLERO1) is to provide learning and benchmark problems,
used in this work and other publications, within a Open Source framework. A special
focus lies on learning and optimization of robotic controllers in simulation.

The BOLERO software defines interfaces between a problem specification and a learn-
ing algorithm. The problem specification defines the environment, including the evalua-
tion function. The learning algorithm searches for a behavior that optimizes the evalua-
tion function for the environment. A default learning application loads the environment
and the learning algorithm from a configuration file and handles the main application
loop connection both. The core of BOLERO are the generalized interfaces allowing to
comfortable connect new learning algorithms and benchmark problems to BOLERO. Ad-
ditionally, they allow to exchange learning algorithms for a problem and thus enable
automated benchmarks.

4.1 Definition

In the following the core modules of BOLERO are introduced. Beside Controller, all
modules are only abstract interfaces used to encapsulate specific implementations. The
interfaces are Behavior, Environment, BehaviorSearch, and Optimizer. Figure. 4.1
depicts an overview of these modules and their interface definition.

Behavior

The Behavior interface represents the mapping of input values to output values. The
number of input and output are defined by a specific application. Thus Behavior is the
part that is generated or optimized within the learning application.

Environment

Environment defines the interface to a learning problem. It defines the number of in-
and outputs available for Behavior. It provides methods to set action values, defined

1The core of BOLERO is open source at: https://github.com/rock-learning/bolero .
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Controller

void execute()

Environment

void init() 
int getNumInputs() 
int getNumOutputs() 
void reset() 
vector<double> getOutputs() 
void setInputs(vector) 
void stepAction() 
bool isEvaluationDone() 
vector<double> getFeedback() 
bool isBehaviorLearningDone().

BehaviorSearch

void init(int numInputs, int numOutputs) 
behavior getNextBehavior() 
void setEvaluationFeedback(vector<double>). 
void writeResults() 
bool isBehaviorLearningDone()

Behavior

void init(int numInputs, int numOutputs) . 
void setInputs(vector<double>) 
vector<double> getOutputs() 
void step()

Optimizer

void init(int dimension) 
vector<double> getNextParameters() 
void setEvaluationFeedback(vector<double>). 
bool isBehaviorLearningDone()

Figure 4.1: Controller is the main application of BOLERO that dynamically loads the envi-
ronment and the learning algorithm from a configuration file at application startup. The colored
boxes represent the interfaces defined by BOLERO. A BehaviorSearch implementation have to
provide a mapping of input to output values through the Behavior interface. BehaviorSearch
implementations can make use of a parameter optimizer which is decoupled and exchangeable
through the Optimizer interface as well. Controller manages the interaction of Environment
and Behavior.

as inputs of the environment. The output values of Environment can be read and piped
to the inputs of Behavior, in general interpreted as sensor values. Other methods are
defined to step and reset the environment. The reset method has to be used after the
evaluation of Behavior is finished. Whether the evaluation is finished from perspective
of Environment can be checked by another method. Last but not least, the Environment
interface defines a method to return a feedback list, which allows to include evaluation
values for multiple criteria. An Environment implementation can for instance start a
robotic simulation, load a robot model and learning scenario, and interface the in- and
output values to the simulated motors and sensors.

BehaviorSearch

The BehaviorSearch interface defines the communication with a learning algorithm. It
has to provide a Behavior instance, gets the evaluation feedback from Environment and
generates a new Behavior instance by modifying the existing. This way Behavior is
adapted in an iterative process. BehaviorSearch can also manage a set of behaviors that
are evaluated one after the other and a new set is generated based on the performance of
the behaviors in the previous set, which correlates to the evolutionary concept.

Optimizer

Since in many applications the control structure is predefined and only control parameters
have to be optimized, the Optimizer interface is defined. In that case BehaviorSearch
is implemented including a fixed control structure and BehaviorSearch can use an op-
timizer for the control parameters. Parameter optimization is a research field on its own
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and by using the interface different optimizers can be applied to a learning and control
problem. The interface methods are similar to the one of BehaviorSearch just by replac-
ing Behavior with a parameter set.

Controller

Controller is the main application and manages the learning process. It has to load
the specific implementations and does the interfacing between Environment, Behav-
iorSearch and Behavior. The main control procedure is shown in Listing 3.

1 environment.init()
2 environment.getNumInOut(numInputs, numOutputs) # Inputs are actions; Outputs are sensors
3 bahaviorSearch.init(numOutputs, numInputs)
4 while True:
5 behavior = behaviorSearch.getNextBehavior()
6 while not environment.isEvaluationDone():
7 behavior.setInputs(environment.getOutputs())
8 behavior.update()
9 environment.setInputs(behavior.getOutputs())
10 environment.stepAction()
11 environment.reset()

Listing 3: Initialization and main loop of BOLERO controller application.

Depending on the implementation, Controller can also include logging functional-
ity, such as managing a folder structure, logging fitness process of learning results, and
saving information about the exact modules used by logging repository information. A
learning configuration file in YAML format is defined as a unified configuration source
for all implementations of controllers or modules implementing the interfaces. The top
level of the configuration file is a dictionary with keys correlating to the core modules of
BOLERO, as can be seen in Listing 4. The keys listed in the example are the fixed ones

1 Environment:
2 type: name of the environment to load
3 ... : can contain any environment specific configurations
4 BehaviorSearch:
5 type: name of the learning algorithm to load
6 ... : can contain any specific configurations of the loaded algorithm
7 Optimizer:
8 type: name of the parameter optimizer to load
9 ... : can contain any specific configurations of the loaded optimizer
10 Controller:
11 MaxEvaluations: limits the number of evaluations until the learning is finished
12 ... : controller implementation specific configurations

Listing 4: Top level configuration sections of BOLERO controller.

defined by BOLERO, while every section can contain implementation specific configura-
tions. All configurations stored in this file can be automatically processed by the BOLERO

tools.

4.2 Implementation

The BOLERO interfaces are implemented in C++ and PYTHON. For all interfaces wrappers
are implemented that allow to use an implementation in one language in an application of
the other language. A Controller implementation exists in both languages. However,
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through the wrapper the C++ controller can be used as the main controller, also inter-
facing a PYTHON environment with a PYTHON learning algorithm. A default learning
controller is implemented that executes one learning application within one process in a
single-threaded manner by evaluating one behavior after the other. A PYTHON frame-
work is provided that allows to manage multiple default controllers to perform a defined
number of learning executions for one application. The framework distributes the learn-
ing application on multiple processes and multiple computers. Additionally, it collects
the resulting log data in a defined folder structure and provides basic analysis scripts to
automatically create a summary including default statistics and plots. Additionally, two
specialized controllers are implemented to allow the distribution of a single learning ap-
plication on multiple processes or computers via REST communication. These controllers
can be used if the learning algorithm manages a set of behaviors that can be evaluated in
parallel.

bl_loader

The bl_loader library is a utility to dynamically load C++ or PYTHON BOLERO modules.
For loading C++ modules bl_loader uses lib_manager as described in Section 3.1. The
application can ask bl_loader for a module name defined by the type in the BOLERO

configuration file and bl_loader will return a corresponding BOLERO interface on suc-
cess. The PYTHON wrapper is part of bl_loader and allows to load PYTHON modules
into a generic class implementing the corresponding C++ interface. If bl_loader can-
not find a C++ library matching the desired module name it automatically searches for a
matching PYTHON module. If, for instance, an environment has to be loaded, the module
is found in the PYTHON path, and the PYTHON module implements the PYTHON environ-
ment interface, it can be loaded into the generic environment wrapper class implementing
the C++ environment interface.

bolero_controller

The default controller implemented in C++ extends the core controller functionality, de-
fined in the previous section, with features useful to perform benchmarks. On one hand,
three different log configurations are provided to create a log of the fitness process, log-
ging the learning result, and for debugging purpose, logging of all behaviors. Addition-
ally, the controller allows to replay or evaluate an experiment result by loading the previ-
ously logged learning result. Another feature allows to handle a training and test phase,
whereby after a given number of evaluations the best behavior is evaluated again while
the environment is switched into a test mode. In case of function approximation, by using
this feature, a fitness process on a training and test data set can be directly generated by
performing the learning application.

Benchmark Distribution

A PYTHON based benchmark framework is implemented that is configured by a meta con-
figuration file (benchmark configuration). Figure 4.2 depicts the framework architecture.
The benchmark configuration can define multiple experiments including all information
needed to generate the BOLERO configuration file. Additionally, the configuration con-
tains information to a binary file provided by an FTP server and the number of repetitions
to generate an average performance. The section used to generate the BOLERO con-
figuration can include a list of parameters that are combined and split into individual
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Figure 4.2: Architecture of the benchmark distribution. The py_server is the central part man-
aging the distribution of jobs and results. The py_provider can execute a job and can be started
multiple times on one machine and/or on multiple computers. A py_consumer loads a job defini-
tion and sends the request to the server.

experiment versions. For instance, by combining one environment with multiple learn-
ing algorithms, results are generated and collected for all combinations. Two methods
can be used to combine the parameters, defined by the parameterMix entry. The first
one (mix) creates all possible combinations. The second one (aligned) extends all pa-
rameter lists to the size of the larges one and creates all combinations element-wise. An
example configuration is shown in Listing 5. A py_consumer application reads the bench-

1 Experiment Definition 1
2 archive: LIMESBenchmarkCollection.tgz
3 executablePath: behavior_learning/install/configuration/behavior_learning
4 configurationPath: .
5 executable: run.sh
6 runs: 100
7 MaxEvaluations: 1000
8 Environment:
9 - name: simple_test_problem
10 parameterMix: aligned
11 parameters:
12 CEC13TestFunction: { values: [1, 11] }
13 BehaviorSearch:
14 - name: c0n_behavior_search
15 parameterMix: aligned
16 parameters:
17 Optimizer: { values: [pso_optimizer, cmaes_optimizer] }
18 Sigma: { minValue: 0.1, maxValue: 0.5, steps: 3 }

Listing 5: Example configuration for distributed benchmarking with BOLERO.

mark configuration and creates the resulting jobs which are requested at the benchmark
server. py_server pipes the jobs to free py_provider instances, that try to load the cor-
responding binary, fitting to the provider computer architecture. If a binary is loaded
it is executed on the provider and the result is send to the server. The server collects
the individual results and send them to the client when the results for one job are com-
pleted, i. e. the number of desired results is reached. The experiment binaries and results
are communicated through a FTP server that is opened by the py_server. The resulting
folder architecture is shown in Figure 4.3. The main concept is to split the experiment
data from the configuration and the analysis tools. This can be done on different levels in
the folder architecture. For instance the benchmark configuration is stored on the high-
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est level, while the generated BOLERO configurations are stored in the single experiment
sub-folders. All analysis tools and information should be saved at the corresponding
places within the folder architecture. This allows to reconstruct how statistics and plots
are generated. Again, the analysis folders can be stored in different levels of the folder
architecture depending on the data they operate on. After a benchmark is finished, an au-

- 20130610_387_benchmark
  - config
  - analysis
    - results
  - experiment 1
    - [environment1]__[behavior_search1]__1
      - config
      - analysis
        - result
      - raw_data
        - run 1

        -run n
    - [environment1]__[behavior_search2]__1
      - config
      - analysis
        - result
      - raw_data
        - run 1

        -run n

result folder is created by execution of binary

includes only one configuration file defining the binary.tgz, number of runs, etc. 

and all binary.tgz files of benchmark

contains general scripts to create documentation

config parameter from benchmarking framework

analysis folder have to be in binary.tgz

Figure 4.3: The designated folder structure for results generated with BOLERO. The benchmark
framework automatically generates this folder structure and adds default scripts into the analysis
folders.

tomated analysis is performed, generating statistics, significant tests, histograms, fitness
plots, and a table of the results. The analysis results are summarized in a PDF document.
An example is given in the appendix, see Figure A.1.

Parallel Execution

The parallel execution framework is especially designed for complex evolutionary appli-
cations with a large amount of required evaluations. The main architecture is similar to
the benchmark framework with a server, an FTP server, a client, and a consumer. The
server is implemented as web server with REST communication. Special client and con-
sumer cloud controllers are implemented for the communication with the server. The
consumers and clients register at the server and have to send a keep-alive message. If
these messages do not arrive they are removed from the server’s job management. A
consumer pushes individual evaluation requests to the server which are stored server-side
in the file system. The clients check whether the executable for the job is available for
their hardware architecture. This is done via an FTP server as it is used for the bench-
mark framework. The log mechanism, the result folder structure, and the default analysis
scripts are similar to the benchmark framework, too.
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4.2.1 Environments

Function Approximation

A black-box function approximation environment is implemented that loads the function
to approximate from an input file. The file contains a small header including the number
of function in- and outputs followed by a list of function points. Which input file to load
is defined in the environment section of the BOLERO configuration. Two input files can
be defined, one for the training phase and another as test data set. Evaluation is done by
comparing all function samples and calculating the root mean square error (RMSE).

MARS

A MARS environment is implemented which can be used as base for generating MARS
environments for BOLERO. The library contains the main functionality to set up MARS
and handle events and update procedures. For a concrete application one has to im-
plement another library that inherits from the MARS environment and implements the
loading of the simulation scenario and the evaluation function.

Locomotion

The locomotion environment (locomotion_environment) inherits from the MARS envi-
ronment and provides functionality to load a locomotion scenario, connect sensors and
motors to a behavior, and multiple possibilities to define the evaluation function. The
locomotion environment includes a large number of possibilities to set up and evaluate a
robotic system in MARS. These possibilities can be configured in the environment section
of the BOLERO configuration. The configuration includes the maximal evaluation time
period, the robot model to load, the environment to load, or a plane can be configured
without the need of a special environment file to load. Predefined evaluation objectives
can be configured that are the distance traveled, the energy efficiency (average motor
torque over distance traveled), the load on the mechanical structure, feet slippage (fs),
average feet height, and any value that is available in the simulation can be minimized or
maximized. The feet slippage is defined by the average percentage feet velocity on ground
contact in relation to the robot’s velocity. For every evaluation objective, a weight can be
defined to tune the overall fitness function. A configuration parameter (AbortOnContact)
can be used to abort the individual evaluation if other parts of a robot than its feet are in-
volved in a collision. In that case the fitness is defined by a constant value (100,000,000)
subtracted by the simulation time in milliseconds until the collision is detected. Addi-
tionally, the library allows to add variance to the starting position of the robot as well
as apply random forces to the robot body while the evaluation is performed. The evalu-
ation function can also be defined or combined with an external algorithm implemented
in BAGEL (see Chapter 5). All locomotion experiments performed in this thesis are done
using this BOLERO environment.

TORCS

The TORCS car racing simulation, as depicted in Figure 4.4, is used in a CEC competition
where artificial drivers compete against each other. One approach to create an artificial
driver is to use learning algorithms, e. g. the winner of 2008 Cardamone et al. (2009) used
an adapted NEAT version to evolve a controller. For the TORCS benchmark a patched
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Figure 4.4: TORCS car racing simulation.

version of TORCS v-1.3.4 is used. Due to the software architecture of the TORCS simula-
tion it cannot be wrapped into a BOLERO environment directly. Instead a TORCS driver
is created representing a BOLERO controller. This allows to use the TORCS environment
in the benchmark framework but not with the cloud setup of BOLERO.

The predefined track used is g-track-3, which is not too long and contains dif-
ficult curves. The car used is pw-evoviwrc from the category Offroad-4WD-GrA. The

1.

2.

3.

4.-22.

23.

24.-27.

28.

1
2

3

4-22

24-27

28

Sensors:

Car speed

Steering angle

Distance to middle of track

Distance to edges of track

Current gear

Wheel spin velocities

Engine speed

Figure 4.5: Torcs car racing setup for SABRE benchmark.

driver/behavior gets 28 sensor values and creates two output values (see Figure 4.5). The
sensor values are the current speed, current steering angle, the position to the middle of
the track, a scan of the track edges in a range from -90° to 90° with a resolution of 19
measurements, the current gear, the wheel spin velocities and the engine speed. The out-
put values are the steering value and the acceleration that is used for braking if the value
is smaller than zero.
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A single evaluation is aborted if a lap is finished, car damage is above a threshold, the
car is outside the track, the car is not moving for a given time, or the lap time exceeds
80 s. If the behavior does not manage a full lap the fitness is calculated by:

fitness = −2d+ 80− t+ d_m, (4.1)

while the fitness for a finished lap is defined by:

fitness = −2d− 5(80− t) + d_m. (4.2)

Where d is the lap distance reached, t the time the behavior was evaluated, and dm the
damage of the car. In case of the chosen setup the damage does not have a big influence
since an evaluation is aborted if the car leaves the track.

CEC13 Parameter Test Functions

The test function set was used in the parameter optimization competition at the CEC13
conference. It is wrapped to the BOLERO framework as parameter optimization bench-
mark. Therefor, a behavior is executed only once and the output of the behavior define
the parameter set used to calculate the fitness. The benchmark includes 30 functions
which can be used with parameter dimensions 2, 5, 10, and up to 100 by increments of
10. The test functions mathematically define the fitness landscape. The functions and
their minima are summarized in the appendix in Table A.1. A detailed description is
provided in Liang et al. (2013). For the integration of the test functions into BOLERO

the input values are projected from an expected range [0,1] to value ranges fitting to the
individual test functions.

HyperRobot

For this benchmark a small robot with four legs and three degrees of freedom is used,
similar to the work of Clune et al. (2009). The robot has a height of 25 cm, a width of
24 cm and a length of 34 cm. The body height is 5 cm, thus the length of the legs is 20 cm
with the knee joint (the third joint) in the middle of the leg. The first joint swings the
leg sideways while the second and third one swings the leg to the front and back. The

Figure 4.6: A comparatively simple robot with four legs and three dof per leg.
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first two joints are located at the mounting of the leg at the body (the shoulder or hip
respectively). The mass of the robot is 4.5 kg and the maximal torque of the actuators is
8Nm with a maximal speed of 2 rad/s. The robot has two spheres (eyes) at the front of
the main body without any functionality. The input to the controller to be evolved are
the motor positions in radian, roll, pitch, and yaw rotation of the corpus in radian, four
Boolean inputs (each input can be zero or one) indication whether a foot has contact or
not, and a sine wave input given by f(t) = sin(t ∗ 6.28) where t is the simulation time in
seconds. In simulation the robot can move efficiently forward by oscillating one or more
legs with a high frequency. To reduce these kind of evolution artifacts, a rough terrain is
added in front of the robot. The main evaluation criterion of the fitness function is the
distance traveled in the forward direction of the initial robot orientation. The frequency
of the left eye movement in the up axis is used as another criterion to reduce the results
providing locomotion with high frequency oscillations of the legs. The last objective
is the average difference of the single motor speeds to the average motor speeds. This
objective is designed to evolve behaviors where almost all motors are equally used to
provide forward locomotion.

4.2.2 Learning Algorithms

NEAT

Thewell-establishedNEAT algorithm (Section 2.2.2) is integrated into BOLERO. The stan-
dard NEAT implementation of the MultiNEAT package2 is used. The BOLERO wrapper
of NEAT allows to use NEAT in the default mode or in the HYPERNEAT configuration.
The NEAT implementation with the default sigmoid transfer function produces only net-
work outputs between zero and one. For every behavior output two NEAT outputs can
be generated which are subtracted to generate the final value. This allows output values
in the range of [−1,1]. Additionally, a scaling of the output can be defined to tune the
output range. Alternatively, a linear transfer function can be used for the output nodes
to not limit the output values. NEAT itself provides many parameters that can be defined
in a separate configuration file. Within the behavior search section of the BOLERO con-
figuration a NEAT configuration file can be defined. A complete list of the default NEAT

parameters is given in appendix Section A.1.3.

The additional parameters added by the NeatBehaviorSearch wrapper of BOLERO

are shown in Table 4.1. The NEAT algorithm performs a strategy adaptation based on the
fitness values of the population. It expects positive fitness values, which is not guaranteed
by the BOLERO environment definition. Therefore, a maximal and minimal expected
fitness value should be configured to scale the fitness range into the expected range of
NEAT.

Optionally, the neural network can be reset after each input value process to generate
behaviors that purely maps the input values to output values despite of recurrent connec-
tions allowed. To make use of recurrent connections in that configuration, the number
of net iterations to process one set of input values can be defined. The last option is to
enable a bias input that allows to produce a net output without any input or input values
of zero.

2Source of the NEAT implementation used: http://multineat.com/

http://multineat.com/


4.2. IMPLEMENTATION 61

Table 4.1: Default parameters of the NEAT integration into BOLERO.

Parameter Description Value

MaxFitness Max possible fitness of environment 1.0
MinFitness Min possible fitness of environment 0.0
HyperNeat Use HYPERNEAT approach false
ResetNet Reset net after each input values processing true
NumberNetIterations Net iterations for processing one input set 2
OutputScale Scaling of the output values 1.0
DiffOutputs Using two net output for one behavior output true
PipeOutput Use linear transfer function for output nodes false
BiasInput Add a constant input value of 1.0 true

Genetic Programing (GP)

A classic GP algorithm is implemented based on the BEAGLE library, see Gagné and
Parizeau (2006). To enable the development of programs with multiple outputs the func-
tion set operates on a vector of real valued numbers. For every input node the input
value is allocated on all dimensions of the program. While creating the functional nodes,
whether a function operates on a specific dimension or not is randomly chosen. If a
function does not operate on a dimension the corresponding input value is piped to the
output vector. Figure 4.7 illustrates an example genetic programming tree operating on
two dimensions and calculating two outputs (o1 and o2). The corresponding definition
of the example program is given in Equation (4.3 - 4.4).

+

* /

-[2.3, 4]

[x, x]

[1, 1.5]

[1, 1.5] [y, y]

sin

Figure 4.7: An example of a genetic programming tree encoding a program which gets two inputs
(x and y) and calculates two outputs (o1 and o2). Each node operates on a vector of decimal
numbers with the dimension identical to the number of outputs of the desired program.

o1 = (2.3 · (x− 1)) +
1.0

sin(y)
(4.3)

o2 = (4 · (x− 1.5)) +
1.5

sin(y)
(4.4)
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The primitives implemented in the GP algorithm are ADD, SUB, MULTIPLY, DIVIDE,
POWER, SIGMOID, and RANDOM. ADD, SUB, MULTIPLY, DIVIDE, and POWER take two inputs
each and compute the respective mathematical functions. SIGMOID calculates a sigmoid
function for one input and RANDOM generates a random real value with the uniform dis-
tribution U(−1,1).

SABRE

The SABRE algorithm is a genetic algorithm developed for this thesis and it is described
in chapter 6.

4.2.3 Parameter Optimizer

CMA-ES

For the implementation of the CMA-ES parameter optimizer, the open source c_cmaes3
implementation is integrated into BOLERO. The implementation does not provide any
means of bounding the search space (i. e. the object variables are optimized in R ). To
deal with parameter-value limits imposed by the robotic hardware or control software, a
triangle wave function is used that projects the entire space of real values onto the range
of zero to one. The triangle wave function P : R −→ [0,1] is defined by the chain
x −→ x′ −→ x′′ of the following transformations:

x′ = x % 2 (4.5)

x′′ =

{

x′, if x′ ≤ 1

2− x′, else.
(4.6)

This function is continuous and it is chosen such that the absolute value of its derivative
is constant wherever this derivative exists. This is done to avoid negative effects on the
performance of CMA-ES that can result from non-linearly projecting the values learned
onto the target-value space. Such a nonlinear projection like a modulo function could
cause the fitness landscape to become more fragmented, making it more difficult to find
a global maximum. Additionally, default start parameters of CMA-ES are defined that
match the search space of [0,1]. By scaling the resulting parameters of the optimizer to an
application-specific target space, the default start parameters do not have to be adapted
for the application itself.

Particle SwarmOptimization

The PSO optimizer is implemented as introduced in Section 2.2.3 with two small adapta-
tions regarding search space and particle velocities. Both are limited to a range of [0,1],
with the same projection used in the CMA-ES optimizer. This way both optimizers op-
erate in the same parameter range and can be exchanged for an application without the
need to adapt any parameters.

3Source of c_cmaes implementation: http://cma.gforge.inria.fr/cmaes_sourcecode_page.html

http://cma.gforge.inria.fr/cmaes_sourcecode_page.html


Chapter 5

Behavior Representation BAGEL

The design goal of the Biologically inspired Graph-Based Language (BAGEL) is to create
a software representation that is as manageable for a human developer as for a computer
program, allowing an algorithm to generate or optimize BAGEL components. Addition-
ally, it has to provide a structure to design a modular locomotion control for kinematic
complex robots. This modularity has to allow the development or optimization of sin-
gle or multiple modules via ML methods, while they are evaluated by testing the whole
controller.
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Figure 5.1: Different representations of nodes used in (a) a GP tree, (b) ANNs such as used inNEAT,
and (c) BAGEL. A GP node has to define a fix number of inputs and one output to be used in the
tree structure of the GP phenotype (e.g. the node T1 gets two inputs and calculates f(x, y) = xy).
An ANN node uses a transfer function ∑ to merge an undefined (variable) number of inputs to
one value that is forwarded to an activation function A. The activation function calculates the
output of the node. The BAGEL node mixes both concepts by defining a transfer function T2 which
replaces the activation function of the ANN and defines a fixed number of inputs like the GP node.
Additional to the GP node the transfer function can also have more than one output. For each
input a merge functionM1 andM2 is defined similar to the transfer function of the ANN node. In
the depicted example, T2 could be defined as O1(x, y) = xy and O2(x, y) = yx.

The main concept of BAGEL is to combine the properties of artificial neural networks
with behavior-based control architectures. ANNs are a suitable representation for ML

algorithms but they are not that comfortable for a human developer compared with a
programming language. Therefore, BAGEL extends the concept with hierarchical struc-
turing and by providing a set of basic functions. A classical ANN node consists of an
activation and a transfer function. The transfer function merges the incoming data to
one value representing the neuron state. The activation function defines the output of
the neuron depending on its state. Thus the activation function of an ANN node is a
projection tn : R → R . BAGEL combines the node properties of ANNs with the node rep-
resentation used in genetic programming (see Figure 5.1). The resulting transfer function
used in BAGEL correlates to the activation function of ANNs and is defined as projection
tb : R k → R

l, where k and l are defined by the node type.

63
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For every input of the transfer function, a port with a merge function is defined. The
classic sigmoid transfer function has one input and one output. Thus a BAGEL node us-
ing the sigmoid transfer function and a sum merge is identical to a classic ANN node. In
contrast to existing behavior representations for evolutionary methods, BAGEL offers the
possibility to define more complex transfer functions that can be used as building blocks
within BAGEL graphs. More specifically, a whole BAGEL graph can be used as transfer
function on a higher level of a control architecture. This way, learning algorithms that
can optimize BAGEL graphs can be applied on one or multiple selected graphs on different
levels without application-specific implementation effort. Figure 5.2 depicts the interface
of a bagel node. The Meta Data section in the figure is a placeholder for any kind of ad-
ditional data that has no influence on the execution of the graphs. For example, the data
can contain tags that allow to apply search filters to support a user while developing new
graphs. Another application for the Meta Data is to store information for a ML algo-
rithm directly within the graph, which could be used e. g. to prevent specific parameters
from being adapted by a ML algorithm.
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Figure 5.2: Graphical illustration of the interface and hierarchical concept of BAGEL. Beside
“atomic” functions a whole BAGEL graph can be used within a node of another graph.

5.1 Definition

The BAGEL graph is a multi-graph including loops. The nodes of the graph have in- and
output ports and define a transfer function from in- to output values. The edges define
the data flow within the graph including a weight to scale the output of a node.
Thus the graph (G) is defined as a tuple

G = (V, v ′, v ′′,E, i, j), (5.1)

consisting of a finite set of nodes V and edges E and two vectors of in- and output nodes
(inputs: v ′, outputs: v ′′) with:

v ′ ∈ VNi , v ′′ ∈ VNo , (5.2)
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whereNi is the number of input nodes andNo the number of output nodes. One function
defines the source of an edge and one the target, by a projection of the edge to a node
and the index of the port to connect to:

i, j : E→ (V,N). (5.3)

ei is used to reference the source tuple of edge e as replacement of the notation i(e) and
ej for the target tuple. The notation e(1)i is used to address the first element of the tuple,
in this case the node of the source of the edge. An edge is defined as the tuple:

E = (x,w, r|x,w ∈ R , r ∈ {0,1}), (5.4)

where x is the current value of the edge, w is the weight, and r defines whether the edge
is a recurrent or a forward edge. If r is zero the edge is a forward edge, otherwise it is a
recurrent one. The notations ex, ew, and er are used to reference the single elements of
the edge 3-tuple. The edges connecting to one input port are merged to one input value
of the transfer function. The available set of merge functions is defined by:

M ⊆ {m(x ,w ,d,b) : R n ×R
n ×R ×R → R |x ,w ∈ R

N,d,b ∈ R }, (5.5)

where n is a varying number for each merge function and represents the number of con-
nected edges. Thus each merge function has to be valid for all n ∈ N. The last two
parameters of the merge function are a default and a bias value defined in the node. The
first two input vectors of the merge function are defined as:

(x ,w ) = {(xl,wl) = vt(el)|0 ≤ l < n}, (5.6)

the function vt(e) defines the current tuple of value and weight depending on whether the
edge is a recurrent one or not. The function is defined by:

vt(e) =

{

(ext , ew) if er = 0

(ext−1 , ew) else.
(5.7)

The values of an edge at time t is defined by:

(ext)← eval(ei), (5.8)

with eval((n, i)) reading the current edge value from node n and output port at index i.
The available set of transfer functions is defined by:

Tkl ⊆ {t(y) : R k → R
l|y ∈ R

k}. (5.9)

A node is defined as the tuple:

V = (m1, . . . ,mk,d , b , f,o |m1, . . .mk ∈ M, f ∈ Tkl,o ∈ R
l,d , b ∈ R

k), (5.10)

where m1, . . . ,mk are the merge functions for the input ports, f is the transfer function,
o is the output vector representing the output ports, and d and b are default and bias
vectors for the merge functions.
Definition of node function vn:
Let t : R k → R

l and m1 : R n1 ×R
n1 → R , . . . ,mk : R nk ×R

nk → R .
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Then vn is defined by:

vn(x1,w1, . . . ,xk,wk) = t(m1(x1,w1,d (1), b(1)), . . . ,mk(xk,wk,d (k), b(k))) (5.11)

The transfer function for input and output nodes is given by f(x) = x. Since the input
nodes are the interface to a graph, the node state (value) is defined from outside the
graph and the value is transferred to the output port of the node. Thus, the whole graph
function is given by g : R |v

′| → R
|v ′′| and can be used as a single transfer function with

g ∈ T|v ′||v ′′|. No recursion is permitted, meaning no graph can use itself as a transfer
function in one of its nodes or the nodes included throughout the hierarchy.

To define an algorithm with BAGEL, a set of merge and transfer functions has to be
provided and the nodes and edges have to be defined. An example is given by:

1 Merge (sum, product)
2 Transfer (input(1,1), output(1,1), pipe(1,1), pow(2,1))
3 N In1 (input, (sum))
4 N P1 (pipe, (product))
5 E 1 ((In1, 0), (P1, 0), 1.0)
6 N In2 (input, (sum))
7 E 2 ((In2, 0), (P1, 0), 1.0)
8 N Pow1 (pow, (sum, sum))
9 E 3 ((P1, 0), (Pow1, 0), 1.0)
10 E 4 ((In2, 0), (Pow1, 1), 1.0)
11 N O1 (output, (sum))
12 E 5 ((Pow1, 0), (O1, 0), 0.5)

The syntax used in this example is defined by:

• Merge (m1, ..., mn):
Defines a set of available merge functions M.

• Transfer (t1 (n1,m1), ..., tl (nl,ml)):
Defines a set of available transfer functions T and the number of in- and output
ports for each function. Transfer function ti has ni input and mi output ports.

• N id ((t, (m1, ..., mn)):

– N determines that the row decodes a node.

– id is a unique identifier of the node within that graph.

– t defines the transfer function for the node with t ∈ T.

– m1, ...,mn defines the merge function for every input of t with n equals the
number of inputs of t.

• E id ((ns, is), (nt, it), w):

– E determines that the row decodes an edge.

– id is a unique identifier of the edge within that graph.

– (ns, is) defines the source node and the output port index, where ns refers to
the node id.

– (nt, it) defines the target node and the output port index.

– w defines the weight of the edge.

The graph definition can contain multiple rows of any of the defined sections. Every
referenced node, merge, or transfer function has to be defined before its first reference.
For this example the definition order of the nodes correlates to the calculation order in
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which the node states are updated. Thus, if the source node of an edge (e(1)i ) is defined

after the target node (e(1)j ), the edge represents a recurrent connection. Figure 5.3 depicts
the constructed example in a graph representation.

Figure 5.3: Example of BAGEL graph implementing the function: f(In1, In2) := 0.5(In1 · In2)In2.

5.2 Implementation

Software tools for the design, verification and execution of BAGEL graphs are developed.
The implementation is already used on MANTIS (shown in Figure 3.3), SPACECLIMBER,
and CHARLIE robot. The tools include a C execution library, PYTHON utility scripts, and
a graphical user interface to view and edit BAGEL graphs. The tools are introduced in the
following sections.

5.2.1 C Execution Library

The C execution of BAGEL graphs is done by the c_bagel library. It is restricted to the
ANSI C89 standard1, which allows an extensive compatibility to different target plat-
forms. For instance, it can be compiled for micro-controllers or integrated in any appli-
cation that allows to be extended by plugins, likeMatlab or theMARS simulation. Nearly
the whole API is covered by a unit test application to verify and protect the library. This
is important, as this library is designed to be responsible for the reactive locomotion con-
trol of complex robotic systems. The library provides file import and export with YAML

as file format. An example for the graph shown in Figure 5.3 is given in Listing 6.
The file lists the nodes and edges representing a BAGEL graph. The nodes and their

ports are identified by names which are used as references in the edge list. The node type
defines how many in- and outputs are expected, while the type in the input lists of the
nodes defines the merge function to use. Amongst other checks, the c_bagel file parser
returns an error if for example an identifier is not unique or a given type is unknown.
Since YAML syntax is used, additional data that is ignored by the c_bagel parser can be
stored in the files. This data correlates to Meta Data defined in the BAGEL interface. For
instance, the tag pos of the nodes is used by the graphical user interface of BAGEL.

Since the files only define the graph structure but not the execution order of the nodes,
the TSORT algorithm introduced in Knuth (1997) is used to determine the execution order
and to identify the recurrent connections. However, in some special cases, the user still has
to define the recurrent connections. Figure 5.4 depicts an examples in which the execution
order cannot be clearly derived from the graph structure. In such cases the user can mark
an edge to be recurrent and this edge will be ignored by the tsort algorithm. Due to the
execution order, some recurrent edges transfer the node state of the previous iteration. It
is not yet implemented that any edge can be explicitly defined as a delayed edge, which
can make graphs with complex recurrent structures more complicated (again see Figure
5.4).

1Information on the ANSI C standards can be found at: http://www.iso-9899.info/wiki/The_Standard

http://www.iso-9899.info/wiki/The_Standard
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1 nodes:
2 - type: INPUT
3 name: In1
4 outputs: [{name: out1}]
5 pos: {x: 897, y: 652}
6 - type: INPUT
7 name: In2
8 outputs: [{name: out1}]
9 pos: {x: 897, y: 629}
10 - name: P1
11 type: PIPE
12 inputs:
13 - {name: in1, default: 0, bias: 1, type: PRODUCT}
14 outputs: [{name: out1}]
15 pos: {x: 995, y: 654}
16 - name: Pow1
17 type: POW
18 inputs:
19 - {name: in1, default: 0, bias: 0, type: SUM}
20 - {name: in2, default: 0, type: SUM, bias: 0}
21 outputs: [{name: out1}]
22 pos: {x: 1089, y: 644}
23 - name: O1
24 type: OUTPUT
25 inputs:
26 - {name: in1, default: 0, bias: 0, type: SUM}
27 pos: {x: 1211, y: 631}
28 edges:
29 - {weight: 1, smooth: true, toNode: P1, toNodeInput: in1, fromNode: In1, fromNodeOutput: out1}
30 - {weight: 1, smooth: true, toNode: P1, toNodeInput: in1, fromNode: In2, fromNodeOutput: out1}
31 - {weight: 1, smooth: true, toNode: Pow1, toNodeInput: in1, fromNode: P1, fromNodeOutput: out1}
32 - {weight: 1, smooth: true, toNode: Pow1, toNodeInput: in2, fromNode: In2, fromNodeOutput: out1}
33 - {weight: 0.5, smooth: true, toNode: O1, toNodeInput: in1, fromNode: Pow1, fromNodeOutput: out1}

Listing 6: Example of BAGEL graph defined in a YAML file for c_bagel.

Figure 5.4: Example (a) shows a graph where the execution order cannot be derived clearly from
the structure. Node P1 could be executed before P2 or vice versa. If P1 is executed first, the
connection from P1 to P2 is treated as a regular forward edge while the connection from P2 to
P1 becomes a delayed edge. Without additional effort, it is not possible to define both edges as
delayed ones. Example (b) allows this by using an additional node P3 and marking the outgoing
edges to be recurrent (green edges). This way, the edges are ignored for calculating the execution
order and both P1 and P2 are executed before P3, while the outgoing edges become delayed edges.
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The node types implemented in c_bagel are PIPE, DIVIDE, SIN, ASIN, COS, TAN, ACOS,
ATAN2, POW, MOD, ABS, SQRT, FSIGMOID, >0, ==0, and TANH. The available merge functions
are SUM, WEIGHTED_SUM, PRODUCT, MIN, MAX, MEDIAN, MEAN, and NORM. The node types can
be extended using graphs as node type. To do so, the node type has to be SUBGRAPH and
the graph has to be provided via a file or the c_bagel API. Another option is to extend
the node types via a plugin mechanism. In that case the node type is EXTERN and one has
to reference the dynamic C-library providing symbols for init_nodes and node_info.

5.2.2 Extern Nodes

A PYTHON script is installed by the C execution library that creates the interface for a
new external node. The input is a YAML file defining the interfaces of the new node. An
example that pipes two inputs directly to the outputs is given by:

1 name: Pipe2
2 inputs:
3 - name: in1
4 - name: in2
5
6 outputs:
7 - name: out1
8 - name: out2

The corresponding interface created by the tool is:

1 /**
2 * \file Pipe2.h
3 *
4 * \brief
5 * This file is auto-generated! Do not touch it, it will be overwritten
6 * while reinstalling this library!!!
7 *
8 **/
9
10 #include <c_bagel/bagel.h>
11 #include <c_bagel/bg_impl.h>
12 #include <c_bagel/bg_node.h>
13 #include <assert.h>
14 #include <stdlib.h>
15
16 #ifdef __cplusplus
17 extern "C" {
18 #endif
19
20 /**** private structs ****/
21
22 typedef struct Pipe2_input_data {
23 bg_real in1;
24 bg_real in2;
25 }Pipe2_input_data;
26
27 typedef struct Pipe2output_data {
28 bg_real out1;
29 bg_real out2;
30 }Pipe2_output_data;
31
32 typedef struct Pipe2_private_data {
33 Pipe2_input_data inputs;
34 Pipe2_output_data outputs;
35 void *intern_data;
36 }Pipe2_private_data;
37
38 /**** private functions ****/
39
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40 void install_Pipe2(void);
41 bg_error init_Pipe2(bg_node_t *node);
42 bg_error deinit_Pipe2(bg_node_t *node);
43 bg_error evaluate_Pipe2(bg_node_t *node, Pipe2_private_data *p_data);
44
45 #ifdef __cplusplus
46 }
47 #endif

All function names are a combination of the function and the external type name. Thus
the type name have to be unique, like the node types. Beside a header file, defining this
interface, a source file is automatically created managing the registration of the new node
type while loading the extension with c_bagel. The functions declared by the interface
file have to be implemented by the user. For instance, the evaluate_Pipe2 could look
like:

1 bg_error evaluate_Pipe2(bg_node_t *node,
2 Pipe2_private_data *p_data) {
3 (void)node;
4 p_data->outputs.out1 = p_data->inputs.in1;
5 p_data->outputs.out2 = p_data->inputs.in2;
6 return bg_SUCCESS;
7 }

This possibility allows to easily extend the functionality of BAGEL with more complex
algorithms; even C++ libraries can be integrated this way. However, with this possibility
the protection against memory corruption cannot be guaranteed.

5.2.3 Unit Test

A unit test program for BAGEL graphs is developed. For every graph, a YAML file can
be created, defining test inputs and expected outputs within a given precision. Another
YAML file lists all graphs to be tested. In case of the Pipe2 example, the definition file
could look like the following block on the left hand side, while the unit test output is
shown on the right hand side:

1 unit_tests:
2 - inputs: [1.0, 2.0]
3 outputs: [1.0, 2.0]
4 epsilon: [0.0001]}
5 - inputs: [3.0, 2.5 ]

6 outputs: [3.0, 3.0 ]
7 epsilon: [0.0001]}

=⇒

1 testing: pipe2Test ...
2 bg_graph_from_yaml: pipe2Test.yml
3 #inputs: 2
4 #outputs: 2
5 test inputs: 1 2
6 test inputs: 3 2.5
7 expected output (index: 1): 3.0 graph output (id: 5): 2.5

8 ... fail

Note that the expected output defined in line 6 is wrong on purpose to generate a faulty
output of the test program. By increasing epsilon of the last test the output is accepted
and the result is:

1 unit_tests:
2 - inputs: [1.0, 2.0]
3 outputs: [1.0, 2.0]
4 epsilon: [0.0001]}
5 - inputs: [3.0, 2.5]
6 outputs: [3.0, 3.0]
7 epsilon: [ 1.0001 ]

=⇒

1 testing: pipe2Test ...
2 bg_graph_from_yaml: pipe2Test.yml
3 #inputs: 2
4 #outputs: 2
5 test inputs: 1 2
6 test inputs: 3 2.5
7 ... fine

If no failure occurs, the return value of the program is zero, otherwise the number of
failed tests is returned. Due to the return value the program can be used in an automated
way for a whole collection of BAGEL graphs.
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5.2.4 C++ ExecutionWrapper

The predominant programming language for robotic frameworks is C++. To integrate
c_bagel into these frameworks, a C++ wrapper is developed, which can be used to wrap
a BAGEL graph in a class instance. The usage is shown by the following example:

1 #include <behavior_library/BehaviorLibrary.h>
2
3 int main(int argc, char **argv) {
4 BehaviorLibrary bLib(NULL);
5 BehaviorGraph *graph = bLib->loadBehaviorGraph("test.yml", "path/to/extern/libs");
6 std::vector<std::string> inputNames, outputNames;
7 std::vector<double> inputValues, outputValues;
8 inputNames = graph->getInputNames();
9 outputNames = graph->getOutputNames();
10 inputValues.resize(inputNames.size();
11 outputValues.resize(outputNames.size();
12 inputValues[0] = 1.0; // or any value
13 graph->setInputValues(inputValues);
14 graph->evaluate();
15 graph->getOutputValues(&outputValues);
16 // to reset the intern state if desired
17 graph->reset();
18 return 0;
19 }

The BehaviorLibrary class is the factory which can be used to load a BAGEL graph from
a file together with a path to the correlated external nodes. This way, the external nodes
can be delivered together with the graph files. The BehaviorGraph class has an interface
to receive the input and output names of the loaded graph. The input and output interface
is implemented by vectors of double values with the same order as the previously returned
names. The execution interface is defined by setting the input values, evaluating the graph,
and getting the output values. These three steps are only performed once in this example
but can be integrated into an application main loop. The last interface function is the
reset method that restores the initial state of the graph. This library is used to integrate
BAGEL into the ROCK 2 framework and other applications.

5.2.5 SimulationModule

A MARS-Plugin is developed that allows to load, execute, and debug BAGEL graphs di-
rectly in simulation. All inputs and outputs of the loaded graph can be accessed through
the data_broker component which enables the use of the MARS plotting and logging
tools for debug purposes. Additionally, if the graph output namesmatch a defined naming
scheme, they are automatically connected with the motors available in the loaded simula-
tion scene. A name matches if the motor name correlates directly with an output name or
if the motor name with suffix “/des_pos” or “/des_angle” is found in the output name
list. Since the input values are marked as readable in data_broker, data_broker_gui
can be used to change control parameters. To connect simulation data with inputs of the
graph, similar as with sensor values, again the data_broker tools can be utilized. This
way, complex locomotion behaviors can already be developed and tested in the simula-
tion without the need of an entire robotics software framework. The plugin extends the
application menu with the possibility to reset the graph or reload it from file. Thus, the
simulation does not have to be restarted when the BAGEL graph is updated.

2ROCK (the Robot Construction Kit) is used and developed for the robotic systems at the DFKI (see
https://www.rock-robotics.org).

https://www.rock-robotics.org
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5.2.6 Graphical Design Software

Due to the fact that no existing tool could be found that fulfills the requirements con-
cerning the graph structure, a graphical user interface (GRAPHGUI) to view and design
BAGEL graphs is developed. The main architecture of the GRAPHGUI is shown in Fig-
ure 5.5. The GRAPHGUI makes use of some general libraries of the MARS framework,

osg_graph_viz

MARS Libraries

bagel_gui

ViewView

Node

Edge

OsgBGRoundBodyNode

UpdateInterface
NodeTypeWidget

HistoryWidget

osg_text

osg_material_manager cfg_manager

gui_app

main_gui

Libraries Classes

Figure 5.5: Main architecture overview of GRAPHGUI.

including the application management through the gui_app and the main_gui libraries.
Also the cfg_manager is used to store and load user preferences. The GRAPHGUI itself is
split into two libraries. One providing the graph drawing and user interaction within the
graphs – osg_graph_viz, one used for the organization of the application – bagel_gui.
bagel_gui sets up the application by loading all possible node types from a configuration
folder and enables to load and save BAGEL graphs in the defined YAML format. OsgBG
is the main class of the application, managing multiple View instances stored in different
tabs of the main window. NodeTypeWidget lists all possible node types available for the
graph displayed in the selected tab. The node types available for a tab can be extended by
loading sub-graphs into NodeTypeWidget. By double-clicking the name of a node type in
the list, a new node is added to the current view.

Edges can be created via drag and drop from a node output port to an input port, han-
dled by the drawing library. The UpdateInterface class is used to update the View class
of bagel_gui. Deleting nodes and edges is done by the drawing library and forwarded
to bagel_gui. Every event is first processed in the main library via the UpdateInter-
face class and only performed in the graph on a positive feedback. Every View of the
main library is coupled via ModelInterface with a model instance where the events are
processed. Beside BAGEL other models can be implemented via ModelInterface, which
allows to extend GRAPHGUI. Currently, GRAPHGUI is also used in the D-Rock3 project

3Website of the D-Rock project: https://robotik.dfki-bremen.de/en/research/projects/d-rock.
html

https://robotik.dfki-bremen.de/en/research/projects/d-rock.html
https://robotik.dfki-bremen.de/en/research/projects/d-rock.html
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for software, hardware, electronics, and assembly models in a model-based design ap-
proach of robotic systems. Additionally, GRAPHGUI is used to develop visual shaders for
the MARS simulation.

All node and edge information is stored in ConfigMap dictionaries provided by the
config_map library. The library is developed as a generic data structure compatible to
JSON and YAML. A generic ConfigMap widget is developed to view and edit the values
stored in ConfigMap. By selecting a node or edge in the graphics view, the corresponding
ConfigMap data is loaded into the generic data widget.

Another widget provided by the bagel_gui library is HistoryWidget which stores a
history of changes for every view. The history allows to revert and redo changes of the
graphs. See Figure 5.6 for an impression of the graphical user interface. The GUI includes
some useful features such as duplicating a selection of edges and nodes, repositioning in-
put and output nodes to the connected ports, or creating input nodes for selected nodes.
For the latter feature, two modes are implemented. One that creates input nodes for all
ports and one that creates only one input node for ports with the same name. Another
feature allows to create a graph interface (inputs and outputs) by parsing the robot de-
scription used by the MARS simulation. The robot description can also reference default
BAGEL graphs that are suitable for control. In that case, the graphs are loaded as indi-
vidual nodes. For instance, if a control graph for a leg is referenced in the model and the
robot has four legs, four nodes representing the leg control graphs are created together
with edges to the correlating output nodes that represent the motors of the robot.

Figure 5.6: GRAPHGUI developed to design BAGEL graphs.

5.3 Conclusion

In general, the implementation is decoupled from the control logic and classical C mis-
takes such as wrongmemory access are minimized. Additionally, as long as only “atomic”
and sub-graph nodes are used, an interval arithmetic can be applied to check for possible
singularities, e. g. division by zero or possible output values outside the operation range
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of a target control value. In the current execution implementation, a graph representation
is used internally to compute the BAGEL graphs. This is an obvious choice, but results in
graph management overhead that could be reduced by translating the graphs online into
individual C functions. A similar ongoing work is to translate the graphs into VHDL code
to provide an execution of BAGEL on FPGA. As mentioned before, an additional exten-
sion is explicitly delayed edges, which are formalized, but not implemented yet. Beside
the possibility to create BAGEL graphs with the GRAPHGUI or writing the YAML files by
hand, it is possible to convert PYTHON functions into BAGEL graphs. For this, the PYTHON

function has to fulfill a number of requirements, such as not using global variables. Due
to the YAML interface, the BAGEL graphs can be easily serialized. Additionally, the sub-
graph architecture allows to replace the graph structure within a sub-graph node. These
features are for example used by the learning framework BOLERO, but one could also
replace a single sub-graph on a robotic system to modify its behavior while it is operating.



Chapter 6

Genetic Algorithm SABRE

The genetic algorithm Swarm-Assisted Evolutionary Algorithm (SABRE) is designed to
operate on graph structures such as those used by BAGEL. The core elements are nodes,
edges, and ports, the later defining the interfaces to the nodes where the edges are at-
tached. The interfaces of a node are separated into input ports and output ports. Edges
can connect an output port with an input port of the same or another node and ports
can have multiple edges connected. Thus, the genotype can fully represent artificial neu-
ral networks or common genetic programming structures. Figure 6.1 shows where the
SABRE algorithm in combination with BAGEL fits into the sub-fields of evolutionary com-
putation. SABRE indirectly adds a hierarchical structure, due to the node interface defined
in BAGEL. In combination with BAGEL it allows to simultaneously develop and optimize
multiple controllers on different or the same layers of the control hierarchy.

Evolutionary Computation / Genetic Computation

Evolutionary Strategies Genetic Algorithms

parameter optimization originally evolving bit-strings

nowadays general gene-strings are used 

providing the most flexible encoding

Neuroevolution

evolving neural networks

either by optimizing network

parameters or evolving structure

and parameters together

Genetic Programming

evolving computer programs

classically represented by

tree structures

can represent artificial

neural networks and genetic 

programming trees

adds hierarchical structuring

allow fine tuning of genetic influence

BAGELSABRE /

Figure 6.1: SABRE added to the overview of evolutionary computation.

Individuals, nodes, ports, and edges can have an application-specific number of pa-
rameters that are optimized in parallel to structural development. In SABRE, offspring is
generated by performing mutations of a selected parent. The structure mutations are sep-
arated from the parameter mutations by a management of sub-populations or swarms.
For each structure generated through SABRE a swarm of individuals is managed varying

75
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in the parameters of the elements in the corresponding structure. For this parameter opti-
mization a PSO algorithm or an ES method can be used. The following subsections include
the definition of SABRE, the implementation including the integration into BOLERO, and
some benchmark experiments to verify the method and it’s implementation.

6.1 Definition

SABRE operates on gene strings containing genes that encode nodes and edges. Node genes
are defined by node types that include a specific number of input and output ports. Two
core types are input and output genes, including one output port or input port, respec-
tively. Other types are defined by the specific application. The same type mechanism is
used for the ports of nodes, which is used, e. g. for the different merge types of BAGEL if
SABRE is used to generate BAGEL graphs. Connection genes define which nodes are linked
in the phenotype through their ports. Whenever a new gene is developed, it is attached
to the end of the gene string, thereby effectively sorting the genes by age. Additionally,
every gene gets a unique identifier which is used to map the PSO parameters to the genes.
Through the reproduction process, the genes are inherited by the offspring and can ap-
pear in multiple gene strings. An example gene string encoding a BAGEL graph is shown
in Figure 6.2.
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Figure 6.2: The function f(x, y) = x2 + 0.5y represented in a BAGEL graph and as gene string
(underneath the graph).

Every gene contains a list of parameters that is defined by the application. A global
number of parameters for nodes, ports, and edges can be defined. Node genes contain the
number of parameters defined for nodes together with the number of parameters defined
for input and output ports multiplied with the number of ports for the specific node type.
Edge genes contain the number of parameters defined for edges.

The default behavior of SABRE is to initialize parameters of newly created edge or node
genes with a uniform distribution defined by the current mutation step-size (U(−σ, σ)).
However, input ports of node types can be configured as special ports that initialize with
parameters all set to zero or with a uniform distribution in U(−1,1) instead of the default.
Additionally, ports can be marked as hidden, which disables them for connecting edge
genes.

If, for example, a BAGEL graph is developed, a BAGEL node can be used with mul-
tiple inputs where some inputs are disabled for connecting edges and thus only define
parameters for the implemented transfer function instead of signals passing to the node.
Optionally, SABRE produces only fully-connected individuals. For this, whenever a new
gene string is created, edge genes are added that connect all unconnected ports to random
ports in the graph.
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Figure 6.3: The two nested loops of SABRE. The population of different structures is depicted on
the horizontal axis. The sub-populations altering the parameters of the structures are depicted on
the vertical axes.

As a starting point of the evolution, a graph can be provided representing the initial
parent individual. For this initial parent, a number of selected or all parameters and
structure elements can be protected, preventing the genes from being changed or removed
by the reproduction process. These configuration possibilities allow to precisely tune
how the evolution will evolve new solutions and many undesired configurations of the
resulting graphs can be eliminated beforehand instead of being filtered by the evaluation
and selection procedure.

In SABRE, the structure adaptation is separated from the parameter optimization. For
every gene string representing a structure, a fixed number of λ individuals are gener-
ated varying the genes’ parameters. Figure 6.3 depicts this architecture. The number
of structure individuals (κ) and λ are parameters of SABRE and define the final popula-
tion size Λ := κλ. The individuals containing the parameter variations are stored in
sub-populations P1 through Pκ, where every sub-population represents a structure indi-
vidual.

The main population is given by the sum of the sub-populations P :=
∪κ
i=0 Pi. After

the evaluation of a population is finished, either the structure and parameters or only
the parameters of the individuals can be mutated. The parameter eλ defines how often
parameters-only mutations occurs until also the structure mutation takes place for the
next reproduction. This allows to tune the speed of the parameter development versus
the structure development. A high value of eλ for instance protects new structures and
evaluates them until the defined number of parameter optimizations is performed.

The parameter mutation is done by the PSO algorithm or via an ES method. For
the ES, a (1,λ)-strategy is used, meaning every generation the best individual of the sub-
population is used as the parent for the new sub-population. Additionally, the parent is
kept in the new population. The PSO implementation cycles through its swarm iteration
to update the particle positions and define the parameters of the new sub-populations.
The general evolutionary procedure is shown in Listing 7.
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1 Input: number structure individuals κ, sub-population size λ, number parameter iterations eλ

2 P ∼ createStartPopulation(κ, λ) # initialize start population
3 g← 1 # initialize generation count
4 while True do
5 for x in P do
6 χ[x] ∼ f(x) # sample individual performance, where f is application specific
7 end for
8 parent← argminxχ[x] # select population parent
9 for i← 0 to κ do
10 Pi ∼ sort(Pi, χ) # sort sub-population by fitness, best individual becomes first
11 if g% eλ = 0 and parent not Pi[0] then
12 child ∼ mutateStructure(parent) # generate new structure individual
13 Pi[0]← child # assign new parent to first individual
14 else
15 child← Pi[0]
16 end if
17 for x in Pi do
18 x ∼ child not x ? mutateParameter(child) : x # either apply ES mutation or PSO particle update
19 end for
20 end for
21 g← g+ 1 # increase generation count
22 end while

Listing 7: The core development process of SABRE.

6.1.1 Structural Mutation

The individual of the best performing sub-population is selected as parent for the en-
tire new population. The parent is kept as parent individual of the first sub-population,
while κ − 1 structural mutations are performed to generate the parents of the other sub-
populations. Afterwards, the parameter mutation is performed to generate the new in-
dividuals of the sub-populations. To apply the structure mutation, different operations
are defined. For every operation to emerge, a probability can be configured. This also
allows to disable an operation by setting its probability to zero. Two modes can be used
on how the operation probabilities are considered. The first mode chooses one opera-
tion by a roulette wheel selection where the probabilities define the representing area of
the operation in the wheel. The second mode applies all operations with their individ-
ual probabilities for occurrence. Another option is to use both modes combined, where
the mode to be used is selected for every single reproduction. In that case, the modes
are selected with equal probability of fifty percent. Beside the operation probabilities the
maximum number of hidden nodes can be defined to limit the size and computation effort
needed. The structure is evolved based on five mutation operations (see Figure 6.4 for
the first four). The operations are defined as follows:

• AddNode: The operation creates a new random node gene together with edge genes
connecting the input ports of the new node with output ports of existing nodes.
Similarly, edge genes are created for the output ports of the new node. If the number
of nodes in the gene string reaches a predefined limit, the RemoveNode operation is
called first.

• AddNodeAtEdge: The operation selects an edge that is replaced by a node. It creates
a new node gene and an edge connecting the start port of the selected edge to a
random input port of the new node and the same for the end port of the replaced
edge. Since the number of node genes is increased with this operation, the check
whether the maximum number of hidden nodes is reached is done beforehand, like
for the AddNode operation.
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Figure 6.4: Example of structure development. For simplification the port handling of the nodes
is not illustrated. Starting with the first graph the four structure mutations RemoveEdge (2.),
AddNode (3.), AddNodeAtEdge (4.), and AddEdge (5.) are applied. 6. depicts the resulting struc-
ture.

• RemoveNode: This operation removes a random node gene and all connected edge
genes.

• AddEdge: This operation connects a random output port with a random input port
by a new edge gene.

• RemoveEdge: This operation removes an edge gene from the string.

6.1.2 Parameter Mutation

The number of individual, node, port, and edge parameters are globally set for an evo-
lution setup. A maximal and minimal mutation step size σmax and σmin can be defined
to control how fast the individuals can adapt to a given environment. Optionally the
maximal mutation step size of the last sub-population can be set to 3σmax. This option is
referred to as EvoJumping and configures one sub-population to search more explorative.

Particle SwarmOptimization (PSO)

For the PSO method, every particle of the swarm is given one segment per unique gene it
maps to. The segments encode as many parameters as required by the particular gene.
Thus, the parameter dimensions of all particles is equal and every particle includes pa-
rameters for all genes of the whole population. The mapping of PSO parameters to gene
parameters is done by the unique identifier of the genes (see Figure 6.5). If a gene is com-
pletely removed from the population, the dimension of all particles is reduced accordingly
by removing the corresponding parameter segment from all particles. For the mapping
of the parameters, segments that are linked to genes not represented in the target gene
string can be ignored. The particle positions are projected to a defined target space by a
triangle wave function (as introduced in Section 4.2.3). If a particle’s velocity is below
a defined minimum (σmin), the velocity of the particle is randomly reset. The maximal
particle speed is limited by the maximum mutation step size σmax.

Evolutionary Strategies (ES)

In the ES parameter mutation the gene parameters are changed either by a uniform dis-
tribution U(−σ, σ), with σmin < σ < σmax or by the following equation referred as
GaussCircle adaption:
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Figure 6.5: The figure depicts the mapping of a PSO particle to a gene string of SABRE. The
particle parameters are separated into segments whereby every segment stores the parameters of
one specific gene. The particles include segments for all available genes in the population. To map
the parameters of a particle to a gene string, the corresponding segments of the genes appearing
in the string are read.

ẋ =

{

N(σ, σ) with probability 0.5

−N(σ, σ) else.
(6.1)

The step size is adapted every generation by the fitness development of the populations.
If the fitness is improved from one population to the next, σ is increased by:

σ =

{

σ
β if σ

β ≤ σmax

σmax else,
(6.2)

where β controls how fast the step size is adapted with 0 < β ≤ 1. Similarly, if the fitness
does not improve from one generation to the other the adaption is done vice versa and σ

is decreased by:

σ =

{

σβ if σβ ≥ σmin

σmin else.
(6.3)

The parameter mutation is either performed for only one random gene (single gene mu-
tation), the parameters of the genes are mutated with a probability of 0.1, or both modes
can be used combined with a selection probability of 0.5 each. The single gene muta-
tion can be used to produce a slow step-by-step adaptation, which is generally a feasible
approach. However, in more complex scenarios, a fitness improvement may only be
possible by adapting multiple genes at once.

Each gene string keeps its last parameter mutation which is applied again in case
of a fitness improvement. This especially increases the adaptation process when a slow
mutation step size is used. In contrast to PSO, the parameter range is not limited to a
target space.

6.1.3 Default Configuration

The default parameters are listed in Table 6.1. The parameters are empirically chosen to
fit as good as possible to a set of multiple benchmark scenarios. In the following sections
and chapters only the parameters deviating from the default values are mentioned in the
corresponding experiment descriptions.
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Table 6.1: Default parameters of SABRE.

Parameter Value Parameter Value

NumSubPopulations (κ) 5 MutateRemoveNodeProb 0.5
SubPopulationSize (λ) 10 MutateAddEdgeProb 0.5
NumSubIterations (eλ) 40 MutateRemoveEdgeProb 0.5
NumStartHiddenNodes 4 UsePSO disabled
NumMaxHiddenNodes 80 EvoJumping enabled
NumMaxConnections 160 MutateSingleParameter both modes
WorkFullyConnected enabled MutateGaussCircle enabled
MutateStructureMode both modes StartSigma (σmax) 0.15
MutateAddNodeProb 0.5 ResetSigma (σmin) 0.000005
MutateAddNodeAtEdgeProb 0.5 MultiplySigma (β) 0.9

6.2 Implementation

The implementation is done in a C++ library providing an interface to integrate SABRE

into any target application. The library includes some experimental features that are not
further mentioned since they are not relevant for the experiments in this work. The main
classes are shown in Figure 6.6. Due to the direct mapping of the gene string to a repre-

Sabre

Individual

GeneticGraph
Operation

Node

Edge Ports

GenticGraphInterface

Particle

AddNode

AddNodeAtEdge

RemoveNode

AddEdge

RemoveEdge

Figure 6.6: Software overview of SABRE.

senting graph, the gene string is directly managed as graph and stored in the Individual
class. As introduced in the definition, the elements of the graph are represented by the
Node, Port, and Edge classes. The PSO integration is done in the Particle class while
GeneticGraphmanages the main population, sub-populations, and the core development
process of SABRE as previously introduced in Listing 7. The elements of the graph are still
abstract and Individual in the implementation is representing the genotype. The pheno-
type is generated by the application. The interface allows to set up the available node and
port types of the application, define a start graph by adding start nodes and edges, and
to process the development through the methods getNextIndividual and setFitness.

6.2.1 Integration Into Learning Framework

A SabreBehaviorSearch module is implemented as an extension of the BOLERO frame-
work and makes use of SABRE to generate and optimize BAGEL graphs for learning prob-
lems defined via BOLERO (see Figure 6.7). The module provides extensive configuration
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SABREBEHAVIORSEARCH

SABRE BAGEL

Figure 6.7: Integration of SABRE with BAGEL into BOLERO.

possibilities to define in detail which parts of a BAGEL graph can be evolved and opti-
mized and how. Multiple BAGEL graphs can be evolved simultaneously and are evaluated
by combining them via a top-level graph that can also be the result of an evolution. For
this parallel development, the individual SABRE instances are independent from each other
but should have the same configuration concerning the population sizes and number of
parameter iterations. Every SABRE instance is configured individually. The configuration
includes the SABRE parameters, the available BAGEL transfer and merge functions, the
starting point of the evolution, and the option to add a fitness criterion to minimize the
size of the resulting graphs. Additionally, every SABRE instance can be configured to use
the graphs of other instances as node types for its own graph development. The starting
point for every evolution is given by a BAGEL graph with optional SABRE specific anno-
tations. The annotations can for instance hide a port – exclude it from being connected
by edges –, configure how parameters are treated, or protect parts of the graph against
mutations. The default transfer function of input and output nodes of BAGEL is PIPE.
SabreBehaviorSearch allows to use the SIGMOID function for the output nodes to rep-
resent neural networks purely composed of sigmoid-based neurons. The main difference
is that the SIGMOID function output value range is [0,1] while the the output range of the
PIPE function is not limited. Another option is to represent one behavior output by two
BAGEL outputs that are subtracted from one another. This is needed when using SIGMOID
outputs to create negative output values. To generate behaviors that purely map the input
values to output values without a memory feature, SabreBehaviorSearch can be config-
ured to reset the BAGEL behavior after every set of input values is processed. To still make
use of recurrent connections within the graph, a number of BAGEL graph evaluations per
input value set can be defined. The reset handling and the usage of two output nodes
representing one behavior output is handled similar as described for the BOLERO NEAT

module in Section 4.2.2.

6.3 Validation Benchmarking

All benchmarks are performed with the BOLERO framework. Several setups are chosen
for the evaluation of the novel introduced encoding and optimization method. The first
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setup consists of black box function approximation for a set of mathematically defined
functions. In the second setup the evolutionary algorithms are used to solve parameter
optimization problems where the fitness landscapes are mathematically defined. The third
setup is to evolve a controller for the car racing simulation TORCS. The controller has to
complete a full lap while minimizing lap time. In the last setup a forward locomotion
behavior of a simulated four legged walking robot have to be evolved.

The benchmarks are performed with NEAT, a GP algorithm, and SABRE, as described
in Section 4.2.2. The algorithms are used in different configurations depending on the
individual benchmark problems. However, to allow fair comparison, the phenotype rep-
resentation of the NEAT and at least one SABRE configuration are the same for the single
benchmark problems. Furthermore, the strategy parameters of the SABRE algorithm are
kept constant and are not tuned to the individual problems. In case of the NEAT al-
gorithm, the parameters are empirically tuned per problem because no well performing
default parameters are known.

The HYPERNEAT and SABREPRE configurations of NEAT and SABRE respectively are
only used in the last benchmark, since they are both explicitly designed for the legged
robot benchmark. The HYPERNEAT approach has already been introduced in Section
2.2.2, while the SABREPRE configuration is described in the experiment section of the
HyperRobot benchmark.

6.3.1 Black Box Function Approximation

This benchmark is used to analyze the performance of the PSO integration in comparison
to a standard ES parameter mutation of SABRE. Furthermore, the impact of the available
transfer functions is evaluated by providing different sets of functions. In total, four
configurations of SABRE are tested, using a full set of transfer functions (SABREfull) and
only the sigmoid function (SABREσ) both with and without PSO usage: SABREfull/PSO,
SABREfull, SABREσ/PSO, SABREσ. Since the results of this benchmark led to the chosen
default parameters of SABRE, the parameters used in this benchmark differ and are listed
in Table 6.2. Especially the default behavior of the ES parameter mutation is based on
the results of this experiment.

Similar to SABRE, GP is used in two configurations: with a full and a reduced (only
SIG and ADD) set of transfer functions. NEAT and the SABRE configurations use the linear
transfer function for output nodes to be able to produce negative output values. Each
combination of algorithm and benchmark function is replicated 100 times on a training
data set of inputs drawn randomly from a uniform distribution U(−1,1). Every evolution
experiment consists of 500,000 single evaluations and fitness is computed as RMSE. The
optimization is done on the training data set, while an independently equally-sized created
test data set is used to track fitness development and to compare the fitness distribution
of the algorithms.

Benchmark Functions

In total six benchmark functions f1-f6 are used, chosen such that a succession of complex-
ity both in types of computations and structure is realized, enabling more differentiated
results than merely comparing the algorithms on a single arbitrary problem. f1 has one
input and one output, functions f2-f5 have three inputs and two outputs defined by sepa-
rate equations and f6, encoding a problem from robot kinematics, possesses four inputs
and four outputs.
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Table 6.2: Parameters used for the SABRE configurations using PSO and ES parameter mutation.
Only the parameters that differ from the default configuration are listed.

SABRE Parameter SABREPSO SABREES

NumSubPopulations (κ) 10 10
NumSubIterations (eλ) 10 10
NumStartHiddenNodes 0 0
MutateStructureMode multi multi
MutateAddNodeProb 0.1 0.1
MutateAddNodeAtEdgeProb 0.1 0.1
MutateRemoveNodeProb 0.2 0.2
MutateAddEdgeProb 0.1 0.1
MutateRemoveEdgeProb 0.2 0.2
UsePSO enabled disabled
EvoJumping disabled disabled
MutateSingleParameter multi multi
MutateGaussCircle disabled disabled
StartSigma (σmax) 0.5 1.0
ResetSigma (σmin) 0.00005 0.00005

SabreBehaviorSearch Parameter

ResetNet true true
NumberNetIterations 2 2

The benchmark functions are explained in detail in the following list:

• f1(x) = x2

The square of the input x is a mathematical function that cannot be expressed di-
rectly by ANNs using the weighted sum for the inputs and the sigmoid function as
activation function. Thus, it is expected that GP and SABRE including the MULTIPLY
function perform better than their reduced configurations and the NEAT algorithm.

• f2.1(x1,x2,x3) = σ(σ(x1 + x2) + σ(x2 + x3))
f2.2(x1,x2,x3) = σ(x1 + σ(x1 + x2))
This function is a combination of a nested sigmoid function and sums. It can be
represented by ANNs with three input nodes, two hidden nodes and two output
nodes. All tested algorithm variants have the possibility to accurately represent this
function.

• f3.1(x1,x2,x3) = σ(0.1σ(0.25x1 + 0.4x2 − 1.2)+
0.3σ(x2 + x3 − 0.215) + 0.1123)

f3.2(x1,x2,x3) = σ(x1 + 0.0314)
This function is similar to f2, the differences being the constants which have to
be represented as additional nodes in GP and can be approximated by the other
approaches with the weights and bias parameters.

• f4.1(x1,x2,x3) =
(x1+x2+x3)

1.4+x3
f4.2(x1,x2,x3) = (x1 + x3) + (x2x3)− (x1x2)
Function f4 utilizes all mathematical base operations and can be accurately repre-
sented by GP and SABRE making use of all available transfer functions.
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• f5.1(x1,x2,x3) =
0.1(0.5x1+x2+x3+1.3)

1.4+x3
f5.2(x1,x2,x3) = 0.1((x1 + 2.7x3) + (−0.3+ x2x3)−

(1.34x1x2))
f5 increases complexity in comparison to f4 by adding constant parameters in the
fashion of f3 building on f2.

• f6 : (jα,x, y, z) 7→ (jα, jβ, jγ, jδ)
This function represents the inverse kinematics calculation of a leg of SPACECLIMBER.
The accurate solution to the underlying linear equation system can theoretically be
represented by SABRE, but requires use of all available transfer functions and ap-
proximately 40 hidden nodes.

Results

Table 6.3 list all results with no significant difference, tested with Mann–Whitney U-
test. For all other results the achieved fitness on the test data set is significantly different
between the algorithms.

Table 6.3: Results with Mann–Whitney U-test with p > 5%, showing no significant difference in
the fitness distribution.

Test Function Algorithm vs. Algorithm

f2 SABREσ/ES SABREfull/ES

f3 SABREfull/PSO GPfull
SABREfull/PSO NEAT

GPfull NEAT

f4 SABREσ/PSO NEAT

SABREfull/PSO GPfull
SABREσ/ES SABREfull/ES

f5 SABREfull/ES GPfull

For the simplest problem f1, GP including the MULTIPLY function is the only algorithm
always finding the correct solution (see Figure 6.8 f1}, which is the only case of any al-
gorithm to do so in any of the benchmarks. GP with only the SIG operation performs
worst. Except for f2 it performs worse in all other functions, as well. For f2 it performs
best due to its focus on structure search and no parameter tuning being needed for f2.
NEAT and SABRE always introduce parameters for the weights of edges and have to tune
them. The best results for the more complex functions f3 to f6 are produced by NEAT and
SABRE. For f4 the difference between NEAT and SABRE is not significant, in case of f3 and
f6 SABRE performs better, and for f5 NEAT performs slightly better. The best version of
the four SABRE configurations is SABREσ/PSO which is always significantly better than the
other three SABRE configurations.

The results indicate that SABRE in its standard form using PSO outperforms the vari-
ants using ES. It is noteworthy that SABRE performed better with a reduced function set,
which may be explained by the comparably small incremental steps and thus the evolu-
tionary stability resulting from the use of a sigmoid transfer function only. As for the
overall performance of SABRE, one can conclude that for certain types of complex prob-
lems, such as inverse kinematics of real robots, SABRE is able to produce superior results
compared to standard GP and NEAT. It has to be noted that it may be possible to find con-
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Figure 6.8: Development of average fitness over run-time of the tested algorithms for all bench-
mark cases. The corresponding fitness distribution in the final generation is displayed as box plots
next to each development plot. Note that fitness is calculated as root-mean-square error, resulting
in lower values representing higher fitness. Best-performing algorithms are GP for f1, GPσ for f2,
NEAT for f5, and SABREσ/PSO for f3 and f6. For test function f4 NEAT and SABREσ/PSO produce
the best result without a significant difference (Mann–Whitney U-test, p > 5%).
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figuration parameters for the GP and NEAT algorithms changing these results, however
despite various tests no such parameter sets could be found.

6.3.2 Analysis on Transfer Functions
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Figure 6.9: Minimum achieved RMSE distribution of the 100 runs each configuration of SABRE

in setting Nmax = 120. SABREall has the highest median RMSE in all settings, while the other two
configurations behave similarly.

To gain more insight into the adaptation behavior of SABRE, selected configurations
of SABRE, possessing different sets of transfer functions, are tested on the test function f6.
These configurations are SABREall with a full set of transfer functions, SABREσ with only
the sigmoid function, and SABREsimple with only SUM and PRODUCT. For the parameter
optimization only the PSO method is used. All other parameters of SABRE are identical to
the previous experiment if they are not explicitly introduced here. For each configuration‚
nine different settings are tested, in which the number of nodes is restricted to Nmax =
(5,10,15,20,30,40,60,80,120) respectively, and the number of connections (or edges
of the graph) to Emax = 2Nmax. Each configuration of the algorithm is replicated 100
times on the training data set. For this experiment the analysis is done directly on the
results of the training data set. Even though the absolute results between the training and
test data sets are different, the ranking of the algorithms tested are the same on both data
sets. In every setting, the algorithm is allowed to compute 1,000,000 fitness evaluations,
resulting in 10,000 generations – given by the chosen parameters of SABRE.

In all settings, SABREσ and SABREsimple achieve significantly better fitness than SABREall
with its full function set. The resulting distributions are depicted in Figure 6.9 which
shows the achieved fitness for the 100 runs of each of the settings defined by limited node
and edge numbers and respective algorithm configurations. The performance of each con-
figuration can very accurately be predicted by fitting a rational function to the medians of
the data, as is done in Figure 6.10, illustrating that a further increase in allowed network
size will affect the achieved fitness to a diminishing degree. Performance of SABREσ and
SABREsimple differs only slightly. A significant difference between the configurations with
reduced function sets can only be found in two out of nine settings using a Wilcoxon
rank sum test with 95% confidence level, which yields p-values of 0.0128 (Nmax = 5)
and 0.0084 (Nmax = 80) respectively.
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Figure 6.10: Fitted rational functions over median of minimum RMSE distributions of the 100
runs for all configurations and across all settings.

Despite the similar fitness ranges achieved by the σ and simple configurations, the al-
gorithms’ behavior over evolution time is quite different. In Figure 6.11, the development
of maximum, average and minimum fitness over time is shown for the three variants of
SABRE in the setting Nmax = 120, plotted in two different scales.

It becomes clear that both SABREall and SABREsimple showmuch larger variation around
their 100-generation moving window means for both maximum and mean fitness than
SABREσ. SABREsimple differs from SABREall in that it starts out with low variance, but in-
creases and finally surpasses SABREall. Nevertheless, the minimum values achieved by
SABREsimple appear in the same range as those of SABREσ, despite its mean and maxi-
mum RMSE being very similar in range to SABREall; the latter only holds true until after
generation 8000, when a comparably sharp increase in frequency of very large maxi-
mum RMSE values occurs and thus the mean RMSE of SABREsimple is also shifted. For
SABREσ on the other hand, maximum fitness climbs to a maximum value around halfway
through the evolution and then slowly drops again, while mean fitness constantly de-
creases, resembling very closely the shape of minimum fitness values decrease in all three
algorithm configurations. Here, it is almost impossible to distinguish between SABREσ

and SABREsimple.
The difference in variability of SABREσ compared to its competitors can be explained

by how network parameters influence the overall network output in the three configu-
rations. Independently of the input weights of a node, the sigmoid function produces
outputs scaled from 0.0 to 1.0, thus changing the parameters can only produce a change
of output of a node within that range. Other transfer functions can be much more sensi-
tive towards parameter changes. An example is DIV, which approaches infinity for input
values close to zero, resulting in a possibly large variance in the node output. Accord-
ingly, the variance of the network output can be expected to be large over the whole
evolution for SABREall. SABREsimple on the other hand needs some evolutionary time to
concatenate multiple behaviors in such a way as to allow a cascade effect manifesting in
even larger variability and values of the network output. This may also account for the
observed increasing frequency of high RMSE values in SABREsimple, as in large graphs,
exponential effects and thus even small changes of a single finely tuned input weight may
produce a large variance of the network output. Figure 6.12 depicts the number of fitness
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Figure 6.11: Maximum, mean and minimum fitness development of the 100 runs of setting
Nmax = 120 for all configurations over generation number. B) shows the lower part of A) with a
larger scale, illustrating the differences in scale of the variation between the three estimators.
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Figure 6.12: Frequency of individuals with improved fitness occurring per generation within the
100 runs of each configuration over generation number for setting Nmax = 120. The probability
of an improvement occurring in any one generation constantly deteriorates for SABREall and is far
more stable in the other two configurations. Plotted in parallel is the development of the number
of edges (upper curves) and nodes(lower curves) over time.
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improvements achieved per generation (RMSEmin(t+ 1) < RMSEmin(t)) across the 100
experiment runs, again for each configuration in the settingNmax = 120. While the three
configurations start out similar, with high initial improvement rates, the latter then con-
tinuously decrease in SABREall, while SABREσ and SABREsimple exhibit comparably constant
behavior with on average about 55 and 45 improvements in every generation across the
100 runs up until generation 4000, from which on they decrease as well, which correlates
with the maximum size of the networks being reached around that time. This correla-
tion is also observed in other settings, with both the maximum size and the decrease of
the number of improvements co-occurring earlier in the evolution, corresponding to the
respective size limit. Nevertheless, the improvement rates stabilize again for both con-
figurations from around generation 6000, staying at a lower level until the end of the
experiments. Despite the similarity of development in SABREσ and SABREsimple, the over-
all number of fitness improvements is larger in the former. It also becomes clear why
SABREall stays at higher error values than the other two configurations.

Yet the difference between SABREsimple and SABREσ shows that there must be another
effect leveling the two configurations’ fitness distributions. This effect can be identified
when looking at the sizes of fitness improvements, plotted in Figure 6.13. The distribu-
tions of fitness improvements are here compared by classes of fitness values at which they
were achieved, dividing the data in 16 classes with a step size of 0.1. It becomes evident
that within each of the classes, the three SABRE configurations have very similar poten-
tials for fitness improvement – given a beneficial mutation occurs – across most of the
fitness range. However, SABREsimple has a slight advantage in the very low regions. This
difference becomes slightly more obvious when looking at the overall frequency of fitness
improvements across the range of already-achieved fitness, see Figure 6.14. While the
two reduced configurations SABREσ and SABREsimple have a similar distribution, SABREσ

shows more improvements at the lower end of the fitness range.
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Figure 6.13: The box plot depicts the distribution of the changes of the RMSE within given
RMSE ranges, without a significant difference between the three configurations of SABRE.

For the analyzed test function, the three different node representations possess roughly
the same potential in improving the fitness for a given reached fitness over most of the
observed fitness range, with SABREsimple exhibiting a wider range than the other two con-
figurations. What differs clearly between the algorithms, however, is the probability of a
beneficial mutation occurring in the first place.
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Figure 6.14: The histogram shows the number of improvements over the reached RMSE.

SABREall failed to get any closer to the perfect solution than its two competitors, in fact,
it is lagging behind them, as the number of fitness improvements constantly decreased
over the evolution progress, indicating that the evolutionary process is running into local
minima more rapidly in this configuration of SABRE. Additionally, SABREall behaves much
more unstable at the beginning of an evolution.

As result of this analysis, SABRE is adapted to perform parameter mutations of a single
randomly selected gene, as already presented in the SABRE definition. Additionally, this
analysis leads to the default parameters, which are chosen such that SABRE in principle
tries to adapt slowly to a solution. For the resulting default configuration the original
experiment with 500,000 evaluations per single optimization is repeated. Except func-
tion f1 and f6, the new configuration of SABRE outperformed all other algorithms and
configurations. Table 6.4 compares the results of the new default configuration with the
best algorithm of the previous experiments and the SABREσ/PSO configuration. In case of
test function f6 the average fitness development of SABREdefault indicates that the config-
uration adapts more slowly than the SABREσ/PSO configuration. Due to that observation
the approximation of f6 is repeated performing 1,000,000 evaluations for each evolu-
tion. While SABREσ/PSO with a median result of 0.245 does not further improve after the
500,000 evaluations, SABREdefault continues with a median result of 0.225. Thus, in this
experiment, the new default configuration can benefit from performing more evaluations.

Table 6.4: Comparison of new default SABRE configuration with best results from the benchmark.
The best results are printed with bold and italics text.

Function Previous best SABREσ/PSO SABREdefault
median (best) median (best) median (best)

f1 0.0 (0.0) 0.0018 (0.0003) 0.0030 (0.0010)
f2 0.0522 (0.0) 0.0940 (0.0414) 0.0504 (0.0202)
f3 0.0342 (0.0032) 0.0342 (0.0032) 0.0015 (0.0003)
f4 0.0615 (0.0370) 0.0615 (0.0370) 0.0369 (0.0193)
f5 0.0297 (0.0206) 0.03401 (0.0186) 0.01661 (0.0122)
f6 0.2426 (0.1929) 0.2426 (0.1929) 0.2608 (0.1853)
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6.3.3 CEC13 Test-Functions

The CEC13 parameter environment (see Section 4.2.1) is used to compare the algorithms
in a well defined fitness landscape. However, the benchmark is not a typical control
problem as only the first output of a behavior is evaluated as a parameter set. The first five
functions are used with the dimensions 10 and 30. For every combination of algorithm,
test function, and parameter dimension, 50 individual evolutions are performed. The
evolutions with a parameter dimension of 10 are terminated after 500,000 evaluations
and the ones with 30 parameters after 1,500,000 evaluations. To enable the behaviors
to produce the output, a virtual input with a constant value is used as bias. Two net-
iterations are used by all algorithms to create the output parameters, allowing recurrent
connections to influence the parameter set.

Table 6.5: Parameter optimization results: The bold italics cells highlight the best results.

Function SABRE NEAT PUPPY

No. (Dim.) median (best) median (best) median (best)

1 (10) -1400.0 (-1400.0) -1400.0 (-1400.0) 4618.26 (-1338.0)
1 (30) -1400.0 (-1400.0) -1400.0 (-1400.0) 39266.8 (25328.7)

2 (10) 25396.1 (3122.09) 368776.5 (39858.6) 9.1e+7 (7581370.0)
2 (30) 1.09e+6 (327696.0) 1.38e+7 (4.8e+6) 2.49e+9 (1.1e+9)

3 (10) 376870.0 (-1199.99) 1.67e+10 (2.49e+9) 1.94+11 (4.27+10)
3 (30) 6.51e+10 (2.02e+10) 2.78e+11 (1.31e+11) 5.91+18 (8.65+14)

4 (10) -1099.99 (-1100.0) 7911.22 (1232.15) 99688.0 (18140.2)
4 (30) -1100.0 (-1100.0) 45987.8 (11760.7) 240972.5 (85850.6)

5 (10) -1000.0 (-1000.0) -1000.0 (-1000.0) 1209.65 (-765.94)
5 (30) -1000.0 (-1000.0) -999.99 (-1000.0) 5832.43 (3167.72)

In case of the first and fifth test function, NEAT and SABRE are able to find the global
minima and thus the difference in the results is not significant. Since the PUPPY algorithm
has no explicit mechanism to optimize parameters in the genotype, it performs worse.
In all cases with significant differently results, the best overall and median results are
produced by the SABRE algorithm.

This benchmark is very interesting because of the directly defined fitness landscape.
However, due to the structure development, the three algorithms do not operate directly
in the fitness landscape and the result give just a rough idea about the performance of the
algorithms. Nevertheless, in the following benchmarks the rank of the algorithms does
not vary much, which indicates that a behavior search algorithm that performs well in
this benchmark – if it is not explicitly designed for parameter optimization – has a good
chance to perform good in control problems, too.

6.3.4 Torcs

The TORCS environment described in Section 4.2.1 is used for this benchmark problem.
For each test algorithm 50 individual evolutions are executed. An evolution is terminated
after 500,000 performed evaluations. For all algorithms the sigmoid function is used for
the output nodes and two network outputs are used to generate one behavior output as
introduced in Section 4.2.2. The networks perform two iterations on one input parameter
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set and are reset afterwards. The results, including the best and median fitness and lap
time, are given in Table 6.6. The SABRE algorithm with its default configuration produces
the best and median best results in this benchmark.

Table 6.6: Results of the car racing benchmark. The bold italics cells highlight the best results.
The first row includes the fitness values reached while the second row shows the corresponding
lap times.

SABRE NEAT PUPPY

median (best) median (best) median (best)

Fitness -5830.45 (-5870.23) -5801.0 (-5836.72) -24.15 (-3913.88)
Lap time 91.27 (83.59) 97.24 (90.188) – (–)

6.3.5 HyperRobot

The HyperRobot environment described in Section 4.2.1 is used for this benchmark prob-
lem. The learning algorithms and their variants applied are NEAT, HYPERNEAT, SABRE,
SABREPRE, and GP. 50 evolutions are performed for every learning algorithm, including
500,000 evaluations each.

SABREPRE Configuration

SABREPRE makes use of the possibility to integrate foreknowledge by defining a control
structure and simultaneously evolve a main graph and two sub-graphs used for the front
and rear legs control. The predefined control structure uses the evolved front leg sub-
graph as a node for the left and right front leg and the rear leg sub-graph for the rear
legs respectively. A time counter is added as input to these graphs and a phase shift on
the leg patterns can be defined by adding an offset to the counter. The two sub-graphs
are evolved by two additional evolution processes running in parallel to the evolution of
the main control graph. The sensor readings are only available to the top graph with
the predefined structure where the evolution can create additional nodes and edges to
connect the sensor readings to the motor outputs. Due to this configuration, a motor
pattern is very likely to be produced by the front and rear leg sub-graphs which is applied
symmetrically on the left and right legs, while the main evolution is responsible for closing
the control loop. Additionally, a predefined sub-graph can be used as a transfer function
by SABRE. The predefined module implements a parameterized Gaussian pattern, where
the phase and the width of the Gaussian bell can be adapted through input values. The
Gaussian function is defined by f(x) = e−50b(x+a)2 , while x is mapped into the range [0,1]
by the fmod function and defines the position in the Gaussian pattern. The parameter b
changes the width of the Gaussian bell. The parameter a, an offset on the x value, shifts
the Gaussian pattern within the input phase. By overlapping multiple shifted Gaussian
patterns, a resulting joint pattern can be achieved. The idea of the Gaussian patterns is
basically derived by Dominici et al. (2011) and is a precursor of the presented approach
in the next chapters.
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Results

Table 6.7: The results of the legged robot benchmark. The bold italics cells highlight the best
results. SABREPRE produced the best median result while the pure SABRE configuration produces
the best overall result.

SABRE SABREPRE NEAT HYPERNEAT PUPPY

Median 1.34 1.3 1.96 2.06 4.88
Best 0.797 0.899 1.379 1.739 2.83

The results are shown in Table 6.7. SABREPRE produced the best median result while
the pure SABRE configuration produces the best overall result. In this setup the SABRE

algorithm performs significantly better than the NEAT versions. This might be due to
the complex configuration possibilities of NEAT and there might be a configuration that
performs significantly better than the one used.

6.3.6 Conclusion

Overall, the default SABRE configuration performs well on a large set of different bench-
mark problems. It is expected that it can find adequate solutions if the fitness landscape
allows a “step by step” adaption. Furthermore, in combination with BAGEL, SABRE allows
to tune the search space by defining start structures or building blocks for more complex
problems. This is roughly shown in the HyperRobot benchmark and is used extensively
in the following experiment sections of this thesis to analyze different joint pattern rep-
resentations and to perform evolutions for walking behaviors of different legged robots.



Chapter 7

Central Pattern Control Approach

Learning the control of kinematically complex legged robots without predefining a main
control concept generally results in a too large search space and complex fitness landscape,
as discussed in Chapter 2. Predefining components such as the pattern representation
limits the search space and increases the probability to generate locomotion behaviors
that can be used on real systems. This chapter presents a control approach based on
central pattern generators (CPG). This control approach is designed to be suitable for
legged robots in general and it is applied on several robotic systems in Chapter 8. The
main architecture – the CPG itself – is responsible for generating step phases, the phase
shift between legs, and allows the modulation of the step frequencies and phases based
on sensory input. How the step phases are transferred to appropriate joint patterns is
a critical question when designing a controller. In this chapter, different methods are
presented and experimentally compared with respect to their evolvability of defined joint
patterns. To perform the experiments, the whole control approach is implemented in
BAGEL which enables the optimization of the different joint pattern representations via
SABRE.

7.1 Central Pattern Generator
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Figure 7.1: Basic control concept of the CPG based approach.

The CPG produces a global phase ϕ with 0 ≤ ϕ ≤ 1, multiple phase shifts φi and
local phases ϕi. It is used as a base pattern generator, whereby the projection j(ϕ) from
the local phases to the angular joint patterns is explored in the following section. Figure
7.1 depicts the general control architecture. The Reactive Modulation component is

95
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a black-box whose inner structure is not further defined for this chapter. However, in
Chapter 8 different reactive modules are evolved to produce a navigation behavior, walk
over rough surface, and compensate for disturbances. The Phase Generator, Pulse,
and Slope Generator modules are parts of the CPG. The Joint Trajectory module
varies through the different joint pattern representations. The resulting phase-shifted
slope – the output of the Slope Generatormodule – represents the individual leg phases
and is transferred into joint positions by the Joint Trajectory module. An example
combination of these modules is shown in Figure 7.2.
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Figure 7.2: Basic concept for the CPG-based joint trajectory generation. The global Phase Gen-
eratormodule is not depicted though its output (Global phase) is plotted in the first graph. Based
on the global phase the Pulse module generates a pulse pattern that is transferred to a “local”
phase in the Slope Generator module. The local phase is aligned by the pulse pattern and it is
transferred to a joint pattern in the Joint Trajectory module.

The global phase pattern is represented by a saw-tooth function. The corresponding
BAGEL module generates the global phase ϕG based on the update period (t) and the
desired frequency (f). It is defined as:

ϕG(0) := 0, (7.1)

ϕG(t+ ∆t) := (ϕG(t) + ∆tf)%1, (7.2)

where ∆t is defined by the execution clock. Figure 7.3 depicts the module in the BAGEL

representation visualized in GRAPHGUI.

Figure 7.3: The global phase module modeled in GRAPHGUI.
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A pulse function p(ϕG, φ) is used to create a trigger signal for a shifted slope. The
input of the pulse function is ϕG and a desired phase shift φ with 0 ≤ φ < 1. The function
is defined by:

p(ϕG, φ) =

{

1 if 1− ∆t < ϕG + 1− φ < 1+ ∆t,

0 else.
(7.3)

Slope Generator produces a phase ϕ for the leg cycle control. The phase starts
whenever the trigger input ρ has a value of 1.0 and ϕ maintains its value once it reaches
1.0 until the next trigger input is given. The component is defined by:

ϕ(t+ ∆t, ρ) =











0 if ρ > 0,

ϕ(t) + ∆tf if ϕ(t) < 1

1 else.

(7.4)

7.2 Joint Pattern Representation

In this section six different approaches to generate joint patterns are presented. The
Sine-Based, Gaussian, and Pendulum approaches are designed for this thesis with the
goal of optimizing the pattern representation to evolutionary generate stable locomotion
patterns. The Fourier, Neural Oscillator, and Sigmoid ANN approaches are commonly
used methods from literature.

7.2.1 Sine-Based Pattern

Let o, a, p1, and p2 be constants defining the shape of the joint trajectory, with:

o, a,p1,p2 ∈ R | − π ≤ o, a,p1,p2 ≤ π, (7.5)

where o and a define the offset and amplitude of the sine wave, p1 represents the start
position in the sine wave of a virtual swing phase, and p2 defines the start position of a
virtual stance phase. The constants sp determine the scale of the first phase as:

sp ∈ R | 0 ≤ sp < 1. (7.6)

Then let:

δ ∈ R | δ :=

{

p2 − p1 if p2 > p1,

p2 − p1 + 2π else.
(7.7)

Using these constants the joint function is defined by:

j(ϕ) :=

{

o+ a(sin( δϕ
sp
+ p1)) if ϕ ≤ sp,

o+ a(sin( (2π−δ)(ϕ−sp)
1−sp

+ p2)) else.
(7.8)

To use the Sine-Based pattern approach with SABRE, a BAGEL node is implemented re-
ceiving the phase as first input and using three more inputs that are hidden for connecting
edges. The bias and default parameters of the three additional inputs define the parame-
ters p1, p2, and sp of the modified sine wave. The amplitude and offset are defined by the
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Figure 7.4: Example transformation of a sine curve into the joint trajectory generated by the
Sine-Based pattern approach.

evolved network through the weight of the connected output edges and the bias of out-
put nodes. The approach is originally designed to utilize one modified sine wave per joint
trajectory. The modified sine waves are able to represent basic joint patterns required to
control a legged robot. Therefore, two configurations of the Sine-Based pattern approach
are proposed. The first one (SINEPG1) uses one wave per trajectory, which results in a
parameter optimization problem with 5N parameters to optimize, whereN is the number
of joint trajectories to approximate. The second configurations (SINEPG2) allows SABRE

to use the modified sine wave as a building block and thus can combine multiple waves
to one joint trajectory, whereby the number of parameters to optimize is 5M, where M
is the number of building block instances.

7.2.2 Gaussian Pattern

The Gaussian pattern approach (GAUSS) is similar to a Gaussian process regression, but
optimized to generate a periodic function and to support asymmetric shapes. A para-
meterized Gaussian pattern is used as a building block for the joint-based control. The
parameters are defined by the constants a,b, c,d,o with a,b, c,d,o ∈ R . a defines the
amplitude of the peak, b influences the width of the Gaussian bell, c with 0 ≤ c < 1
defines the position of the bell within the step phase, d influences the slope of the incline
and decline, and o adds an offset to the pattern. First, a function for the bell phase shift
is defined considering the slope constant d:

b(ϕ) := ((ϕ + c)%1)d− 0.5. (7.9)

Then the Gaussian pattern function is defined by:

g(b(ϕ)) :=







o+ ae
−50b

(

0.5ϕ
d−0.5

)2

if ϕ > 0,

o+ ae−50bϕ2
else.

(7.10)

Since the influence of the slope constant d is nonlinear and asymmetric with respect to
the incline and decline slope (see Figure 7.5), a correction is defined for the optimization
process:

d := 0.56(0.2π + 0.4984od)
2π, (7.11)

where od is the tuning parameter for the optimizer to adapt the slopes. The result is
shown in Figure 7.6. Additionally, d influences the phase of the Gaussian bell which is
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adapted by a phase offset. Then, c is defined by:

c :=

{

oc − 0.55|od − 0.5|0.83 if od > 0.5,

oc + 0.55|od − 0.5|0.83 else.
(7.12)

Where oc is the tuning parameter for the optimizer to adapt the phase of the Gaussian bell.
The phase adaptation is shown in Figure 7.7. A similar adaption is done for the width
of the Gaussian bell (see Equation 7.13 and Figure 7.8). The final parameters ob, oc, and
od are defined for parameter range of [0,1]. Similar to the Sine-Based approach, a BAGEL

node is implemented providing an input port for the phase and three parameter ports for
ob, oc, and od hidden for evolving edges. The offset and the amplitude parameters are
again handled by the evolved network.

b := 0.14π + π(0.1π + ob)
π. (7.13)
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Figure 7.5: Non-linear influence of the incline parameter d to the slope and phase shift of the
Gaussian bell.
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100 CHAPTER 7. CENTRAL PATTERN CONTROL APPROACH

0.0 0.2 0.4 0.6 0.8 1.0
φ

0.0

0.2

0.4

0.6

0.8

1.0

θ

od = 0.0

od = 0.1

od = 0.2

od = 0.3

od = 0.4

od = 0.5

od = 0.6

od = 0.7

od = 0.8

od = 0.9

od = 1.0

Figure 7.7: The resulting influence of od to the shape of the curve. To minimize the influence of
od to the phase shift the final parameter c is calculated based on oc and od.
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Figure 7.8: Similar to parameter od the width of the Gaussian bell is influenced linearly by ob in
a range of [0,1].



7.2. JOINT PATTERN REPRESENTATION 101

7.2.3 Pendulum Pattern

The Pendulum pattern approach is designed to partially compensate for the disadvan-
tage of position-controlled electric actuators without any compliance control (see Section
2.1.2). The main idea is to create a controller that produces a virtual force Fp to drive the
motor to a fixed neutral position. The more the motor differs from the neutral position
the higher is the force to drive the motor back. Thus the force is defined through a model
of a pendulum. The virtual force is applied to the pendulum influencing its virtual angu-
lar velocity ωp. The virtual velocity is used to determine the pendulum position which
defines the new position for the motor controller. The pendulum position for the next
iteration of the controller can be updated with the sensory information of the real motor.
The pendulum controller gets an external force input Fe which is added to the virtual
force – always applied on the tangential direction. The virtual force is calculated by:

Fp = g · sin(θ) + Fe, (7.14)

where g represents the gravity. For this abstract model g is defined by g := −1. After
applying the external force to the pendulum, the velocity is dampened by a parameter dp.
Thus, the angular pendulum velocity (ωp) is given by:

ωp(t+ ∆t) = dp
(

ωp(t) + kFp∆t
)

, (7.15)

where k is the length of the pendulum divided by the moment of inertia. However, for
this abstract model k is set to k := 1. The new motor position is given by:

θ(t+ ∆t) = θ(t) + fpωp(t+ ∆t)∆t, (7.16)

where the parameter fp controls the eigenfrequency of the virtual pendulum. Additionally,
the controller simulates the virtual pendulum with a fixed time step of 1 s independently
of the outer control frequency.

A short rhythmic impulse on the external force input can already create pendulum
swinging as can be seen in Figure 7.9.
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Figure 7.9: Example of a joint pattern created by the pendulum controller giving just an impulse
based rhythmic force input.

The pendulum controller needs several cycles to approach a stable pattern, while re-
ceiving an input pattern for Fe. How fast the approach merges to the final shape depends
on the input pattern. An example behavior is shown in Figure 7.10. To compensate the
start phase of the pendulum controller, each test function should be iterated until the
pendulum controller converges. The error of the last iteration is used for the evaluation.
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As waiting for the pendulum controller to converge would inflate the evaluation time, a
compromise is chosen by optimizing the initial values of ωp(t0), θ(t0), and Fp(t0).
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Figure 7.10: Example of the fading behavior of the pendulum controller.

The pendulum controller is implemented as a BAGEL node providing one input port
for the pulse and four parameter ports for fp, dp, a gain for the amplitude, and an offset
parameter. To create the pulse input pattern, aligned with the step period, a fire neuron
is implemented getting two inputs and generating one pulse output. The default output
is zero representing an inactive state of the neuron. The parameters of the first input
port are protected and it is always connected to the step period with a connection weight
of 1.0. Thus, the first input is the original unmodified step period. The second input is
never connected and its bias defines the point in the step period when a firing output of
1 is generated. Internally, the bias input is projected to a value in the range of [0,1]. The
weights of the connected edges at the output can scale the activity of the neuron. With
these constraints SABRE is creating only one forward-connected hidden layer composed of
firing neurons. To have a comparison to this rather simple pattern, a second configuration
is implemented using the Gaussian modules to generate the input signal for the pendulum
controller. The two configurations are referred to as PENDULUMFire and PENDLUMGauss

respectively.

7.2.4 Fourier Series

A Fourier series is a common mathematical method for representing periodic functions.
It combines the sine and cosine functions with weights and varying frequencies. By using
it as a pattern generator, it ensures that all frequencies are a multiple of 1. Thus, the
function is defined by:

fs(ϕ) = a0 +
i<N

∑
i=1

(ai sin(2πiϕ) + bi cos(2πiϕ)). (7.17)

In this function, a and b are the coefficients that define the shape of the pattern. The func-
tion is used with an order of 8 (N = 8) resulting in 17 parameters for one joint trajectory.
The order of 8 was empirically chosen via preliminary experiments and has proven to be
well-suited for the test functions. A BAGEL node (Fourier node) is developed implement-
ing fs(ϕ) and providing one input for the phase and 17 inputs for the parameters. For
every joint pattern to approximate, one single Fourier node has to be generated whose
input parameters are optimized by SABRE.
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7.2.5 Neural Oscillator

Based on Pasemann et al. (2003), a neural network oscillator is implemented, modeling
two interconnected non-linear neurons. The output of the neurons a1 and a2 are defined
by:

a1(t+ ∆t) := α
(

cos(γ) tanh(a1(t)) + sin(γ) tanh(a2(t))
)

, (7.18)

a2(t+ ∆t) := α
(

− sin(γ) tanh(a1(t)) + cos(γ) tanh(a2(t))
)

, (7.19)

with a1(0) := 1 and a2(0) := 0. The parameter γ mainly influences the frequency of the
pattern and α adapts the slope. Both influence the amplitude and α changes the frequency
as well. With α = 1+ ϵ and ϵ << 1 the waveform becomes almost sine-shaped. The joint
function also has the parameters a and o to adapt the amplitude and offset. In contrast
to the other approaches it is not defined over phase ϕ but over time t. The function is
given by:

j(t) = o+ a ∗ a1(t). (7.20)

Two example patterns that can be produced with this approach are shown in Figure 7.11.
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Figure 7.11: Two example patterns that can be generated by the Neural Oscillator approach.

The main disadvantage of this approach is that the phase cannot be defined directly
by a parameter. To generate a phase shift, the frequency has to be adapted until a desired
offset is reached. Additionally, the two neurons need some time to converge to a result-
ing oscillation based on the chosen parameters α and γ. For the validation part of this
section, the network is calculated for a defined and constant initialization time tinit until
the evaluation process starts. Due to this initialization, the two parameters γ and α also
influence the phase by changing the frequency. Therefor, the phase shift parameter φ is
added to tinit with a constant factor pscale. For the experiments in this chapter the parame-
ters are set to tinit = 10000∆t and pscale = 2000∆t. Two configurations, NEURALOS1 and
NEURALOS2 are used in the experiment section. NEURALOS1 uses one neural oscillator
per joint pattern and only adapts the parameters a, o, φ, α, and γ. NEURALOS2 uses the
neural oscillator as a building block in SABRE to generate a joint pattern.
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7.2.6 Sigmoid ANN Pattern

For the sigmoid pattern approach, SABRE is used to develop a recurrent neural network,
based on the sigmoid transfer function. The overall configuration is similar to the valida-
tion part in the SABRE section 6.3.1, where it is used for general function approximation,
mapping input values to desired output values. Additionally, in this section, two config-
urations are added in which the previous output values are additional input values of the
network, simulating the concept of the network receiving the phase and joint position
sensors of a robot. Through the generalization proprieties of neural networks, this con-
figuration could already include an adaptive behavior for external impacts on the robot.
The three different resulting configurations are:

• SIGMOID1: Directly maps the phase ϕ to the joint trajectories.

• SIGMOID2: For N trajectories N networks are developed with ji(ϕ, θi) | i ∈ N.

• SIGMOID3: For N trajectories one network is developed with j(ϕ, θ) | |θ| = N.

The main disadvantage of ANNs with respect to optimization is that ANNs do not neces-
sarily produce patterns. Thus it is part of the optimization process to match the value at
the end of the phase to the one at the start.

7.3 Experiments

This section investigates the capability of the different joint pattern representations to
generate pre-defined patterns while being optimized with SABRE. Even though a joint
pattern representation is able to represent a given trajectory theoretically it does not nec-
essarily perform well in an optimization application. These experiments are performed
to select appropriate representations for the experiments with legged robots in Chapter
8. Altogether, eight experiment setups are designed with different complexities in terms
of the pattern shape and number of patterns that have to be evolved simultaneously.

For all test setups, evaluation is performed by minimizing the fitness defined by the
root mean square error (RMSE) of the approximation and the test function. For each
representation an optimization is performed 100 times to generate a distribution used
to compare the different representations. Other aspects of the different representations
than the fitness value reached are discussed and shown in individual experiments. Due to
computation cost, the test patterns are not split into training and test data sets. Thus, the
generalization properties of the representations concerning function regression are not
evaluated in general, but are discussed based on individual results and representations.
To decide whether a pattern representation is precise enough for a possible use on a real
system, the following condition is used:

emax ≤ 0.04a, (7.21)

where a is the amplitude of the test pattern and emax is the maximal error between the
median optimized result and the target function:

emax := max(|f(x)−OPTmedian(x)|) · a. (7.22)
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7.3.1 Sine-Based Test-Functions

A single sine function can be used to generate simple and smooth patterns, which can
already be used to generate legged locomotion for proper robotic systems. Overlapping
sine functions can produce more complex patterns, which is the basis of the Fourier series
approach. For comparing the different approaches, three different sine patterns, shown
in Figure 7.12, are used with increasing complexity by adding more terms to the function
definitions.
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Figure 7.12: Different sine test functions for the pattern generators.

Single SineWave

The most simple shape used in this validation is a single sine wave modified by an offset,
a scaling and a phase shift. The parameters are chosen as follows:

fsin1(ϕ) = 1.3+ 1.4sin(1.2+ 2πϕ). (7.23)
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Figure 7.13: Fitness distribution of 100 performed repetitions for all approaches on the single
sine curve.
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The resulting fitness distribution of the different representations, optimized for this
sine pattern, are shown in Figure 7.13. The two SINEPG representations and the Fourier
series approach perform best on this test function. Which is due the fact that they are
based on the sine function. However, all representations could be optimized to approx-
imate the sine test function according to Equation 7.21 precisely enough to enable the
usage of a representation as a joint pattern generator, provided such a basic pattern is
sufficient for a target system. The worst median result of all optimizations, produced by
the SIGMOID2 representation, is shown in Figure 7.14. The best result of the SIGMOID2
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Figure 7.14: Median result of the SIGMOID2 approach on the single sine curve, which is the worst
median result of all approaches. The approximation is still close enough to the target function
that it could be used to control a real system.
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Figure 7.15: Example modulation of the SIGMOID2 approach. The approach maps the phase
and the last output value, representing a position sensor, to the target value. For this example
SIGMOID2test1 gets an additional input for the last value shown by SIGMOID2test1_input . SIGMOID2test2
depicts the result if a constant offset is added to the last value, simulating a motor controller not
reaching the target position.

approach on the fsin1 function was used to show an example behavior of the approach
to an additional input value given to the sensor (last output) input. Figure 7.15 shows
the resulting behavior. The first test adds an offset on a given interval while the second
test adds a constant offset for the whole function. The results show that the shape of
the pattern can be influenced differently, which could be used by a reflex or modulation
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behavior. However, how the additional input influences the shape of the pattern strongly
depends on the underling structure and it is not guaranteed that there is an influence at
all. A similar example is shown for the best result of the PENDULUMfire approach see Fig-
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Figure 7.16: Similar to the SIGMOID2 modulation an additional pulse input is generated for the
PENDULUMfire approach. I$_{pattern} is the original force pattern evolved to generate the sine
curve. $Iextern depicts the single external input, PENDULUMfire the original curve, PENDULUMfire2
the modulated curve resulting by the additional input, and PENDULUMfire3 depicts the next cycle
of the pattern fading back to the original curve.

ure 7.16. The figure shows the learned pendulum input Ipattern that defines the shape of
the resulting wave. As a test, a single additional input value Iextern is created that could
represent a value generated by a reactive behavior. The plot PENDULUMfire2 shows the
resulting shape with the additional force applied, while PENDULUMfire3 depicts the wave
form one cycle later where the shape comes back to the original one.

Two Overlapping SineWaves

The previous single wave is extended by adding a second sine wave with different fre-
quency, phase shift and amplitude, given by:

fsin2(ϕ) =1.3+ 1.4sin(1.2+ 2πϕ)+ (7.24)

0.5sin(0.5π + 2.4+ 4πϕ).

The resulting distribution of the different representations, optimized for this overlap-
ping sine pattern, is shown in Figure 7.17. The Fourier series can easily represent this
combined sine pattern and thus produces the best result. The SINEPG1 and NEURALOS1
approaches cannot represent the wave form, limiting how close the optimization can fit
the target function. Figure 7.18 depicts the median results of the two approaches together
with the median result of the SIGMOID2, which is the worst performing approach of the
ones that can theoretically represent the waveform. At least, theoretically, the SIGMOID2

approach can be as good as SIGMOID1. However, dealing with the larger number of in-
puts decreases the optimization performance. The SIGMOID2 approach already fulfills the
accuracy property defined in Equation 7.21.
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Figure 7.17: Fitness distribution of all tested approaches for the two overlapping sine waves.
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Figure 7.18: Median result of SINEPG1, NEURALOS1, and SIGMOID2 configuration for the two
overlapping sine waves. Since all other representation fit closer than SIGMOID2 they are not plot-
ted.
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Multiple OverlappingWaves

For this test function two more sine terms are added to the previous function, resulting
in a more detailed shape. The resulting target function is defined by:

fsin3(ϕ) =1.3+ 1.4sin(1.2+ 2πϕ)+ (7.25)

0.5sin(0.5π + 2.4+ 4πϕ)+

0.1sin(0.75π + 6+ 10πϕ)+

0.05sin(1.3π + 9.6+ 16πϕ).
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Figure 7.19: Fitness distributions of the approaches for the multiple overlapping sine waves.
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Figure 7.20: Median result of SIGMOID2 and PENDULUMGauss approaches for the multiple over-
lapping sine waves.

The resulting distribution of the different representations, optimized for this sine pat-
tern, are shown in Figure 7.19. Again the Fourier series can easily represent this pattern
and produces the best result, while the SINEPG1 and NEURALOS1 approaches cannot rep-
resent the wave form and thus perform worst. Similar to the previous experiments, the
worst fit of the other approaches is achieved by SIGMOID2. The median results of the
SIGMOID2 and PENDULUMGauss approaches are shown in Figure 7.20. This time, at the
beginning of the test pattern (ϕ ≤ 0.25), the SIGMOID2 does not approximate the shape
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well. The median result of the next best approach, the PENDULUMGauss, approximates the
shape of the entire pattern close enough according to Equation 7.21.

7.3.2 Gauss-BasedWave

For this experiments, different Gaussian bells are used as test functions. The approaches
are tested on a single pattern, four patterns at once, and 20 patterns at once. Optimizing
multiple test functions at once increases the complexity. Some approaches for example
can learn a common base pattern for all or for a subset of the target patterns and then
adapt the common pattern to the different target ones. This can be an advantage if a
common base pattern is contained in the target patterns. On the other hand, this can lead
to generating “artificial” local optima. However, on the target application, the evolution
has to generate multiple joint patterns at once to allow evolving the locomotion control of
a legged robot. Therefore, test setups are designed with multiple target patterns as well.
The patterns are generated by the equations 7.9 and 7.10 by varying the parameters a, b,
c, and d.

SingleWave
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Figure 7.21: Example median results of the optimization of the single Gaussian test function.

The single Gaussian test function is shown in Figure 7.21. With the constant phase, it
could represent a stance phase of a joint responsible for lifting the leg in the swing phase.
The part between a ϕ of 0.1 and 0.5 could represent a swing phase by lifting up and
down a leg respectively. With the exception of NEURALOS1 and SINEPG1, all approaches
perform well, as can be seen in Figure 7.22. The GAUSS approach performs best because
it is based on the same mathematical function as the test function. The PENDULUMFire

approach is on the fourth last rank and its worst result approximates the pattern already
close enough.
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Figure 7.22: Fitness distribution of all approaches on the single Gaussian test function.

FourWaves
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Figure 7.23: Example median results of the optimization of four Gaussian test functions opti-
mized simultaneously.

In this setup four Gaussian test patterns are optimized simultaneously. The patterns
are shown in Figure 7.23. This setup is similar to a joint pattern optimization of a single
leg. The SIGMOID2 approach is one of the four approaches that does not approximate all
four curves well enough. The PENDULUMFire approach, ranking in the middle, fits good
enough again. Sincemore than one curve has to be approximated, the SIGMOID3 approach
is the first time included in the experiment, ranking at the second last position. The only
difference to the SIGMOID2 approach is that it learns one network getting all inputs at
once. With this configuration it has a probability to cross-link the curves resulting in
more complex structures and parameter relations that have to be tuned.

TwentyWaves

Optimizing twenty Gaussian-based test functions at once represents the case of generat-
ing joint patterns for an entire robotic system. The patterns are shown in Figure 7.25
together with the median result of the PENDULUMFire approach. In this experiment only
the FOURIER and the GAUSS approaches fit all curves quit close. The median result of
the GAUSS approach is shown in Figure 7.26. The PENDULUMFire approach has problems
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Figure 7.24: Fitness distribution of all approaches on the four Gaussian test function optimized
simultaneously.
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Figure 7.25: Median result of the PENDULUMFire approach on the twenty Gaussian test functions
optimized simultaneously.
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Figure 7.26: Median result of the GAUSS approach on the twenty Gaussian test functions opti-
mized simultaneously.
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Figure 7.27: Fitness distribution of all approaches on twenty Gaussian test functions optimized
simultaneously.

fitting all curves. It cannot fit well to some of the curves included in the twenty test func-
tions. Even when approximating only one of the curves, were the approach does not fit
well in the result, does not improve the approximation result. Thus this approximation
result is due to a limitation of the representation strength of the Pendulum approach and
how it is configured.

7.3.3 Model-Based Joint Pattern
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Figure 7.28: Median result of the PENDULUMFire approach on the sixteen CHARLIE joint patterns.

To test patterns that are used on a real robotic system, this setup uses data from the
CHARLIE robot. The data was produced using the model-based CPG approach. Since
these patterns produce stable locomotion for an artificial legged system, the joint pattern
approaches should be able to represent them.

The result is comparable to the experiment with the twenty Gaussian test functions.
The PENDULUMFire approach cannot represent the shape of two patterns precisely, see
Figure 7.28. This representation weakness could limit the search space resulting in an
advantage for evolving locomotion patterns as long as joint patterns can be represented
that provide a stable walking gait for the target system.
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Figure 7.29: Fitness distribution of all approaches on the sixteen CHARLIE joint patterns.

7.3.4 Human Joint Pattern

To compare the performance on a natural created test pattern, the last data set is used
from a human locomotion behavior recorded via a motion tracking system. The recorded
data is translated into a hip, knee, and ankle angle. It was generated and used for a
master thesis presented in Wiedemann (2017). Figure 7.30 depicts the medium results
of PENDULUMFire and FOURIER. Even though the maximal error of PENDULUMFire, with
a value of 2.4°, is in a plausible range, emax with a value of 0.074 is above the defined
threshold for a precise solution. On one hand, this is caused by the fact that the recorded
data has an offset between the first and the last data point which cannot be represented
by the periodic pattern representations. On the other hand, the higher relative error is a
result of the low amplitude in the pattern. Only the Gaussian approach is able to represent
the pattern precise enough according to Equation 7.21. The resulting distributions of all
approaches are shown in Figure 7.31.
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Figure 7.30: Medium results of PENDULUMFire and FOURIER on a set of joint patterns measured
from human locomotion.
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Figure 7.31: Fitness distribution of all approaches on the human locomotion pattern.

7.4 Conclusion

Different pattern representations are compared in respect to their evolvability by the ge-
netic algorithm SABRE. The comparison is done by evolving defined patterns with charac-
teristics as expected to create walking patterns for legged robots. In contrast to the target
application of evolving walking patterns for robotic systems, by for instance, evaluating
the distance traveled, the fitness landscape resulting by the RMSE evaluation of this ex-
periments is expected to be more directed and less fragmented. How the joint pattern
representations influence the search space for the target application might be an impor-
tant factor and cannot be derived from this experiments. The experiments give insights
into the representation strength of the approaches and how well they can be tuned if the
target pattern is known.

The core Sine-Based pattern approach (SINEPG1) can generate well tuned joint pat-
terns with a small amount of parameters. However, it limits the possible shape of the pat-
terns and cannot represent more complex joint trajectories as extracted from the model-
based CPG control of CHARLIE. Composing multiple Sine-Based patterns (SINEPG2) elim-
inates this limitation resulting in a similar concept and performance as the Gaussian ap-
proach. In contrast, the Gaussian approach is more specifically designed for this hetero-
dyning concept and thus outperforms the Sine-Based pattern approach in all test experi-
ments.

The Neural Oscillator approach has a similar representation strength as the Sine-
Based one. It introduces the most disturbed influence of the parameters to the resulting
pattern and thus the two Neural Oscillator configurations perform similar to the Sine-
Based patterns ranking in most cases behind it. An exception for this tendency is observed
for the human joint pattern where theNEURALOS2 configuration produces the second best
performance.

The Sigmoid ANN approach performs quite well on the benchmarks performed in
Section 6.3. However, compared to the other joint pattern representations even for simple
patterns it has to generate more complex structures. Additionally, it is the only approach
not specifically designed and limited to produce patterns. In fact, the Sigmoid-based
ANN should be able to precisely approximate the given joint patterns. Consequently, the
resulting optimization performance must be caused by the optimization running into local
optima as result of the specific combination of the ANN and SABRE. The approach in its
first configuration (SIGMOID1) ranks in the middle for most experiments. The other two
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Figure 7.32: Single experiment to compare the Fourier approach with the Gaussian one on more
artificial joint patterns.

configurations processing the global phase and the last network output perform worse in
all experiments compared to the first configuration. Even though they provide a potential
sensor coupling by replacing the last network output with the current motor positions in
the target application, it is not clear whether this sensor coupling can compensate for the
tendency to run into local optima.

The Pendulum approach does not produce the best results, but it can approximate the
most test functions precisely enough to represent a feasible joint pattern generator. The
approach is especially designed with the idea to provide a sensor coupling for reactive
behaviors as exemplarily presented in Figure 7.16.

The Fourier series approach performs best for many test pattern. However it is lim-
ited by the order used as illustrated in an additional example shown in Figure 7.32. For
that example a single less smooth joint trajectory of the CHARLIE is approximated by the
Fourier and the Gaussian approach. The approximation is done with the original config-
uration of both approaches and with an adapted one. Such a pattern is more challenging
for the Fourier series approach, even with an order of N = 16, while the Gaussian ap-
proach performed better in general, especially with a small adaptation of equation 7.13
by multiplying the width parameter ob with 3.0. How well the Gaussian approach can
adapt to the hard direction changes in the test pattern is limited by the minimal possible
width of the Gaussian bell. The same is true for the Fourier approach, where a higher
order is needed to create harder value changes. Another advantage of the Gaussian ap-
proach compared to the Fourier approach might be the parametrization that allows to
tune the patterns more punctual, like drawing or tuning a Bezier spline.



Chapter 8

Evolving Legged Locomotion

This chapter presents experiments for evolving the locomotion control of legged robots.
The first section deals with a purely simulated robot allowing to “design” the system
complexity. With that robot different experiments are performed helping to setup the
experiments for the second section presenting results on the real robotic systems SPOT,
SPACECLIMBER, and CHARLIE. The behaviors for the three robots are evolved in simulation
and selected results are evaluated on the real systems.

8.1 Simulated Robot

Within this section simulation experiments are presented to compare selected joint pattern
representations introduced in Chapter 7. The four legged test robot “EASY4” is designed
with the goal to create a test system that has a relatively low simulation cost while pro-
viding enough complexity to allow a comparison of the approaches. The robot is shown
in Figure 8.1. With its four degrees of freedom per leg it has a lot of capabilities, while
the resulting 16 controllable joints can be calculated rather fast by a simulation. The
mass and motor properties are loosely based on values that can be accomplished with
a real robotic system. The motors can be controlled by setting a desired position and a
PID controller in the simulation generates a motor velocity by taking the maximal torque
and motor speed into account. Sensors represent the robot’s motor positions, corpus ori-
entation, and feet contact forces. Three successive experiments are performed. The first
experiment “Evolving Open-Loop Control” is used to generate an open-loop controller
with the goal to perform a forward walking behavior. The second experiment “Naviga-
tion Controller” extends a selected result of the first experiment with a reactive controller,
allowing the robot to reach a goal position by modifying the open-loop controller via a
robot-to-goal orientation sensor. The last experiment “Stabilize Controller” extends the
resulting navigation controller to increase the locomotion performance on a rough terrain
by processing additional sensor inputs measuring the stability of the system.

8.1.1 Evolving Open-Loop Control

In the first experiment, a selection of the previously introduces control approaches (Chap-
ter 7) is used to generate an open-loop control pattern of the four legged robot EASY4. One
selected result of this open-loop optimization is the foundation of the following experi-
ment sections, where the behaviors are further optimized by evolving reactive behaviors
processing sensory information.
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Figure 8.1: Simulation robot EASY4 used to evaluate different joint pattern representations and a
reactive control concept.

Environment

The robot has to move on a planar surface with and without the soil contact extension
presented in Section 3.4. By using the soil contact extension, the feet contacts are less
hard and variance is included, so that the very same pattern does not always produce the
same result. Due to the soft and varying contact properties it is expected that the robot
has to lift up its feet higher and the evolution generates more stable and general patterns.
Moving the feet as low as possible above the ground in the swing phase is energy efficient
but would reduce the transferability as a small difference in the model can result in an
undesired ground contact of a real system. Without the soil extension, a Coulomb friction
value of 0.8 is used in the contact points.

Evaluation

The evaluation function is defined by a BAGEL graph which is connected to the simula-
tion data and the feet slippage criterion measured by locomotion_environment (Section
4.2.1). The BAGEL graph defining the additional criteria is shown in Figure 8.2. Two
fitness terms ft1 and ft2 are implemented in the graph, which are summarized by loco-
motion_environment.

The first term includes the average motor torques ϑ and joint loads ϱ (torques applied
to the joints not on the motor axis) divided by the final forward position of the robot
px. The robot position is limited to a value of 3m. Thus, after the optimization creates
behaviors that reach the 3mmark, it continues to optimize stability instead of producing
faster individuals. Furthermore, to prevent to large fitness values or a division by zero,
the robot position is cut to positive values starting from 0.01m. To include the starting
position at zero meters an offset of 10 cm is added previously to the robot position.

The second term represents the stability fitness and includes the standard deviation of
the motor torques σϑ, the joint loads σϱ, the roll σα and pitch σβ angle of the robot, the
robot’s velocity σvx , and the height σpz of the corpus. The first term represents the general
goal to move the robot forward with minimal effort and minimal stress on the mechanics.
The second term increases the focus on steady behaviors to reduce the probability for the
optimization to converge in local optima with very dynamic, fast and unstable behaviors.
This focus is relevant for this work, because the target systems do not include sufficiently
compliant components to support high dynamic locomotion behaviors. The two fitness
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Figure 8.2: Evaluation function for the locomotion benchmark setup defined by a BAGEL graph
processing simulation data provided by data_broker.

terms are defined by:

ft1 =











ϑ+ϱ
3.1 if px ≥ 3.0
ϑ+ϱ

px+0.1 else if px ≥ − 0.09
ϑ+ϱ
0.01 else

(8.1)

and
ft2 = σϑ + σϱ + σα + σβ + σvx + σpz . (8.2)

Each generated behavior is tested for 30 s simulation time. The first second is ignored for
calculating the fitness value, removing the first acceleration phase of the robot from the
stability evaluation. The evaluation is aborted if other parts of the robot than the feet
have collisions (ngc > 0) – AbortOnContact parameter of locomotion_environment.
In that case, the fitness is defined by a constant value (100,000,000) subtracted by the
simulation time in milliseconds until the collision is detected. The combined evaluation
function is given by:

find =

{

100000000− t, if ngc ≥ 0

fs + 0.5(ft1 + ft2), else
(8.3)

Configuration

A main control graph, shown in Figure 8.3, is defined which is not changed by the opti-
mization, while the phase_shift, front_leg, and rear_leg sub-graphs are, depending
on the used approach, generated or optimized by SABRE. To generate the leg phases the
concept of combining a global phase with one pulse and one slope module per leg
is used as introduced in Chapter 7. The control cycle (global phase) is configured to a
time period of 2 s. The phase_shift sub-graph includes three unconnected outputs and
no structure elements are allowed to be added. Eventually, only the bias parameter of
the outputs are optimized which define the phase shift of the front right and rear legs
relative to the front left leg. As presented in Section 7.2 for the Fourier and Pendulum
approaches, the inner structure of the leg’s sub-graphs is predefined, while the Gaussian
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Figure 8.3: EASY4 main control architecture for open-loop locomotion. The sub-graphs A), B),
and C) are evolved by SABRE, while this main architecture is not touched by the optimization. Sub-
graph A) generates the patterns for the front legs, B) for the rear legs, and sub-graph C) generates
the phase shift for the right front, rear left, and rear right leg.

approach directly evolves the sub-graphs by composing Gaussian modules. Figure 8.4
depicts the structure used for the leg control by the Fourier series approach. In this setup
only the parameters for the single Fourier joint pattern are optimized. Figure 8.5 depicts

Figure 8.4: Predefined leg control structure for the Fourier series approach. In this configuration
only parameter optimization for the inputs of the Fourier nodes is performed.

the control structure of the legs for the Pendulum approach. fire_network generates
the pulse pattern and the parameters (damping, frequency, amplitude, and offset) of the
pendulum module for the four outputs. The fire_network sub-graph is generated by
SABRE. For every joint one output node is used to generate the pulse pattern and four
output nodes (parameter outputs) are used to define the parameters of pendel_control.
The parameter outputs are excluded from the structural development and thus represent
constant parameters of the graph that are optimized by SABRE.

For all approaches two configurations are created, one that optimizes all 16 joint
patterns independently and one that generates one sub-graph (leg control graph) for the
front leg pair and one for the rear leg pair. The later configuration reduces the search space
by enforcing symmetric patterns of the left and right legs. For every leg one instance of
the corresponding leg control graph is generated transferring the individual leg phase to
the joint trajectories. Since the motor directions are inverted between the sides of the
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Figure 8.5: A) Predefined leg control structure for the Pendulum approach. The structure and
parameters of this graph are fixed while the fire net is evolved. B) The configuration of the fire net.
Only the orange output nodes can be connected by edges, while the other nodes define parameters
for the pendulum controller of the higher layer.

robot, the weights for the right legs in the main control graph are set to −1, allowing
the same output of the leg control graphs for both sides. Together with the soil and hard
ground contact simulation each approach is processed in four resulting configurations of
the setup (configsoil/sym, confighard/sym, configsoil/full, and confighard/full).

Preliminary optimizations have shown, that the Pendulum pattern approach with the
same configuration as in the previous chapter is not able to generate locomotion patterns.
The main reason is the small mutation step size. In the experiments of Chapter 7, this
small adaptation of a single pattern already produces a fitness improvement that guides
the evolution in the right direction. In the locomotion setup, a fitness improvement for
the oscillation is only reached by generating a pattern on multiple joints that together
produce a continuous forward movement. If, for instance, the shape of the patterns is
well suited but the amplitude is too small, the feet do not lift up the ground and no
forward movement can be produced. By adapting the overall mutation step size, the
evolution produces patterns that provide a forward movement, but it starts with a lot of
obstructive postures because the joint offsets are too big and the posture is varying nearly
randomly instead of slowly adapting to a beneficial posture. Due to this observation, the
mutation step sizes of the individual properties of the patterns are empirically chosen to
fit to the locomotion setup. This is done by monitoring single optimizations and adapting
the step sizes until the adaption process looks feasible. The same procedure is performed
for the other control approaches, too.

Results

Table 8.1 includes the results of 50 evolutions performed for every combination of con-
figuration and approach. The best results – lowest fitness values – in two of the four
configurations are generated by the Pendulum patterns. The best median results vary
between the different configurations. The feet and body heights are measured in world
coordinates while executing the resulting behaviors. In case of the configurations with
the soil model the feet dig about 3 cm into the surface, which has to be taken into account
when interpreting the feet heights measured. By adding this offset, feet are lifted about
2 cm higher in the configurations with the soil model.
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Table 8.1: Results of the open-loop experiment for EASY4 sorted by the configurations.

Config Approach Median fitness (best) ⊘ Step height (σ) ⊘ Body height (σ)

Fourier 4.54 (3.69) 1.5cm (0.4cm) 33.9cm (1.6cm)
configsoil/sym Pendulum 4.79 (3.19) 1.5cm (0.1cm) 32.8cm (2.8cm)

Gaussian 5.07 (3.97) 1.7cm (1.5cm) 31.1cm (3.2cm)

Fourier 5.1 (2.67) 2.4cm (0.3cm) 34.3cm (2.1cm)
confighard/sym Pendulum 3.91 (2.88) 2.5cm (0.3cm) 37.1cm (0.25cm)

Gaussian 4.54 (2.88) 2.7cm (1.1cm) 33.0cm (3.4cm)

Fourier 5.43 (4.45) 1.4cm (0.5cm) 34.2cm (1.0cm)
configsoil/full Pendulum 6.7 (5.49) 1.4cm (0.5cm) 35.5cm (0.4cm)

Gaussian 5.45 (4.24) 1.6cm (1.2cm) 33.6cm (2.9cm)

Fourier 7.29 (4.94) 2.8cm (1.6cm) 35.4cm (1.3cm)
confighard/full Pendulum 6.32 (3.58) 2.5cm (0.3cm) 37.3cm (0.2cm)

Gaussian 5.49 (4.03) 2.8cm (1.7cm) 32.1cm (4.1cm)

The fitness distribution between the approaches in the different configurations are
significantly different (Mann–Whitney U-test p < 5%) in most cases. Only two pairs of
results are not significantly different. The first pair are the results of the Gaussian and
Pendulum pattern in the first configuration and the second are the results of the Gaussian
pattern and the Fourier series in the third configuration.

The calculated fitness represents the performance in the simulation setup and cannot
be used as a metric for transferability to a real system. Especially behaviors with high
frequency patterns can produce good fitness values, but on a real system would consume
a lot of energy or fail due to a different contact behavior. This difference is known as
simulation-reality gap, as introduced in Section 1.1. Reducing this gap by improving the
simulation model is possible but can easily result in high additional computation load.
To prevent this kind of behavior, either the evaluation function can be extended or the
behavior representation can inhibit them or decrease the probability that they are evolved.
Extending the evaluation function can result in an undesired tuning of evaluation criteria.
In the worst case the evolution could tend to go into the direction of only one criterion,
while changing the influences does not mix them but at some point switches the focus
of the evolution to another criterion. The more opposed the criteria of the evaluation
function are the more likely do such problems occur.

The Fourier series approach has a high probability to generate high frequency patterns
at the beginning of the evolution and finally tends to evolve these behaviors. Figure 8.6
depicts the best result of the approach in the symmetric configuration combined with the
soil model. The result represents a typical behavior generated by the Fourier approach
for this experiment.

In case of Gaussian patterns the results vary to a large degree. The best solution is
shown in Figure 8.7. The solution have a single stance phase within the defined control
cycle, which does not represent the general results produced with the Gaussian patterns.
However, the high movement of the body is presented in most of the results and is only
lower if the step frequencies are higher. Most result have two or three stance phases
within the control cycle, while some few results are similar to most results of the Fourier
series approach producing higher frequencies.
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Figure 8.6: Best behavior generated with the Fourier series approach for the first configuration
configsoil/sym. Graph A) shows the corpus center position (blue marker) and the legs from the side
view performing one control cycle of 2 s. The legs are separated by the colors (front left = blue,
front right = orange, rear left = green, rear right = red). Graph B) plots the left front leg and left
rear leg in a side view relative to the corpus center position. The color gradient (red-green-blue)
represents the state within the control cycle. Graph C) depicts the Fourier transformation of the
feet positions on the forward axis representing the step frequencies (Fl = front left, Fr = front
right, Rl = rear left, Rr = rear right). A peak at 0.5Hz correlates to one step (forward-backward
movement) per control cycle, while a peak at 4Hz relates to 8 single steps within the control
cycle. In the used setup, the Fourier approach has a clear tendency to evolve tiny steps with high
frequencies.



124 CHAPTER 8. EVOLVING LEGGED LOCOMOTION

A)

− . . . . . .

.

.

.

.

B)

−0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3
Distance (m)

0.0

0.1

0.2

0.3

H
ei
gh

t
(m

)

C)

0 2 4 6 8 10 12 14
Frequency

0.000

0.025

0.050

0.075

0.100

Po
si
ti
on

x
(m

)

Fl Fr Rl Rr

Figure 8.7: Best behavior generated with the Gaussian pattern approach for configsoil/sym. Com-
pared to the other approaches the used Gaussian configuration produces the most dynamic be-
haviors concerning the movement of the robot’s corpus.
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Figure 8.8: Best behavior generated with the Pendulum pattern approach for configsoil/sym. The
used Pendulum pattern configuration has a clear tendency to produce pattern with a single stance
phase within the control cycle. The resulting behaviors are more steady compared to the Gaussian
results.
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The best result of the Pendulum pattern approach is shown in Figure 8.8. The result
has one stance phase within the control cycle similar to the best result produces with the
Gaussian pattern. It is also the best result over all optimizations performed for the setups
including the soil model. Compared with the best result of the Gaussian approach, the
body is more stable which can also be seen in the shoulder and hip position in plot B)
showing the left front and rear leg movements relative to the center position of the robot’s
corpus.

Table 8.2 lists the number of results sorted by the number of ground contacts within
the defined control cycle time for the symmetric configuration with soil simulation. All
results of the Fourier series generate more than two contacts. Most of the results of the
Gaussian pattern approach generate two stance phases within the control cycle time. The
most results with only one contact are produced by the Pendulum approach.

Table 8.2: Number of results per approach sorted by number of ground contacts in the control
cycle time for the experiment with the soil model and symmetric left and right leg patterns.

Approach One contact Two contacts More then two contacts

Fourier 50
Pendulum 30 19 1
Gaussian 11 30 9

Even though the Pendulum approach has some limitations regarding the representa-
tion strength of joint patterns, as discussed in the Chapter 7, it produces superior results
in this experiment. On one hand, the pendulum controller seems to limit and form the
search space in a way that more desirable patterns are produced. On the other hand, this
also limits the representable shapes of the patterns and might does not allow enough fine
tuning for a complex robotic system.

8.1.2 Navigation Controller

The previous section focuses on generating open-loop walking patterns. This experiment
is designed to learn a modulation of the previously generated open-loop patterns by pro-
cessing a direction input. The Pendulum approach produces the most desirable open-loop
patterns and it is designed to allow the modulation of the patterns by individual sensor
driven impulses. Therefore, an empirically selected result produced with the Pendulum
approach is selected as open-loop behavior for this section. To verify that the finally
evolved controller can generally be used for a navigation task, the controller is eventually
evaluated in an additional experiment where the robot has to follow a defined path. The
experiment of this section is designed to prove that, based on the Pendulum approach, a
sensory driven modulation of the open-loop pattern can be evolved to control the robot’s
walking direction. Therefore, a single result is generated proving this statement.

Environment

To evolve a behavior that enables the robot to reach a defined target position, a simulation
setup is designed with three start positions and one goal position, see Figure 8.9. The
robot’s initial orientation is the same in all start positions. Thus, depending on the start
position, the robot has to move, to the right, straight ahead, or to the left to reach the
goal. A MARS plugin is developed calculating the angle between a robot’s orientation
and the goal position. The plugin resets the robot to the next starting position after 20 s
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simulation from each position. Altogether, each individual is tested for a time period of
60 s.

2 m 2 m

3 m

Figure 8.9: Simulation setup of the navigation experiment for EASY4.

Evaluation

For the evaluation of the tested behavior, the distance to the goal position is the main
criterion of the fitness function. Since the objective is to reach the target position, the
distance measurement is stopped if the robot gets closer than 0.25m to the goal position.
This allows the robot to pass the target position without decreasing the fitness. As result,
the three resulting distances are summarized for the final fitness value. A constant value
cn := 1000 is added to the fitness if the robot does not reach the target positions from
all three start positions. Otherwise, the stability is evaluated as long as the stability fit-
ness (8.1.1) is lower than cn. The stability term is the same as in the open-loop control
experiment, see Equation 8.2.

Configuration

An empirically selected open-loop result of the Pendulum approach is chosen from the
previous experiment, providing a stable locomotion behavior as starting point for this
experiment. The control architecture of the open-loop controller is extendedwith the goal
to process a direction commandwithout changing the underlying open-loop patterns if no
command is given. Additionally, the extension should allow to slowly adapt the resulting
behavior through the optimization process of SABRE. To fulfill these requirements three
modules that process the direction command are designed (see Figure. 8.10). Two of the
modules receive the direction command and the global phase as input to generate a pulse
output for the leg control sub-graphs. The latter are extended by piping the additional
pulse inputs to the external_force inputs of the pendel_control graphs (see to Figure
8.5). One module is evolved for the front and one module for the rear legs. The third
module only receives the direction command and can modulate the leg phase frequencies.
For instance the step frequencies on one side of the robot could be increased to produce a
direction change of the robot. Therefore, the global phase module is extended providing
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Figure 8.10: Controller extension for the navigation experiment. The nodes E) to H) are the
leg control graphs evolved in the open-loop experiment. They are extended by providing an
additional input for every joint. These inputs are added to the external force inputs of the pen-
del_control graphs. The nodes A) to D) are new nodes which inner structure is evolved. The
nodes A) and C) generate a modulation force for the leg control graphs and process the global
phase and the direction command. Node A) is connected to both front leg control graphs and C)
to the rear leg control graphs. Node B) processes only the direction command and can modulate
the phase frequencies of the individual legs. Therefore, the global phase module is extended to
process the modulation signals of node B). Additionally, node D) can be adapted to optimize the
phase shift of the legs for this experiment setup.

a separated phase for each leg. Four new inputs can modulate the phase frequencies,
while the phases are aligned by a phase coupling. Without an input signal the phases
are identical. By applying an input signal the phase frequencies are adapted, which also
generates an additional phase shift between the legs. If the input signal is removed, the
phases fade back to an identical phase. The previously introduced phase_shift module
is applied after the processing of the phase frequencies and still defines the default phase
shift between the legs. The phase coupling is done by the following equation:

ϕ̇j := 0.01
i<N

∑
i=1

sin(2π(ϕi − ϕj)), (8.4)

with N representing the number of legs. Due to a possibly asymmetric phase shift the
evolved open-loop controller might prefer walking curves in one direction, while walk-
ing curves into the other direction might need more complicated modulations of the joint
patterns. To compensate for this possible preference, the phase shift is part of the opti-
mization in this experiment, too.

Similar to the fire neuron introduced to generate the input pulse pattern for the pen-
dulum controller (Section 7.2.3), a fire2_neuron is implemented to process one phase
input and one threshold input. Altogether, the module has four inputs. The first and
second inputs are treated just as the two inputs of the firing neuron. The first input is
connected to the phase input of the reactive module and together with the bias of the
second input defines the first condition for the neuron to become active. The third in-
put is connected to the second input of the reactive module, where the target direction
command is connected on the highest control layer. The last input defines a threshold
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for the third input and thus the second condition. For the threshold test, the absolute
value of the bias is used. If both conditions are fulfilled, the neuron produces an output
of 1. With this configuration, the reactive module can only influence the open-loop pat-
tern if an input signal is given for the direction command. The two reactive sub-graphs
connected to the leg controllers can evolve a network of only fire2_neurons. For the
reactive module influencing the phase frequencies, a similar implementation is done using
only threshold neurons (threshold_neuron). The threshold neurons process two inputs
similar to the third and forth input of fire2_neuron. The neurons are inactive without
an input signal, as well.

Result

The design process of the setup finally used includes multiple individual evolutions with
variations of starting positions, goal position, fitness calculations and wiring of the re-
active modules. Without the limitation to purely reactive extensions many results of the
test evolutions change the open-loop behavior to always walk a curve into one direction
and walk into the other depending on the sensor input. With this kind of solutions the
evolved controller does not walk straight forward without a direction command and it
reacts only to commands for one direction. This is a valid solution for the setup but not
necessarily a preferred behavior for a real system.

Finally, a single evolution is performed using the parallel distribution of BOLERO

producing a navigation controller. The evolution is started without an evaluation limit
and is manually aborted after 355.000 evaluations with a resulting controller providing
the features in question. After 8.040 evaluations the generated controller reaches the
goal from all three start positions for the first time. From that point on, the evolution
is optimizing the stability of the walking pattern. The trajectory of the final evolved
controller is shown in Figure 8.11.

Figure 8.12 depicts how the controller influences the open-loop pattern. Depending
on the direction command it produces additional pulse inputs modulating the joint pat-
tern. The evolved controller operates on two joints of the front left and rear right leg.
The pitch and yaw joint of the the front left shoulder and the roll joint of the rear right
hip are adapted to walk a left turn. Only the rear right knee is used to turn right.
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Figure 8.11: The resulting path taken by the evolved controller navigating to the target position
from the three defined start positions. The target area, that have to be reached, is marked by the
filled circle. The arrows plot the position and direction of the robot. For each starting position a
different color of the arrows is used.
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Figure 8.12: The plots depict how the joint patterns are modified by the reactive modules. Each
plot shows the signal generated by the reactive module and the influence of the signal on the joint
pattern.
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To test the evolved controller in a navigation application, a second setup is designed,
where the controller has to follow a defined path. The setup is shown in Figure 8.13 and
the resulting behavior of the controller is shown in Figure 8.14. The controller manages
to follow the path with a maximal distance of 70 cm to the path. The controller steers
more intensely the left side then to the right resulting in a position error in the middle part
of the path. At the end of the path the error is compensated. The result of this experiment
proves the potential to evolve a modulation of the open-loop pattern that allows the robot
to steer to a given target direction. However, the result produced is limited concerning the
shape of possible paths the robot can follow. This can mainly be explained by the rather
simple setup used to evolve the navigation controller. How this setup can be enriched or
optimized to evolve controllers that can follow a given path more precisely is an open
question.

Figure 8.13: A test setup to evaluate the evolved navigation controller of EASY4.
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Figure 8.14: The result of the evolved navigation controller of EASY4 used to follow a defined
path.
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8.1.3 Stabilize Controller

In the previous section it is shown that a modulation of the open-loop pattern can be used
to adapt the robot’s walking direction. The next and last step in this series of experiments
is to evolve a modulation that stabilizes the robot in an unstructured environment. As
for the navigation experiment, the objective of this experiment is to show that a modula-
tion can stabilize the robot and provide an adaptation to an environment. Therefore, the
resulting controller of the navigation experiment is further extended in this section. In-
dividual evolutions are performed to design the final setup and fitness function. Finally a
single result is generated and is compared to the performance of the navigation controller
in the rough environment designed for this experiment.

Environment

The simulation setup is shown in Figure 8.15. The environment becomes more challeng-
ing towards the edges, which rewards the usage of the navigation controller keeping the
robot in the track’s center. The boxes at the track’s end introduce obstacles with sharp
contours increasing the environment complexity once the evolved controller manages to
operate on the hilly ground. Also the boxes height is increasing towards the borders
allowing the robot to pass the obstacles only in the middle of the track.

Vertical profile h Maximum local height difference 10 cm

x Target location for navigation controllerCenter of track

x

Start Position

h

Figure 8.15: Simulation setup to evolve a stabilizing controller for EASY4. The previous evolved
behavior provides an open-loop gait for traversing on a planar surface and a navigation controller
allowing the robot to reach a target position. The surface roughness and slope increases to the
sides of the environment to increase the fitness of behaviors walking straight ahead through the
track. The navigation controller enables the robot to steer back to the middle of the track if the
robot becomes misaligned due to collisions with the surface. The robot is visualized in its physical
collision representation.

Evaluation

Each behavior is evaluated for a period of 60 s. To generate more generic solutions the
lateral start position of the robot is varied randomly in a range of 0.6 cm by U(−0.3,0.3).
The fitness function is defined in Equation 8.5. In this challenging environment the needed
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energy and the mechanical stress are not taken into account for the fitness of a behavior.
The evaluation of a behavior is aborted on contact of other elements than the feet (ngc ≥
0) similar to the previous experiments. The function combines the reached position of
the behavior in the environment (x and y), the feet slippage percentage fs as explained
in 4.2.1, and in case of a collision abort, the time the behavior was operating. Thus the
main focus of this evaluation is to enable the robot to operate in the environment.

find =

{

100000000− t, if ngc ≥ 0
y
x2 + fs, else

(8.5)

(8.6)

Configuration

The previous evolved navigation controller is extended similar to the navigation experi-
ment (Section 8.1.2). Four new modules are introduced processing the robots z forces at
the feet and the roll and pitch rotation of the robots body. The top level control architec-
ture is shown in Figure 8.16 was really modified by this setup? If so describe in caption}.
For the development of the new modules modifying the leg patterns, the evolution is
configured to compose networks of fire2_neuron modules as used in the navigation ex-
periment. The new module modulating the phase frequencies is evolved by composing a
network of threshold_neuron modules.

Result

A single experiment result is generated and evaluated by a comparison with the initial
navigation controller that is used as the basis for the evolved stabilize controller. For
this comparison, 1000 individual evaluations of both controllers are performed in the
simulation setup – including the random start position. The result of the comparison is
shown in Figure 8.17. All test evaluations done with the pure navigation controller are
aborted due to unintended collisions – the robot falls over. In case of the evolved stabilize
controller 26.9% passed the evaluation without a collision abortion. The minimum,
maximum, and median distances reached by the two controllers are shown in Table 8.3.
For the failed and passed trials of the stabilize controller the median distances reached
are above 4m and the maximal distance is above 6m. The median distance of the initial
navigation controller is at 1.49m, while the best trial reaches 4.32m until the robot falls
over. Altogether, the evolved controller successfully improves the navigation controller
and increases the performance in the rough environment.

Table 8.3: Statistical results of the comparison of EASY4’s navigation and stabilize controller. The
navigation controller (start point for the evolution) and the stabilize controller are tested in 1000
trials in the rough environment. The results are separated by successful and failed trials – if the
robot falls over within the evaluation time it fails the test.

Evaluation X-axis Y-axis
Max Min Median Max Min Median

Initial failed 4.32m 0.26m 1.49m 1.07m -0.56m 0.12m
Learned failed 6.35m 0.41m 4.1m 0.8m -1.18m -0.17m
Learned passed 6.01m 3.02m 4.75m 0.54m -2.2m -0.52m
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Figure 8.17: Comparison of the navigation controller and the evolved stabilize controller of
EASY4 in the rough environment. The plot shows the resulting positions reached by controllers,
separated by failed and succeeded trials.

8.2 Experiments with Real Systems

In the following subsections the focus is on evolving locomotion pattern for complex real
robotic systems. For all systems the locomotion patterns are generated in the MARS sim-
ulation software and selected results are executed on the real systems. Two four-legged
systems and one six legged robot are used. The systems count 20 or more dof each. Dif-
ferent methods are applied to derive the final proposed methodology for generating the
locomotion control of complex legged robots. The first subsection presents two exper-
iments performed for SPOT (Section 2.3.1), where the Sine-Based approach is applied
to generate joint pattern. The first experiment limits the dof used by the optimization
while the second deals with evolving patterns for all dof. The second subsection presents
experiments with the SPACECLIMBER system (Section 2.3.2). In a first experiment the
Sine-Based patterns are used by defining parameter limits fitting to the leg kinematics of
SPACECLIMBER and reducing the dofs used for the optimization. In a second experiment
the Pendulum approach is used to design patterns for all dofwithout limiting the possible
leg movement. Beforehand a single leg behavior is evolved on a treadmill for every leg
pair. The results are used to define the starting point for evolving walking patterns for
the whole system. The last robotic system used is CHARLIE (Section 2.3.3). The experi-
ment with CHARLIE is similar to the second one for SPACECLIMBER. For this experiment a
starting behavior is evolved on a treadmill for the front and rear leg pairs. The results are
used to generate the patterns for the whole system, including a pattern for the 6dof spine
of CHARLIE. Finally, a reactive controller is evolved for CHARLIE based on the stabilize
experiment for EASY4 8.1.3.
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8.2.1 SPOT

The content of this section is mainly based on Römmermann et al. (2008). In this section
two learning configurations utilizing the Sine-Based approach are presented and their re-
sults are discussed. The first configuration investigates the feasibility of the approach, and
the possibility of transferring the simulated behaviors to the real robot. In the first config-
uration, the complexity of the learning problem is reduced by using empirical knowledge.
In the second configuration, the learning algorithm is used to optimize a larger number
of parameters, which results in a larger search space for the evolutionary method and
a higher potential for resulting behaviors that are not executable on the real system. In
these experiments the parameters of the Sine-Based controller are optimized using the
CMA-ES algorithm (see 4.2.3).

Environment

The robot has to move on a planar surface with a Coulomb friction value of 0.8 of the
contact points. At the beginning of each evaluation, the simulated robot starts at the
same initial position.

Evaluation

To evaluate an individual, it is tested in the simulation for a period of 10 s. The evaluation
time is chosen empirically and found to be a good balance between computational cost
and adequate evaluation of individuals. In order to assess the evolved walking patterns,
a fitness value is used based on the following variables measured in the simulation: The
distance traveled d, the average torque ϑ and average load ϱ of the joints, a Boolean value
τ′ that indicates that the maximal torque of the toe joints is above a certain threshold,
and a Boolean value τ that indicates if parts of the robot other than the feet has ground
contact (ngc > 0). The fitness function is defined as sum of four terms. The first term
−ϑ
d assesses the energy efficiency, i. e. the consumed energy for the traveled distance. The
second term −ϱ

d is based on the load incurred on the joints over the traveled distance. The
third term −cnτ adds a strong negative reward if parts of the robot other than the feet
come into contact with the ground. The last term cnτ′ produces a strong negative reward
if the maximal torque of one toe joint exceeds a certain threshold.

The resulting fitness function is described by the following equation:

fitness =
−ϑ

d
+
−ϱ

d
− cnτ − cnτ′, (8.7)

where cn is a constant value with cn = 1000. Each evolution process proceeds until the
sigma 1 value of a population is less than 0.01.

Configuration

In both learning configurations, each left leg is made to execute the same patterns that the
corresponding right leg executes – with a phase shift between the legs. This restriction is
made due to the symmetry of the robot architecture, and has the advantage that patterns
for only one side of the robot need to be learned. As explained in Section 7.2.1, each
pattern is defined by the four parameters offset (o), amplitude (a), start swing (p1), and
start stance (p2), which must be optimized. The other parameters that affect the walking

1Sigma is an internal value of CMAES which is equivalent to the convergence of an evolution process.
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behavior are the CPG waveform period TStep, the duration of the swing phase TSwing, and
the phase shifts between the walking patterns of each leg.

Configuration 1 The hand-designed walking behaviors for SPOT only make use of the
third shoulder (swinging the leg forward and backward) and the knee joint. During the
execution of the walking behavior, the foot is aligned parallel to the body of the robot
by a more or less passive control. The upper two joints of the shoulder are not used
and are held constant to minimize the complexity of designing the walking patterns for a
human developer. This configuration is also an appropriate basis for the first experiment
and allows a practical comparison between the human designed and the learned walking
behaviors.

Therefore, only the patterns of the third shoulder and the knee joint are learned in
this configuration. In this case, the learning algorithm would normally need to optimize
a total of eight joint angle patterns, two per leg. However, after taking into account the
symmetry constraints, the learning algorithm has to only optimize the patterns of four
joints (front-shoulder, front-knee, rear-shoulder, rear-knee) to learn a walking behavior.
These four patterns result in a 16-dimensional object variable vector used by the learning
algorithm.

The other parameters are held constant in order to minimize the dimensionality of the
learning problem. The step period TStep is set to 3 s, and TSwing is set to 0.4 s. The phase
shifts are chosen such that the robot will execute one swing movement after another,
starting with the rear right leg, followed by the front left, the rear left, and finally the
front right leg. These empirical values are based on experience gained from manually
designed walking patterns of the robot. The step period of 3 s results in approximately
three steps per leg during the time period evaluated.

Configuration 2 In this second configuration, the evolutionary algorithm is configured
to manage all degrees of freedom of the legs. Making use of all joints by the learning algo-
rithm increases the possible space of solutions considerably. Initial tests of various fitness
functions have shown that many solutions of this space performwell in the simulation but
would not be transferable to the real SPOT system. This is because the simulated robot
possesses certain physical possibilities which would cause the real robot to be damaged
(e. g. the way the robot could contact the ground). The last two criteria of the fitness
function are used to shape the evolutionary process to find a transferable behavior. In
this experiment the algorithm has to learn a total of 12 joint patterns (6 for the front
legs, and 6 for the rear legs), resulting in 48 parameters. The step period TStep and the
swing period TSwing are set to the same values as in the first experiment (Configuration 1).
In contrast to the first experiment, the phase shifts are also learned by the evolutionary
algorithm, beginning with the values used in the first configuration.

Result

The resulting behaviors perform very well in the simulation and the fitness criteria lead the
evolutionary process to produce several results that are transferable. The non-transferable
results typically make too much use of the toes and their joints, which are not as stable
on the real robot as on the simulated one. Table 8.4 shows some important variables that
are calculated over 50 independent runs of both experiments. The standard deviations
of most variables shown in Table 8.4 are very small, and thus the values generated by the
fitness function also have a low standard deviation.
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Figure 8.18: A time-progression of snapshots showing an evolved walking behavior that is ex-
ecuted on both the simulated and real robot. The images are arranged in a chronological order
from top to bottom, starting with the left column. The joint trajectories executed by the front legs
are shown in the plot on the right. These angle values are recorded on the real robot during the
execution of the evolved walking patterns. The dotted vertical lines indicate the points at which
the snapshots are taken.

The results of the second configuration have significantly (p < 5 × 10−8)2 better
fitness values than the first results of the first configuration. These better fitness values
are primarily due to the fact that the robot reaches a significantly higher speed (i. e. a
further distance is traveled during a fixed period of time) (p < 2× 10−7).

Some walking behaviors that have a good fitness in both experiments are transferred
directly and without modifications to the real robot. One transferred walking behavior of
the first configuration is shown in Figure 8.18. When executing on the real robot, it proves
to be stable, closely approximating the behavior of the simulated robot. The plot in Figure
8.18 shows the joint trajectories for the shoulder and the knee of the front right leg. The
dotted vertical lines indicate the exact moments at which the pictures in this Figure are
taken. It can be seen from this image sequence that the real robot’s behavior is very similar
to the behavior of the simulated robot. As compared to the manually-designed gaits, the
evolved gaits result in a faster and more balanced dynamic walking behavior. The main
difference between most of the gaits learned and the manually-designed behavior lies in
that during particular stages of the walking process of the learned gaits two legs are in
the air at the same time, while in the manually-designed behavior only one leg is in the
air.

2Significance levels are computed using an one-sided Student’s t-test with.
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Table 8.4: Statistics of various important variables over 50 independent evolution processes of
both experiments with SPOT.

Variable Optimum Average Std. Deviation

Expt1 Expt2 Expt1 Expt2 Expt1 Expt2

Fitness 4.98 4.28 8.66 6.43 1.60 1.26
Num. of Evaluations 2292.00 7590.00 4187.52 11838.60 1020.86 1423.78
Distance in m 3.17 4.05 2.10 2.84 0.59 0.35
Avg. Height in m 0.59 0.61 0.56 0.54 0.02 0.04
Avg. Torque in N-m 2.64 2.71 3.61 4.03 0.30 0.49
Avg. Load in N-m 10.32 10.62 16.93 15.79 2.47 2.56
Avg. Pitch in degrees 0.74 0.86 2.86 6.60 1.02 4.51
Avg. Roll in degrees 0.52 0.10 2.86 4.28 1.00 2.19

8.2.2 SPACECLIMBER

It is unlikely to generate a desired locomotion behavior of a morphologically complex
robotic system without limiting the search space or starting close to the desired solution.
In case of the six-legged SPACECLIMBER system, the probability to evolve a four-legged
locomotion behavior with the middle legs hanging above the ground can easily be higher
than evolving a behavior that coordinates all six legs. Two experiments are performed to
generate a locomotion behavior for SPACECLIMBER. The first starts the evolution from a
predefined behavior and evaluates the local optimization capabilities utilizing a modified
Sine-Based approach. Since it is desired that no robot-specific foreknowledge is needed,
the second experiment – using the Pendulum approach – evolves the starting point of
the final optimization by generating a controller for a single leg pair. Results of both
experiments are transferred to the real system.

Figure 8.19: The real SPACECLIMBER system on the locomotion test-bed. Distance sensors are
used to control the speed of the treadmill, which keeps the robot in the middle of the test-bed.

All behaviors tested on the real system are performed with SPACECLIMBER walking on
a treadmill as shown in Figure 8.19. The treadmill test-bed includes a distance measure-
ment of the robotic system in the forward direction, which is used to control its speed. A
PID controller sets the speed of the treadmill by using the difference of a target distance
and the actual robot distance as control parameter. The robotic system is secured by a
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motor driven chain that can be used by the operator to lift the robot up. For a general
classification of the evolved behaviors, different experiments with the classic control of
SPACECLIMBER are performed with the real system – defining a set of reference behaviors.
Table 8.5 lists the parameters and the general evaluation parameters consisting of the
speed and mean / max power consumption of the whole system.

The parameters are measured for a period of 10 s. The target speed is calculated
according to Equation 2.8 introduced in Section 2.3.2. Since the speed measurement
of the treadmill is not precise and many evolution results are only tested and compared
in simulation, the overall system speed of the reference behaviors is evaluated with the
simulation model. The measured speed is higher than the target speed mainly due to the
fact that the model calculates the foot positions in the middle of the foot sphere, thus the
real leg length is approximately 2 cm longer. Compared to the presented properties of
SPACECLIMBER in Bartsch (2014), the measured data represents a plausible extrapolation
of the system characteristics for higher speeds.

Table 8.5: SPACECLIMBER control parameters used used for the model-based control to create
comparable data. Only the parameters that are varied from the default are listed. See Section
2.3.2 for a description of the model-based control and its parameters. The value applied on the
step y parameter for IK4 and IK4 is used to compensate for a drifting behavior of the robot to the
sides of the track.

Config Step Shift Step Step φ Target Speed in Power Power
period y length speed simulation mean peak

IK1 2.0s 12% 0cm 35cm 0.5 0.20m
s 0.22m

s (110%) 142W 276W
IK2 2.0s 12% 0cm 35cm 0.0 0.20m

s 0.21m
s (105%) 173W 374W

IK3 1.5s 20% 5cm 35cm 0.0 0.29m
s 0.31m

s (107%) 203W 634W
IK4 1.5s 20% -5cm 30cm 0.0 0.25m

s 0.27m
s (108%) 236W 576W

IK5 2.0s 20% 0cm 45cm 0.0 0.28m
s 0.31m

s (110%) 191W 399W

Sine-Based Approach

Environment For this experiment the SPACECLIMBER have to move on a planar surface
with a Coulomb friction of 0.8.

Evaluation One parameter set is tested in the simulation for a period of 25 s. Two dif-
ferent evaluation function are used. The first function Fitness1 divides the average motor
currents by the distance traveled, whereby the distance taken into account is limited to
5m. The second function Fitness2 uses the same fitness calculation as previously used for
the pattern generation of the simulation robot EASY4 (compare Figure 8.2). Additionally,
a feet slippage factor, provided by locomotion_environment, is added as a fitness crite-
rion with a weight of 4.0 for the second configuration. The first configuration is simpler
and is designed to optimize stability indirectly by minimizing the motor currents. The
parameter ranges for the optimization are empirically chosen to produce good results
on the first fitness configuration. If the search space becomes too complex, either non-
transferable behaviors are more likely or even the parameter optimizer CMA-ES does not
converge, in which case sigma increases, resulting in a random search if sigma becomes
too large. This behavior of CMA-ES might be effected by the mapping of the CMA-ES
parameter space to the target space, introduced in Section 4.2.3. Nontransferable behav-
iors are mostly a result of mechanical stress that is only very roughly approximated in
the simulation model, similarly observed in the experiments with SPOT.
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Configuration Instead of optimizing the whole control system from scratch, an empir-
ically predefined pattern fitting to the robot morphology is used as a starting point. For
this configuration the Sine-Based pattern is used allowing, due to the pattern represen-
tation, to define the parameters for a start configuration intuitively. Additionally, the
representation enables to control the maximal offset to the start pattern by limiting the
parameter range optimized for the offset parameter. Thus the whole control architecture
is predefined and the CMA-ES optimizer is used to adapt the pattern. The first joint of
the leg is not used, similar to the model-based pattern approach for SPACECLIMBER as
introduced in 2.3.2. The joints optimized are shown in Figure 8.20. To allow a more

Basal

Thorax
Distal

Zero posture

Offset posture

Figure 8.20: SPACECLIMBER kinematic leg model and joints used for the Sine-Based pattern opti-
mization. The leg on the left hand side is in the zero posture, while the leg on the right hand side
depicts the start posture resulting from the defined offset values for the sine pattern approach. All
leg pairs are handled equally concerning the kinematical configuration.

precise shaping of the joint pattern the original Sine-Based approach is altered by using
one parameterized sine wave for the swing phase and another for the stance phase. The
input signal for this modified module is the position in the stance (ϕ1) and swing (ϕ2)
phase where zero marks the start of the corresponding phase and one the end. The input
signal, scaled by a percentage factor (p1 for the stance and p2 for the swing phase) plus
a phase offset (φ1 and φ2), is used as input for the sine function. The output of the sine
function is scaled with an amplitude factor a1 or a2. A state input (state) defines which
parameters are combined with the offset o to generate the joint angle. The following
equations defines the adapted approach:

θ =

{

o+ sin(φ1 + ϕ1p1)a1 if state = 0

o+ sin(φ2 + ϕ2p2)a2 else.
(8.8)

On one hand, more complex patterns can be generated with this approach. On the other
hand a smooth transition between swing and stance phase is not guaranteed and is left to
the optimization process. The parameter ranges defined for the optimization are given in
Table 8.6. The offset parameter of the basal and distal joints are excluded from the opti-
mization, resulting in 19 parameters to define a leg pattern. One leg pattern is optimized
for the front, one for the middle, and a third for the rear legs. Overall, 57 parameters
define the walking pattern in this experiment. Step period, swing/stance ratio and phase
shift are predetermined and not further optimized. The step period is set to 2 s, the swing
phase covers 10% of the step period, and the phase shift defines a cross gait coupling the
swing phase of the front left, middle right, and rear left leg to one swing movement and
the other legs to the second swing movement executed with 1 s time offset.
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Table 8.6: Parameter ranges defined for the Sine-Based approach to evolve a SPACECLIMBER

open-loop walking controller.

Joint p1 φ1 a1 p2 φ2 a2 o

Thorax 2 – 4 0.5 – 1.7 0.25 – 0.75 2 – 4 4 – 5.2 0.25 – 0.75 -1 – 1
Basal 2 – 4 0 – 0.6 0.2 – 1.5 2 – 4 1 – 4 0.1 – 0.6 -0.75
Distal 2 – 4 0 – 0.6 -1.5 – 0.5 2 – 4 1 – 4 -0.6 – 0.1 -2.0

Result For each of the configurations one result is presented in this section. Since these
results are produced by a series of individual performed optimizations, no substantiated
statement can be given concerning the probability of successfully generating a feasible
walking pattern for the real system. However, all tested behaviors perform very close
to the simulated behaviors after further adapting the simulation model compared to Sec-
tion 3.3. This adaption consists of making the joint constraint softer to compensate for
mechanical compliance, which is increasing over time, mainly at mounting points in the
structure. Additionally, the center of mass is moved towards the front of the system. As
a side effect of this adaptation, the resulting executed joint patterns are smoother in the
simulation than on the real system but all behaviors transferred show very similar charac-
teristics compared to the simulated behaviors. Additionally, as result of the adaptation,
producing a steady walking pattern is even harder in simulation then on the real system.

Fitness1 Figure 8.21 presents one evolved joint pattern for the whole system exe-
cuted on the simulation model used for optimization. The right and left legs are inverted
to adapt to the underlying kinematic model. For all legs the foot trajectory is defined by
the thorax and basal joint patterns. The desired position of the basal joints is given by a
constant value and the pattern observed in the actual angle is produced by the soft joint
properties of the simulation model.

The speed of the robot executing the evolved pattern in simulation is 0.26m/s. The
pattern executed on the real SPACECLIMBER system results in a power consumption of
177W in average and 395Wmaximal. With this characteristics the evolved pattern poses
a plausible result to be used on the real system. The speed and power consumption fit best
to the IK2 reference behavior with a speed of 0.21m/s, an average power consumption
of 173W, and a peak power consumption of 374W. The IK2 behavior is compared to
the evolved pattern to present the potential difference. The comparison is done based on
data generated with the simulation. The first test executes both behaviors on a planar
surface. The simulation is executed until the behaviors become stable, reaching their
maximum forward speed. Then the robot is positioned back to the start frame while
keeping its current dynamic proprieties and joint angles. Afterwards, logging is started
for a period of 10 s providing the data sets. For the second data set, the robot’s main body
is fixed in the simulation and the behaviors are executed without ground interaction, thus
representing only the result of the forward kinematic.

Figure 8.22 compares the foot height of the left legs between the two behaviors. The
middle left leg is used to align the recorded data by its swing phase. All following analyses
of the data set with the robot walking on the ground, are aligned by the same offset. The
evolved patterns produces a more expanding swing phase compared to the IK2 pattern.
The resulting step period of the evolved pattern is 2.077 s as result of the update rate
used in the control graph. Figure 8.23 depicts the body velocity in the forward and
lateral direction. The average forward velocity of the evolved pattern is larger. Also the
amplitude of the velocity change in both directions, forward and lateral, is larger, while
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Figure 8.21: Joint patterns created by the Sine-Based approach for SPACECLIMBER with the
Fitness1 configuration. The desired joint angles are compared with the joint angles executed by
the simulation model.
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Figure 8.22: Comparison of the feet z position between the left legs of SPACECLIMBER. The
patterns are aligned by the offset of the middle left leg (leg 2).

the frequencies are lower, representing a less steady but smoother movement of the robot’s
body. Comparing the height of the robot’s body (see Figure 8.24) shows no real difference
of the frequency. The evolved pattern has a higher main posture and a bigger amplitude
on the height curve produced by the walking pattern. Figure 8.25 compares the foot
trajectories resulting from the forward kinematic model of the left legs between the two
behaviors. Again the phase is aligned by the middle leg, while this time the phase time
of the evolved pattern is scaled to 2 s to allow a better comparison. The evolved pattern
shows a trajectory of the feet on the lateral axis which produces the lateral movement of
the robot’s body. The general shape of the rear leg movement on the vertical-axis is quite
similar, with a smaller and shorter swing phase of the evolved pattern. The higher and
longer swing phase of the evolved rear feet patterns, while walking on ground, is a result
of the overall tilt movement of the robot. Thus, the evolved pattern uses the robot’s tilt
movement to support the swing phase of the rear legs. A similar result can be observed for
the front legs. This tilting behavior is mainly produced by the non-parallel movement on
the vertical-axis of the middle legs in the stance phase combined with the resulting center
of mass shift. The amplitude of the forward movement of the legs is similar between
the behaviors matching to the similar forward speed. While the movement of the IK2

behavior shows a continuous motion, the evolved behavior settles for a short period of
time before switching into the swing phase, explaining the higher standard deviation of
the robot’s speed.

As can be seen from this comparison, the evolved pattern makes use of the dynamics
of the system to support the locomotion. Additionally, it produces a stable control of
the real system with a comparable power consumption. However, the possible results
produced by the evolution are highly influenced by the limited parameter ranges defined,
and by adapting these ranges the quality and main characteristics of the evolved patterns
could be further tuned.

Fitness2 The pattern evolved with the second fitness configuration is tested with
three different activities, whereby the activity parameter linearly scales the amplitude of
the joint patterns. An activity of zero results in no movement, while an activity of 1.0
produces the originally evolved pattern. For the evolved pattern, also lower activities
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Figure 8.23: Comparison of the linear velocity on the x and y axis of the robot main body for
the result of the Fitness1 configuration and the IK2 reference behavior.

18 19 20 21 22 23 24
Time (s)

0.2

0.3

0.3

0.3

0.3

Po
si
ti
on

(m
)

EVO IK2

Figure 8.24: Comparison of the robot height.

-0.2

0.0

0.2

0.4

0.6

Fr
on

t
le
ft

EVO x IK2 x EVO y IK2 y EVO z IK2 z

-0.2

0.0

0.2

0.4

M
id
dl
e
le
ft

16 17 18 19 20 21 22
Time (s)

-0.4

-0.2

0.0

0.2

0.4

R
ea
r
le
ft

Figure 8.25: Feet positions of the robot fixated in the simulation (forward kinematics) with the
result of the Fitness1 configuration compared to the IK2 reference behavior.
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Figure 8.26: Joint patterns created by the Sine-Based approach for SPACECLIMBER with the
Fitness2 configuration. The desired joint angles are compared with the joint angles executed by
the simulation model.
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Table 8.7: Characteristics of one result for the Fitness2 configuration tested on the real
SPACECLIMBER system and in simulation with different activity.

Activity Simulation Power Power
speed mean peak

0.5 0.11m/s 124W 181W
0.8 0.19m/s 159W 337W
1.0 0.26m/s 193W 381W

produce stable walking behaviors by varying robot speed. Table 8.7 lists the resulting
characteristics of the evolved patterns. Again, the transferred behavior proved to repre-
sent a feasible control strategy on the real system. Figure 8.26 presents the joint angles
produced by the original evolved pattern (an activity of 1). Compared to the previous
result of Fitness1, for all joints, configured for the evolution, a pattern is generated. Fig-
ure 8.27 presents the feet positions given by the forward model (Fkx, Fky, and Fkz) of the
robot plotted together with the vertical movement while the robot is walking on ground
(walking z). For comparison the vertical movement (walking z is shifted down by the
mean body height of the walking pattern. For all legs the upper part of the swing phase
matches very well with the forward model and the measured walking data.
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Figure 8.27: Feet positions of the robot fixated in the simulation (forward kinematics) and com-
parison of feet z movement while walking on the planar surface with the result of the Fitness2
configuration.
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As result, the leg swing movements on the vertical axis are not supported by a center
of mass shift like observed in Fitness1. This might be due to limiting the robot’s body
movement by the fitness function. Another result of this restriction combined with the
limited parameter ranges is that the evolved pattern produces a short swing phase of the
legs and hard touchdown impacts. At least adding the swing time as parameter to the
optimization could further improve the results of this experiment.

Bottom-Up PendulumApproach

The Sine-Based pattern approach needs a lot of parameter range tuning to the specific
target robot morphology if the control problem becomes more complex. For the next ex-
periment the initial walking pattern for the whole system is generated by evolving patterns
beforehand for each of the leg pairs – representing a bottom-up approach.

Environment A single front, middle, and rear leg of SPACECLIMBER is mounted above
a treadmill in simulation. Figure 8.28 depicts the setup, whereby the start posture for
the front and middle leg is the same while the start posture of the rear leg differs in a
backward orientation of the thorax joint. Additionally, leg length and mounting height
is different between the middle leg and the read and front legs. The kinematic model used
in this section is the same as described in Section 2.3.2. The simulation setup to generate
the controller for the whole SPACECLIMBER is the same as used for the experiment evolving
the Sine-Based controller.

Front and middle leg

start posture
Rear leg start posture

Conveyor belt target direction at 0.15 m/s

Mounting height: front and rear leg 0.23 cm; middle leg 0.26 cm

Figure 8.28: The single leg simulation setup for SPACECLIMBER.

Evaluation The fitness for the single leg controllers is calculated by evaluating the aver-
age treadmill speed, the center position of the foot on the forward axis, and the velocity
difference of the foot and the treadmill on contact, representing a slippage criterion. Fig-
ure 8.29 depicts the bagel graph implementing the evaluation function. The treadmill
speed is only considered within the stance phase of the leg, to prevent evolving a poking
behavior. While the fitness graph represents a general evaluation function for a single
leg control on a treadmill, the parameters marked orange have to be defined for the spe-
cific leg morphology and start configuration. The first parameter, the upper one in the
graph, defines the target center position of the foot, which is set to 10 cm for the front
and middle legs and to −10 cm for the rear legs correlating to the start posture. This
criterion is used to prevent evolving behaviors that produce collisions between the legs if
the results are used for the whole system. The second parameter defines the target speed
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Figure 8.29: The fitness graph used for the evolution of the SPACECLIMBER’s leg control.

of the treadmill. Defining a target speed instead of moving as fast as possible increases
the compatibility of the resulting solutions for the different legs. Also, later on, the target
speed of the whole system is set to the same value, to focus more on stability than on
speed or energy efficiency.

Each behavior is tested for a period of 20 s, while the first second is not evaluated.
Again, individual evolutions are performed to design the fitness function and to produce
and manually select individual results for the next iteration, evolving the whole open-
loop control for SPACECLIMBER. The evolved pulse networks are used as a starting point
for SABRE to evolve the whole SPACECLIMBER control. Additionally, the phase shift is
evolved, similar to the EASY4 open-loop setup. The evaluation function for the controller
of the whole SPACECLIMBER is the same as described for the Fitness2 experiment evolving
the Sine-Based controller.

Configuration For the pattern representation the Pendulum approach is used, since it is
able to generate satisfying walking controllers for the EASY4 robot. The control concept
is similar to the one used for the open-loop control of EASY4 reduced to one leg, see Figure
8.30. The control graph for the whole SPACECLIMBER system is shown in Figure 8.31.
Beside the leg patterns, the phase shift of the legs are adapted starting the evolution with
a cross-gait.

A)

Figure 8.30: The control graph for a SPACECLIMBER leg. The parameters of the output nodes
define the initial posture of the leg. The values shown are used for the front and middle legs,
while the values are inverted for the rear legs. The main control graph is not adapted, while the
inner structure of node A) is evolved.

Result Figure 8.32 depicts the evolved patterns for the individual legs compared to the
result of the second phase, adapting the pattern for the whole system. The general shape
of the front leg patterns are kept, only a small shift in the phase and an amplitude adap-
tation is done on the lean and basal joint. The thorax and distal patterns remain very
close to the initial pattern evolved on the treadmill. In case of the middle leg, the thorax
and basal patterns are not modified a lot, while the other two show a phase shift, an
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Figure 8.31: The control graph for the whole SPACECLIMBER system. Similar to the configuration
for the single legs, the subgraphs A), B), C), and D) are evolved while the main graph is not
adapted. The subgraphs defining the front, middle, and rear leg patterns are used twice with
inverted outputs for the right legs. The starting point for the leg subgraphs is derived from the
results of the single leg experiments.

adaptation of the shape, and a reduction of the amplitude of the lean pattern. The largest
adaption can be observed for the rear legs. In relation to the thorax pattern the phase of
the other joints is shifted by up to 25%. The shape of the thorax joint pattern is adapted,
while the other joint patterns are mainly modified in the amplitude and offset.

Figure 8.33 shows the resulting foot position of the forward kinematic model and
compares the vertical movement with the recorded foot positionwhile walking on ground.
The recorded foot height is shifted down by the average body height of 0.23m of the walk-
ing behavior. The swing phase of the front and rear leg match well between the forward
model and the recorded data. As a result, except for the middle legs, the dynamic effects
do not take much influence on the resulting pattern. The middle legs show a very small
amplitude on the vertical axis and the swing phase differs between the forward model
and the resulting dynamic behavior. The walking swing phase has to be a result of the
dynamic system properties.

Overall, from all evolved joint patterns, the resulting characteristics concerning the
movement of the body are the closest compared to the IK generated patterns. The
main difference is the use of the lean joint, resulting in smaller joint pattern amplitudes
of the thorax joints. The behavior produces a forward velocity in the simulation of
0.17m/s with an average power consumption on the real system of 148W and a peak
power consumption of 263W. The measured performance is in a reasonable range for
SPACECLIMBER compared with the results of the other experiments.
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Figure 8.32: Comparison of the leg patterns generated by the evolution of the single leg control
and the adaption of the patterns to the whole system. The leg patterns are aligned by the positive
movement of the thorax joint.
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Figure 8.33: SPACECLIMBER foot positions of the bottom-up result generate by the forward kine-
matic model compared to the foot height measured while walking on the ground.

8.2.3 CHARLIE

The last target system is CHARLIE as described in Section 2.3. To evolve a controller
a similar approach is set up as described in Section 8.2.2 for SPACECLIMBER. In a first
setup (FRONTLEGS) a behavior for the front legs is generated, while the front body is
mounted by a prismatic joint above a treadmill. Similarly, a behavior is generated for
the rear legs (REARLEGS). OPENLOOP combines the results of FRONTLEGS and REARLEGS

as starting behavior to generate a behavior for the entire CHARLIE robot. In the last
setup (CLOSEDLOOP the controller is extended by a reactive module compensating forces
applied to the front body of the system.

FRONTLEGS

Environment To generate a walking pattern for the front leg pair of CHARLIE a simula-
tion model is used including only the forepart of the robot. In contrast to the setup used
for SPACECLIMBER a leg pair is used instead of a single leg. The model is mounted by a
prismatic joint (support joint) above a treadmill preventing the robot from falling over.
Since the axis of the support joint is along the vertical axis (z-axis), the legs still have to
support the robots weight while moving the treadmill backwards. The setup is depicted
in Figure 8.34.
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Conveyor belt target direction at 0.133 m/s

Prismatic joint axis

Figure 8.34: The simulation setup to generate a walking behavior for the front leg pair of
CHARLIE.

Configuration The top-level graph defining a 2 s step time and a cross gait phase shift
is shown in Figure 8.35. The nodes front_pendel1 and front_pendel2 are instances
of a front_pendel module that is evolved as explained in Section 8.1.1 and shown in
Figure 8.5. A start posture of the front legs is configured in the control graph based on
the posture of the model-based control concept of CHARLIE.
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Figure 8.35: The top-level BAGEL graph defined for evolving walking patterns of the front leg pair
of CHARLIE. The function of the sub-graph A) – used for both legs – is generated by the evolution
configured similar to Figure 8.5. The bias of the output nodes defines a start posture of the legs
inspired from the starting posture used by the original model-based controller of CHARLIE.

Evaluation Due to the fact that the legs have to support the robot’s front body in the
stance phase the evaluation is based on the function used in Section 8.1.1 instead of the
function used in Section 8.2.2 for the single SPACECLIMBER legs. Due to the decreased
degrees of freedom of the robot’s front body by the support joint, two modification of
the evaluation function are introduced. A first modification is added by not evaluating
the roll and pitch angle of the robot. A second modification is done by evaluating the
feet position on the lateral axis (y-axis) with the intention to generate behaviors with the
feet operating below the shoulders on the lateral position. A possible adaptation of the
lateral feet position should be generated in the third setup where the robot’s degrees of
freedom in the world are not limited. The final fitness graph used is shown in Figure 8.36.
Similar to the experiments performed with SPACECLIMBER the feet slippage factor of the
locomotion_environment is used (4.2.1). Each individual is tested in the simulation for
a time period of 30 s.
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Figure 8.36: The evaluation graph used to generate a locomotion pattern for the front leg pair
of CHARLIE.

Result The finally evolved joint patterns, selected as starting point for the generation of
the whole walking controller, are shown in Figure 8.37. The evolution generated patterns
for the shoulder pitch and the knee joint, while not utilizing the shoulder’s roll and yaw
joints.
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Figure 8.37: The evolved patterns of the front legs selected as start point for the whole CHARLIE

system.

REARLEGS

The setup to generate a starting behavior for the rear leg pair of CHARLIE is designed
similar to the one for the front legs.

Environment The simulation setup is similar to the setup used for the front legs (see
Figure 8.38).

Evaluation Preliminary performed optimizations to test the setup have identified a ten-
dency of producing behaviors where only the tip or the heel of the foot is used in the
stance phase instead of the whole foot. To eliminate this tendency the pitch angle of the
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Conveyor belt target direction at 0.133 m/s

Prismatic joint axis

Figure 8.38: The simulation setup to generate a walking behavior for the rear leg pair of CHARLIE.

left foot orientation is minimized in the contact phase by an additional evaluation ob-
jective. Due to the symmetry constraint evaluating only one foot is sufficient. A further
empirically chosen adaptation, based on the preliminary performed experiments, is done
by increasing the weights of the objectives evaluating the distance reached. The resulting
evaluation graph is shown in Figure 8.39. Each individual is tested in the simulation for
a time period of 30 s.
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Figure 8.39: The evaluation graph used to generate a locomotion pattern for the rear leg pair of
CHARLIE.

Configuration The general behavior configuration is the same as used in FRONTLEGS.
The predefined BAGEL modules of FRONTLEGS are extended by the ankle pitch and roll
joints of the rear legs.

Result The resulting joint patterns of a finally performed evolution are presented in
Figure 8.40. Similar to FRONTLEGS the resulting controller utilizes the pitch and knee
joints of the legs to move the treadmill.
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Figure 8.40: The evolved patterns of the rear legs selected as start point for the whole CHARLIE

system.

OPENLOOP

This setup combines the evolved front and rear leg behaviors of FRONTLEGS andREARLEGS

for a control of the whole CHARLIE system. The previous evolved patterns are used as
starting point for the legs while the phase sift and patterns for the six dof of the spine are
evolved from scratch. Again individual preliminary experiments are performed to test
and adapt the overall setup.

Environment The robot has to walk in forward direction (x-axis) on a planar surface
with a Coulomb friction of 0.8.

Evaluation In preliminary performed experiments is could be observed that the stabil-
ity fitness (see Section 8.1.1), that is limiting the exploration of pattern, is counterpro-
ductive for generating a controller for CHARLIE. The final evaluation graph is shown in
Figure 8.41. Additionally to the reduced objectives in the evaluation graph the influ-
ence of the feet slippage evaluation is reduced by a factor of 0.1. As done in the ex-
periments with SPACECLIMBER and SPOT the evaluation is aborted if other elements of
the robot than the feet are involved in a collision – AbortOnContact configuration of
locomotion_environment. Each individual is evaluated for a time period of 30 s if the
evaluation is not aborted due to an unintended collision.
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Figure 8.41: The evaluation graph used to generate the controller of the whole CHARLIE system.
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Configuration The configuration is based on the experiment for the development of
the open-loop controller of EASY4 (Section 8.1.1). Additionally to that configuration a
control structure for the spine dof of CHARLIE is added. The top-level control graph
is shown in Figure 8.42. To introduce the symmetry information of CHARLIE into the
spine control, the spine pattern is executed twice within the control cycle, while the spine
roll, yaw, and y movement is inverted for the second execution. To compensate for an
possible hard value change, due to inverting three of the spine dof within the pattern, a
filter smoothing the spine pattern is implemented. Beside the filter for the spine patterns,
boundaries are integrated for the spine dof and the ankle pitch joints.
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Figure 8.42: The top-level control graph for the open-loop controller of CHARLIE. The nodes A)
and B) are evolved starting the evolution with the results of FRONTLEGS and REARLEGS. Node C)
evolves a pattern for CHARLIE’s spine dof. The parameters defining the phase shift are evolved in
node D). The nodes included in group T) implement an offset and boundaries of the ankle pitch
joints. The nodes of group S) handle boundaries of the spine dof and add a filter to smoothen the
spine patterns.

Result A final result is generated and tested on the real system. Figure 8.43 compares
the resulting joint patterns of the legs with the initial patterns generated in FRONTLEGS

and REARLEGS. The results show, that not only small adaptations to the starting patterns
are performed but also new features, such as utilizing the hip roll and yaw joint, can be
evolved. Furthermore, the starting pattern are evolved for a target speed of 0.133m/s
while the evaluation graph for the whole system is configured for a speed of 0.2m/s. As
result of this difference the amplitude of the starting pattern is increased through the op-
timization process. The resulting pattern produced for the dof of the spine is shown in
Figure 8.44. Even though the patterns of the spine have a low amplitude, they signifi-
cantly influence the workspace of the legs and the resulting performance of the locomotion
behavior. A resulting image sequence of the walking pattern executed on the real system
is shown in Figure 8.45. The patterns produce a stable forward locomotion of CHARLIE

utilizing the system properties similarly as in the simulation.
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Figure 8.43: Comparison of the start patterns with the resulting adapted patterns of the whole
CHARLIE system. For the front legs (the two upper graphs) the amplitude of the shoulder pitch and
knee patterns is increased and a pattern with a low amplitude is generated for the shoulder roll
and yaw joint. In case of the rear legs (the lower three plots) the amplitude of the knee pattern
is strongly reduced while a pattern for the hip roll and yaw joint is generated. These roll and
yaw patterns influence the swing movement lifting the feet to the outer side and thus generating
a momentum supporting the lift phase of the diagonal front leg. The amplitude of the pattern for
the ankle pitch joint is reduced while the amplitude of the hip pitch joint is only slightly adapted.
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Figure 8.44: The resulting patterns generated for CHARLIE’s spine dof.

Figure 8.45: The image sequence depicts the resulting walking pattern of CHARLIE transferred to
the real system on the locomotion test-bed.

CLOSEDLOOP

This experiment is designed to show the possibility of stabilizing CHARLIE by a sensory
driven modulation of the evolved open-loop controller. The general concept is similar
to the stabilizing controller evolved in Section 8.1.3. In contrast to that experiment the
CHARLIE robot is more complex and it has to be shown that the concept can deal with
the additional complexity.

Environment The robot has to walk in forward direction (x-axis) on a planar surface
similar to the previous experiment in OPENLOOP. The environment is extended by a
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MARS plugin applying a force pattern to the robot’s front body. The disturbing forces are
defined in the robot coordinate system along the lateral (y) axis. The disturbing forces are
applied to the robot for a period of 0.5 s. A first disturbance of 50N is generate 8± 0.2 s
in simulation time after the evaluation of an individual is started. A second disturbance
into the opposite direction (−50N) is generate at the time of 12± 0.2 s.

Evaluation The evaluation is done with the same function and parameters as in the
previous experiment evolving the open-loop controller in OPENLOOP. Each individual is
tested in the simulation for a time period of 30 s.

Configuration The configuration for this experiment is based on the configuration for
the stabilize controller of EASY4 (8.1.3). The top-level control graph is shown in Figure
8.46. In contrast to the stabilize controller for EASY4 the phase frequency adaptation is
removed from the configuration and for each leg an individual reactive module is set up.
The adaptations are done to restrict also the stabilize controller to symmetric behaviors.
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Figure 8.46: Top-level control graph for the stabilize controller of CHARLIE. The sub-graphs A),
B), and C) are evolved to process the leg phase and sensory data to stabilize CHARLIE by modifying
the open-loop patterns. Node D) multiplies the force sensor values with a factor of 0.01 to nor-
malize them into a range of [−1,1]. Node E) handles the doubled spine pattern frequency similar
as described for the spine pattern of OPENLOOP. The spine pattern transformation introduced for
OPENLOOP is encapsulated in node F).
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Result A single result is generated for this experiment. The evolved controller is com-
pared to the original open-loop controller which is the basis of the evolved reactive con-
troller. Therefore, each controller is tested for a period of 60 s in the simulation with
an adapted force profile shown in Table 8.8. This test is repeated 1000 times for both
controllers providing a statistical comparison of their performances. The result of this
comparison is summarized in Table 8.9. While the initial open-loop controller does not
persist more than one disturbance, the evolved controller persists the whole force pattern
in 37% of the trials. In average the evolved controller is evaluated for 32.1 s which is in
between the last two disturbances.

Table 8.8: The force profile used to compare the evolved stabilize controller of CHARLIE with the
initial open-loop controller.

Time (s) Duration (s) Lateral force (N)

5± 0.2 0.5 50
8± 0.2 0.5 50

12± 0.2 0.5 -50
14± 0.2 0.5 -50
20± 0.2 0.5 50
24± 0.2 0.5 50
28± 0.2 0.5 50
36± 0.2 0.5 50

Table 8.9: Statistics of the comparison between the initial open-loop controller and the resulting
reactive controller of CHARLIE. Each controller is tested for a period of 60 s with a force profile
of eight disturbances. An individual test is aborted if the controller does not persist a disturbance
– if the robots falls over. A test is successful if the controller persists all disturbances, resulting in
an evaluation time of 60 s.

Initial open-loop controller Evolved reactive controller

Successful test 0% 37%

Average evaluation time (s) 6.7 32.1
Max evaluation time (s) 8.8 60.0
Min evaluation time (s) 6.3 7.1

Figure 8.47 plots the modulation of the shoulder generated by the reactive module.
The reactive module produces a linear mapping between the force sensor and the mod-
ulation signal, resulting in a continuous adaptation of the behavior to the environment.
A similar adaptation is generated for the z-axis of the spine, while the hip roll angle and
x-axis of the spine is modulated by the single pulses of generated fire2_neuronmodules.

8.2.4 Conclusion

The experiments presented in Section 8.1.1 have shown that the Pendulum pattern ap-
proach produces superior results compared to the Gaussian and the Fourier approaches.
Additionally, a navigation and stabilizing controller was evolved for the simulated robot
EASY4. The relatively simple Sine-Based approach was used to generate locomotion pat-
tern for the SPOT and the SPACECLIMBER system. However, it was configured especially
for the target systems and thus cannot be used as general method. For the SPACECLIMBER
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Figure 8.47: Comparison of the modulation signal for the left shoulder generated with and with-
out a disturbing force applied to CHARLIE’s front body.

system also the Pendulum approach was used. The Pendulum approach was configured
by a more general method, while first evolving control patterns for the single legs and
afterward the control of the whole system by starting the optimization with the single leg
patterns. A similar method was applied to the CHARLIE system. The main difference in
the configuration setup for CHARLIE was the fact that the starting pattern were evolved
for the leg pairs and not for the single legs. For all three test robots control patterns could
be generated in the simulation software that could be transferred to the real systems. At
least in the simulation setup a sensory feedback loop was used to improve the locomotion
control for the complex CHARLIE system. Even though, the general method used for all
systems was similar, small adaptations mainly to the evaluation function were necessary
to improve the transferability of the evolved controllers.
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Chapter 9

Conclusion and Outlook

As described in the introduction (Section 1.1) the control of legged robots poses a com-
plex problem. Solving this problem by utilizing optimization algorithms is an interesting
approach and provides insights into two main questions. The first question Q1 is how
well optimization algorithms can deal with the complexity of the problem. The second
questionQ2 is whether a learned controller can have the same or even better quality then
an human-designed controller. This thesis contributes to the answer to these questions
by investigating how to achieve the main goal of this thesis:

Goal: Reduce the search space for evolving locomotion controllers by:
1. predefining control modules that limit the control possibilities to a
useful range and can still be used by all systems. 2. defining an iterative
method with increasing complexity instead of dealing with the whole
search space at once.

To reach the defined goal, a set of tools is developed to perform reproducible and
comparable experiments. The first tool is the modular simulation software MARS that
focuses to optimizing the trade-off between accuracy and computation cost. Additionally,
its software architecture is especially designed for the use in evolutionary applications.
For several robotic systems the behaviors developed in the simulation could be trans-
ferred to the real systems resulting in a behavior with similar quality regarding energy
efficiency. The second tool is the benchmarking framework BOLERO that is designed
to perform reproducible benchmarking experiments for the evolutionary development of
robotic controllers. Together with BOLERO a set of tools and benchmarks is developed
with focus on the generation of controllers for legged robots. While BOLERO is used
to define the learning environment (the problem description) the behavior representation
BAGEL is developed to provide a graph-based data flow language that can be used to
predefine control structures and modules for the behavior development. The genetic al-
gorithm SABRE is developed to make use of the foreknowledge and to precisely configure
how the evolution adapts to the behaviors. It is shown that the concept of SABRE to man-
age multiple populations for different behavior structures performs as well as comparable
existing methods for a set of selected benchmark problems.

The MARS simulation and the BOLERO framework are already available as open
source projects (see Langosz (2018); Fabisch and Langosz (2018)). The open source
projects for the tools BAGEL and SABRE are in preparation, too. Once BAGEL and SABRE

are also published as open source projects, all tools will be available as single “binary”
application, that can be installed via drag-and-drop to be used by none computer science
experts. Additionally, the benchmarks performed for this thesis will be included in the
binary package.
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Several experiments are presented to finally define a suitable control structure, build-
ing blocks, and an iterative process to evolve the control of legged locomotion. It is
shown that the general methodology can be used to generate the locomotion control for
different four-legged systems (two real systems and one simulated test system) and one
real six-legged system. With the simulated test system it is shown that modifying the lo-
comotion direction and stabilizing the robot by processing sensory data is possible with
the purposed control structure. However, for the real systems only the forward locomo-
tion is generated and further investigations are required to generate a holistic locomotion
controller for a kinematically complex system. Due to the structural complexity and the
required controller precision of SPACECLIMBER (six legs, 24 dof for walking) and CHARLIE

(four legs, 32 dof for walking) it is expected that the developed methodology can be ap-
plied to other legged systems as well.

Coming back to the first questionQ1, how well the optimization algorithms can deal
with the complexity of the locomotion problem, different challenges are involved that
can be nailed down to the structure and size of the search space and fitness landscape.
Thereby, the choice of a representation for the controller defines the search space. On one
hand, the controller, which parameters are optimized by a local search algorithm, can be
developed for a specific system. On the other hand, a representation such as ANNs is a
very generic controller whose structure and parameters can be optimized. A controller
designed for a specific system allows to design the complexity for a local search algorithm
and therefore does not pose a generic solution. Thus such an approach is less important
concerning the two questions Q1 and Q2. By evolving control patterns only based on
ANNs without further limiting the search space via predefined structures it is not possible
to generate adequate solutions for kinematically complex robots. The solution presented
in this thesis lies in between these two approaches by defining general control structures
that require only the knowledge about symmetry properties of the target system. This
solution generates walking patterns that have a similar performance compared to the
originally developed model-based controllers of the three robots SPOT, SPACECLIMBER,
and CHARLIE.

Considering question Q2, whether a generated controller can have the same or even
better quality than an implemented controller, the results presented in this thesis indicate
that at least a similar quality can be achieved. However, for the comparison of the perfor-
mance only a sub-part of the locomotion control – walking straight ahead – is compared
and it still have to be shown that a holistic controller can be generated by ML techniques
with a quality comparable to model-based controllers. The holistic controller would have
to deal with desired direction changes of the robot (needed for navigation), transitions of
different walking gaits, and an adaptation to the environment.

With the predefined structures and the iterative method presented in this thesis the
evolutionary approach is able to deal with the complexity of the three existing robots
SPOT, SPACECLIMBER, and CHARLIE. To allow the evolutionary approach to generate ad-
equate solutions without the need of the predefined structures one have to come up with
a setup in which these structures can be evolved before the evolutionary process faces the
complexity of solving the locomotion of the whole system. A very important difference of
natural evolution compared to the locomotion problem of existing robots is the fact, that
the predefined structures in nature were evolved together with the morphology develop-
ment. This concept might be copied by subdividing the morphology of the target system
in a hierarchical structure starting with a single actuator on the lowest level. On every
level the evolution could generate skills that are based on the evolved skills of the next
lower layer. This hierarchical concept could generate the predefined structures automati-
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cally. However, there are many possibilities how to define the hierarchical structures and
the evolution of skills. On one hand, the predefined structures of this thesis help under-
standing the requirements on such a setup. On the other hand, performing a hierarchical
evolution could give insights into how to adapt these predefined structures to increase the
performance of the method presented in this thesis, especially for evolving more holistic
solutions providing more integrated sensor coupling.

Two main challenges arise when generating locomotion controllers via ML methods
in simulation for real systems. The first challenge is to define the evaluation function.
On one hand, when using a rather simple evaluation function it is pretty likely that many
solutions exist that perform well in relation to the evaluation function but would stress
the real system. On the other hand, more complex evaluation functions penalizing these
solutions could limit the exploration of the search algorithm and result in solutions with
poor performance. Another option is to limit the search algorithm via the behavior repre-
sentation and the search step size to generate desired solutions. However, depending on
the evaluation function and behavior representation, the search algorithm might have to
overcome a plateau with poor fitness to find the desired optimum, which stays in contrast
to limiting the search algorithm. The second challenge is to deal with the simulation-
reality gap. The mechanical stress on a system is normally only roughly simulated and
thus cannot be treated with the evaluation function directly. Eventually, to apply ML

methods to the problem on generating locomotion controller for complex legged robots,
a deep understanding of these challenges is required. The tools, controller modules, and
methods developed for this thesis should pose a good starting point to tackle these chal-
lenges for a new robot.

If the goal is to develop a holistic locomotion controller for an existing robot, in most
cases designing a model-based solution is the more promising approach. It still has to
be shown that a generated controller is able to provide all features of a model-based ap-
proach. These features include, amongst others, different locomotion gaits and an adap-
tation to the context given by the environment and target properties of the locomotion
behavior such as desired speed, stability, or energy efficiency.

To continue the research on evolving locomotion controllers for real complex legged
robotic systems different objectives could be tackled. The following list includes selected
recommended objectives:

• Statistically Results: Many experiments on the development of legged locomotion
only show the general potential of the method by providing a single positive result.
The experiments could be repeated to give an idea about the probability that these
results can be generated.

• Pendulum Approach: The Pendulum approach is finally presented as the most
promising approach. Further investigation could improve this approach.

– Further investigations could increase the representation strength concerning
the joint pattern approximation.

– The parameters of pendel_control, such as pendulum length andmass, could
be derived from the kinematic properties of the system.

– The damping defined for the pendulum could be replaced by spring-damper
properties.

– By using force-torque measurements of the robot the virtual gravity used in the
pendulum controller could be replaced by the measured gravity, which already
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provides a coupling of the controller with the environment without the need
of explicitly evolving this coupling.

• Sensor Coupling: Reacting to sensory input is feasible with the Pendulum approach
but needs more investigation in setting up scenarios as generally as possible.

– It could be interesting to define a set of “sandbox” experiments for the sensory
coupling, similar to the experiments in Chapter 7.

– For the experiments performed in this thesis, constant reactions to sensory
values measured at defined points in the step phase are composed. If, for
instance, the sensors have to be evaluated over the whole stance phase, many
measurement points have to be generated. The sensory coupling could be
improved if a time slot is defined for the measurement instead of the exact time
point. Similarly, if for example a linear reaction force to the sensory value is
required multiple measurement points have to be composed, discretizing this
function. These measurements could be merged to a single one if a projection
from the measured sensor value to the reaction strength is possible.

– Learning the “open-loop” pattern and the sensory coupling at once could im-
prove the base pattern (behavior without disturbances) and already provides
an adaptation to the environment even without enforcing it by the simulation
setup.

– It could be interesting to use the profile of the local environment as sensory
input to modulate the locomotion pattern. It would allow the controller to
adapt the touchdown position of the feet and already adapt the pattern to the
environment before it is measured by force or orientation sensors. To learn
this modulation deep reinforcement learning could be considered as a learning
method.

• Simulation: The simulation could be enhanced to increase the probability of trans-
ferable results.

– Joints that break on a defined load could be generated at potential breaking
points of the real system.

– The force distribution on the rigid bodies could be measured / simulated.

– Simulating the motor currents and gear friction would influence the energy
evaluation.

– Simulating “pain” could allow to filter undesired behaviors in a more direct
way than optimizing for mechanical stress in general.

• Character Animation: A great progress is done in the field of character anima-
tion, including model-based, optimization, and deep learning approaches. It should
be evaluated how the problem of evolving locomotion controller for complex real
legged robots can benefit from this progress.

– Apply the Pendulum approach on character animation problems to compare
it to results in this area.

– Apply the methods of the character animation area to a simulation of a real
robotic system.

• Fitness Landscape: Different methods could be used to influence the fitness land-
scape in order to improve the locomotion behaviors that can be evolved.
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– The evolution could start with a less challenging environment, which for ex-
ample can be achieved with a reduced gravity. Then the gravity could be in-
creased over time or depending on the performance of the evolved behaviors.

– Randomly changing the weights of a multi-objective evaluation function in
relation to the evolutionary progress could generate more generic behaviors.

– The evaluation function could be composed of a set of subgoals. For instance
the following subgoals could be considered:

1. The distance reached can be the first evaluation objective.
2. If a defined distance is reached, the body movement is optimized (low

movement on height axis and constant on forward axis).
3. If the second goal has a defined performance, the evolution proceeds by

optimizing the energy efficiency.

With the current state the question arises why to continue researching on ML meth-
ods to solve the locomotion problem of legged robots. Regarding this question differ-
ent aspects have to be considered. One aspect is the possibility to generate locomotion
solutions for specific requirements that can be implemented and used beside a holistic
model-based control. This becomes interesting if for instance no sufficient model of the
environment can be generated. Another aspect is the possibility to adapt the locomotion
behavior while the system is operating. Given a legged robotic system that is operating
on a day-by-day basis and can measure its own performance, the techniques presented in
this thesis could be used for an online adaptation of the controller. A further aspect is
the general research on ML methods on complex problems. If the performance of a ML

method can be improved on a problem, even though the problem can be solved with a
different approach, it might help improving the understanding of the ML method and to
increase the performance also on other problems.
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Appendix A

Appendix

A.1 Configurations

A.1.1 SPACECLIMBER

The default parameters of the SPACECLIMBER model-based control:

1 # ======= General Notes =========
2 # 1. The motion control is based on central pattern generator (cpg), which
3 # generates a pulse which is shifted for every leg, so that cyclic walking
4 # pattern is generated. A Cartesian posture is defined and superposed by a
5 # cyclic motion around. This generated open loop trajectories are adapted by
6 # reactive behaviors or reflexes to adapt to the environment.
7 # 2. The robot frame is fixed to the robot, x pointing to the front, z upwards,
8 # and y creating a right-handed coordinate system.
9 # 3. All parameters are defined in the locomotion frame which is the the center
10 # of footprint thus parallel to an ideal plane ground (which can also be
11 # inclined).
12 # -> So a tilted robot is still walking parallel to the ground.
13 # 4. All units are SI units (m, rad, N, ...) or explicitly stated if not.
14
15 # ======= Constant Parameters (which should stay constant) =========
16
17 # update period in s
18 time_diff: 0.04
19
20 # thresholds for contact estimation -> 2 of 3 must be true
21 # force in N, torque in Nm, pressure has no unit
22 # for sim
23 #contact/pressure_th: 2.0
24 #contact/force_th: 4.0
25 #contact/torque_th: 2.0
26 # for real
27 contact/pressure_th: 12.0
28 contact/force_th: 20.0
29 contact/torque_th: 3.0
30
31
32 # ====== Posture Parameters =======
33
34 # foot print in longitudinal and lateral direction in m (will be applied during
35 # swing phase to avoid counteracting forces)
36 step_base/x: 0.9
37 step_base/y: 0.85
38
39 # translation of robot frame in locomotion frame in m
40 body_shift/x: 0.0
41 body_shift/y: 0.0
42 body_shift/z: 0.23
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43
44 # rotation between locomotion frame and robot frame in rad
45 body_rot/roll: 0.0
46 body_rot/pitch: 0.0
47 body_rot/yaw: 0.0
48
49 # rotation of lean joint of each limb in rad (around y-axis of robot frame)
50 lean: 0.0
51
52 # allows to modify each limb position in locomotion frame in m (applied during
53 # swing phase)
54 limb0/pos_offset/x: 0.0
55 limb0/pos_offset/y: 0.0
56 limb0/pos_offset/z: 0.0
57 limb1/pos_offset/x: 0.0
58 limb1/pos_offset/y: 0.0
59 limb1/pos_offset/z: 0.0
60 limb2/pos_offset/x: 0.0
61 limb2/pos_offset/y: 0.0
62 limb2/pos_offset/z: 0.0
63 limb3/pos_offset/x: 0.0
64 limb3/pos_offset/y: 0.0
65 limb3/pos_offset/z: 0.0
66 limb4/pos_offset/x: 0.0
67 limb4/pos_offset/y: 0.0
68 limb4/pos_offset/z: 0.0
69 limb5/pos_offset/x: 0.0
70 limb5/pos_offset/y: 0.0
71 limb5/pos_offset/z: 0.0
72
73 # ====== Motion Parameters =======
74 # each step cycle is divided into a swing (lift + shift + down) and a stance
75 # phase (which moves the robot over the ground)
76
77 # if one of the following three params is not zero, movement is desired and the
78 # internal clock of the cpg is ticking turn angle during one step cycle in rad
79 turn_rate: 0.0
80
81 # length of a step during one step cycle in m
82 step_length/x: 0
83 step_length/y: 0
84
85 # height during shift phase in m
86 step_length/z: 0.1
87
88 # step cycle time in s
89 step_time: 5.0
90
91 # time for each phase in percent/100 of a step cycle
92 lift_time: 0.1
93 shift_time: 0.12
94 down_time: 0.16
95
96 # linear or non-linear (first fast, at the end slow) movement in downphase
97 non_linear_down: 0.0
98
99 # phase shift between leg movement in percent/100 (1.0 -> single leg movement,
100 # 0.0 -> tripod or cross gait)
101 phase_shift: 0.5
102
103 # gait which defines the order of leg movement (1-4 for 6 limbs, 5 for 4 limbs)
104 gait: 2.0
105
106
107 # ====== Hole Reflex ================
108 # and early touchdown (or elevation and depression reflex)
109 # stops the down movement when an obstacle is detected or moves further when in
110 # stance phase no ground is detected
111
112 # 0.0 -> deactivated, 1.0 -> activated
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113 hole_reflex/active: 0.0
114
115 # speed of stretching the leg, if no ground was detected in m per time step
116 hole_reflex/sensitivity: 0.003
117
118 # speed of recovering to original trajectory in m per time step
119 hole_reflex/retraction: 0.008
120
121 # stretching is delayed by x time steps before beginning to stretch
122 hole_reflex/touchdown_delay: 2.0
123
124 # limits the stretch to this value in m
125 hole_reflex/max_foot_dist_z: 0.6
126
127 # does not stop down movement even when an obstacle was detected until this
128 # distance in m was moved
129 hole_reflex/min_amp_z: 0.02
130
131
132 # ====== SpaceClimber constants ===========
133 kinematics/shank_front: 0.333
134 kinematics/shank_middle: 0.355
135 kinematics/shank_rear: 0.336
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A.1.2 CEC13 Benchmark Functions

Table A.1: Benchmark functions used in the parameter optimization competition at the CEC13
conference.

No. Function f∗i = fi(x∗)

1 Sphere −1400
Unimodal 2 Rotated High Conditioned Elliptic −1300
Function 3 Rotated Bent Cigar −1200

4 Rotated Discus −1100
5 Different Powers −1000

6 Rotated Rosenbrock’s −900
7 Rotated Schaffers F7 −800
8 Rotated Ackley’s −700
9 Rotated Weierstrass −600
10 Rotated Griewank’s −500
11 Rastrigin’s −400

Basic 12 Rotated Rastrigin’s −300
Multimodal 13 Non-Continuous Rotated Rastrigin’s −200
Functions 14 Schwefel’s −100

15 Rotated Schwefel’s 100
16 Rotated Katsuura 200
17 Lunacek Bi_Rastrigin 300
18 Rotated Lunacek Bi_Rastrigin 400
19 Expanded Griewank’s plus Rosenbrock’s 500
20 Expanded Schaffer’s F6 600

21 Composition Function 1 (n=5, Rotated) 700
22 Composition Function 2 (n=3, Unrotated) 800
23 Composition Function 3 (n=3, Rotated) 900

Composition 24 Composition Function 4 (n=3, Rotated) 1000
Functions 25 Composition Function 5 (n=3, Rotated) 1100

26 Composition Function 6 (n=5, Rotated) 1200
27 Composition Function 7 (n=5, Rotated) 1300
28 Composition Function 8 (n=5, Rotated) 1400
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A.1.3 NEAT

The default parameters used for the NEAT algorithm.

1 ##########
2 # My parameters
3 ##########
4
5 outputScale: 1.0
6
7 ##########
8 # Basic parameters
9 ##########
10
11 # Size of population
12 PopulationSize: 130
13
14 # If true, this enables dynamic compatibility thresholding
15 # It will keep the number of species between MinSpecies and MaxSpecies
16 DynamicCompatibility: true
17
18 # Minimum number of species
19 MinSpecies: 5
20
21 # Maximum number of species
22 MaxSpecies: 20
23
24 # Don't wipe the innovation database each generation?
25 InnovationsForever: true
26
27 AllowClones: true
28
29
30
31 ################
32 # GA Parameters
33 ################
34
35 # Age threshold, meaning if a species is below it, it is considered young
36 YoungAgeThreshold: 5
37
38 # Fitness boost multiplier for young species (1.0 means no boost)
39 # Make sure it is > 1.0 to avoid confusion
40 YoungAgeFitnessBoost: 1.1
41
42 # Number of generations without improvement (stagnation) allowed for a species
43 SpeciesDropoffAge: 15
44
45 # Minimum jump in fitness necessary to be considered as improvement.
46 # Setting this value to 0.0 makes the system to behave like regular NEAT.
47 StagnationDelta: 0.0
48
49 # Age threshold, meaning if a species is above it, it is considered old
50 OldAgeThreshold: 30
51
52 # Multiplier that penalizes old species.
53 # Make sure it is < 1.0 to avoid confusion.
54 OldAgePenalty: 1.0
55
56 # Detect competetive coevolution stagnation
57 # This kills the worst species of age >N (each X generations)
58 DetectCompetetiveCoevolutionStagnation: false
59 # Each X generation..
60 KillWorstSpeciesEach: 15
61 # Of age above..
62 KillWorstAge: 10
63
64 # Percent of best individuals that are allowed to reproduce. 1.0 100%
65 SurvivalRate: 0.15
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66
67 # Probability for a baby to result from sexual reproduction (crossover/mating). 1.0 100%
68 # If asexual reproduction is chosen, the baby will be mutated 100%
69 CrossoverRate: 0.25
70
71 # If a baby results from sexual reproduction, this probability determines if mutation will
72 # be performed after crossover. 1.0 100% (always mutate after crossover)
73 OverallMutationRate: 0.25
74
75 # Probability for a baby to result from inter-species mating.
76 InterspeciesCrossoverRate: 0.05
77
78 # Probability for a baby to result from Multipoint Crossover when mating. 1.0 100%
79 # The default is the Average mating.
80 MultipointCrossoverRate: 0.6
81
82 # Performing roulette wheel selection or not?
83 RouletteWheelSelection: false
84
85
86
87
88
89 #################/
90 # Phased Search parameters #
91 #################/
92
93 # Using phased search or not
94 PhasedSearching: false
95
96 # Using delta coding or not
97 DeltaCoding: false
98
99 # What is the MPC + base MPC needed to begin simplifying phase
100 SimplifyingPhaseMPCThreshold: 20
101
102 # How many generations of global stagnation should have passed to enter simplifying phase
103 SimplifyingPhaseStagnationThreshold: 30
104
105 # How many generations of MPC stagnation are needed to turn back on complexifying
106 ComplexityFloorGenerations: 40
107
108
109
110
111
112
113 ##################/
114 # Novelty Search parameters #
115 ##################/
116
117 # the K constant
118 NoveltySearch_K: 15
119
120 # Sparseness threshold. Add to the archive if above
121 NoveltySearch_P_min: 0.5
122
123 # Dynamic Pmin?
124 NoveltySearch_Dynamic_Pmin: true
125
126 # How many evaluations should pass without adding to the archive
127 # in order to lower Pmin
128 NoveltySearch_No_Archiving_Stagnation_Threshold: 150
129
130 # How should it be multiplied (make it less than 1.0)
131 NoveltySearch_Pmin_lowering_multiplier: 0.9
132
133 # Not lower than this value
134 NoveltySearch_Pmin_min: 0.05
135
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136 # How many one-after-another additions to the archive should
137 # pass in order to raise Pmin
138 NoveltySearch_Quick_Archiving_Min_Evaluations: 8
139
140 # How should it be multiplied (make it more than 1.0)
141 NoveltySearch_Pmin_raising_multiplier: 1.1
142
143 # Per how many evaluations to recompute the sparseness of the population
144 NoveltySearch_Recompute_Sparseness_Each: 25
145
146
147
148
149 #################/
150 # Structural Mutation parameters
151 #################/
152
153 # Probability for a baby to be mutated with the Add-Neuron mutation.
154 MutateAddNeuronProb: 0.01
155
156 # Allow splitting of any recurrent links
157 SplitRecurrent: true
158
159 # Allow splitting of looped recurrent links
160 SplitLoopedRecurrent: true
161
162 # Probability for a baby to be mutated with the Add-Link mutation
163 MutateAddLinkProb: 0.15
164
165 # Probability for a new incoming link to be from the bias neuron
166 # This enforces it. A value of 0.0 doesn't mean there will not be such links
167 MutateAddLinkFromBiasProb: 0.0
168
169 # Probability for a baby to be mutated with the Remove-Link mutation
170 MutateRemLinkProb: 0.01
171
172 # Probability for a baby that a simple neuron will be replaced with a link
173 MutateRemSimpleNeuronProb: 0.0
174
175 # Maximum number of tries to find 2 neurons to add/remove a link
176 LinkTries: 128
177
178 # Probability that a link mutation will be made recurrent
179 RecurrentProb: 0.01
180
181 # Probability that a recurrent link mutation will be looped
182 RecurrentLoopProb: 0.01
183
184
185
186
187
188 #################/
189 # Parameter Mutation parameters
190 #################/
191
192 # Probability for a baby's weights to be mutated
193 MutateWeightsProb: 0.5
194
195 # Probability for a severe (shaking) weight mutation
196 MutateWeightsSevereProb: 0.5
197
198 # Probability for a particular gene's weight to be mutated. 1.0 100%
199 WeightMutationRate: 0.15
200
201 # Maximum perturbation for a weight mutation
202 WeightMutationMaxPower: 1.0
203
204 # Maximum magnitude of a replaced weight
205 WeightReplacementMaxPower: 1.0
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206
207 # Maximum absolute magnitude of a weight
208 MaxWeight: 2.0
209
210 # Probability for a baby's A activation function parameters to be perturbed
211 MutateActivationAProb: 0.0
212
213 # Probability for a baby's B activation function parameters to be perturbed
214 MutateActivationBProb: 0.0
215
216 # Maximum magnitude for the A parameter perturbation
217 ActivationAMutationMaxPower: 0.0
218
219 # Maximum magnitude for the B parameter perturbation
220 ActivationBMutationMaxPower: 0.0
221
222 # Activation parameter A min/max
223 MinActivationA: 4.924273
224 MaxActivationA: 4.924273
225
226 # Activation parameter B min/max
227 MinActivationB: 0.0
228 MaxActivationB: 0.0
229
230 # Maximum magnitude for time constants perturbation
231 TimeConstantMutationMaxPower: 0.0
232
233 # Maximum magnitude for biases perturbation
234 BiasMutationMaxPower: 1.0
235
236 # Probability for a baby's neuron time constant values to be mutated
237 MutateNeuronTimeConstantsProb: 0.0
238
239 # Probability for a baby's neuron bias values to be mutated
240 MutateNeuronBiasesProb: 0.5
241
242 # Time constant range
243 MinNeuronTimeConstant: 0.0
244 MaxNeuronTimeConstant: 0.0
245
246 # Bias range
247 MinNeuronBias: -2.0
248 MaxNeuronBias: 2.0
249
250
251
252
253
254 # Probability for a baby that an activation function type will be changed for a single neuron
255 # considered a structural mutation because of the large impact on fitness
256 MutateNeuronActivationTypeProb: 0.0
257
258 # Probabilities for a particular activation function appearance
259 ActivationFunction_SignedSigmoid_Prob: 0.0
260 ActivationFunction_UnsignedSigmoid_Prob: 1.0
261 ActivationFunction_Tanh_Prob: 0.0
262 ActivationFunction_TanhCubic_Prob: 0.0
263 ActivationFunction_SignedStep_Prob: 0.0
264 ActivationFunction_UnsignedStep_Prob: 0.0
265 ActivationFunction_SignedGauss_Prob: 0.0
266 ActivationFunction_UnsignedGauss_Prob: 0.0
267 ActivationFunction_Abs_Prob: 0.0
268 ActivationFunction_SignedSine_Prob: 0.0
269 ActivationFunction_UnsignedSine_Prob: 0.0
270 ActivationFunction_SignedSquare_Prob: 0.0
271 ActivationFunction_UnsignedSquare_Prob: 0.0
272 ActivationFunction_Linear_Prob: 0.0
273
274
275
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276
277 ##################/
278 # Speciation parameters
279 ##################/
280
281 # Percent of disjoint genes importance
282 DisjointCoeff: 1.0
283
284 # Percent of excess genes importance
285 ExcessCoeff: 1.0
286
287 # Average weight difference importance
288 WeightDiffCoeff: 1.5
289
290 # Node-specific activation parameter A difference importance
291 ActivationADiffCoeff: 0.0
292
293 # Node-specific activation parameter B difference importance
294 ActivationBDiffCoeff: 0.0
295
296 # Average time constant difference importance
297 TimeConstantDiffCoeff: 0.0
298
299 # Average bias difference importance
300 BiasDiffCoeff: 0.0
301
302 # Activation function type difference importance
303 ActivationFunctionDiffCoeff: 0.0
304
305 # Compatibility threshold
306 CompatThreshold: 3.0
307
308 # Minumal value of the compatibility threshold
309 MinCompatThreshold: 0.2
310
311 # Modifier per generation for keeping the species stable
312 CompatThresholdModifier: 0.2
313
314 # Per how many generations to change the threshold
315 # (used in generational mode)
316 CompatThreshChangeInterval_Generations: 1
317
318 # Per how many evaluations to change the threshold
319 # (used in steady state mode)
320 CompatThreshChangeInterval_Evaluations: 10
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A.1.4 Locomotion Environment

Possible configuration parameters that can be defined for the locomotion environment:

Parameter Description

RobotScene The file that is loaded including the robot. The file could also include the environment, especially
if the smurfs format is used.

CreatePlane If no environment is loaded from file the locomotion_environment can create a simple infinite
plane.

ConveyorSpeed This option defines a contact speed for the plane created if the CreatePlane option is set. Setting
the contact speed can be used to simulate a treadmill.

PlaneCFM The /cfm/ parameter influences the softness of a contact with the plane (floor conditions). A ridged
contact is something like 0.00000001, while a soft contact is in the area of 0.001. The softness
depends also on the mass of the robot and other simulation parameters. So it might be necessary
to tune the parameter for the every setup.

FeetNodeNames Contains a list with the feet names of the robot. Is used to place the robot directly above the
environment.

FootPosZ An offset to the foot position for setting the robot into the environment. In case of sphere feet it
is normally the radius.

EvaluationCurrentFactor The influence of the motors current efficiency to the fitness value. Note: Currently, no current is
created in MARS if a motor is not moving. A new motor model will be added soon.

EvaluationTorqueFactor The influence of the motors torque efficiency to the fitness value.
EvaluationNodeName The simulation node which defines the position of the robot.
AbortOnContact Aborts the evaluation if the contact sensor returns a collision. Bad collisions can produce wrong

simulation behaviors with robots jumping around. To prevent this, one should setup a contact
sensor for all parts excluding the feet and set this parameter to true. It will also shorten the
evaluation of undesired behaviors.

ContactSensorID The sensor id in mars which provides the contact information for AbortOnContact. This sensor
is a list of all bodies that shall not have contact.

MaxTime Set the time in ms the robot will be evaluated if not aborted.
StillFailureTime If this time in ms is reached without a change in the simulation the evaluation is aborted. This

shortens the evaluation of behaviors that produces no or constant output.
enableGUI Start the learning with or without GUI, without the GUI is much faster, while running with GUI

allows to debug the optimization process.
graphicsStepSkip The given number of simulation steps is not displayed. Makes the GUI run faster.
DisplayTime With this option the simulation time can be displayed in 2D overlay.
DisplayGrid Enables the visualization of a grid 4m x 4m x 2m grid.
CreateSupportJoint With this option a slider joint can be created that fixes the SupportNodeName in the world with

a slider joint with the axis in z direction. This option is mostly used if one wants to optimize
behaviors of a robot or single legs on a treadmill.

SupportNodeName See CreateSupportJoint.
SliderMinPos Can be used to define a low stop of the support slider joint.
SliderRange The range plus the min pos defines the high stop of the support slider joint.
SliderD Defines a damping constant of the slider joint.
SliderK Defines a spring constant of the slider joint. If the damping and spring constants are not set the

slider if freely movable.
VarySliderPosZ This options lowers the slider min position on every reset by a random value in the range of 0-5cm.
UseSupportMotor This option create a support motor that holds the support slider in the initial position. The motor

is activated and deactivated in an interval of one second. Whether the motor is active or not is
a sensor information for the behavior. The sensor information is inserted in front of the robot
sensor list. This option disables the five previous options.

UseController MARS support controllers that define sensor and actuator lists. If this option is set the controller
is used to define the in- and outputs of the behavior. Also the order of the in- and outputs is then
defined by the order of the sensor and actuators in the controller.

UsePWMLimit This option creates a second input for every motor that allows to limit the torque of the motor. It
can be used for approaches where torque control is used instead of position control.

FilterInfluence The filter influence value can be used to filter the behavior outputs. The value is used by:
motorValue = (lastValue ∗ (1− filterInfluence) + behaviorOutput ∗ filterInfluence)

UseStartPosYOffset If set, the robot start position is varied on every reset on the y axis in a range of -0.5m to 0.5m.
TimeOutput Adds a sensor value including the simulation time in front of the robot sensor list.
SineOutput Adds a sensor value including a sine curve with an frequency of 1Hz.
BagelGraphFitness A bagel graph can be used to define the fitness function.
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A.2 Experiment Results

A.2.1 Evolving Legged Locomotion

Simulated Robot - Open Loop

Table A.3: Significance by Mann–Whitney U-test.

Config Approach vs Approach Significance
Soil Fourier Gaussian p « 5%
symmetric Fourier Pendulum p < 5%

Pendulum Gaussian p > 5%
Hard Fourier Pendulum p « 5%
symmetric Pendulum Gaussian p « 5%

Fourier Gaussian p < 5%
Soil Gaussian Pendulum p « 5%
full Fourier Pendulum p « 5%

Gaussian Fourier p > 5%
Hard Gaussian Fourier p « 5%
full Gaussian Pendulum p < 5%

Fourier Pendulum p < 5%
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A.2.2 Benchmark Analysis

Environment list:

• env 0001: simple test problem [CEC13TestFunction: 1]

• env 0002: simple test problem [CEC13TestFunction: 11]

BehaviorSearch list:

• beh 0001: c0n behavior search [Optimizer: pso optimizer]

• beh 0002: c0n behavior search [Optimizer: cmaes optimizer]

env 0001:

beh 0001 vs. beh 0002 p << 5% p : 2.98769040667e− 11

env 0002:

beh 0001 vs. beh 0002 p << 5% p : 1.44186279911e− 09

Figure A.1: Example output of automatically generated benchmark analysis.



Terms and Definitions

bias Some fixed value given into a control module.

contralateral Legs on the other side of the corpus.

crossover Combining the DNA of two parents into a new DNA.

fitness Fitness means the fitness of an individual of an evolutionary process. The selection
of the parents for the next generation is done based on that fitness. Thus, the fitness
correlates to a reward in the RL domain or a general evaluation.

fitness value The fitness value describes the fitness of an individual by a number. Due to
often used fitness calculations, like the RMSE, a low fitness value represent a good
individual fitness.

generation A generation is a collection of all individuals of one species with the same
amount of ancestors.

genotype The genetic representation (DNA) of an individual.

individual An individual is a single entity underlying the process of fitness evaluation.

ipsilateral Legs on the same side of the corpus.

mutation The non-perfect process of copying a DNA. Due to errors in the process the
copied DNA differs from the prototype.

phase A value between 0 and 1 defining the current position in a rhythmic pattern.

phenotype The final representation of an individual used for the fitness evaluation.

population A population is a collection of all simultaneously living individuals of one
species. In an abstract model population and generation are often the same.

pulse A peek pattern being shortly 1 every x seconds and 0 otherwise.
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Acronyms

ANN Artificial Neural Network

API Application Programming Interface

BAGEL Biologically Graph-Based Language

BEAGLE C++ Evolutionary Computation (EC) framework

BOLERO Behavior Optimization and Learning for Robots

CMA-ES Covariance Matrix Adaptation Evolutionary Strategy

CEC Congress on Evolutionary Computation

cfm Constraint Force Mixing

CPG Central Pattern Generator

DNA Deoxyribonucleic acid is the molecule that encodes the development of a life form

EC Evolutionary Computation

erp Error Reducing Parameter

ES Evolutionary Strategies

FPGA Field Programmable Gate Array

FTP File Transfer Protocol

GA Genetic Algorithms

GP Genetic Programming

GUI Graphical User Interface

IMU Inertial Measurement Unit

JSON Javascript Object Notation

MARS Simulation Machina Arte Robotum Simulans

ML Machine Learning

M.O.N.S.T.E.R. Microkernel for scabrous terrain exploring robots

NEAT Neuroevolution of Augmenting Topologies
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ngc Number of ground contacts of robot’s parts other than the feet

ODE Open Dynamics Engine

OSG OpenSceneGraph

PCR Posture, Central pattern generator, and Reflex controller

PID Proportional–Integral–Derivative

PSO Particle Swarm Optimization

PYTHON Script-based programming language

QT An open source development framework for graphical user interfaces

REST Representational State Transfer

RL Reinforcement Learning

RMSE Root mean square error

ROCK The Robot Construction Kit

SABRE Swarm-Assisted Evolutionary Algorithm

TORCS The Open Racing Car Simulator

YAML YAML ain’t markup language



Math Notations

General notations:

x Bold letters in equations are used to denote vectors.

σx A sigma followed by a subscript letter denotes the standard deviation of the corre-
sponding evaluation criterion.

% The modulo as used in programming languages: a%b =

{

a− b⌊ ab⌋ if a > 0

a− b⌈ ab⌉ else
.

N(µ, σ2) Normal distribution with µ as mean and σ2 as variance.

U(a,b) Uniform distribution with a ≤ U(a,b) ≤ b.

argminif(X[i]) i’th element from X with minimum function value f(x).

j(ϕ) Function defining the joint angle (θ) over the phase (ϕ).

⊘ Symbol used to denote the average.

Symbols used:

ϕ Phase of a pattern
ϕG Global phase of the CPG

φ Phase shift
ρ Short trigger signal
θ Joint angle
f CPG frequency
t Time
Fp Force generated by the pendulum controller
Fe Force added to the pendulum controller through input
ωp Virtual velocity of the pendulum controller
dp Damping of the virtual velocity of the pendulum controller
fp Frequency parameter of the pendulum controller
R

+ Definition: R+ := x ∈ R | x > 0
sp Percentage of the swing part within a step phase
µ Friction coefficient
ϑ Average motor torque used for evaluation
ϱ Average joint load used for evaluation
p Robot position
α Robot roll angle, normally measured at the corpus
β Robot pitch angle, normally measured at the corpus
γ Robot yaw angle, normally measured at the corpus

185
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v Robot velocity
σ Mutation step size
σmin Minimum mutation step size
σmax Maximum mutation step size
β Step size adaption
ẋ Derivative of x
TStance Stance time of locomotion pattern
TLift Lift time of locomotion pattern
TShift Shift time of locomotion pattern
TDown Down time of locomotion pattern
TSwing Swing time of locomotion pattern
TStep Step time of locomotion pattern
Rx Step length in x for one step cycle
Ry Step length in y for one step cycle
Ryaw Orientation change within one step cycle
Rheight Lift height of the leg in the swing phase
Pth Threshold value
kp Spring constant
kd Spring damping factor
h Simulation step size
d Distance
dm Damage
P Population
Pi I’th sub-population
λ Number of individuals in one population (in case of SABRE sub-population)
κ Number of sub-population of SABRE

Λ Number of individuals in one population of SABRE

Nmax Maximum number of nodes in a BAGEL graph generated by SABRE

Emax Maximum number of edges in a BAGEL graph generated by SABRE

o Offset
a Amplitude
cn Constant negative reward used for Boolean evaluation criteria
fs Feet slippage percentage (slip velocity over robot velocity)
mc Robot’s center of mass
τ Boolean value that is true if ngc > 0 and false otherwise
τ′ Boolean value that is true if a joint load is above a given threshold
p1 Start position of the swing phase in radian for the Sine-Based CPG

p2 Start position of the stance phase in radian for the Sine-Based CPG
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