1,577 research outputs found

    Contrast sensitivity for letter optotypes vs. gratings under conditions biased toward parvocellular and magnocellular pathways

    Get PDF
    AbstractThis study examined the extent to which letter optotypes and grating stimuli provide equivalent measures of contrast sensitivity under conditions designed to favor the magnocellular (MC) and parvocellular (PC) pathways. The contrast sensitivity functions (CSFs) of three visually normal observers were measured for Sloan letters and Gabor patches, using steady- and pulsed-pedestal paradigms to bias processing toward MC and PC pathways, respectively. CSFs for Gabor patches were low-pass for the steady-pedestal paradigm and band-pass for the pulsed-pedestal paradigm, in agreement with previous reports. However, CSFs for letters were low-pass for both testing paradigms. CSFs for letters restricted in frequency content by spatial filtering were equivalent to those for Gabor patches for both testing paradigms. Results indicate that conventional letter optotypes can provide a misleading measure of contrast sensitivity, especially under conditions emphasizing the PC pathway. The use of spatially band-pass filtered letters can provide a more appropriate evaluation of spatial contrast sensitivity while maintaining some of the potential advantages of letters

    Capacity limitations of visual memory in two-interval comparison of Gabor arrays

    Get PDF
    The capacity of short-term visual memory (VSTM) was assessed in a two-interval spatial frequency (SF) discrimination task. The cued Gabor target in a multi-element array either increased or decreased in SF across a 2s interstimulus interval (ISI). Distracters as well as target were made to change across ISI so that memory of the individual SF of Gabor elements was required to solve the discrimination. The dynamics of the information loss from visual memory were analysed by manipulating the timing of spatial cues and masks. Cueing the target position before the first display gave thresholds comparable with those for a single Gabor patch. Cues placed after the first display gave higher thresholds indicating some loss of information. Within the ISI there was little increase in threshold or set size effect with cue delay. However there was a sharp rise in thresholds for cue positions after the second display. Gabor masks placed before a mid-ISI cue were more effective than noise masks or Gabor masks placed after the cue. With a cue placed late in the ISI, preceded by a Gabor mask, the masking effect decreased with increasing delay of the mask after the first display. This suggests a selective, dynamic but increasingly durable representation of the initial stimulus is built up in memory, and there is a graded form of “overwriting” of this representation by new stimuli

    Extinction of likes and dislikes : effects of feature-specific attention allocation

    Get PDF
    The evaluative conditioning (EC) effect refers to the change in the liking of a neutral stimulus (conditioned stimulus, CS) due to its pairing with another stimulus (unconditioned stimulus, US). We examined whether the extinction rate of the EC effect is moderated by feature-specific attention allocation. In two experiments, CSs were abstract Gabor patches varying along two orthogonal, perceptual dimensions (i.e. spatial frequency and orientation). During the acquisition phase, one of these dimensions was predictive of the valence of the USs. During the extinction phase, CSs were presented alone and participants were asked to categorise the CSs either according to their valence, the perceptual dimension that was task-relevant during the acquisition phase, or a perceptual dimension that was task-irrelevant during the acquisition phase. As predicted, explicit valence measures revealed a linear increase in the extinction rate of the EC effect as participants were encouraged to assign attention to non-evaluative stimulus information during the extinction phase. In Experiment 1, Affect Misattribution Paradigm (AMP) data mimicked this pattern of results, although the effect just missed conventional levels of significance. In Experiment 2, the AMP data revealed an increase of the EC effect if attention was focused on evaluative stimulus information. Potential mechanisms to explain these findings are discussed

    Audio-visual synchrony and spatial attention enhance processing of dynamic visual stimulation independently and in parallel: A frequency-tagging study

    Get PDF
    The neural processing of a visual stimulus can be facilitated by attending to its position or by a co-occurring auditory tone. Using frequency-tagging, we investigated whether facilitation by spatial attention and audio-visual synchrony rely on similar neural processes. Participants attended to one of two flickering Gabor patches (14.17 and 17 Hz) located in opposite lower visual fields. Gabor patches further “pulsed” (i.e. showed smooth spatial frequency variations) at distinct rates (3.14 and 3.63 Hz). Frequency-modulating an auditory stimulus at the pulse-rate of one of the visual stimuli established audio-visual synchrony. Flicker and pulsed stimulation elicited stimulus-locked rhythmic electrophysiological brain responses that allowed tracking the neural processing of simultaneously presented Gabor patches. These steady-state responses (SSRs) were quantified in the spectral domain to examine visual stimulus processing under conditions of synchronous vs. asynchronous tone presentation and when respective stimulus positions were attended vs. unattended. Strikingly, unique patterns of effects on pulse- and flicker driven SSRs indicated that spatial attention and audiovisual synchrony facilitated early visual processing in parallel and via different cortical processes. We found attention effects to resemble the classical top-down gain effect facilitating both, flicker and pulse-driven SSRs. Audio-visual synchrony, in turn, only amplified synchrony-producing stimulus aspects (i.e. pulse-driven SSRs) possibly highlighting the role of temporally co-occurring sights and sounds in bottom-up multisensory integration

    Limitations for change detection in multiple Gabor targets

    Get PDF
    We investigate the limitations on the ability to detect when a target has changed, using Gabor targets as simple quantifiable stimuli. Using a partial report technique to equalise response variables, we show that the log of the Weber fraction for detecting a spatial frequency change is proportional to the log of the number of targets, with a set-size effect that is greater than that reported for visual search. This is not a simple perceptual limitation, because pre-cueing a single target out of four restores performance to the level found when only one target is present. It is argued that the primary limitation on performance is the division of attention across multiple targets, rather than decay within visual memory. However in a simplified change detection experiment without cueing, where only one target of the set changed, not only was the set size effect still larger, but it was greater at 2000 msec ISI than at 250 msec ISI, indicating a possible memory component. The steepness of the set size effects obtained suggests that even moderate complexity of a stimulus in terms of number of component objects can overload attentional processes, suggesting a possible low-level mechanism for change blindness

    The effect of spatial frequency on peripheral collinear facilitation

    Get PDF
    The detection of a Gabor patch (target) can be decreased or improved by the presence of co-oriented Gabor patches (flankers) having the same spatial frequency as the target. These phenomena are thought to be mediated by lateral interactions. Depending on the distance between target and flankers, commonly defined as a multiple of the wavelength (λ) of the carrier, flankers can increase or decrease a target's detectability. Studies with foveal presentation showed that for target-to-flankers distances 3λ contrast thresholds decrease. Earlier studies on collinear facilitation at the near-periphery of the visual field (4° of eccentricity) showed inconsistent facilitation (Shani & Sagi, 2005, Vision Research, 45, 2009-2024) whereas more recent studies showed consistent facilitation for larger separations (7-8λ) (Maniglia et al., 2011, PLoS ONE, 6, e25568; Lev & Polat, 2011, Vision Research, 51, 2488-2498). However, all of these studies used medium-to-high spatial frequencies (3-8cpd). In this study we tested lower spatial frequencies (1, 2, and 3cpd) with different target-to-flankers distances. The rationale was that near-peripheral vision is tuned for lower spatial frequencies and this could be reflected in collinear facilitation. Results show consistent collinear facilitation at 8λ for all the spatial frequencies tested, but also show collinear facilitation at shorter target-to-flanker distance (6λ) for the lowest spatial frequencies tested (1cpd). Additionally, collinear facilitation decreases as spatial frequency increases; opposite to the findings of Polat (2009, Spatial Vision, 22, 179-193) in the fovea, indicating a different spatial frequency tuning between foveal and peripheral lateral interactions

    Neuropsychological evidence for three distinct motion mechanisms

    Full text link
    Published in final edited form as: Neurosci Lett. 2011 May 16; 495(2): 102–106. doi:10.1016/j.neulet.2011.03.048.We describe psychophysical performance of two stroke patients with lesions in distinct cortical regions in the left hemisphere. Both patients were selectively impaired on direction discrimination in several local and global second-order but not first-order motion tasks. However, only patient FD was impaired on a specific bi-stable motion task where the direction of motion is biased by object similarity. We suggest that this bi-stable motion task may be mediated by a high-level attention or position based mechanism indicating a separate neurological substrate for a high-level attention or position-based mechanism. Therefore, these results provide evidence for the existence of at least three motion mechanisms in the human visual system: a low-level first- and second-order motion mechanism and a high-level attention or position-based mechanism.Accepted manuscrip

    Modulating attentional load affects numerosity estimation: evidence against a pre-attentive subitizing mechanism

    Get PDF
    Traditionally, the visual enumeration of a small number of items (1 to about 4), referred to as subitizing, has been thought of as a parallel and pre-attentive process and functionally different from the serial attentive enumeration of larger numerosities. We tested this hypothesis by employing a dual task paradigm that systematically manipulated the attentional resources available to an enumeration task. Enumeration accuracy for small numerosities was severely decreased as more attentional resources were taken away from the numerical task, challenging the traditionally held notion of subitizing as a pre-attentive, capacity-independent process. Judgement of larger numerosities was also affected by dual task conditions and attentional load. These results challenge the proposal that small numerosities are enumerated by a mechanism separate from large numerosities and support the idea of a single, attention-demanding enumeration mechanism

    Contrast sensitivity of insect motion detectors to natural images

    Get PDF
    How do animals regulate self-movement despite large variation in the luminance contrast of the environment? Insects are capable of regulating flight speed based on the velocity of image motion, but the mechanisms for this are unclear. The Hassenstein–Reichardt correlator model and elaborations can accurately predict responses of motion detecting neurons under many conditions but fail to explain the apparent lack of spatial pattern and contrast dependence observed in freely flying bees and flies. To investigate this apparent discrepancy, we recorded intracellularly from horizontal-sensitive (HS) motion detecting neurons in the hoverfly while displaying moving images of natural environments. Contrary to results obtained with grating patterns, we show these neurons encode the velocity of natural images largely independently of the particular image used despite a threefold range of contrast. This invariance in response to natural images is observed in both strongly and minimally motion-adapted neurons but is sensitive to artificial manipulations in contrast. Current models of these cells account for some, but not all, of the observed insensitivity to image contrast. We conclude that fly visual processing may be matched to commonalities between natural scenes, enabling accurate estimates of velocity largely independent of the particular scene
    corecore