1,735 research outputs found

    AN INTELLIGENT NAVIGATION SYSTEM FOR AN AUTONOMOUS UNDERWATER VEHICLE

    Get PDF
    The work in this thesis concerns with the development of a novel multisensor data fusion (MSDF) technique, which combines synergistically Kalman filtering, fuzzy logic and genetic algorithm approaches, aimed to enhance the accuracy of an autonomous underwater vehicle (AUV) navigation system, formed by an integration of global positioning system and inertial navigation system (GPS/INS). The Kalman filter has been a popular method for integrating the data produced by the GPS and INS to provide optimal estimates of AUVs position and attitude. In this thesis, a sequential use of a linear Kalman filter and extended Kalman filter is proposed. The former is used to fuse the data from a variety of INS sensors whose output is used as an input to the later where integration with GPS data takes place. The use of an adaptation scheme based on fuzzy logic approaches to cope with the divergence problem caused by the insufficiently known a priori filter statistics is also explored. The choice of fuzzy membership functions for the adaptation scheme is first carried out using a heuristic approach. Single objective and multiobjective genetic algorithm techniques are then used to optimize the parameters of the membership functions with respect to a certain performance criteria in order to improve the overall accuracy of the integrated navigation system. Results are presented that show that the proposed algorithms can provide a significant improvement in the overall navigation performance of an autonomous underwater vehicle navigation. The proposed technique is known to be the first method used in relation to AUV navigation technology and is thus considered as a major contribution thereof.J&S Marine Ltd., Qinetiq, Subsea 7 and South West Water PL

    Unmanned Aircraft System Navigation in the Urban Environment: A Systems Analysis

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140665/1/1.I010280.pd

    Towards autonomous localization and mapping of AUVs: a survey

    Get PDF
    Purpose The main purpose of this paper is to investigate two key elements of localization and mapping of Autonomous Underwater Vehicle (AUV), i.e. to overview various sensors and algorithms used for underwater localization and mapping, and to make suggestions for future research. Design/methodology/approach The authors first review various sensors and algorithms used for AUVs in the terms of basic working principle, characters, their advantages and disadvantages. The statistical analysis is carried out by studying 35 AUV platforms according to the application circumstances of sensors and algorithms. Findings As real-world applications have different requirements and specifications, it is necessary to select the most appropriate one by balancing various factors such as accuracy, cost, size, etc. Although highly accurate localization and mapping in an underwater environment is very difficult, more and more accurate and robust navigation solutions will be achieved with the development of both sensors and algorithms. Research limitations/implications This paper provides an overview of the state of art underwater localisation and mapping algorithms and systems. No experiments are conducted for verification. Practical implications The paper will give readers a clear guideline to find suitable underwater localisation and mapping algorithms and systems for their practical applications in hand. Social implications There is a wide range of audiences who will benefit from reading this comprehensive survey of autonomous localisation and mapping of UAVs. Originality/value The paper will provide useful information and suggestions to research students, engineers and scientists who work in the field of autonomous underwater vehicles

    Optical Flow Sensor/INS/Magnetometer Integrated Navigation System for MAV in GPS-Denied Environment

    Get PDF
    The drift of inertial navigation system (INS) will lead to large navigation error when a low-cost INS is used in microaerial vehicles (MAV). To overcome the above problem, an INS/optical flow/magnetometer integrated navigation scheme is proposed for GPS-denied environment in this paper. The scheme, which is based on extended Kalman filter, combines INS and optical flow information to estimate the velocity and position of MAV. The gyro, accelerator, and magnetometer information are fused together to estimate the MAV attitude when the MAV is at static state or uniformly moving state; and the gyro only is used to estimate the MAV attitude when the MAV is accelerating or decelerating. The MAV flight data is used to verify the proposed integrated navigation scheme, and the verification results show that the proposed scheme can effectively reduce the errors of navigation parameters and improve navigation precision

    Intelligent Sensor Positioning and Orientation Through Constructive Neural Network-Embedded INS/GPS Integration Algorithms

    Get PDF
    Mobile mapping systems have been widely applied for acquiring spatial information in applications such as spatial information systems and 3D city models. Nowadays the most common technologies used for positioning and orientation of a mobile mapping system include a Global Positioning System (GPS) as the major positioning sensor and an Inertial Navigation System (INS) as the major orientation sensor. In the classical approach, the limitations of the Kalman Filter (KF) method and the overall price of multi-sensor systems have limited the popularization of most land-based mobile mapping applications. Although intelligent sensor positioning and orientation schemes consisting of Multi-layer Feed-forward Neural Networks (MFNNs), one of the most famous Artificial Neural Networks (ANNs), and KF/smoothers, have been proposed in order to enhance the performance of low cost Micro Electro Mechanical System (MEMS) INS/GPS integrated systems, the automation of the MFNN applied has not proven as easy as initially expected. Therefore, this study not only addresses the problems of insufficient automation in the conventional methodology that has been applied in MFNN-KF/smoother algorithms for INS/GPS integrated systems proposed in previous studies, but also exploits and analyzes the idea of developing alternative intelligent sensor positioning and orientation schemes that integrate various sensors in more automatic ways. The proposed schemes are implemented using one of the most famous constructive neural networks—the Cascade Correlation Neural Network (CCNNs)—to overcome the limitations of conventional techniques based on KF/smoother algorithms as well as previously developed MFNN-smoother schemes. The CCNNs applied also have the advantage of a more flexible topology compared to MFNNs. Based on the experimental data utilized the preliminary results presented in this article illustrate the effectiveness of the proposed schemes compared to smoother algorithms as well as the MFNN-smoother schemes

    Information Aided Navigation: A Review

    Full text link
    The performance of inertial navigation systems is largely dependent on the stable flow of external measurements and information to guarantee continuous filter updates and bind the inertial solution drift. Platforms in different operational environments may be prevented at some point from receiving external measurements, thus exposing their navigation solution to drift. Over the years, a wide variety of works have been proposed to overcome this shortcoming, by exploiting knowledge of the system current conditions and turning it into an applicable source of information to update the navigation filter. This paper aims to provide an extensive survey of information aided navigation, broadly classified into direct, indirect, and model aiding. Each approach is described by the notable works that implemented its concept, use cases, relevant state updates, and their corresponding measurement models. By matching the appropriate constraint to a given scenario, one will be able to improve the navigation solution accuracy, compensate for the lost information, and uncover certain internal states, that would otherwise remain unobservable.Comment: 8 figures, 3 table

    An intelligent navigation system for an unmanned surface vehicle

    Get PDF
    Merged with duplicate record 10026.1/2768 on 27.03.2017 by CS (TIS)A multi-disciplinary research project has been carried out at the University of Plymouth to design and develop an Unmanned Surface Vehicle (USV) named ýpringer. The work presented herein relates to formulation of a robust, reliable, accurate and adaptable navigation system to enable opringei to undertake various environmental monitoring tasks. Synergistically, sensor mathematical modelling, fuzzy logic, Multi-Sensor Data Fusion (MSDF), Multi-Model Adaptive Estimation (MMAE), fault adaptive data acquisition and an user interface system are combined to enhance the robustness and fault tolerance of the onboard navigation system. This thesis not only provides a holistic framework but also a concourse of computational techniques in the design of a fault tolerant navigation system. One of the principle novelties of this research is the use of various fuzzy logic based MSDF algorithms to provide an adaptive heading angle under various fault situations for Springer. This algorithm adapts the process noise covariance matrix ( Q) and measurement noise covariance matrix (R) in order to address one of the disadvantages of Kalman filtering. This algorithm has been implemented in Spi-inger in real time and results demonstrate excellent robustness qualities. In addition to the fuzzy logic based MSDF, a unique MMAE algorithm has been proposed in order to provide an alternative approach to enhance the fault tolerance of the heading angles for Springer. To the author's knowledge, the work presented in this thesis suggests a novel way forward in the development of autonomous navigation system design and, therefore, it is considered that the work constitutes a contribution to knowledge in this area of study. Also, there are a number of ways in which the work presented in this thesis can be extended to many other challenging domains.DEVONPORT MANAGEMENT LTD, J&S MARINE LTD AND SOUTH WEST WATER PL

    Sensor Fusion and Obstacle Avoidance for an Unmanned Ground Vehicle

    Get PDF
    In recent years, the capabilities and potential value of unmanned autonomous systems (UAS) to perform an extensive variety of missions have significantly increased. It is well comprehended that there are various challenges associated with the realization of autonomous operations in complex urban environments. These difficulties include the requirement for precision guidance and control in conceivably GPS-denied conditions as well as the need to sense and avoid stationary and moving obstructions within the scene. The small size of some of these vehicles restricts the size, weight and power consumption of the sensor payload and onboard computational processing that can accommodated by UAS. This thesis analyzes the development and implementation of terrain mapping, path planning and control algorithms on an unmanned ground vehicle. Data from GPS, IMU and LIDAR sensors are fused in order to compute and update a dense 3D point cloud that is used by an implicit terrain algorithm to provide detailed mathematical representations of complex 3D structures generally found in urban environments. A receding horizon path planning algorithm is employed to adaptively produce a kinematically-feasible path for the unmanned ground vehicle. This path planning algorithm incorporates obstacle avoidance constraints and provides a set of waypoints to be followed by the unmanned ground vehicle. A waypoint controller is designed and implemented to enable the vehicle to follow the waypoints from the path planner. Open-loop experiments are provided with an unmanned ground vehicle in order to demonstrate terrain generation with real sensor data. Closed-loop results are then presented for a simulated ground vehicle in order to demonstrate the performance of the receding horizon path planning and control algorithms using the terrain map generated from the open-loop experiments
    • …
    corecore