8 research outputs found

    Efficient global illumination calculation for inverse lighting problems

    Get PDF
    La luz es un elemento clave en la manera en que percibimos y experimentamos nuestro entorno. Como tal, es un objeto mas a modelar en el proceso de diseño, de forma similar a como ocurre con las formas y los materiales. Las intenciones de iluminacion (LI) son los objetivos y restricciones que el diseñador pretende alcanzar en el proceso del diseño de iluminaci´on: ¿qué superficies se deben iluminar con luz natural y cuales con luz artificial?, ¿qué zonas deben estar en sombra?, ¿cuales son las intensidades maximas y mínimas permitidas? Satisfacer las LI consiste en encontrar la ubicacion, forma e intensidad adecuada de las fuentes luminosas. Este tipo de problemas se define como un problema inverso de iluminacion (ILP) que se resuelve con tecnicas de optimizacion. En el contexto anterior, el objetivo de esta tesis consiste en proponer metodos eficientes para resolver ILP. Este objetivo es motivado por la brecha percibida entre los problemas habituales de diseño de iluminacion y las herramientas computacionales existentes para su resolucion. Las herramientas desarrolladas por la industria se especializan en evaluar configuraciones de iluminacion previamente diseñadas, y las desarrolladas por la academia resuelven problemas relativamente sencillos a costos elevados. Las propuestas cubren distintos aspectos del proceso de optimizacion, que van desde la formulacion del problema a su resolucion. Estan desarrolladas para el caso en que las superficies poseen reflexion e iluminacion difusas y se basan en el calculo de una aproximacion de rango bajo de la matriz de radiosidad. Algunos resultados obtenidos son: el calculo acelerado de la radiosidad de la escena en una unidad de procesamiento gr´afico (GPU); el uso de la heuristica \201Cvariable neighborhood search\201D (VNS) para la resolucion de ILP; el planteo de una estructura multinivel para tratar ILP de forma escalonada; y el uso de tecnicas para optimizar la configuracion de filtros de luz. Otros resultados obtenidos se basan en la formulacion de las LI en funcion de la media y desviacion estandar de las radiosidades halladas. Se propone un metodo para generar LI que contengan esos parametros estadisticos, y otro metodo para acelerar su evaluacion. Con estos resultados se logran tiempos de respuesta interactivos. Por último, las tecnicas anteriores adolecen de una etapa de pre-cómputo relativamente costosa, por tanto se propone acelerar el calculo de la inversa de la matriz de radiosidad a partir de una muestra de factores de forma. Los métodos aquí presentados fueron publicados en seis articulos, tres de ellos en congresos internacionales y tres en revistas arbitradas.Light is a key element that influences the way we perceive and experience our environment. As such, light is an object to be modeled in the design process, as happens with the forms and materials. The lighting intentions (LI) are the objectives and constraints that designers want to achieve in the process of lighting design: which surfaces should be illuminated with natural and which with artificial light?, which surfaces should be in shadow?, which are the maximum and minimum intensities allowed? The fulfillment of the LI consists in finding the location, shape and intensity appropriate for the light sources. This problem is defined as an inverse lighting problem (ILP), solved by optimization techniques. In the above context, the aim of this thesis is the proposal of efficient methods to solve ILP. This objective is motivated by the perceived gap between the usual problems of lighting design, and the computational tools developed for its resolution. The tools developed by the industry specialize in evaluating previously designed lighting configurations, and those developed by the academia solve relatively simple problems at a high computational cost. The proposals cover several aspects of the optimization process, ranging from the formulation of the problem to its resolution. They are developed for the case in which the surfaces have Lambertian reflection and illumination, and are based on the calculation of a low rank approximation to the radiosity matrix. Some results are: rapid calculation of radiosity of the scene in a graphics processing unit (GPU), the use of heuristics “variable neighborhood search” (VNS) for solving ILP, the proposition of a multilevel structure to solve ILP in a stepwise approach, and the use of these techniques to optimize the configuration of light filters. Other results are based on the formulation of LI that use the mean and standard deviation of the radiosity values found. A method is proposed for generating LI containing these parameters, and another method is developed to speed up their evaluations. With these results we achieve interactive response times. Finally, the above techniques suffer from a costly pre-computing stage and therefore, a method is proposed to accelerate the calculation of the radiosity inverse matrix based on a sample of the form factors. The methods presented here were published in six articles, three of them at international conferences and three in peer reviewed journals

    Surface Simplification of 3D Animation Models Using Robust Homogeneous Coordinate Transformation

    Get PDF
    The goal of 3D surface simplification is to reduce the storage cost of 3D models. A 3D animation model typically consists of several 3D models. Therefore, to ensure that animation models are realistic, numerous triangles are often required. However, animation models that have a high storage cost have a substantial computational cost. Hence, surface simplification methods are adopted to reduce the number of triangles and computational cost of 3D models. Quadric error metrics (QEM) has recently been identified as one of the most effective methods for simplifying static models. To simplify animation models by using QEM, Mohr and Gleicher summed the QEM of all frames. However, homogeneous coordinate problems cannot be considered completely by using QEM. To resolve this problem, this paper proposes a robust homogeneous coordinate transformation that improves the animation simplification method proposed by Mohr and Gleicher. In this study, the root mean square errors of the proposed method were compared with those of the method proposed by Mohr and Gleicher, and the experimental results indicated that the proposed approach can preserve more contour features than Mohr’s method can at the same simplification ratio

    Close and Distant Reading Visualizations for the Comparative Analysis of Digital Humanities Data

    Get PDF
    Traditionally, humanities scholars carrying out research on a specific or on multiple literary work(s) are interested in the analysis of related texts or text passages. But the digital age has opened possibilities for scholars to enhance their traditional workflows. Enabled by digitization projects, humanities scholars can nowadays reach a large number of digitized texts through web portals such as Google Books or Internet Archive. Digital editions exist also for ancient texts; notable examples are PHI Latin Texts and the Perseus Digital Library. This shift from reading a single book “on paper” to the possibility of browsing many digital texts is one of the origins and principal pillars of the digital humanities domain, which helps developing solutions to handle vast amounts of cultural heritage data – text being the main data type. In contrast to the traditional methods, the digital humanities allow to pose new research questions on cultural heritage datasets. Some of these questions can be answered with existent algorithms and tools provided by the computer science domain, but for other humanities questions scholars need to formulate new methods in collaboration with computer scientists. Developed in the late 1980s, the digital humanities primarily focused on designing standards to represent cultural heritage data such as the Text Encoding Initiative (TEI) for texts, and to aggregate, digitize and deliver data. In the last years, visualization techniques have gained more and more importance when it comes to analyzing data. For example, Saito introduced her 2010 digital humanities conference paper with: “In recent years, people have tended to be overwhelmed by a vast amount of information in various contexts. Therefore, arguments about ’Information Visualization’ as a method to make information easy to comprehend are more than understandable.” A major impulse for this trend was given by Franco Moretti. In 2005, he published the book “Graphs, Maps, Trees”, in which he proposes so-called distant reading approaches for textual data that steer the traditional way of approaching literature towards a completely new direction. Instead of reading texts in the traditional way – so-called close reading –, he invites to count, to graph and to map them. In other words, to visualize them. This dissertation presents novel close and distant reading visualization techniques for hitherto unsolved problems. Appropriate visualization techniques have been applied to support basic tasks, e.g., visualizing geospatial metadata to analyze the geographical distribution of cultural heritage data items or using tag clouds to illustrate textual statistics of a historical corpus. In contrast, this dissertation focuses on developing information visualization and visual analytics methods that support investigating research questions that require the comparative analysis of various digital humanities datasets. We first take a look at the state-of-the-art of existing close and distant reading visualizations that have been developed to support humanities scholars working with literary texts. We thereby provide a taxonomy of visualization methods applied to show various aspects of the underlying digital humanities data. We point out open challenges and we present our visualizations designed to support humanities scholars in comparatively analyzing historical datasets. In short, we present (1) GeoTemCo for the comparative visualization of geospatial-temporal data, (2) the two tag cloud designs TagPies and TagSpheres that comparatively visualize faceted textual summaries, (3) TextReuseGrid and TextReuseBrowser to explore re-used text passages among the texts of a corpus, (4) TRAViz for the visualization of textual variation between multiple text editions, and (5) the visual analytics system MusikerProfiling to detect similar musicians to a given musician of interest. Finally, we summarize our and the collaboration experiences of other visualization researchers to emphasize the ingredients required for a successful project in the digital humanities, and we take a look at future challenges in that research field

    Educational Technology and Related Education Conferences for June to December 2015

    Get PDF
    The 33rd edition of the conference list covers selected events that primarily focus on the use of technology in educational settings and on teaching, learning, and educational administration. Only listings until December 2015 are complete as dates, locations, or Internet addresses (URLs) were not available for a number of events held from January 2016 onward. In order to protect the privacy of individuals, only URLs are used in the listing as this enables readers of the list to obtain event information without submitting their e-mail addresses to anyone. A significant challenge during the assembly of this list is incomplete or conflicting information on websites and the lack of a link between conference websites from one year to the next

    Educational Technology and Education Conferences, January to June 2016

    Get PDF
    corecore