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Resumen

La luz es un elemento clave en la manera en que percibimos y experimentamos nuestro
entorno. Como tal, es un objeto más a modelar en el proceso de diseño, de forma
similar a como ocurre con las formas y los materiales. Las intenciones de iluminación
(LI) son los objetivos y restricciones que el diseñador pretende alcanzar en el proceso del
diseño de iluminación: ¿qué superficies se deben iluminar con luz natural y cuáles con
luz artificial?, ¿qué zonas deben estar en sombra?, ¿cuáles son las intensidades máximas
y mı́nimas permitidas? Satisfacer las LI consiste en encontrar la ubicación, forma e
intensidad adecuada de las fuentes luminosas. Este tipo de problemas se define como un
problema inverso de iluminación (ILP) que se resuelve con técnicas de optimización.

En el contexto anterior, el objetivo de esta tesis consiste en proponer métodos efi-
cientes para resolver ILP. Este objetivo es motivado por la brecha percibida entre los
problemas habituales de diseño de iluminación y las herramientas computacionales exis-
tentes para su resolución. Las herramientas desarrolladas por la industria se especializan
en evaluar configuraciones de iluminación previamente diseñadas, y las desarrolladas por
la academia resuelven problemas relativamente sencillos a costos elevados.

Las propuestas cubren distintos aspectos del proceso de optimización, que van desde
la formulación del problema a su resolución. Están desarrolladas para el caso en que
las superficies poseen reflexión e iluminación difusas y se basan en el cálculo de una
aproximación de rango bajo de la matriz de radiosidad. Algunos resultados obtenidos
son: el cálculo acelerado de la radiosidad de la escena en una unidad de procesamiento
gráfico (GPU); el uso de la heuŕıstica “variable neighborhood search” (VNS) para la
resolución de ILP; el planteo de una estructura multinivel para tratar ILP de forma
escalonada; y el uso de estas técnicas para optimizar la configuración de filtros de luz.

Otros resultados obtenidos se basan en la formulación de las LI en función de la
media y desviación estándar de las radiosidades halladas. Se propone un método para
generar LI que contengan esos parámetros estad́ısticos, y otro método para acelerar su
evaluación. Con estos resultados se logran tiempos de respuesta interactivos. Por último,
las técnicas anteriores adolecen de una etapa de pre-cómputo relativamente costosa, por
tanto se propone acelerar el cálculo de la inversa de la matriz de radiosidad a partir de
una muestra de factores de forma.

Los métodos aqúı presentados fueron publicados en seis art́ıculos, tres de ellos en
congresos internacionales y tres en revistas arbitradas.

Palabras Clave: problema inverso de iluminación, intenciones de iluminación,
radiosidad, matriz inversa de radiosidad, optimización, problema multi-objetivo, des-
composición aproximada de matrices, matrices de rango bajo
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Abstract

Light is a key element that influences the way we perceive and experience our environ-
ment. As such, light is an object to be modeled in the design process, as happens with
the forms and materials. The lighting intentions (LI) are the objectives and constraints
that designers want to achieve in the process of lighting design: which surfaces should
be illuminated with natural and which with artificial light?, which surfaces should be
in shadow?, which are the maximum and minimum intensities allowed? The fulfill-
ment of the LI consists in finding the location, shape and intensity appropriate for the
light sources. This problem is defined as an inverse lighting problem (ILP), solved by
optimization techniques.

In the above context, the aim of this thesis is the proposal of efficient methods to
solve ILP. This objective is motivated by the perceived gap between the usual problems
of lighting design, and the computational tools developed for its resolution. The tools
developed by the industry specialize in evaluating previously designed lighting configu-
rations, and those developed by the academia solve relatively simple problems at a high
computational cost.

The proposals cover several aspects of the optimization process, ranging from the
formulation of the problem to its resolution. They are developed for the case in which the
surfaces have Lambertian reflection and illumination, and are based on the calculation of
a low rank approximation to the radiosity matrix. Some results are: rapid calculation of
radiosity of the scene in a graphics processing unit (GPU), the use of heuristics “variable
neighborhood search” (VNS) for solving ILP, the proposition of a multilevel structure
to solve ILP in a stepwise approach, and the use of these techniques to optimize the
configuration of light filters.

Other results are based on the formulation of LI that use the mean and standard de-
viation of the radiosity values found. A method is proposed for generating LI containing
these parameters, and another method is developed to speed up their evaluations. With
these results we achieve interactive response times. Finally, the above techniques suffer
from a costly pre-computing stage and therefore, a method is proposed to accelerate the
calculation of the radiosity inverse matrix based on a sample of the form factors.

The methods presented here were published in six articles, three of them at inter-
national conferences and three in peer reviewed journals.

Keywords: inverse lighting problem, lighting intention, radiosity, radiosity matrix
inverse, optimization, multi objective problem, approximated matrix decomposition, low
rank matrix
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en su casa. Gabi me organizó dos cumpleaños en Les Borges Blanques. Por último,
Juliana y Natalia son la fuerza y razón última de mis acciones. A ellas le dedico este
trabajo.

Eduardo Fernández





Chapter 1

Introduction

Lighting intentions (LI) are the goals and constraints that designers would like to achieve
in an illumination design process. Given an architectural interior space to illuminate,
the lighting process requires several steps that go from revealing the general use of the
space, to the specific light accentuation that must be obtained [1]. Concerning to the LI,
they can be defined in different ways according to the reference observation (incoming
light or reflected light) or to the global feature of the intention (local subset of surfaces
or the overall scene). Once the LI are specified, the designer must provide the parameter
setting that fulfills the desired intentions. The main features, such as the position of
the lights, their shape and spectral power, must be provided. Therefore, the inverse
lighting problem (ILP) can be defined as the problem of finding a parameter setting
that meets the LI. Also, ILP could be characterized as an optimization problem, where
the LI are transformed into a set of objectives, equations and inequalities to satisfy,
and the parameters are the set of variables that could be modified in pursuit of the
satisfaction of the LI.

In the above context, the objective of this thesis is the proposal of new ways to solve
ILP more efficiently. The components of the ILP solver studied in the context of this
thesis, are described in Figure 1.1. In this figure, the ILP process starts with the input
of the geometry and the materials of a scene. These elements remain static during the
process. In a second stage, a designer defines which are the set of lighting intentions to
be satisfied, and the variables of the problem. If necessary, a precomputation process
might be performed. After these steps are fulfilled, an optimization process is executed
and the results are visualized.

The transition from one stage to the next is not straightforward, it may result in
many trials and adjustments. Special consideration has the evaluation of the quality of
the solution obtained. It may not be good enough from the point of view of the designer
or, eventually, there may not find a solution satisfying all the LI. Therefore, these results
can induce a change in the lighting intentions and a new execution of the optimization
process (red cycle in Figure 1.1).

The above process is useful in working scenarios where the architectural elements
are already designed or built, and only the openings (like windows or skylights) or the
luminaires can be reconfigured.

3
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Figure 1.1: Scheme of the main components of the ILP solver used in the thesis, and
the cycle of lighting design (red dashed arrows).

1.1 Motivation

One of the main motivations to center our efforts in the study of ILP, is the room for
innovation perceived in the existing gap between the lighting intentions, as defined by
a designer (Figures 1.2 and 1.3), and the current computational tools developed to help
in the designing stage.

Figure 1.2: Example of a lighting design scheme in an architectural plan [1].
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Figure 1.3: Examples of possible lighting configurations [1].

The designers usually follow a working-forward approach, going from the initial ideas
to the final lighting configuration. They start studying the controllable aspects of light
and defining the lighting goals and constraints (i.e., the LI). In Figure 1.2, there is a
lighting scheme, where different “effects” of the light over the surfaces are described, and
where the blue cones indicate where the visitor’s attention should be directed. After
this stage is completed, the designers develop a layout with the main ideas about the
location and the properties of the luminaires, and finally they produce a set of final
construction documents [1]. Hundreds of combinations and possibilities arise at each
step, and the designer must decide which ones are better, taking into consideration
the quality of the result, the difficulties in the construction, the initial costs, and the
operating and maintenance costs.

On the other hand, the existing industrial packages (like for example Dialux [2],
Relux [3] or AGi32 [4]) do not provide tools of inverse design for the generation of feasible
solutions and the selection of the better one. Instead, the existing CAD systems bring
helpful tools for the simulation of the scene (providing a database of possible furniture,
luminaires, and surfaces). The calculation of the incoming and reflected radiance on all
the surfaces is then computed through a physically-based renderer. This can be seen as
a working-backward approach, where the designer must propose a solution and controls
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whether the desired initial intentions are fulfilled. The connection between the intentions
and the lighting configuration is a hard work entirely done by designers, based on their
experience or intuition, and usually it is found after many trials.

An additional example of the existing gap between the designers’ needs and the
existing tools is found in the literature devoted to ILP. The models found there are
very simple. For example, a box-shaped room without furniture, with a small set of
possible light positions. Also, the algorithms developed there are usually computation-
ally demanding. These mentioned drawbacks conspire against the development of an
interactive cycle of lighting design.

Another motivation is based on the results achieved in my master’s thesis. In that
previous work, it was developed a methodology to find a low-rank approximation of
the radiosity inverse matrix (LRR), where the radiosity equation (see Equation 2.4) is
transformed into a matrix-vector product (Equation 1.1), where Y and V are n×k, with
n≫k.

B = ME = (I−RF)−1E ≈ (I−YVT )E = M̃E = B̃ (1.1)

Following this methodology it is possible to solve the radiosity equation in a fraction
of a second, in scenes composed by more than 200, 000 patches and infinite bounces of
light. The LRR method includes a rather slow precomputational step, but after that it
performs a fast radiosity calculation. This result encourage us to think that the LRR
method could be used as the global illumination engine in an ILP solver.

1.2 Context

Several assumptions were taken into account during the development of the thesis. These
assumptions delimit and give context to the area of work covered by the thesis.

A first assumption is that in the lighting design process the light comes after the
geometry is configured. When the illumination process is performed on a building with
historic or patrimonial value, seems natural that few modifications to the structure are
allowed, and even their colors and textures suffer of severe constraints. Further examples
occur when the lighting process starts in an advanced stage of the architectural project.
This assumption has a deep and beneficial consequence in the pipeline of the ILP solver.
A static geometry enables the development of a powerful precomputational process,
where many of the lighting interactions are calculated only once, then, the optimization
process could be accelerated greatly. This also accelerates the iterative cycle of design
(red dashed cycle in Figure 1.1), facilitating the interactivity of the design application,
for the designers’ benefit.

Another important contextual assumption is the nonexistence of a formal language
to describe LI. Designers express their intentions in a descriptive manner (Figure 1.2),
and the transformation of them into variables, goals and mathematical constraints is
not a straightforward task. Also, the mathematical description of the LI must take
advantage of the ILP solver and the global illumination engine used in the optimization
process. Then, it seems that a fruitful approach consists in the use of an “inverse”
strategy for the development of a ILP process. The strategy starts with the study of
the non computationally demanding results, that take into account global illumination
issues, and ends with the study of the possible connections between these results and the
LI that a designer may want to satisfy. As a consequence of this strategy, some of the
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results presented here are centered in the development of efficient lighting calculations
that speeds-up the evaluation of the LI, and the definition of simple mathematical tools
that facilitate the translation of intuitive LI into more efficient ones.

The last assumption takes into account the importance that surfaces with diffuse
reflection still have in different areas of engineering and design. In the areas of radiative
heat transfer [5], and architecture [6], there are hundreds of practical examples and an
extense area of research pointing in that direction. In that regard, the global illumination
methodology used in this thesis is based in the radiosity equation.

1.3 Contributions and Thesis Structure

The contributions mentioned here are described extensively in Chapters 3 to 7. This
thesis is a compendium of the papers described below. For this reason, some contents
are repeated throughout the thesis, as it happens with the bibliography and the previous
work.

The Speed-up of the LRR solver through a GPGPU strategy (Ch. 3):
In this work a graphics processor hardware is used to accelerate the matrix·vector
product operations, needed in the low-rank radiosity methodology (Equation 1.1).
One of the low-rank matrices is stored as a sparse matrix, which contributes greatly
to the speed-up of the process.

Chapter 3 is based on: E. Fernández, P. Ezzatti, S. Nesmachnow and G. Be-
suievsky, Low-rank Radiosity using Sparse Matrices. Proceedings of the Interna-
tional Conference on Computer Graphics Theory and Applications (GRAPP 2012)
and International Conference on Information Visualization Theory and Applica-
tions (IVAPP 2012), Rome, Italy, 24-26 February, 2012, Pages 260-267.

The use of VNS and LRR to solve ILP (Chs. 4 and 5): AVariable Neigh-
borhood Search (VNS) algorithm is implemented as a global optimization method
to solve ILP. Several shortcuts are implemented in both the VNS algorithm and
LRR method, to speed-up the optimization process, and to solve multi-objective
optimization problems.

As an extension of this work, the methodology already developed is used to find
optimal filters (Ch. 5). A filter acts on an area dividing it into elements, whose
optics properties are calculated in order to produce a given lighting intention.

Chapter 4 is based on: E. Fernández and G. Besuievsky, Inverse lighting design for
interior buildings integrating natural and artificial sources, Computers & Graphics,
Volume 36, Issue 8, December 2012, Pages 1096-1108.

Chapter 5 is based on: V. Tourre, E. Fernández and G. Besuievsky, From Lighting
Intention to Light Filters. Proceedings of the International Conference on Clean-
tech for Smart Cities & Buildings from Nano to Urban Scale (CISBAT 2013),
EPFL, Lausanne, Switzerland, 3-6 September, 2013, Pages 1181-1186.

The use of statistics in the definition of LI (Ch. 6): The availability of M̃
triggers a new line of thought on the definition of mathematical goals and con-
straints of easy evaluation, based on the calculation of the mean and standard
deviation of the radiosity values obtained from the scene. As a result, hundreds
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of constraints are eliminated, and the amount of iterations per second of the ILP
solver rises to the thousands, for the tested scenes.

Chapter 6 is based on: E. Fernández and G. Besuievsky, Efficient Inverse Lighting:
A Statistical Approach, Automation in Construction, Volume 37, January 2014,
Pages 48-57.

Improvements in the precomputation stage (Ch. 7): Here it is explained

a new method to find M̃, based on a randomized algorithm. With this methodol-
ogy, the form-factor calculation is reduced to a subset of the F rows, accelerating
significantly the precomputation stage, and facilitating the use of the previous
results with greater 3D models.

Chapter 7 is based on: E. Fernández and G. Besuievsky, A Sample-Based Method
for Computing the Radiosity Inverse Matrix, Accepted by Computers & Graphics.

In Chapter 8 the main conclusions and future work are discussed.
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Chapter 2

State of the Art

This chapter offers a brief overview of the most important aspects related to this the-
sis: the physical based global illumination, the low-rank radiosiy method, the inverse
rendering problem, the concept of optimization and the radiosity inverse matrix.

2.1 Global Illumination

Light in the real world interacts with surrounding media and surfaces creating visual
phenomena such as color bleeding, reflections, crepuscular rays, and caustics [1]. Al-
though the underlying principles of light-matter interaction are well understood, their
efficient computation is still a challenging problem. Many processes require simplified
models, customized algorithms and data structures.

In general, light arriving at a point A from some other point B is considered as
“direct” if it is generated in B. If the arriving light was reflected or transmitted before
arriving at A, then it is considered as “indirect” illumination.

Those algorithms that explicitly gather illumination information only from the di-
rect light source are “local illumination” models. On the other hand, algorithms that
estimate indirect lighting information are called “global illumination” models.

According to Glassner [2], the most general equation that relates the global inter-
action between light and matter is the “full radiance equation”, a half-page equation
that includes phenomena such as photon transport in scattering media, polarization,
phosphorescence and fluorescence. This equation could be briefly expressed in operator
notation (Equation 2.1),

I = (M+ V) [ε+ PAI +KFI] (2.1)

where I stands for the intensity of light at wavelength λ, arriving at a point r from
direction ~w at time t (see Figure 2.1), ε is the emitted light at wavelength λ at a point
s in direction ~w at time t, M represents the attenuation of radiance from point s, V
is the attenuation of radiance from point a between r and s, P is the phosphorescence
operator, F is the fluorescence operator, A is the absortion operator, and K is the
bidirectional surface-scattering distribution function (BSSDF).

More simplified and widely used versions of the above equation are the “rendering
equation” [3] (where the light is transported with no surrounding media), and the “vol-
umetric rendering equation” [2] (which includes the presence of participating media).

9
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Figure 2.1: Light arriving at r, from s, from direction ~w, through the point a [2].

According to Kajiya [3], the rendering equation is defined in Equation 2.2,

I(x, x′) = g(x, x′)

[
ε(x, x′) +

∫

S

ρ(x, x′, x′′)I(x′, x′′)dx′′
]

(2.2)

where I(x, x′) is related to the intensity of light (W/m2) passing from x′ to x (Figure 2.2),
g(x, x′) is 0 when x and x′ are occluded from each other and 1/r2 in the other case (r
is the distance between them), ε(x, x′) is related to the intensity of light that is emitted
from x′ to x, and ρ(x, x′, x′′) is related to the intensity of light scattered from x′′ to x
by a patch of surface at x′ (bidirectional reflectance distribution function, or BRDF).
The rendering equation is time invariant (no diffraction is calculated), the media is
of homogeneous refractive index and does not itself participate in the scattering light.
Finally, the equation is not influenced by light wavelength or polarization properties.

Figure 2.2: Some elements of the rendering equation.

These equations can be solved through different approaches. Ritschel et al. [1] es-
tablished that the classical approaches to compute (interactive) global illumination are:
Finite elements (e.g., radiosity) [4], Monte Carlo ray tracing [3], photon mapping [5],
instant radiosity [6], many-light-based global illumination [7, 8], point-based global illu-
mination [9, 10], discrete ordinate methods [11], and precomputed radiance transfer [12].
Through the previous techniques it is intended to implement a wide range of phenomena:
direct (local) and indirect (global) illumination, ambient occlusion, natural illumination,
single and multiple bounces, caustics, diffuse and glossy bounces, and scattering.

Some of the implementations of the above approaches claim to compute the global
illumination of a scene at real time rates, but all of them have difficulties with many
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of the following open problems: the scalability, the amount of bounces, multiple glossy
bounces, multiple scattering, and complex light sources.

2.1.1 The Radiosity Problem

The radiosity method [4] is a pioneering technique for global illumination on scenes with
Lambertian surfaces, which has been applied in many areas of design and computer
animation [13]. The term “radiosity” stands for the sum of the emitted and reflected
light power leaving a surface (W/m2). Lambertian surfaces are ideally diffusely reflecting
surfaces, which holds that the apparent brightness of them to an observer are the same
regardless of the observer’s angle of view (Figure 2.3).

Figure 2.3: Typical kinds of reflections.

Lambertian surfaces simplify the BRDF term in the rendering equation (Equa-
tion 2.2), which is transformed into the “radiosity equation” (Equation 2.3). In this
equation, B(x) is the radiosity at point x, E(x) is the light emission in x, ρ(x) is the
Lambertian diffuse reflectivity of x, and G(x, x′) is a geometric factor that determines
how much the radiosity in x′ contributes to the radiosity of x [14].

B(x) = E(x) + ρ(x)

∫

S

B(x′)G(x, x′)dA′ (2.3)

The radiosity equation could be discretized through the use of a finite element method-
ology (Figure 2.4). The scene is discretized into a set of patches, and all the terms
in Equation 2.3 are transformed into a finite set of discrete elements. Therefore, B(x)
is transformed into Bi, E(x) into Ei, ρ(x) into Ri, and G(x, y) into F(i, j). Then,
Equation 2.3 is transformed into a set of linear equations:

Bi = Ei +Ri

∑

j=1...n

BjF(i, j) , ∀i ∈ {1 . . . n}

This set of linear equations is expressed in a succinct manner in Equation 2.4.

(I−RF)B = E (2.4)

In this equation, I is the identity matrix, R is a diagonal matrix containing the Ri

values, F is the form factor matrix, B is a vector containing all the radiosities to be
found, and E is another vector containing the emission of the scene. The form factor
F(i, j) is defined as a number between 0 and 1, that indicates the fraction of the light
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Figure 2.4: Division of a radiosity scene into a finite set of elements [15].

power emitted by patch i that arrives to patch j. It can be computed as:

F(i, j) =
1

Ai

∫

Ai

∫

Aj

G(xAi
, xAj

)dxAj
dxAi

When the scene is simple (no labyrinthine design), the form factor matrix is a non-sparse
matrix with dimension n×n, where n is the amount of patches in the scene.

In the classic approach, the explicit computation of the radiosity matrix I −RF is
avoided due to the huge computational cost. One of the classic formulations proposed is
the progressive refinement solution [16], where a selection of form factors is computed to
shoot energy from significant surfaces. Another important contribution is the hierarchi-
cal radiosity method [17], which reduces the O(n2) form factors calculation to O(n), for
a scene composed of n patches. Hierarchical radiosity with clustering [18, 19] overcomes
the intial O(n2) cost of linking n patches. For computing global illumination these
methodologies were succesful and resulted into interactive techniques that are currently
used in architectural lighting design applications and in visualization.

The arrival of the GPU architecture sped-up previous approaches and led to the
birth of new techniques. Dong et al. [20] precomputed links for a pre-defined geometry,
similar to Immel et al. [21], but now they can be deformed at runtime, when the link
structure remains valid. Dachsbacher et al. [22] also used links to exchange antiradiance,
avoiding the visibility computation. Meyer et al. [23] introduced the updating of the
link structure at runtime. All these techniques are only well suited to low-complexity
scenes with moderate transformations.

Despite the above problems and the solutions reached, the inverse of the radiosity
matrix, M = (I − RF)−1, provides important information about the global radiosity
of the scene. Each element M(i, j) gives the contribution of the emission in j to the
final radiosity value in i. Then, a single scalar product between a row M(i, :) and the
emission vector E provides the final radiosity value in i. For scenes where the geometry
is fixed and only the light output varies, M is a constant matrix. Therefore, regardless
of the initial computational cost, an estimate of the inverse matrix brings the possibility
of hundreds of radiosity calculations per second, each even with infinite light bounces.
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2.2 Low Rank Radiosity

It is very likely that the RF matrix included in Equation 2.4 has a low numeric rank.
This is because R is a diagonal matrix and each row F(i, :) is computed based on the
scene view from the element i, where usually most pairs of close patches have a very
similar view of the scene (see Figure 2.5). Then, RF has many similar rows, which
results in a reduction of the numerical rank.

(a) Two close patches i1 and i2. (b) Hemicube view from i1. (c) Hemicube view from i2.

Figure 2.5: Close patches have similar views of the scene.

The rank reduction ofRFmatrices allows approximating them by the product of two
matrices UkV

T
k , both with dimension n×k (n≫k), without losing relevant information

about the scene. References about low-rank properties of radiosity and radiance matrices
can be found in Baranoski et al. [24], Ashdown [25], Hašan et al. [8], and Fernández [26].
Figure 2.6 shows the singular values and the eigenvalues of the form factor matrix F,
for a Cornell box with 10, 240 patches. We can observe that only 1,500 singular values
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Figure 2.6: Singular values and eigenvalues of F.

are greater than 10−2. Eckart and Young demonstrated that the minimum distance to
F by a rank k matrix is ‖F− Fk‖2 = σk+1 [27], where Fk is a matrix containing the k
greatest singular values and vectors of F, and σk+1 is the (k+1)th largest singular value
of F.

Uk and Vk can be computed using factorization techniques, such as singular value
decomposition (SVD or PCA) [28], CUR factorization [29], and discrete transformations
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based on Fourier and wavelets [30]. In the truncated SVD (TSVD) methodology, only
the k largest singular values are calculated and the rest are discarded. This methodology
produces optimal results, but has O(n2k) complexity. The other methods mentioned not
based on SVD, have lower complexity orders, but also produce larger errors in the RF
approximation. To overcome the weakness of the traditional factorization techniques, the
low-rank radiosity (LRR) method [26] uses the concept of spatial coherence [31]. This
method generalizes the two-level hierarchy methodology [32], where two meshes with
different granularity levels are generated for the scene (a coarse mesh with k patches
and a fine mesh with n elements). The LRR method allows to build the matrices Uk

and Vk after O(n2) floating point operations. All the methods mentioned above requires
the calculation of the RF matrix.

The product UkV
T
k generates a matrix with dimension n×n and rank k. The mem-

ory space needed to store Uk and VT
k is O(nk), significantly less than the O(n2) required

to store the matrix RF, especially when n≫k. This memory saving allows reducing the
space needed to store the information for large scenes.

In the LRR equation (Equation 1.1), RF is replaced by the low-rank approximation
UkV

T
k , and B is only found approximately (B̃). Then, the matrix

(
I−UkV

T
k

)
is

invertible using the Sherman-Morrison-Woodbury formula [28]:

B̃ = E −
(
−Uk

(
Ik −VT

k Uk

)−1
)

︸ ︷︷ ︸
Yk

VT
k E = E −YkV

T
k E (2.5)

When finding B̃ through Equation 2.5, O(nk2) operations are required and O(nk) mem-
ory is needed.

In scenes with static geometry and dynamic lighting (i.e., only the independent term
E varies in Equation 2.5), part of the computation can be executed before the real-time
stage, because the n×k matrices Yk, Uk, and Vk can be calculated only once. Thus,
the real-time stage has now complexity O(nk). This is an auspicious result in order to
develop a methodology for real-time radiosity and inverse lighting problems.

Equation 2.5 can also be formulated as B̃ = M̃E, so M̃ = I −YkV
T
k is considered

as the global operator that manages the infinite bounces of light in a single operation.
This global operator is computed without the use of Neumann series, as it happens in
other works [33, 34], taking advantage of the fact that RF is a low-rank matrix.

2.3 Inverse Rendering Problems

According to Tarantola [35], physical theories allow us to make predictions: given a
complete description of a physical system, we can predict the outcome of some measure-
ments. The problem of predicting the result of measurements is called the modelization
problem, the simulation problem, or the forward problem. In contrast, inverse prob-
lems generally infer the properties (or model parameters) of a physical system from
observed or desired data. Inverse problems are usually numerically complex, have many
or even infinite solutions, and are of interest in a wide range of fields, including lighting
engineering and lighting design.

Marschner [36], studied the rendering equation (Equation 2.2), and considered that
there are three main kinds of inverse rendering problems: the inverse lighting prob-
lems (ILP), the inverse reflectometry problems, and the inverse geometry problems. In
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the inverse lighting problems (related to ε(x, x′) in Equation 2.2), the shape and reflec-
tion properties of a scene are known and the reflected light is at least partially known.
The problem consists in finding the emission (or the incident light due to direct illumi-
nation) in the scene. In the inverse reflectometry problems (related to ρ(x, x′, x′′)) the
variables of the problem are related to the reflection properties of the surfaces. Finally,
in inverse geometry problems (related to g(x, x′)) the unknowns are linked to the geom-
etry of the object. Two interesting surveys on the state of the art of inverse rendering
problems can be found in the work of Patow and Pueyo [37, 38].

2.4 Inverse Lighting Problems

According to Patow and Pueyo [37], the inverse lighting problems can be further clas-
sified into problems of inverse emittance and inverse light positioning. In the former
problems the unknowns are the emittances of a given subset of surfaces of the scene. In
the latter problems the unknowns are the locations of the light sources in order to achieve
a desired illumination. Another classification can be fulfilled related to the treatment
done to the rendering equation. In this alternate approach, the main classification is be-
tween the classic finite element radiosity setting, the inverse Monte Carlo framework, or
even by posing them as direct illumination problems. Given the above classification, it
is possible to say that this thesis is centered in the resolution of inverse light positioning
and emittance problems, through the setting of a finite element radiosity configuration.

Figure 2.7 shows an example of inverse lighting problem (ILP) as considered in this
thesis, where the emitter position and shape (parameters) are inferred, given expressed
lighting intentions (desired data).

Minimal 

high light 

level 

at selected 

area 
Minimal light 

at the floors 

Roof-skylights: 

Set position, shape and 

emitting power  

Geometry restrictions: area 

size and symmetry 

Figure 2.7: An example sketch of a design configuration.
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For inverse lighting problems with Lambertian surfaces, the problem of solving the
emission of a surface given the reflection on the surfaces can be stated from the Equa-
tion 2.6, which can be derived directly from Equation 2.4.

RFE = (I−RF)C (2.6)

In this equation, the emission E is unknown, C is the known reflected radiosity of all
the surfaces (i.e., C = B − E). Therefore, (I−RF)C is a defined vector.

The above problem is ill-posed, due to the low numerical rank of matrix RF. This
means that the solucion of E is extremely sensitive to the input data C. Ramamoorthi
and Hanrahan [39] found similar results when they tried to estimate the light emission
from observations of the reflection on a Lambertian surface. Also, Harutunian et al.
[40] observed similar results in the context of radiative heat transfer. Another problem
is that the solution found could have negative values (Contensin [41]). Therefore, the
resolution of the inverse problem through a single inversion of the radiosity matrix (using
truncated singular value decomposition (TSVD) or modified TSVD (MTSVD) [42]), by
itself offers limited results. Moreover, when the surfaces are glossy or specular, it is
more likely to find a precise configuration of emitters, because the path followed by the
light is better defined.

Another element to take into consideration in ILP is that usually the exact values
of the reflected radiance C are unknown. In lighting design, the designer establishes
coarsely some constraints of the incoming or reflected light, and hope to find an emitter
configuration that fulfills such constraints. Therefore, Equation 2.6 is not well defined,
hindering its resolution. An alternative to that approach is to solve the radiosity equa-
tion many times, trying different configuration of the lights E, looking for the config-
uration that better fulfills the constraints. As a consequence of this approach, many
of the papers published of inverse lighting are focused on the resolution of ILP as an
optimization problem (see Section 2.5).

2.4.1 Previous Work in Inverse Lighting Problems

One of the first attempts into the ILP domain was presented by Schoeneman et al.
[43]. These authors introduced the idea of providing an iterative numerical solution
to achieve results from a “spray-painting” user-interface description. The interactivity
was achieved only for direct illumination. Several works searching for similar goals but
driven by different motivations and assumptions were later proposed [37]. Contensin
[41] formulated an inverse radiosity method based on a pseudo-inverse analysis of the
radiosity matrix. Costa et al. [44] proposed an optimization engine to deal with complex
light specifications. Kawai et al. [45] performed the optimization over the intensities and
directions of a set of lights as well as surface reflectiveness to best convey the subjective
impression of certain scene qualities (e.g., pleasantness or privacy), as expressed by users.
Their so-called radioptimization system is a framework that determines optimal setting
parameters based on unconstrained optimization techniques used in conjunction with
penalty and barrier methods to manage constraints [46], and a hierarchical radiosity
solver [17]. Castro et al. [47] used heuristic search algorithms combined with linear
programming to optimize light positioning with an energy-saving goal. Similar problems
were solved with closely related techniques. Pellacini et al. [48] presented an interactive
system for computer cinematography that allows users to paint the desired lighting
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effects in the scene, and a solver provides the corresponding parameters to achieve these
effects using a non-linear optimization method. Gibson et al. [49] solved the inverse
lighting problem through iteration of virtual light sources in the context of photometric
reconstruction data. Shesh and Chen [50] developed a sketch guided illumination of
models, to specify target lighting through the sketch of bright and dark regions on the
model as if coloring it with crayons.

Considerably less work has been devoted to optimizing daylight sources, such as
openings and skylights. The problem of finding the modeling shapes for lighting goals
is more complex for daylight sources than for artificial lights, because in the former
case, we are dealing with a dynamic light source. An inverse method for designing
opening buildings is presented by Tourre et al. [51] based on the evaluation of potential
elements with relation to an interior lighting intention. In Besuievsky and Tourre [52],
the method is extended for accurate sky computation with exterior occlusion. These
approaches consider an anisotropic distribution of the light over the potential opening.
More recently, Liu and Granier [53] developed a system of tracking of outdoor lighting
variations for augmented reality with moving cameras. These variations are reflected in
the lighting and shadows of the virtual objects to achieve more visual realism.

2.4.2 Coherence in Inverse Lighting Problems

Regardless of the strategy being used to tackle inverse lighting problems, the global illu-
mination function must be evaluated many times prior to finding a converged solution.
For this purpose an efficient method should be used to compute the solution for each
setting of parameter values. However, research on this point has not been emphasized.
The use of coherence is crucial to improve the global illumination computation in inverse
lighting. Castro et al. [47] improved this known expensive computation by re-using ran-
dom walk paths. They build and store, in a preprocessing step, an irradiance matrix
that allows computing, for each patch of the scene the power contribution of several
fixed light points. The main restrictions of this approach are that the authorized light
positions must be predefined and that all of the light sources are point lights. In chapters
3 to 6 of our work, we use a low-rank radiosity method (LRR) [26] that allows computers
to solve the radiosity equation in real-time with infinite bounces for scenes with dynamic
lighting and a relatively small computer storage. With this method no restrictions are
required for the light sources: the sources could be anywhere in the scene and area
light sources can be allowed, as well. Other approaches, such as the one presented by
Kontkanen et al. [33], which uses wavelets to store a pre-computed matrix, could also
be used for this purpose. This technique supports all types of light sources, and also
glossy BRDFs. However, dynamic objects cannot be easily supported. Furthermore,
precomputation still takes tens of minutes for very simple scenes. Arquès and Michelin
[54] found that all patches in the neighborhood of a given reference patch, have form
factors that are weighted sums of the reference patch form factor and a series of associ-
ated integrals of generalized orthogonal polynomials, which reduces the calculation time
and allows to control the calculation errors. Vilaplana and Pueyo [55] present a brief
characterization of the uses of coherence for form factor computation, and propose new
uses of coherence for visibility computation in form factor determination.
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2.5 Optimization

Optimization processes play an important role in the resolution of ILP, therefore, a brief
introduction is given here. A deeper introduction to this area of knowledge could be
found in [46], [56], [57], and [58].

According to Luenberger and Ye [46], the concept of optimization is now well rooted
as a principle underlying the analysis of many complex decision or allocation problems.
One approaches a complex decision problem, involving the selection of values for a
number of interrelated variables, by focussing the attention on a single objective designed
to quantify performance and measure the quality of the decision. This objective is
optimized subject to the constraints that may limit the selection of decision variable
values. Other approaches involve multi-objective optimization problems, where more
than an objective function is optimized simultaneously, and where the solution found is
not unique (probably an infinite number of Pareto optimal solutions [56, 57]).

The decision problems consist of the following steps [58]: formulate the problem,
model the problem, optimize the problem, and implement the solution (see Figure 2.8).
In inverse lighting problems, the formulation of the problem is exemplified in Figure 1.2,
where a designer outlines the internal and external factors, and the objective(s) of the
problem. In the modeling of the problem, an abstract mathematical model is built for
the problem. Usually this stage involves approximations and sometimes some elements
are eliminated due to its mathematical complexity. Once the problem is modeled, the
optimization step generates a “good” solution for the mathematical problem (but per-
haps not for the original problem). The solution may be optimal or suboptimal. In the
final stage, the solution is tested in practice by the decision maker and is implemented if
it is “acceptable”. Like life cycles in software engineering, the life cycle of optimization
models and algorithms may be linear, spiral, or cascade.

Formulate Model Optimize Implement
Solution

Figure 2.8: The classical process in decision making [58].

This thesis is centered in the model and optimization stages. In Figure 1.1, the model
input and the design configuration step correspond to “model the problem” stage, and
the precomputation process, the optimization process and the results steps correspond
to “optimize the problem” stage, in the decision making process.

Different families of optimization models are used in practice to formulate and solve
decision-making problems. The classical optimization models can be divided into the
following classes: mathematical programming models [59] (which are divided into con-
tinuous, integer, mixed, and also can be divided into linear and nonlinear), combi-
natorial optimization models [60], constraint satisfaction models [61], and nonanalytic
models [62]. The most successful models are based on mathematical and constraint
programming.
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In mathematical programming, the problem consists in maximizing or minimizing a
real function, within the available input values. The combinatorial optimization prob-
lems are characterized by discrete decision variables and a finite search space. In con-
straint programming, the constraints define the properties of a solution, which is found
through the interleaving of propagation and search processes. Finally, the nonanalytic
models afford problems that cannot be solved in an exhaustive manner, because the
objective function is unknown.

Considering the complexity of the problem, there are exact methods and approximate
methods. Exact methods obtain optimal solutions and guarantee optimality. But for
NP-complete problems the approximate methods are used, because they generate high
quality solutions in a reasonable time for practical use. However, there is no guarantee
of a global optimal solution. The exact methods include branch and bound, constraint
programming and dynamic programming methods, among others. The approximate
methods can be divided into heuristic algorithms and approximation algorithms. Heuris-
tic algorithms can be further divided into metaheuristics (single and population based),
and problem specific methods.

Unlike exact methods, metaheuristics allow to tackle large-size problem instances by
delivering satisfactory solutions in a reasonable time. There is no guarantee of global
optimal solutions or even bounded solutions. Application of metaheuristics falls into
a large number of areas, such as: engineering design, topology optimization, machine
learning, system modeling, planning in routing problems, and logistics, among others.

2.5.1 Optimization in Inverse Lighting Problems

The choice of the optimization methodology to solve ILP seems to be quite arbitrary,
and in the literature several different approaches to this point can be found. It is clear
that the best optimization method to use is an open research area. Least squares and
constrained least squares methods [28], simulated annealing [63], modified truncated
singular value decomposition (MTSVD) [42], are the most common algorithms used for
ILP, as can be seen in the work of Patow and Pueyo [37].

Hill climbing [64] and beam search [65] heuristics, have been also applied in inverse
lighting problem. Castro et al. [66, 47] explored a wide range of these algorithms to
solve optimal economical light positioning. Kawai et al. [45] uses the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm [46], a hill-climbing optimization technique, and
the constraints are managed with penalty and barrier methods, as mentioned above. In
Cassol et al. [67] and in Schneider et al. [68], the scenes are simplified to rectangular
spaces, and the inverse problem is solved through the generalized extremal optimiza-
tion (GEO) approach, a global search metaheuristic [69]. Tena [70], Ferentinos and
Albright [71], and Delepoulle et al. [72] proposed population based methods (genetic
algorithms). The latter two calculate the light configuration to improve the growth of
plants in closed environments.

In our work, we used the variable neighborhood search (VNS) metaheuristic for opti-
mization problems [73] (see Section 4.4.3). We adapt this technique to our illumination
problem and show that good optimization results can be achieved.
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2.6 The Radiosity Inverse Matrix

The calculation of the radiosity inverse matrix M = (I − RF)−1 is the main strategy
developed in this thesis to speed up the calculation of thousands of radiosity configura-
tions in an ILP. The matrix M can be transformed, using Neumann series, into a sum
of powers of RF. Therefore, the radiosity of the scene B can be calculated through the
following sum of terms:

B = ME = (I−RF)−1E = ( I+RF︸ ︷︷ ︸
Direct Illumination

+(RF)2 + (RF)3 + . . .︸ ︷︷ ︸
Indirect Illumination

)E (2.7)

In this series the first term, IE, corresponds to the emission, the second one, RFE,
corresponds to the first reflection of the emitted light, the third one, (RF)2E, corre-
sponds to the second reflection, and so on.

The classic way to calculate the radiosity consists in an iterative procedure, expresed
in Equation 2.8.

B(i+1) = RFB(i) + E; with B(0) = E (2.8)

In this procedure, B(i) represent the result of the truncated series until the ith power.
Jacobi and Gauss-Seidel iteration are commonly used in finite elements publications, in
hierarchical and non-hierarchical approaches [14].

According to Cohen and Wallace [14], the eigenvalues of RF are less than one. Also,
the spatial coherence of the scene is reflected in the similarity between the rows of F,
as is explained above. Therefore, the matrix RF has a low numerical rank, that is, the
number of significant singular values and eigenvalues is small compared to the size of
the matrix. The greatest eigenvalues of a Cornell box scene can be appreciated in the
dotted line of Figure 2.6.

In the Neumann series, the RF terms can be substituted by the eigendecomposition
QΛQ−1, where Λ and Q contain the eigenvalues and eigenvectors of RF, respectively.
The substitution results in the Equation 2.9.

B = (I−RF)−1E = Q(I+Λ+Λ2 + . . .)Q−1E = Q(I+Λ

︸ ︷︷ ︸
Direct

+
∞∑

i=2

Λi

︸ ︷︷ ︸
Indirect

)Q−1E (2.9)

Figure 2.9 shows the eigenvalues of the first terms in the Newmann series. It can
be appreciated that the sum of diagonal matrices representing the indirect illumination
goes down faster than the eigenvalues related to direct lighting (see the black dashed
line), therefore the indirect illumination has a lower numerical rank. Also, the nonzero
elements of the term Λi decreases when the value of i increases, meaning that their
influence in the final result is also lower than the former terms.

2.6.1 Alternatives to LRR decomposition

As mentioned above, much of the information pertaining to RF is redundant and can be
derived from a relatively small sample of matrix elements. This fact leads us to suppose
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Figure 2.9: First terms in Neumann series and the sum of 3rd and subsequent terms.

that instead of storing and processing a vast array like RF, it can be approximated
by a product of two low-rank matrices (RF = UVT ), where U and V have dimension
n×k, with n ≫ k. The LRR scheme allows us to find the approximated decomposition,
but it suffers certain problems. It requires the calculation of all the form factors of the
scene, which slows down the whole precomputation process. Another drawback of LRR
is that it depends on the existence of two meshes with different granularity (one with n
elements and the other with k elements), which determine the size of the matrices and
the accuracy of the radiosity calculation.

In the literature, there are not many other approaches of global illumination based
on the calculation of the inverse matrix. Kontkanen et al. [33] established an approach
where a precomputed Global Transport Operator (GTO) is calculated to express the
relationship between incident and outgoing surface radiance. This GTO contains the
global interaction of radiance, independent of the particular light emission of the scene,
and is calculated through the accumulation of the first terms of a Neumann series. After
the computation of each term, all coefficients below a certain threshold are removed.
This approach was later used in other works [74, 34].

The numerical linear algebra community has a long history in the development of al-
gorithms for matrix decomposition, and low-rank matrix approximations. The classical
approaches, like truncated singular value decomposition (TSVD) and rank-revealing QR
decomposition [28], can be prohibitive for large matrices, because their running time are
O(n2k) for square matrices. Other methodologies have been developed recently based
on the construction of randomized algorithms that compute partial matrix decomposi-
tions. These methods use random sampling to identify a subspace that captures most
of the action of a matrix. The input matrix is then compressed to this subspace, and
the reduced matrix is manipulated deterministically to obtain the desired low-rank fac-
torization. The works of Halko et al. [75] and Mahoney [76] bring deep insight into
these methodologies. All the randomized algorithms presented in the above works re-
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quire at least one pass over the data (as in LRR), and require O(n2 log k) floating-point
operations.

Another important result can be appreciated when the matrix to decompose has
exactly low rank k. In this case, to find an exact factorization of the matrix it is enough
to find a subset of k rows and k columns linearly independent [29]. In this decomposition,
called CUR matrix decomposition or pseudo-skeleton approximation method, a given
matrix A of dimension n×m is decomposed in the product of three matrices A = CUR,
where C (n× k) is composed by a subset of columns of A, R (k×m) contains a subset
of rows of A, and U (k × k) is defined as the inverse of the matrix defined by the
intersection of C and R.

When the real rank of the matrix is much greater than k, then the optimal selection of
C and R matrices over all

(
n
k

)
such matrices is an intractable combinatorial optimization

problem [77]. The existing methods try to avoid such brute force methodology with
different strategies, always passing one or more times over the data.
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Chapter 3

Low-Rank Radiosity Using Sparse

Matrices 1

Radiosity methods are part of the global illumination techniques, which deal with the
problem of generating photorealistic images in 3D scenes with Lambertian surfaces. Low-
rank radiosity is a O(nk) method, where n is the number of polygons and k is the rank
of the matrix used as a direct transport operator. This method allows calculating, in
real-time and with infinite bounces, the illumination of a scene with static geometry and
dynamic lighting. In this paper we present a new methodology for low-rank radiosity
calculation based on the use of sparse matrices, which significantly reduces the memory
storage required and achieves speedup improvements over the original low-rank method.
Experimental analysis was performed in both traditional computers and new graphics
processing unit architectures.

Keywords: Radiosity, Real-time global illumination

3.1 Introduction

The radiosity method is a pioneering technique for global illumination on scenes with
Lambertian surfaces, which has been applied in many areas of design and computer
animation [1].

Since the classic formulation of the radiosity technique in the decade of 1980, several
iterative resolution methods have been proposed [2]. These methods are not feasible for
computing realistic images in real-time (many bounces at 20 fps), due to their iterative
nature. After that, several other methods have been proposed to achieve the real-
time computation of the global illumination, such as instant radiosity [3], precomputed
radiance transfer [4], radiance transport [5, 6] and photon mapping [7], which have shown
some success using global illumination approximations.

1Published in: E. Fernández, P. Ezzatti, S. Nesmachnow and G. Besuievsky Low-rank Radiosity

using Sparse Matrices. Proceedings of the International Conference on Computer Graphics Theory and
Applications (GRAPP 2012) and International Conference on Information Visualization Theory and
Applications (IVAPP 2012), Rome, Italy, 24-26 February, 2012, Pages 260-267.
A shorter version of the paper was published in: E. Fernández, P. Ezzatti and S. Nesmachnow Improving

the Low Rank Radiosity Method Using Sparse Matrices. Mecánica Computacional Vol XXIX, Buenos
Aires, Argentina, 15-18 November 2010, Pages 7053-7066.
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By exploiting spatial coherence, the low-rank radiosity method (LRR) [8] allows
solving the real-time radiosity problem with infinite bounces, for scenes with static
geometry and dynamic lighting, using a low memory storage approach. The original
LRR implementation used full matrices, and the promising idea of generating sparse
matrices was previously pointed out, but it was not developed.

This work presents a new approach for the utilization of sparse matrices in the LRR
method. Specific implementations of algorithms to solve the radiosity problem in both
traditional computer architectures (CPU) and modern graphic processing units (GPU)
are introduced. The experimental results show that the GPU implementation of the LRR
method based on sparse matrices has an acceleration factor greater than four, compared
to the full matrix approach of the LRR method. These promising results demonstrate
that our approach is an alternative for real-time radiosity applications. Comparing to
other strategies, LRR ensures always a full global illumination solution being capable of
dealing efficiently with environments with significant indirect illumination contribution.

The rest of the article is organized as follows. Section 3.2 introduces the radiosity
problem and the previous work. The low-rank radiosity method is described in Sec-
tion 3.3. Section 3.4 introduces the utilization of sparse matrices in LRR, and describes
the implementations of the proposed algorithms for sparse low-rank radiosity in CPU
and GPU. The experimental analysis is reported in Section 3.5. Finally, Section 3.6 sum-
marizes the conclusions of the research and formulates the main lines for future work.

3.2 The Radiosity Problem

This section starts by introducing the radiosity problem formulation. After that, the
main proposals found in the literature related with the pre-computed radiosity and
radiance transfer problem are reviewed.

3.2.1 Problem Formulation

The radiosity problem is modeled by a Fredholm integral equation, the radiosity equa-
tion (3.1). In Equation 3.1, B(x) is the radiosity in point x, E(x) is the light emission
in x, ρ(x) is the Lambertian diffuse reflectivity of x, and G(x, x′) is a geometric factor
that determines how much of the radiosity in x′ contributes to the radiosity of x [2].

B(x) = E(x) + ρ(x)

∫

S

B(x′)G(x, x′)dA′ (3.1)

Any Fredholm-type equation can be transformed into a discrete equation, which implies
solving a linear system. In the radiosity problem the linear system is expressed by
Equation 3.2, where I is the identity matrix with dimension n×n (n is the number of
polygons), R is a diagonal matrix that stores the reflectivity of the polygons, F is the
matrix with the form factors Fij –which indicate the fraction of light reflected by the
polygon i that arrives to the polygon j–, B is a vector with the radiosity value of each
patch, and E is the vector with the emission of each patch.

(I−RF)B = E (3.2)

This discrete equation can be also formulated through the use of a direct transport
operator T, which expresses the direct transmission of light between two surfaces of
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the scene. Using T, the discrete radiosity equation (Equation 3.2) is expressed as
(I−T)B=E. Moreover, the operator M = (I − T)−1, is a global transport operator
relating the emitted light with the final radiosity of the scene, B = ME. For scenes
where the geometry is fixed and only the light output varies, the operators T and M
are constant.

3.2.2 Related Work

The main class of elements used in light transport includes the polygons, the parametric
surfaces [2], and the discrete points [9]. In all these cases it is possible to build operators
T and M that indicate the transport relationship between any pair of elements.

The O(n2) memory required to store T has been clearly posed as a problem in
early radiosity papers [10]. Many solutions have been proposed, such as two-level hi-
erarchy [11], hierarchical structures [12], and wavelets [13]. The memory savings are
determined by the spatial coherence of the scenes, where it is highly probable that
neighboring elements i, j have similar transport values with many other elements k of
the scene, that is, Tik ≈ Tjk. In this case, these values are considered equal, then,
many transport values can be replaced by a single value. This is the main idea behind
the hierarchical approximation H(T) of any T operator, where H(T) is usually stored
in O(n) memory. The balance between the error introduced by the method and the
memory saved is highly convenient for most scenes. In these works the calculation of B
is done by iterative methods, avoiding the need of computing H(M).

Recently, other kinds of methods that include BRDF surfaces and the calculation
of H(M) have been developed. In [5], the BRDF operator (T) is transformed into
H(T) through the use of wavelets, and H(M) is calculated using the Neumann series
H(M) = I + H(T) + H(T)2 + . . . , by removing all values of H(T)n smaller than a
certain threshold. After calculating the global incident radiance of a scene, the BRDF
function is applied again to find an image from a particular point of view. Later, in [6] a
meshless hierarchical representation of the objects in the scene, built upon a hierarchy of
points, is performed. Each point consists of a pair (position, normal) and has a radius of
influence related to the hierarchy level to which it belongs. Using a hierarchical function
basis, a sparse matrix H(T) is generated by elimination of all terms below a threshold,
and a final sparse operator H(M− I) is created, using also Neumann series.

Other methods used to achieve real-time global illumination are based on instant
radiosity techniques [3] and its variants [14], but these methods compute only a few
bounces.

In contrast, the LRR method proposed in this work allow us to solve the radiosity
problem with infinite bounces and relatively small computational resources. This result
is based on the premise that when T is a low-rank matrix, the operator M can be easily
calculated, as it is explained in the next section.

3.3 The Low-Rank Radiosity Method

It is very likely that the RF matrix included in Equation 3.2 has a low numeric rank.
This is because each row (RF)i is computed based on the scene view from the element i,
and most pairs of close patches have a very similar view of the scene (Figure 3.1). Then
RF has many similar rows, which results in a reduction of the numerical rank.
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(a) Two close patches i1
and i2.

(b) Hemicube view
from i1.

(c) Hemicube view
from i2.

(d) Spatial coherence in
the scene.

Figure 3.1: Close patches have similar views of the scene and generate similar rows
in RF. In (d) the spatial coherence of each patch is measured (darker means lower
coherence).

The rank reduction ofRFmatrices allows approximating them by the product of two
matrices UkV

T
k , both with dimension n×k (n≫k), without losing relevant information

about the scene.

3.3.1 Low-Rank Approximation

The product UkV
T
k generates a matrix with dimension n×n and rank k. The memory

space needed to store Uk and VT
k is O(nk), significantly less than the O(n2) required

to store the matrix RF, especially when n≫k. This memory saving allows reducing the
space needed to store the information for large scenes.

In the LRR equation (3.3), RF is replaced by the low-rank approximation UkV
T
k .

The unknown is not longer B, but an approximation B̃ of the radiosity.

(
I−UkV

T
k

)
B̃ = E (3.3)

The matrix
(
I−UkV

T
k

)
is easily invertible using the Sherman-Morrison-Woodbury for-

mula [15]. Equation 3.4 shows the expression for B̃.

B̃ = E +Uk

((
Ik −VT

k Uk

)−1 (
VT

k E
))

(3.4)

In order to find B̃ through Equation 3.4, O(nk2) operations are required and O(nk)
memory is needed.

In scenes with static geometry and dynamic lighting (i.e., only the term E varies
in Equations 3.2 to 3.4), part of the computation can be executed before the real-time
stage. Equation 3.4 is transformed into 3.5, where the n×k matrices Yk, Uk, and Vk

are calculated once. Thus, the real-time stage only has complexity O(nk). This is an
auspicious result in order to develop a new methodology for real-time radiosity.

B̃ = E −Yk

(
VT

k E
)
, (3.5)

Yk = −Uk

(
Ik −VT

k Uk

)−1

Equation 3.5 can also be formulated as B̃ = ME, so M = I −YkV
T
k is considered

as the global operator that manages the infinite bounces of light in a single operation.
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This global operator is computed without the use of Neumann series, as in [5, 6], taking
advantage of the fact that RF is a low-rank matrix.

3.3.2 Uk and Vk Calculation

Uk and Vk can be computed using factorization techniques, such as singular value de-
composition (SVD or PCA) [15], CUR factorization [16], and discrete transformations
based on Fourier and wavelets [17]. SVD is the only method that produces good approx-
imations to RF for low values of k, but it has an O(n3) complexity. The other methods
mentioned have lower complexity orders, but they also produce larger errors in the RF
approximation.

To overcome the weakness of the traditional factorization techniques, the Low-Rank
Radiosity (LRR) method proposed in [8] uses the concept of spatial coherence [18]. This
method generalizes the two-level hierarchy methodology [11], where two meshes with
different granularity levels are generated for the scene (a coarse mesh with k patches
and a fine mesh with n elements). Using these two meshes it is possible to build the
n×k matrices Uk and Vk.

Both, the coarse and the fine meshes, can be uniform or nonuniform. In this paper,
we proposed a nonuniform coarse mesh that is adapted to the spatial coherence of the
scene. In the resulting algorithm, named 2 Meshes with Spatial Coherence (2MSC), the
fine mesh is given, assuming that inside each element there is spatial coherence, but the
coarse mesh is built taking care of the spatial coherence inside each patch.

The 2MSC produces a nonuniform mesh, with smaller patches in those areas with
low spatial coherence. Algorithm 1 shows a top-down procedure for creating the coarse
mesh from a few large patches, using the 2MSC algorithm. An initial set of large
patches are inserted into a queue Q (see Figure 3.2 (a)). Every patch is taken from
Q, one at a time. All patches without spatial coherence (i.e., when the inner scene
views vary more than a specified threshold) are split into several subpatches, which are
inserted into Q. The algorithm stops when the queue Q is empty (i.e., when all patches
have spatial coherence), or when all those patches without spatial coherence are smaller
than a predefined value (Amin). The number of patches (k) depends on the value of
the parameter Amin and also depends on the procedure used to evaluate the spatial
coherence. Figure 3.2 (b, c) shows a coarse mesh generated using the 2MSC algorithm
and a fine mesh. The discretization of the coarse mesh shown in Figure 3.2 (b) agrees
with the colors of spatial coherence shown in Figure 3.1 (d), i.e., the darker the color,
the more need to split the surface.

Algorithm 1: 2MSC Algorithm.

1: Store patches p in a queue Q.
2: while (Q 6={}) do
3: Remove a patch p from Q.
5: if ¬(spatial coherence inside p) ∧ (Area(p) > Amin)
6: Divide p into subpatches and store them in Q.
7: end.
8: end.

The spatial coherence inside a patch p can be accomplished in different ways. A
simple algorithm involves dividing p in several subpatches {p1, . . . , ps}, and then cal-
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(a) Original coarse mesh. (b) Coarse mesh after 2MSC. (c) Fine mesh.

Figure 3.2: Meshes used to compute Uk and Vk.

culate the form factors between each subpatch and the fine mesh version of the scene.
This generates a set of vectors {v1, . . . , vs}, each containing the form factors related to
a subpatch. Now we are in condition to measure the euclidean distance between each vi
and the average vector

∑s
i=1 vi/s. If some of the distances are greater than a specified

threshold, then we consider that there is not spatial coherence inside p.

After the scene meshes are defined, the matrices Uk and Vk are built using the
information from an assignment function P : e → p that gives, for each element e in the
fine mesh, the corresponding patch p in the coarse mesh. The assignment can be defined
by inclusion (element e belongs to single patch p) or by proximity (p is the closest patch
to element e).

If P is defined by inclusion and all elements belonging to any patch have equal area,
the construction of matrices Uk and Vk follows Equation 3.6. There, Fep is the form
factor between an element e of the scene and the elements assigned to the patch p, and cp
is the number of elements assigned to p.

Uk(e, p) = Fep/cp

Vk(e, P (e)) = 1 , Vk(e, p) = 0 ∀p 6= P (e) (3.6)

Other methodologies can be applied to build the matrices Uk and Vk. Besides using
SVD factorization, where the columns of both matrices are orthogonal, the columns
of the matrix Uk generated using Equation 3.6 can also be orthogonalized using QR
factorization. After the QR factorization is performed, a new matrix UQR is gener-
ated and Vk can be replaced by VQR = (RF)TUQR. These methodologies have been
implemented by the authors to generate Uk and Vk, but the experiments showed no
conclusive results about which is best method. In this paper, the Equations in 3.6 were
employed to build the matrices, due to both the simplicity of building a low rank ap-
proximation of the RF matrices and the possibility to build a sparse version of the Vk

matrix, as it is explained in the next section.

3.4 Sparse Matrices in LRR

The 2MSC algorithm and the Equations 3.6 generate sparse matrices Vk with dimen-
sion n×k, with a unique non-zero entry in each row (corresponding to the P (e) column).
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This section introduces an O(k) storage methodology for the Vk matrix, and an imple-
mentation of the LRR method for both CPU and GPU platforms.

3.4.1 Compressing the Information in Vk

The rows ofVk can be reordered, grouping them by the column where the non-zero value
is in (k disjoint groups are created, see Figure 3.3). Using ideas from the compressed
storage of sparse matrices [19], an index vector I can be defined. I indicates that the
rows of Vk with a one in the first column are placed from I1 = 1 to I2−1, that the rows
of Vk with a one in the second column are placed from I2 to I3−1, and so on. The O(k)
entries of I are enough to define the matrix Vk.

Figure 3.3: Construction of Vk and I from the function P .

Once the vector I is built and the values in the vector E are reordered accordingly
to the rows of Vk, the product VT

k E can be formulated as the sum in Equation 3.7.
The i-th value of the vector VT

k E is the sum of the values of E between the positions Ii
and Ii+1 − 1.

(
VT

k E
)
i
=

Ii+1−1∑

s=Ii

Es , ∀i, 1 ≤ i ≤ k (3.7)

The previously presented results allow us to conclude that if Vk is a sparse matrix
with the stated properties, the matrix-vector product VT

k E can be computed in O(n)
operations (instead of the O(nk) operations needed when Vk is a full matrix).

3.4.2 Sparse LRR Implementation

In order to validate the theoretical results presented in the previous subsection, two
implementations of the sparse LRR method were developed to solve the radiosity prob-
lem with a sparse Vk matrix generated by Equations 3.6. Each implementation uses
a different hardware to perform the calculations: one uses a traditional CPU, and the
other one uses a GPU.
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The LRR implementation in CPU uses the BLAS library [20], and Equation 3.7
is solved sequentially. On the other side, the LRR implementation in GPU uses the
CUBLAS implementation of BLAS for CUDA [21], and k threads are used to update

the vector
(
VT

k E
)
i
in parallel, each thread computing

∑Ii+1−1
s=Ii

Es for a different i.
Both LRR implementations use the xGEMV function from the BLAS library to com-

pute the matrix-vector product YT
k (V

T
k E). The product VT

k E is not explicitly com-
puted, instead, it is calculated using the sum in Equation 3.7. The pseudocode of
both implementations for a real-time processing of frames from a graphic application is
sketched in Algorithm 2.

Algorithm 2: Sparse LRR

{Pre-processing: Compute Yk and I}
1: [ONLY CPU] Store Yk, I into RAM memory
2: [ONLY GPU] Send and store Yk, I into GPU memory
3: for each frame do {in real-time}
4: Receive E from a graphic application
5: [ONLY GPU] Send and store E into GPU memory

6: Compute Xi=
(
VT

k
E
)
i
, ∀i, 1 ≤ i ≤ k, with

∑Ii+1−1

s=Ii
E(s)

7: Apply xGEMV to compute B̃ = E −YT

k
X

8: [ONLY GPU] Send B̃ to RAM memory

9: Store B̃ into RAM memory
10: end

3.5 Experimental Analysis

The experimental analysis compares the time required to compute B̃ using the LRR
method, based on full and sparse matrices, as well as on CPU and GPU architectures.

3.5.1 Execution Platforms

A first analysis was performed in a Pentium dual-core E5200 (2.50 GHz), 2 GB RAM,
with a NVIDIA 9800 GTX+ 512 MB. A second analysis using only sparse matrices
and larger scenes was executed in a Tesla Intel Xeon QuadCore E5530 (2.27 GHz),
8 GB RAM, with a NVIDIA c1060 (240 cores at 1.3 GHz) 4 GB.

3.5.2 Test Scenes

A first analysis was performed using a Cornell box with several discretizations (n=
{3456, 13824, 55296, 221184} and k= {216, 864, 3456}). For the experiments in the Tesla
platform, six scenes with dimension (n×k) 1769472×216, 221184×3456, 442368×1728,
884736×864, 1769472×432, and 3538944×216 were created from the same Cornell box
scene. Finally, we perform tests on a two-floor patio model with dynamic lighting changes.

3.5.3 Experimental Results

In the following tables, the row categorization puts together all scenes with approxi-
mately equal memory consumption. Each category consumes four times more memory
than the previous one.



3.5 Experimental Analysis 37

Table 3.1 shows the speedup values (ratio of execution times) obtained when comput-
ing VT

k E using the sparse LRR implementations in GPU and CPU, and the comparison
with the full matrix implementation. The best speedup values are shown in bold font.

The experimental results show that the speedup values were up to 335.50 in CPU,
and up to 37.47 in GPU. The best speedup values were obtained for the scene with
dimension 13824×3456, taking advantage of the large number of calculations in the sum
and the parallel computing strategy in xGEMV. Table 3.1 also indicates that the sparse
VT

k E product is faster in CPU.

dimension fullCPU
sparseCPU

fullGPU
sparseGPU

sparseCPU
sparseGPU

fullCPU
sparseGPU

3456× 216 15.67 8.00 0.60 9.40

3456× 864 68.33 9.00 0.60 41.00
13824× 216 21.67 11.36 0.64 13.93

3456× 3456 75.75 18.33 0.67 50.50
13824× 864 92.11 13.21 0.64 59.21
55296× 216 17.42 11.20 0.64 11.20

13824× 3456 335.50 37.47 0.67 223.67
55296× 864 94.03 13.09 0.65 61.55

221184× 216 24.01 10.99 0.58 13.84

Table 3.1: Speedup when computing VT
k E.

Table 3.2 shows the speedup values when computing B̃. These results demonstrate
that the sparse implementation is about two times faster than the full implementation
in CPU. Regarding the GPU implementations, the speedup values were between 5.21
and 2.05, and the best results were obtained when k = 216. Since 216 is not a multiple
of 32, the GPU computing capacities are not fully used [22], and better speedup values
shall be expected for other values of k. The computation of B̃ is faster in GPU, despite
that VT

k E is faster in CPU.

dimension fullCPU
sparseCPU

fullGPU
sparseGPU

sparseCPU
sparseGPU

fullCPU
sparseGPU

3456× 216 1.95 4.50 4.40 8.60

3456× 864 1.69 2.38 6.48 10.93
13824× 216 1.91 5.21 5.50 10.53

3456× 3456 1.43 2.05 5.70 8.17
13824× 864 1.88 3.41 9.73 18.32
55296× 216 1.90 5.04 5.58 10.61

13824× 3456 1.74 3.59 11.34 19.67
55296× 864 1.95 3.62 10.95 21.34

221184× 216 2.05 5.04 5.08 10.43

Table 3.2: Speedup when computing B̃.

Table 3.3 summarizes the speed of the LRR implementations regarding the number
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of frames per second (fps) that they are able to compute.

dimension
CPU GPU

full sparse full sparse

3456× 216 814 1591 1556 7000

3456× 864 221 372 1014 2414
13824× 216 196 374 395 2059

3456× 3456 70 100 278 569
13824× 864 51 96 273 933
55296× 216 47 90 100 504

13824× 3456 14 24 76 275
55296× 864 12 23 70 252

221184× 216 11 23 23 116

Average 159 299 421 1569

Table 3.3: Speed (fps) of the LRR implementations.

The results in Table 3.3 show that the minimum fps rate in CPU for the sparse LRR
implementation (23 fps) is twice the value of the full LRR implementation from the
previous work. In GPU, the minimum speed largely increased from 23 fps to 116 fps
with the sparse LRR implementation. For the small scene with dimension 3456×216,
a large fps rate of 7000 was achieved in GPU. Overall, the average speed values du-
plicate in CPU and quadruplicate in GPU, when compared the speed of the full LRR
implementation.

3.5.4 Real-Time LRR for Larger Scenes

The computational platform with the NVIDIA 9800 GTX+ GPU does not allow to scale
up for computing the radiosity of scenes with a million polygons, due to its memory
limitations. In order to show how the hardware evolution helps to solve the radiosity
problem, six new larger scenes of up to more than 3.5 million elements were solved in a
Tesla GPU platform.

Table 3.4 presents the speed results (in fps) when using the Tesla platform to compute
the radiosity for the three largest instances computed with the NVIDIA 9800 GTX+
GPU, and the speedup comparison with the Table 3.3. This analysis compares the
capability of computing the radiosity in real-time using the new hardware. The fps
rates in Table 3.4 show that a significant speed improvement is obtained with the Tesla
platform: it allows performing the radiosity computation in real-time, while achieving
speedup values up to 3.20 in CPU and 1.64 in GPU.

Table 3.5 summarizes the speed of the radiosity calculation for six new larger scenes of
up to 3.5 million elements in the Tesla platform. The scene with dimension 1769472×216
requires 8 times more memory than the largest scenarios in the previous subsection. Each
of the other five scenes requires 16 times more memory than the largest scenarios in the
previous subsection.

The results in Table 3.5 demonstrate that the radiosity computation using the sparse
LRR method can be performed in real-time in GPU, while none of the studied scenes
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dimension
speed (fps) speedup

CPU GPU CPU GPU

13824× 3456 74.07 297.87 3.06 1.09
55296× 864 73.61 301.72 3.20 1.20

221184× 216 72.92 190.74 3.18 1.64

Table 3.4: Comparative speed (fps) in the Tesla platform.

dimension speed in CPU speed in GPU

1769472× 216 8.15 24.05

221184× 3456 4.94 21.81
442368× 1728 4.94 20.59
884736× 864 4.55 18.67

1769472× 432 4.10 15.45
3538944× 216 4.00 11.48

Table 3.5: Speed (fps) for larger scenes in the Tesla platform.

can be computed in real-time in CPU. The GPU implementation was able to achieve
a reasonable level of speed (around 20 fps) for scenes up to 1.7 million elements. A
significant speed reduction was detected when solving the scene with more than 3.5
million elements, suggesting that there is still room to improve the proposed method in
order to face even more complex scenarios.

Figure 3.4 shows a wireframe view and three frames of an animated sequence for a
patio building model, where the emission lights change for each frame. The complete
video can be seen at www.fing.edu.uy/inco/grupos/cecal/cg/LRRSM.wmv. In the
patio building (Figure 3.4), the dimension (n×k) is equal to 24128×1364 and the frame
rate achieved is of 430 fps.

Figure 3.4: Patio building model. A wireframe view, and three different frames.

3.6 Conclusions and Future Work

This work introduces the utilization of sparse matrices in the low-rank radiosity tech-
nique. Four implementations of the LRR method (full/sparse matrices on CPU/GPU
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architectures) have been developed to solve the radiosity problem, and several exam-
ples of sparse LRR calculation have been implemented on a powerful GPU platform for
greater n×k scenarios.

The main contribution of this work consists in the inclusion of a sparse matrix
implementation into the LRR method. By reordering and grouping the information,
Vk is transformed into an index vector I which requires only O(k) memory to store the
same information. As a result, the averaged acceleration factor rises to four in GPU
architectures, due to the implementation of VT

k E product with O(n) sums.

The proposed method was able to solve the radiosity calculation in real-time for
scenes with more than 1.7 million elements in a Tesla GPU platform. This result
shows the degree in which the sparse LRR method has a better performance than the
full LRR method.

Two main lines of future work can be directly inferred from this paper: to further
improve the efficiency of the proposed method, and to develop new ways to build UkV

T
k

factorizations. Regarding the first line of work, the speed of the radiosity calculation
shall be reduced when using a hybrid strategy of simultaneous computation in CPU and
GPU, taking advantage of the fast computation of the productVT

k E in CPU. Respecting
the second line of work, further research must be performed to know the relation between
low-rank approximations of RF and the relative error of B̃. Preliminary results have
shown that in many situations, SVD is not the optimal factorization for the radiosity
problem, because other factorizations (such as those presented in this paper) generate
radiosity results with lower relative error.

Finally, another area of future work consists in facing the problem of processing
scenes with dynamic geometry in order to extend the applicability of this new technique.
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Chapter 4

Inverse Lighting Design for

Interior Buildings Integrating

Natural and Artificial Sources 1

In this paper we propose a new method for solving inverse lighting design problems
that can include diverse sources such as diffuse roof skylights or artificial light sources.
Given a user specification of illumination requirements, our approach provides optimal
light source positions as well as optimal shapes for skylight installations in interior ar-
chitectural models. The well known huge computational effort that involves searching for
an optimal solution is tackled by combining two concepts: exploiting the scene coherence
to compute global illumination and using a metaheuristic technique for optimization.

Results and analysis show that our method provides both fast and accurate results,
making it suitable for lighting design in indoor environments while supporting interactive
visualization of global illumination.

Keywords: Lighting Design, Inverse Problem, Global Illumination

4.1 Introduction

Lighting design is an important issue for sustainable buildings which involves both set-
ting natural and artificial lights as well as meeting energy distribution goals. This process
requires accurate lighting simulations, which are known to be computationally expen-
sive for a single model and may become prohibitive when directly exploring lighting
configurations for several sources. An efficient alternative to this computational task
is to use an inverse lighting method. Inverse lighting designates all setting in which,
unlike traditional direct calculations, illumination aspects are unknown and must be
determined. If we know in advance the desired illumination at some surfaces, an inverse
lighting approach can establish the missing parameters (e.g., light position, shape, and
power emission, among others).

Providing computationally efficient inverse lighting tools is a challenge. The whole
process involves two complex computational tasks: the global illumination simulation

1Published in: E. Fernández and G. Besuievsky Inverse lighting design for interior buildings inte-

grating natural and artificial sources, Computers & Graphics, Volume 36, Issue 8, December 2012, Pages
1096-1108.
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and the search for an optimal solution. The first task is crucial for accurate lighting de-
sign. Computing the indirect illumination constitutes a simulation of the light transport
process through multiple bounces around the environment, and requires dense numerical
solutions. For the second task, an optimization process is used to find a solution that
fulfills some requirements. The best solution that optimizes a given goal is chosen. The
problem is difficult to compute because the solution search space is generally huge.

Inverse lighting is not a new research topic. Several approaches have been proposed
based on different motivations, assumptions and optimization strategies. Some of the
techniques already explored are genetic algorithms [1], inverse radiosity systems [2, 3]
and heuristic methods [4]. Most of these works provide only numerical solutions for each
specific kind of environment, showing that an acceptable solution is eventually found. In
general, all the techniques are time consuming (requiring minutes or even hours) and are
not designed for an interactive design cycle. Another limitation is that no technique to
date includes electric sources integrated with natural lighting, as found in real buildings
(see Figure 4.1).

Roof-skylights Artificial lights 

Figure 4.1: Artificial light sources integrated with skylights in a real building.

In this paper we present a novel inverse lighting method that efficiently shortens the
execution time and integrates natural and artificial light sources. Given user illumination
goals and a set of geometric restrictions and lighting intentions, our system provides
optimal light source positions and optimal shapes for skylight installations in interior
architectural models. The key element of our method is to exploit the coherence of
architectural models to build a global illumination representation that allows designers
to explore many solutions efficiently. This functionality is encoded into a low-rank
radiosity representation, used as a solver called from an optimization method based on
the Variable Neighborhood Search (VNS) method [5].

The main contributions of our approach are as follows:

• We provide both a fast and accurate method for inverse lighting that allows de-
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signers to browse solutions in short design-cycle times.

• We provide a flexible lighting design approach in which light sources can be spec-
ified at any place in the environment.

• We provide a method that integrates artificial light sources with skylight sources.

The rest of the paper is organized as follows. The following section presents the
related work. Section 4.3 provides an introduction to the problem definition. In Sec-
tion 4.4, the mathematical basis of the problem and of the proposed solution is developed.
The main results of five inverse lighting experiments are exposed in Section 4.5. The
last section is devoted to the conclusions of this study and future work.

4.2 Related Work

There are two key areas of knowledge related to the inverse lighting problem: numerical
optimization and global illumination. On the one hand the huge search space generated
by inverse problems must be tackled by heuristic search-based techniques avoiding costly
brute-force approaches. On the other hand, lighting simulation is required for each
solution found in the search process. In this section we review the main related work
on inverse lighting problems.

4.2.1 Inverse Lighting

Direct methods calculate data from a specific configuration of model parameters. In con-
trast, inverse problems generally infer the properties (or model parameters) of a physical
system from observed or desired data. Inverse problems are usually numerically complex
and are of interest in a wide range of fields in lighting engineering and lighting design.

One of the first attempts to infer emitter position and shape (parameters), given ex-
pressed lighting intentions (desired data), was presented by Schoeneman et al. [6]. These
authors introduced the idea of providing an iterative numerical solution to achieve re-
sults from a “spray-painting” user-interface description. The interactivity was achieved
only for direct illumination. Several works searching for similar goals but driven by
different motivations and assumptions were later proposed. A survey of this topic was
reported by Patow and Pueyo [7]. Contensin [3] formulated an inverse radiosity method
based on a pseudo-inverse analysis of the radiosity matrix. Costa et al. [8] proposed an
optimization engine to deal with complex light specifications. Kawai et al. [2] performed
the optimization over the intensities and directions of a set of lights as well as surface
reflectiveness to best convey the subjective impression of certain scene qualities (e.g.,
pleasantness or privacy), as expressed by users. Their so-called radioptimization system
is a framework that determines optimal setting parameters based on unconstrained op-
timization techniques used in conjunction with a hierarchical radiosity solver [9]. Castro
et al. [4] used heuristic search algorithms combined with linear programming to optimize
light positioning with an energy-saving goal. Similar problems were solved with closely
related techniques. Pellacini et al. [10] presented an interactive system for computer
cinematography that allows users to paint the desired lighting effects in the scene, and a
solver provides the corresponding parameters to achieve these effects using a non-linear
optimization method. Gibson et al. [11] solved the inverse lighting problem through
iteration of virtual light sources in the context of photometric reconstruction data.
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Considerably less work has been devoted to optimizing daylight sources, such as
openings and skylights. The problem of finding the modeling shapes for lighting goals is
more complex for daylight sources than for artificial lights, because in the former case,
we are dealing with a dynamic light source. An inverse method for designing opening
buildings is presented by Tourre et al. [12] based on the evaluation of potential elements
related to an interior lighting intention. In Besuievsky and Tourre [13], the method
is extended for accurate sky computation with exterior occlusion. These approaches
consider an anisotropic distribution of the light over the potential opening. Our system
considers only openings with diffuse filters, such as typical skylight roof installations.
However, our method greatly improves both accuracy and speed, also allowing interac-
tive visualization results.

4.2.2 Coherence in Global Illumination

Independent of the strategy used to tackle the inverse lighting problems, the global illu-
mination function must be evaluated many times prior to finding a converged solution.
For this purpose an efficient method should be used to compute the solution for each
setting of parameter values. However, research on this point has not been emphasized.
The use of coherence is crucial to improve the global illumination computation in in-
verse lighting. Castro et al. [4] improved this known expensive computation by re-using
random walk paths. They build and store, in a preprocessing step, an irradiance matrix
that allows computing, for each patch of the scene the power contribution of several
fixed light points. The main restrictions of this approach are that the authorized light
positions must be predefined and that all the light sources are point lights. In our work,
we used a low-rank radiosity method (LRR) [14] that allows computers to solve the
radiosity equation in real-time with infinite bounces for scenes with dynamic lighting
and a relatively small computer storage. With this method no restrictions are required
for the light sources: the sources could be anywhere in the scene and area light sources
can be allowed, as well. Other approaches, such as the one presented by Kontkanen et
al. [15], which uses wavelets to store a pre-computed matrix, could also be used for this
purpose. Other fast global illumination techniques, like instant radiosity or VPL-based
methods [16], could also be adapted for optimization. However, when multiple bounces
are required they are not well suited for exploring many solutions in a short time with
changing lighting emission parameters.

4.2.3 Optimization

An optimization problem consists in finding the best solution from all the feasible so-
lutions, which are defined through a set of constraints. For illumination purposes, each
constraint is related to a lighting intention for all or part of the scene. Although op-
timization is a well known topic, there is no computational algorithm that will always
provide the global minimum for a general non-linear objective function. Finding the
optimal solution by brute force is usually not feasible in a reasonable time because of
the huge search space of the possible states. Heuristic algorithms avoid visiting the
whole search space, by means of designing rules that drive the search towards optimal
solutions. There is a large number of heuristic search algorithms in the literature, which
can potentially be used to solve lighting problems. Hill climbing [17], beam search [18]
and simulated annealing [19] are some of the most commonly used algorithms. Castro et
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al. [4] explored a wide range of these algorithms to solve optimal economical light posi-
tioning. In [20] and [21], the scenes are simplified to rectangular spaces, and the inverse
problem is solved through a generalized extremal optimization approach. In our work,
we used the VNS metaheuristic for optimization problems. We adapt this technique to
our illumination problem and show that good optimization results can be achieved.

4.3 Problem Definition

The main goal of our proposal is to provide a helpful tool for efficient lighting design
for both light sources and skylight installations. In this section we describe the lighting
design problem formulation and our system proposal.

We consider diffuse environments, that is, all the surfaces have perfectly diffuse mate-
rials with no specular component. Area light sources are also considered as Lambertian,
with constant emission power. For roof-skylight sources we consider that a diffuse filter
with a homogeneous transmittance coefficient is used. This system is one of the most
commonly used systems in real buildings. This system provides diffuse and controllable
sunlight, which creates a desirable ambient light [22]. These kinds of skylights can also
be considered as Lambertian emitters, because they scatter light homogenously. How-
ever, the difference between these sources and artificial light sources is that the emission
varies over time.

The energy goals are also driven in different ways: for artificial lights, we must aim
for the most economical solution, whereas for skylights, in general, we aim to obtain
as much light as possible, satisfying geometric restrictions. When designing daylight
systems, it is beneficial to consider the solution across all sun positions (time of the
day) and climatological conditions (sunny or cloudy). Although this variation is an
important issue, for this work, we consider only the average of all of the incoming
intensities. However, our mathematical framework can also take into account dynamic
daylight changes. A further development of this subject is left for future work.

To specify the design task and find the optimal solution given a 3D interior space
to illuminate, first, we must define the variables involved in the optimization, the con-
straints to satisfy, and the optimization goals.

4.3.1 Optimization Variables

In the lighting design problem, the optimization variable is generally related to the light
source specification. The light sources are no longer fixed as in a direct simulation,
and optimal parameter values must be found for the emission, position, and shape.
In our case, we consider rectangular area light sources with these three variables for
optimization (see Figure 4.2).

4.3.2 Constraints

Constraints are the restrictions, either imposed by the light designer or due to con-
structive building reasons, that must be satisfied in the illumination problem. Two
different categories of constraints are considered: geometric restrictions and lighting
intentions. For the first category, we consider any imposed restriction that the light
source must achieve (such as light size, aspect ratio, in-between distances of sources or
symmetries). For example, building constructive constraints regarding the installation
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Figure 4.2: An example sketch of a design configuration. Skylights with area and
symmetry restrictions must be installed in the roof, with the goal of achieving as much
light as possible in the scene. Some special places in the wall require a minimum intensity.
If a light source is required to achieve all of the restrictions, the system computes the
optimal position and emissive power.

of skylight sources in a roof may impose a regular distance between the skylights as well
as that they must be aligned along a given axis. For lighting intentions, we consider the
constraints that must be satisfied at the surfaces. Intentions are described by inequality
constraints that specify the interval of light intensity that each surface is allowed to
reflect.

4.3.3 Optimization Goals

Our goal is driven by the intention of optimizing energy consumption. Thus, we used
the minimization of energy as an objective function to select the best solutions among
the many possible ones. In general, in a lighting-optimization problem such as the one
we are describing, there may be an infinite number of possible solutions. We consider
energy optimization for our lighting problem in the following way:

• For artificial light sources we will search for the most economical solution, that is,
the one that minimizes the power consumption.

• For skylights, where light comes from natural resources, we aim to find the maximal



4.4 Mathematic Foundation 49

global light-power solution. This way, less artificial light may be needed in the
environment.

The pipeline design of our approach is described in Figure 4.3. Given an architectural
interior model for lighting design, in which reflectance surfaces are already defined, the
user first configures the parameters to find the optimal solution. These parameters
specify where to put the light sources as well as the variables to optimize (source position,
size and emission), the geometric restrictions and the lighting intention to achieve, and
the energy goals to optimize. Before the optimization process begins, we first pre-process
the scene to obtain a compact representation of the form-factor matrix of the elements
of the scene. For this purpose, we use a low-rank radiosity method. The optimization
method works by getting the compact representation found and a design configuration,
to obtain a fast result that can be visualized interactively. Regarding the resulting
values, the designer can modify the setting parameters to search for a new solution.

Results

Design Configuration

Model Input
Geometry, Materials

Low-Rank 

Radiosity

Optimization 

Process

Numeric Results

Geometric 

Restrictions, 

Light Intentions

Energy Goals

Optimization 

Variables

3D Visualization

Figure 4.3: Pipeline system.

4.4 Mathematic Foundation

Our solution proposal is based on a two-step approach. In this section we describe
details of both steps.

4.4.1 Problem Formulation

We explain here how to model the optimization problem as an unconstrained problem.
Further development of this topic was reported by Kawai et al. [2] and Luenberger and
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Ye [23].

The goal of the problem can be formulated as the optimization of a function f(x)
that usually represents the power emitted by the artificial light sources or the total light
power of the scene. There are also constraints related to geometric restrictions and
lighting intentions. The general formulation of the optimization problem is expressed in
Equation 4.1 where S is the set of feasible values for x.

minimize f(x) (4.1)

subject to x ∈ S

S can be formulated as a set of functional constraints, S = {x : ci(x) ≤ 0, i = 1 . . . p},
where each ci(x) ≤ 0 is an inequation that defines a constraint, and p is the number
of constraints. This set can be transformed into a continuous penalty function P (x),
which “turns on” when a constraint is not satisfied, i.e., P (x) = 0 when x ∈ S, and
P (x) > 0 when x /∈ S. The main idea behind the penalty method is the conversion of a
constrained problem (Equation 4.1) into an unconstrained problem of the form:

minimize f(x) + P (x) (4.2)

The penalty function used in this work has the form expressed in Equation 4.3,
where pow is an even positive integer and Wi is a positive weight associated with each
constraint.

P (x) =

p∑

i=1

{Wi × (max[0, ci(x)])
pow} (4.3)

The weights Wi must be adjusted to ensure that the solution of Equation 4.2 will ap-
proach the feasible region S.

In lighting design problems, the evaluation of the optimization goal f(x) and some
constraints (which we call cRad

i (x)) requires a radiosity evaluation of the scene. How-
ever, there are other constraints that do not depend on radiosity values (cNoRad

i (x)),
such as constraints that control the shape and location of the light sources. To avoid
unnecessary radiosity evaluations, it must first be checked that cNoRad

i (x) ≤ 0, ∀i. So,
the optimization problem expressed in Equation 4.2 can now be formulated as shown
in Equation 4.4, where PRad(x) is a penalty function that includes only the cRad

i (x)
constraints.

minimize f(x) + PRad(x), (4.4)

subject to {cNoRad
i (x) ≤ 0}

4.4.2 Low-Rank Radiosity

In this section we present a method to efficiently assess the radiosity equation, which is
used to solve the optimization problem.

In the discrete radiosity problem, the radiosity of the scene is computed by solving
the linear system shown in Equation 4.5.

(I−RF)B = E (4.5)
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In this equation, I is the identity matrix with dimension n×n (n is the number of
patches), R is a diagonal matrix that stores the reflectivity of the patches, F is the
matrix with the form factors Fij (which indicate the fraction of light reflected by the
patch i that arrives to the patch j), B is a vector with the radiosity value of each patch,
and E is the emission vector of the scene.

It is very likely that the RF matrix of Equation 4.5 has a low numeric rank because
each row (RF)i is computed based on the scene view from the same element i. As most
close pairs of patches have a very similar view of the scene (see Figure 4.4), RF has
many similar rows resulting in a reduction of the numerical rank. The rank reduction of
RF matrices allows for the matrices to be approximated by the product of two matrices
UkV

T
k , both with dimension n×k (n≫k), without losing relevant information about the

scene.

(a) Two close patches i1 and i2. (b) Hemicube view from i1.

(c) Hemicube view from i2. (d) Spatial coherence in the scene.

Figure 4.4: Close patches present similar views of the scene and generate similar rows in
RF (see [14]). In (d), the coherence of each patch is measured (a darker color indicates
lower coherence).

Low-Rank Approximation

The product UkV
T
k generates a matrix with dimensions n×n and rank k. The memory

requirement of Uk and VT
k is O(nk), significantly less than O(n2) that would be required
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to store the matrix RF. This reduction is especially appreciated when n≫k, due to the
spatial coherence of the scene. In this way, the memory saving allows the information
to be stored in the main processor memory, facilitating the work with large scenes.

Replacing RF by the low-rank approximation UkV
T
k in Equation 4.5 allows us to

obtain the row-rank radiosity (LRR) equation 4.6. The unknown is no longer B but
rather an approximation B̃ of the radiosity.

(
I−UkV

T
k

)
B̃ = E (4.6)

The matrix
(
I−UkV

T
k

)
is now invertible using the Sherman-Morrison-Woodbury for-

mula [24].

B̃ = E +Uk

((
Ik −VT

k Uk

)−1 (
VT

k E
))

(4.7)

To find B̃ using Equation 4.7, O(nk2) operations and O(nk) memory are required. For
scenes with static geometry and dynamic lighting (i.e., only the independent term E
varies in Equations 4.5 to 4.7), part of the computational effort can be pre-computed
and stored. Equation 4.7 is now written as follows:

B̃ = E −Yk

(
VT

k E
)

, where Yk = −Uk

(
Ik −VT

k Uk

)−1
(4.8)

where Yk is a n×k matrix that is computed once (as well as Uk and Vk). After Yk

is found, the radiosity calculation has complexity O(nk). This result is very useful
to develop a new methodology for inverse lighting problems with static geometry [14].
Fernández et al. [25] combined Equation 4.8 with GPU architectures to solve the radios-
ity problem in real time, hundreds of times per second in scenes with tens of thousands
of elements.

Another important result is that the LRR methodology is a direct method. Equa-
tion 4.8 can also be formulated as B̃ = GE, so the matrix G=I−YkV

T
k is a global

operator that manages the infinite bounces of light in a single operation. The matrix
G allows finding the radiosity values for any set of p patches (p < n) without solving
the radiosity for all the patches (as in iterative methodologies like hierarchical radiosity
[26]). Only p rows of G are needed to find the radiosity values (i.e., Gp= Ip−Yk,pV

T
k ,

where Yk,p consists of p rows of Yk related to the p patches, and the same also applies
to Ip). Therefore, the radiosity calculation goes down to O(n+ pk) operations.

Using the LRR methodology, the global operator G is computed while avoiding the
iterative utilization of Neumann series, as is employed by Kontkanen et al. [15] and
Lehtinen et al. [27], taking advantage of the fact that RF is a low-rank matrix.

Direct Radiosity Method in Inverse Lighting Problems

Any optimization algorithm used to solve inverse lighting problems finds thousands of
feasible solutions to identify the one that meets all of the constraints and optimizes the
objective function. For most of the optimization time, the algorithm is focused on the
radiosity calculation; consequently, the speed of the optimization algorithm is mainly
related to the speed of the radiosity solver. Our proposal is based on the use of the LRR
method as a fast and direct solver.

Besides solving the radiosity method faster when only the radiosity of p patches
are needed, the LRR method also can be used to speed up the optimization process
of complete scenes with good spatial coherence. Because close patches have similar
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radiosity properties, the radiosity values of a representative set of patches provide enough
scene information for optimization purposes.

Following this approach, an optimal solution found using a subset of patches could
be the starting point of another optimization process with a greater set of patches.
After the execution of several optimization processes, using an increasing sequence of
sets of patches, this multilevel strategy could terminate after considering all the scene
patches. Given the right conditions, it is expected that a multilevel strategy like this
would converge much faster than only one optimization process with all the patches.

4.4.3 Heuristic Search and Optimization

We developed an algorithm to solve the inverse lighting problem based on the VNS
metaheuristic [5]. This methodology is based on the idea of successive explorations
of a set of neighborhoods (N1(x), N2(x), . . . , Nk(x)). The method explores, either at
random or systematically, a set of neighborhoods to obtain different local optima. Each
neighborhood has its own local optimum, and it is expected that the global optimum is
the same as a local optimum for a given neighborhood (see Figure 4.5).

Search space 
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N3

N2
N1

Figure 4.5: Variable neighborhood search using three neighborhoods (N1, N2 and N3).
When a local optimum is found (as in N3), the search methodology continues at this
point.

The set of neighborhoods is usually nested (i.e., N1(x) ⊂ N2(x) ⊂ . . . ⊂ Nk(x)).
This strategy will be effective if the different neighborhoods used are complementary in
the sense that a local optimum for a neighborhood Ni will not be a local optimum in
the neighborhood Nj (when Ni ⊂ Nj).

We used the general pseudocode of the VNS strategy to develop an algorithm for
our lighting problem (see Algorithm 3). The algorithm attempts to find x such that the
function f(x) +PRad(x) is minimized, and that all of the cNoRad

i (x) ≤ 0 constraints are
satisfied.

In our implementation, each neighborhood Nk has two parameters, v and r, that
define the neighborhood’s scope. The parameter v establishes the number of optimiza-
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Algorithm 3: Radiosity VNS.

Input: Set of neighborhood structures Nk for k = 1, ..., kmax

Output: The most optimal solution found
x = x0; /* Generate the initial solution */

while not Stopping Criteria do
k = 1;
while k <= kmax do

Find a better neighbor x′ of x in Nk(x) by local-search;

if ∃ x′|
(
cNoRad
i

(x′) ≤ 0 ∀i
)
and

(
f(x′) + PRad(x′) < f(x) + PRad(x)

)
then

x = x′;
k = 1;

end
otherwise

k = k + 1;
endsw

end

end

tion variables that are modified at the same time, and r defines a normalized interval of
variation. For instance, v = 1 and r = 0.1 means that, in each trial of the local search, a
variable xi of x is randomly selected, and the variable’s value is substituted by another
value chosen from the interval xi ± 0.1(xMi − xmi ), where xMi and xmi are the maximum
and minimum values allowed for xi, respectively. In one step, a variable related to the
position of the light is modified; in the next step, the power of the light emission is
modified; and so on. Following the parametric neighborhood definition, a grid of neigh-
borhoods can be defined, considering all the combinations of values v = 1, 2, . . . , nvar;
r = 0.1, 0.2, . . . , 1. Then, the set of neighborhoods used by the algorithm is a selection
-and eventually all- of the neighborhoods defined in the grid.

Using the problem formulation expressed in Equation 4.4, the local-search algorithm
first controls that each tested neighbor x′ fulfills cNoRad

i (x′) ≤ 0 ∀i, before the radiosity
is evaluated and the value of the goal (i.e., f(x) + P (Rad)(x)) is checked. This prior
control avoids unnecessary radiosity calculations.

Different stopping criteria can be used, such as the time required to obtain a given
target solution, the distance to the target solution or the number of iterations.

Multiobjective Optimization Problem

Many inverse lighting problems can be defined as an optimization problem with multiple
objectives such as the minimization of artificial power consumption and maximization
of natural light influence. The mathematical definition of a multi-objective optimization
problem (MOP) can be stated as follows:

minimize F (x) = (f1(x), f2(x), . . . , fn(x)) (4.9)

subject to x ∈ S

Multi-objective optimization problems and techniques are analyzed by Deb [28] and
in Coello et al. [29]. The optimal solution for MOP is not a single solution as for
mono-objective optimization problems, but a set of “non-dominated” solutions, that is,
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solutions for which it is not possible to improve one objective without impairing at least
one other objective. This set of optimal solutions is called a Pareto front.

Many methodologies used to solve multi-objective optimization problems are founded
on population-based metaheuristics, such as evolutionary algorithms [28, 29]. Other
methodologies are based on scalar approaches [30], which transform a multi-objective
optimization problem into a set of mono-objective problems. This approach allows using
a single solution based on metaheuristics as the VNS. In our work, we implemented the ǫ-
constraint method as a scalar approach. The ǫ-constraint method consists in optimizing
one selected objective fk subject to constraints on the other objectives fj , j∈[1 . . . n], j 6=k
of a MOP (see Equation 4.10). Hence, some objectives are transformed into constraints.

minimize fk(x)

subject to x ∈ S (4.10)

fj(x) ≤ ǫj , j = 1 . . . n, j 6= k

In this equation, each ǫj is an upper bound for the objectives. The ǫ-constraint
method is run many times, changing the values of ǫj . This method generates a set of
non-dominated solutions with good diversity properties. It is necessary to know a priori
the suitable interval for each ǫj value.

4.5 Analysis and Results

To evaluate the fundamental aspects of our method, we built a set of five different
experiments. The goal of the first experiment is to evaluate the convergence properties
of the proposed algorithm. For this reason, a scenario is built in which the method
must converge to a known solution. In another experiment, we check how the spatial
coherence of the radiosity solution can help to decrease the convergence time. Next, we
test how the algorithm addresses the fulfillment of the constraints (geometric restrictions
and lighting intentions). Finally, the scenario of problems with multiple solutions is
considered for two cases: a single objective problem with many practical solutions and a
MOP study case. These experiments were designed to demonstrate the good properties
of the method and to identify further areas for development.

For the daylight intensity, we used average data, not taking into account the date
and time of the day or the variation of light intensity throughout the day. Thus, we
present tests scenes as architectural prototype models, and we will develop adjustments
for real data in a future work.

All the simulations were performed in a Matlab environment on a notebook com-
puter (Intel Core i7-2670QM 2.2 Ghz processor with Turbo Boost up to 3.1 Ghz and
4 GB DDR3 memory).

4.5.1 First Experiment: Convergence

Scene: Patio building. Size (n×k): 24, 128×1, 508. The pre-computation of Yk and
Vk takes about 12 minutes.

Goal: Find the shape and position of two area light sources such that the reflected
radiosity C(E) for emission E is close to a desired reflected radiosity Cobj .
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C(E) = B − E = −YkV
T
k E

Cobj = Bobj − Eobj = −YkV
T
k Eobj .

Number of constraints: 8
The light emitters must lie in the ceiling.

Variables: 8
Four 2D coordinates that delimit the location of the light sources.

In this experiment, we test the capability of our method to approximate the initial
conditions of the scene from a previously known radiosity solution. To build a known
solution, we first choose two rectangular light sources at the ceiling of the patio (Fig-
ure 4.6(a)), which define Eobj . Then, the diffuse reflection of the scene Cobj is computed
using the LRR method. (Figure 4.6(b)).

(a) Two emitters in the ceiling. (b) Reflected radiosity in patio.

Figure 4.6: Patio scene.

The algorithm attempts to find the location of two rectangular emitters E in the ceil-
ing, such that the resulting radiosity reflected C(E) minimizes the normalized Euclidean
distance (Equation 4.11).

min
E

e(E) =
||C(E)− Cobj ||2

||Cobj ||2
(4.11)

The space of possible solutions is composed of the set of lists of four roof patches that
define the diagonal extremes of two skylights. In this example, the roof is composed of
1024 quads, and therefore, the possible solutions can be estimated as C1024

4 /4≈11.4×109

(the division by 4 is due to symmetry considerations). A brute-force exploration of all
the solution space is not feasible on desktop computers.

There is a biunivocal relation between the radiosity (B or C) and the emission (E)
caused by the existing linear relations expressed in Equations 4.5 and 4.6. If the goal of
the problem is to find C close to Cobj (and the problem is not ill-conditioned), then E is
usually close to Eobj . Figure 4.7 shows different runs of the VNS algorithm. Each image
is a 2D projection of the ceiling, where Eobj is presented in green, and E is presented
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Figure 4.7: Visualization of the emitters in the ceiling in three runs of experiment 1.
Each row is a different run (from left to right). In each run, E (in red) is approaching
to Eobj (in green).

in red. The leftmost column shows the starting configuration for each run, and the
rightmost column shows the final result. The center columns show the intermediate
results.

Figure 4.8 shows, from left to right, another view of a VNS run (the first row of
Figure 4.7). The top row presents the convergence of the reflected radiosity C(E) to
the desired radiosity Cobj (Figure 4.6 (b)). The bottom row displays the radiosity errors
of each C(E) found. Those patches coloured green comply with Cobj>C(E), and those
colored red satisfy that Cobj<C(E). The gray patches meet Cobj≈C(E).

4.5.2 Second Experiment: A Multilevel Method

Considering that the patio scene has good spatial coherence, it can be assumed that the
distance ep(E) is a good approximation of e(E) (Equation 4.12), where p is the number
of representative patches, Cp(E) = −Yk,pV

T
k E, and Cp,obj = −Yk,pV

T
k Eobj .

min
E

ep(E) =
||Cp(E)− Cp,obj ||2

||Cp,obj ||2
(4.12)

For the patio scene, 50, 000 radiosity evaluations C(E) take approximately 100 min-
utes (O(nk)), and the computation of ep(E) with p= n

16 , takes only 11 minutes (O(n+pk)).
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Figure 4.8: Each column corresponds to a stage in the optimization process (left-to-
right). Top: the reflected radiosities (C(E)). Bottom: The colors show the difference
between C(E) and Cobj . Green means Cobj>C(E), and red means Cobj<C(E).

Given the above results, two sets of experiments were conducted to demonstrate the
potential of using spatial coherence properties. In the first experiment, the stop con-
dition of the VNS algorithm is set to ep(Ei)<0.03, with p=n/16. After the algorithm
stops, the real distance e(E) is calculated. A total of 30 runs were conducted to allow
a statistical comparison between both of the distances. The statistical analyses reveal
that the ratio r(Ei)=e(Ei)/ep(Ei) has a mean µ=1.24 and a standard deviation σ=0.29.
Assuming that r has a normal distribution, then µ±2σ is the 95.5% confidence in-
terval. Therefore, it can be concluded that, if ep(E)<0.03, then e(E)<0.03(µ+2σ)=
0.03(1.24+2 · 0.29)=0.055 with a probability of 95.5%.

Figure 4.9 shows the convergence path for five runs of the algorithm, each with a
different starting seed. The values of the objective function are shown in blue. The stop
conditions of the algorithm are a distance threshold (ep(Ei) < 0.03; the red dotted line
in Figure 4.9) and the number of radiosity evaluations (50, 000). For this scene, we can
conclude that the algorithm took, on average, 340 seconds to reach the solution, because
the threshold is reached after an average of 26, 000 radiosity evaluations.

The above results motivate a second set of experiments consisting in the implemen-
tation of a multilevel method with the aim of accelerating the optimization process. The
multilevel algorithm used involves three consecutive optimization processes, where each
process is related to a greater set of patches. In addition to all the scene patches, we
also consider two subsets of scene patches with p = n/16 and p = n/64 elements. First,
we solve the optimization problem with the smallest set of patches (p = n/64). The so-
lution found becomes the starting point for a second run of the optimization algorithm,
this time with a mid-size set of patches (p = n/16). Finally, a last run including all of
the scene patches is performed.

Comparing the result previously obtained with all the scene patches (100 minutes),
we now take only 470 seconds for the same total number of radiosity evaluations and the
same quality results. Because each optimization algorithm stops when ep is lower than a
certain threshold, the statistical results for the patio scene show that the sequence of op-
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Figure 4.9: Convergence of VNS algorithm for different runs.

timization problems stops after a mean of 28, 500 iterations and 310 seconds. Figure 4.10
shows a sequence of three consecutive runs of the algorithm, following the above scheme.
In this example, a solution that considers all the patches is found in 350 seconds. A new
processing run starts when the previous run has an error ep lower than 0.03.

Figure 4.10: Convergence of VNS algorithm (multilevel method).

4.5.3 Third Experiment: Many Constraints

Scene: Patio building. Size (n×k): 24, 128×1, 508.

Goal: Maximize the light power in the scene: max
∑

∀iCiAi.

Constraints: • One rectangular light source in the ceiling.

• Reflected radiosity ∀i: Cmin ≤ Ci ≤ Cmax.

• Bounded area: Amin ≤ Area of skylight ≤ Amax.

Variables: 4
Two 2D coordinates that define the light shape and position.
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This experiment studies the convergence of the VNS algorithm in maximizing the total
power reflected from the scene (max

∑
∀iCiAi), where Ci and Ai are the radiosity re-

flected and the area of patch i, respectively. A rectangular skylight must be installed in
the ceiling. As explicit constraints, the radiosity value of each patch and the area value
of the skylight should be placed within defined ranges.

Figure 4.11 shows the evolution of the algorithm. The red dotted line shows the
value of the penalty function PRad(x) in each iteration. As explained in Section 4, when
all the constraints are fulfilled, the penalty function value is 0. The continuous blue line
shows the total light power reflected by the scene.

Figure 4.11: Convergence to feasible solutions.

Figure 4.12 shows the evolution of the same problem when a constraint is modified.
Now Cmin≤Ci≤Cmax/4, ∀i. Given this configuration of constraints, there is no feasible
solution set, and, as shown in the plot, the algorithm also fails to find a feasible solution.
Therefore, the designer must change one or more constraints to find a solution that meets
all of them.

Figure 4.12: Unfeasible convergence.

It is important to determine whether the constraints pursued are possible to fulfill.
As shown in the pipeline system (Figure 4.3), the analysis of the results after the op-
timization process can be used to redefine the specification of the problem with new
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lighting intentions.

4.5.4 Fourth Experiment: Many Solutions

Scene: Patio building. Size (n×k): 24, 128×1, 508.

Goal: Maximize the light power in the scene: max
∑

∀iCiAi

Constraints: • One rectangular light source in the ceiling.

• Reflected radiosity ∀i: Cmin ≤ Ci ≤ Cmax.

• Bounded area: Amin ≤ Area of skylight ≤ Amax.

• Filter value 0 ≤ f ≤ 1.

Variables: 5

• Two 2D coordinates that define the light shape and position.

• A variable that defines the filter value.

This experiment is similar to the previous one, with an added filter value f to control
the skylight emittance (f×emax, where emax is the maximum skylight emittance).

Each run of the algorithm converges to a different solution. In Figure 4.13, the blue
asterisks show the pairs of skylight area and filter values found for several runs. The
red dotted line shows a hyperbolic curve that almost fits the solutions.

Figure 4.13: Relation between skylight area and the filter value.

The total light power produced by the skylight is almost the same in all of the solu-
tions (skylight-area×filter is almost constant), which intuitively means that the smaller
the area of the skylight, the more light must pass through the filter. In this case,
the designer must manually identify the best solution from the set of optimal solutions
provided by the algorithm.

4.5.5 Fifth Experiment: A Case Study with MOP

First problem:

Scene: Corridor. Size(n×k): 16, 736×1, 046. The pre-computation of Yk and Vk takes
about 8 minutes.
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Goal: Maximize the natural light power: max
∑

∀iCiAi

Constraints: • Skylights delimited into areas S1, S2 and S3.

• Skylights in S1 and S3 must be symmetric.

• The skylight in S2 must be centered.

• Area of the skylights ≤ Amax.

• Aspect ratio of the skylights ≤ 4.

• Radiosity reflected by the panels ≥ Bmin.

Variables: 6

• Two 2D coordinates that defines in S1 the skylight shape and position of the
skylight (the skylight in S3 is symmetric).

• One 2D coordinate that delimits the position of the skylight in S2 (centered
skylight).

After 105 iterations it was not possible to find a feasible solution. The amount of
natural light passing through the skylights does not fulfill the constraint for the panels.
The designer may relax some of the constraints (i.e., increasing the area of skylights
or decreasing the radiosity in the panels) to find feasible solutions. Another course of
action would be the addition of small artificial lights near each panel to satisfy all of
the predefined constraints (Figure 4.14). In this case, the problem is transformed into
a MOP because the minimization of the artificial light power must also be considered.
Second problem (MOP):

Goal 1: Maximize the light power in the scene: max
∑

∀iCiAi

Goal 2: Minimize the artificial light power: min
∑

∀iEiAi

Constraints: • The same set included in the first problem.

• Area light sources delimited into A1, A2 and A3.

• Area light sources in A1 and A3 must be symmetric.

• The light area source in A2 must be centered.

• Aspect ratio of each emitter ≤ 10.

Variables: 12
The same variables (6) used in the previous problem and 6 more related to the
artificial light sources.

A multi-objective optimization process must be used to find a Pareto front of non-
dominated solutions. In Figure 4.15, the blue ‘+’ are a set of feasible solutions found
when running the ǫ-constraint method, and the red ‘◦’ set is their associated Pareto
front. The ǫ-constraint method minimizes the artificial light power (Goal 2) when all
of the constraints are satisfied and when the total light power is greater than ǫ (a new
constraint defined with Goal 1). The variable ǫ takes all the even values between 170
and 260W , with 20, 000 radiosity evaluations each.

Besides the use of a method, such as the ǫ-constraint method, to find the Pareto
front, another approach consists in solving the optimization problem using a procedure
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Skylights 

Artificial Lights 

(a) Perspective view of the corridor scene.

Skylights: Set position symetrically  with area restrictions 

Optimize energy:  

• Maximize natural light 

• Minimize power consumption 

If required set light source symetrically 
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Minimum light level reflected at panels 

S2 S3 

(b) Configuration scheme.

Figure 4.14: Corridor scene as a MOP.

that follows the designer’s intentions. For instance, if the designer wants to maximize
the natural light that comes through the skylights, and the use of artificial light is only
used to complete the illumination needed in the panels, then a good approach consists of
a two-step process. First, an optimization problem is solved involving only the variables
related to the skylights, ignoring all the constraints associated with the panels and also
ignoring all the variables and constraints related to the artificial emitters. The goal of
this problem is to maximize the total power of the natural light reflected in the scene
(see Figure 4.16 (a)). In a second step, another optimization problem is solved, ignoring
all the variables and constraints related to the skylights, involving only the variables
related to the artificial emitters and considering the panel’s constraints. The goal of this
problem is to minimize the light power of the artificial emitters (see Figure 4.16 (b)).
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(a) General view of a set of feasible solutions.

(b) Detail view of the area bounded in (a).

Figure 4.15: Feasible solutions found in a ǫ-constraint process (blue ‘+’) and its corre-
sponding Pareto front (red ‘o’). Additionally, solutions found from a two-step process
(green ‘+’) and the associated Pareto front (black ‘�’).

The position and shape of the skylights and emitters determined using the two-step
process are shown in Figure 4.16 (c).

Figure 4.15 shows the solutions found by the two-step process. The green ‘+’ are
the solutions found by this process, and the black ‘�’ set is their corresponding Pareto
front. The two-step process was executed 50 times, with 20, 000 iterations each.

Many of the 50 solutions found using the two-step method are better than (i.e.,
not dominated by) the ǫ-constraint Pareto front solutions, but the two-step method is
concentrated in one extreme of the Pareto front. These results show that the Pareto
front found contains rather than good solutions and good diversity and also show that
the two-step method is a very effective approach to find solutions that meet specific
design goals.

Close Pareto front solutions can be caused by very different light source configu-
rations. In Figure 4.15 (b), the two-step Pareto front is located in a narrow range of
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(a) Radiosity generated with optimized skylights (Goal 1, excluding panels constraints and artificial
light sources).

(b) Radiosity generated with optimized artificial light sources (Goal 2, including panels constraints
and fixing the previous skylight solution).

(c) Top view of the scene with the positioning solution of all the area sources.

Figure 4.16: Solutions of the two-step optimization process for the corridor scene.

powers, and Experiment 4 shows that solutions with almost the same light power have
different light-source configurations. Therefore, a designer must check all the solutions
to decide which one is the most convenient.

4.5.6 Summary Discussion

Numerically comparing our method with other previous inverse lighting techniques is a
difficult task because each method provides different conditions. However, we can claim
that we provide a fast solver for moderately complex environments with Lambertian
surfaces. Using the acceleration technique described in our second experiment, we can
obtain reliable results in only a few minutes, which means an improvement from recent
works [4, 20]. Moreover, our system provides interactive radiosity visualization that can
help in making design decisions.

The low-rank methodology, as a direct method, allows finding the radiosity of p
patches in O(n + pk). This is faster than other iterative methods (like hierarchical
radiosity) where the radiosity of all the scene must be solved, even if the algorithm
optimizes the radiosity value of a single patch.

The low-rank methodology allows considering only diffuse scene surfaces, which is
not true in many interior settings. To overcome this limitation, a method for computing
the entire light transport, including glossy surfaces, could be analyzed and tested.

The reverse-engineering process applied to design, which computes the initial con-
ditions to achieve a lighting effect, is not a simple issue. One important subject is the
search for feasible solutions, where the methodology can provide sufficient assistance.
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Besides searching for a solution, our method also provides much more information about
the range of possibilities that may occur when expressing a design intention. This in-
formation will allow an interactive use of the design cycle, in which the designer can
explore multiple possibilities. Further extending this concept, our system provides a
MOP solver that finds a Pareto front of solutions. Given this set of optimal solutions,
designers must choose the ones that match their design ideas.

4.6 Conclusions and Future Work

We developed a novel technique of inverse lighting, combining the use of an optimization
metaheuristic with the LRR technique as a radiosity solver. The paper addressed the
problem of optimization with constraints, using the penalty method approach. A radios-
ity engine based on LRR methodology was used, taking into consideration the spatial
coherence of the scene. Also, as LRR is a direct methodology, a multilevel scheme was
tested, showing promising results. Finally, the case of MOP was analyzed, developing
two methods based on VNS metaheuristic: ǫ-constraint, when the goal consists in find-
ing a Pareto front, and the two-step optimization process, when the goal is to maximize
the natural light provided by skylights and minimize the power of artificial light.

Regarding future work, one objective consists in improving the technique using a
CPU-GPU architecture in order to speed up the VNS and LRR calculation times. It
is also necessary to explore the multilevel methodology deeper, to transform the basic
scheme implemented into a more robust algorithm. Related to the emitters, further
work is needed to include anisotropic light sources and temporal and climate variation
of the daylight sources. Light sources with anisotropic distribution, such as spot lights,
may also be included in our method. This could be accomplished through a graphics
hardware mapping step converting the projected light into light emitting patches at
each iteration of the optimization engine. However, this requires an analysis of non-
linear parameters, as either the cosine dispersion exponent or the focus direction, can
affect performance.

Another line of future work is the implementation of a MOP solver using a population-
based metaheuristic like genetic algorithms. Following Talbi [30], this kind of meta-
heuristic allows a better diversification in the whole search space than single-solution
based metaheuristic. Finally, the development of real examples and working experiences
with designers are needed. This line of work will transform the code implemented into
a design tool useful for architects and interior designers.
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Chapter 5

From Lighting Intention to Light

Filters 1

Lighting intentions are the goals and constraints that designers would like to achieve in
an illumination design process. Light filters can be used as an architectural element to
obtain such intentions by inserting them into walls or roofs. Defining correctly the filter
shape is a challenge. In this work, we present a novel method to design optimal filters
from a given lighting intention. Our methodology, which could be completely integrated
within a computer aided architectural design framework, is based on a global illumina-
tion and optimization approach. Our test results show that optimal filter shapes can be
obtained in a short time.

Keywords: Lighting intention, Inverse lighting, CAD, Building envelope

5.1 Introduction

As light reveals architecture, the natural lighting is a critical feature in architecture
design. For the designer, the problem comes from the management of the natural lighting
during the design process. Some design approaches have focused on keeping the intention
of the designer as the project goes on. As an example, the design by intent approach is
based on a lighting description, expressed by texts or by drawings, taking into account
the user comfort or the energy savings. In general, the whole process to design an
architectural illumination space may achieve several steps that go from revealing the
general use of the space to the special light accentuation that must be obtained [1].

The goal of the Computer Aided Architectural Design (CAAD) developers is to
keep the mentioned intents as a guideline through the design process by a connection
between the lighting description and the geometric or optic properties of the building.
In this work, we propose to link the designer’s lighting concepts and the building matter
through the natural lighting simulation used in an inverse approach. Through our
approach architects and engineers could set up constraints parameters about lighting
needs, and an inverse lighting model optimizes some of the geometric properties of the

1Published in: V. Tourre, E. Fernández and G. Besuievsky From Lighting Intention to Light Filters.
Proceedings of the International Conference on Cleantech for Smart Cities & Buildings from Nano to
Urban Scale (CISBAT 2013), EPFL, Lausanne, Switzerland, 3-6 September, 2013, Pages 1181-1186.
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built spaces. Previous work proposing solutions for this problem can be found in [2],
and an approach with a case-study application can be found in [3, 4].

In this paper, we present a methodology for computing optimal filters from a given
lighting intention. An architectural real-case example is shown in Figure 5.1. The
paradigm of our method is to focus on potential light filtering areas such as walls, open-
ings or architectural elements. The key of our method is to find a compact representation
of the lighting equations derived, so we can apply an inverse lighting approach to solve
the design constraint problems. The main contribution of our work is to provide a flex-
ible lighting design approach intended for searching both, fast and accurate solutions to
the inverse lighting problem. The method is presented as a framework approach that
could be extended for many lighting filtering purposes. We present here the results of
its application to the design of filters, using a pattern that the designer provides as a
drawing.

Figure 5.1: Lighting filter examples in modern architecture. Institute du monde Arabe (Paris),
by Jean Nouvel. The holes of the filter (right) can vary to achieve a desired intention.
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5.2 Related Work

Our work deals with an inverse lighting problem. Direct methods calculate data from
a specific configuration of model parameters. In contrast, inverse problems generally
infer the properties of a physical system from desired data. Inverse problems are usually
numerically complex and are of interest in a wide range of fields in lighting engineering
and lighting design.

In our work we focus on inverse problems considering global illumination solution,
for such purpose we use the radiosity computation. In this context, several works driven
by different motivations and assumptions were proposed [5, 6, 7]. We based our solution
on work done in [7], where the low-rank radiosity method is used to solve the inverse
lighting problem integrating skylights and artificial Lambertian sources.

5.3 Problem Definition

The main goal of our proposal is to provide a tool for efficient lighting design of filters.
We consider diffuse environments, that is, all the surfaces have perfectly diffuse materials
with no specular component. For skylight filters we also consider that a diffuser with
a homogeneous transmittance coefficient is used. This kind of diffusers are currently
used systems in real buildings. They provide diffuse and controllable sunlight, which
creates a desirable ambient light [1]. These kinds of skylights, can also be considered
as Lambertian emitters, because they scatter light homogenously. The filters we use in
this work are defined as holes of this kind of emitters.

5.3.1 Lighting intention

Lighting intentions can be defined as the goals and constraints that designers must
provide to achieve a desired illumination. Regarding the reference focus and motivation,
they could be classified in different ways by:

• Lighting representation (incoming or reflected light).

• The set of surfaces considered (the overall scene or a specific set of surfaces).

• The kind of target goal to achieve (optimize specific lighting levels or contrast
between surfaces, or satisfy several constraints).

• The light transport level (only direct lighting or global illumination).

Designers have freedom to set as many lighting intention as necessary. Possible
examples are: “Guarantee a minimum of irradiance in a wall” or “Maximize the incoming
light into the room”. An example of restriction may be the size of the opening or any
other architectural constraint (see Figure 5.2(a)). In an inverse lighting problem we
must obtain the “best” lighting position that also satisfies both the constraints and
the lighting intentions. Usually, a goal related to the energy-consumption should be
minimized.
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5.3.2 Filter Design

In order to specify the filter design we use a pattern drawing. First, the designer has to
decide which is the wall or roof where to install the filters. Then, a pattern is associated.
The designer has complete freedom to use any drawing. This drawing will be mapped
to the associated surface as Lambertian holes emitters in the constructive surface. Of
course they may be many ways for expressing a possible shape of a filter, we just decide
to use this simple one in order to test our optimization engine.

5.3.3 System Overview

The pipeline design of our approach is described in Figure 5.2(b). Given an architectural
interior model for lighting design, the user first configures both the parameters of the
filter and lighting intentions. These parameters specify where to install the filters as well
as the pattern they may have. In the example of Figure 5.2(a), a homogeneous filter
with holes was used with a maximum rectangular area to provide the opening. Before
the optimization process begins, we first pre-process the scene to obtain a compact rep-
resentation of the form-factor matrix of the elements of the scene. For this purpose, we
use a low-rank radiosity method. The optimization method works by getting the com-
pact representation found and a design configuration, to obtain efficiently the optimal
shape. The results can be visualized interactively and the direct lighting computation
can be assured. The designing process may iterate if the designer wants to change or
explore other solutions by modifying parameters.

Pattern Filter associated to the roof 

Minimum 

Light level 

Optimal  

shape filter 

(a) Design example scene.

Light Filter 

Result

Model Input
Geometry, Materials

Pre-process

Optimization 

Process

Design Configuration

Lighting Intentions

Filter Properties

(b) System overview.

Figure 5.2: From a given design specification and filter pattern (a), our pipeline uses an
optimization process to compute the optimal filter shape (b).

5.4 Optimization Process

In this section we summarize our mathematical method to optimize the filter shape.
The method is based on direct computation through the use of the low-rank radiosity
method and the same inverse lighting method as in [7].
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5.4.1 Direct Radiosity Computation

In the discrete radiosity formulation, the radiosity of the scene is computed by solving
a linear system that can be expressed as:

(I−RF)B = E (5.1)

where I is the identity matrix with dimension n×n (n is the number of patches or
polygons), R is a diagonal matrix that stores the reflectivity index of the patches, F is
the form factor matrix, B is a vector with the radiosity value of each patch, and E is
the emission vector. B and E are measured in W/m2.

Regardless of the optimization method used, the radiosity must be evaluated many
thousand times before finding a converged solution. For this purpose an efficient method
should be used. The low-rank radiosity method [8], offers the advantage of obtaining
directly the radiosity values through an inverse matrix approximation:

B̃ = M̃BE (5.2)

where M̃B is an approximation of (I−RF)−1. The detailed process of how to obtain
this matrix is described in [8]. The key of the method is to explore the coherence in
the scene to reduce the numerical rank of the form factor matrix F. This matrix can be
approximated by the product of two matrices with dimension n×k (n≫k), without loss
of relevant information. The memory requirement for both matrices is O(nk), which is
significantly less than O(n2) required to store F of Equation 5.1. This memory saving
allows storing the information in the main processor memory for scenes with several
hundred thousand patches.

For static scenes with dynamic lighting, the required matrices are computed once,
therefore, the calculation of B̃ has complexity O(nk). This result allows performing
many radiosity calculations per second, which motivates its use for inverse problems.

5.4.2 Optimization Algorithms

The lighting intentions and the objective, can be formulated as an optimization problem.
The problem consists of finding the emission configuration E that optimizes a goal
function f(E), subject to a set of constraints G(E) that must be satisfied:

min f(E), subject to G(E) (5.3)

Although optimization is a well known topic, there is no computational algorithm that
provides the global optimum for a general non-linear objective function. Finding the
optimal solution by brute force is usually not feasible in a reasonable time because of
the huge search space of the possible states. Heuristic algorithms avoid visiting the
whole search space, by means of designing rules that drive the search towards optimal
solutions. There is a large number of heuristic search algorithms in the literature, which
can potentially be used to solve lighting problems [9, 10].

In our work, we used the Variable Neighborhood Search (VNS) method [11]. This
methodology is based on the idea of successive explorations of a set of neighborhoods.
The method explores, either at random or systematically, a set of neighborhoods to
obtain different local optima. Each neighborhood has its own local optimum, and it is
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expected that the global optimum is the same as a local optimum for a given neigh-
borhood. We adapted the mentioned algorithm to find the optimal filter shape (Figure
5.3). We used a closed polygon (for example a rectangle) as a clipping figure to find the
best holes configuration that would achieve the intentions. The algorithm shakes over
the extremes of the polygon, that are used as variables in the optimization algorithm
(see Figure 5.4).

Figure 5.3: Filter optimization for an homogeneous filter (left), the black triangles
represent the pattern and the rest of triangles, the associated mesh. Three different
lighting intentions (form left to right: lateral upper walls, first floor walls and first floor)
were designed to obtain the corresponding filters.

Figure 5.4: Filter optimization using an hexagonal pattern filter (left) and the resulted
filter (middle) for a given lighting intention at the lateral (in red) walls (right).
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5.5 Results and Conclussions

We implemented the proposed method and tested it with different pattern filters and
lighting intentions. We chose a patio scene, where filters should be installed in the roof
(see Figures 5.3 and 5.4). All simulations were performed in a Matlab environment using
a standard PC (Intel Core i7 2.2 Ghz processor and 8 GB memory).

Scene : Patio. Size (n×k): 23, 744× 1, 484.

Goal : Maximize power light in the marked areas

Constraints : The light emitters must lie in the ceiling, and
Bmin ≤ B(P ) ≤ Bmax, ∀P ∈ red surface
Amin ≤ AreaEmitter ≤ Amax

Variables : 4 or 8, depending on the number of light sources (Two 2D-coordinates determine
each source position)

Processing time :
Pre-processing: The low-rank pre-computation takes 18 minutes.
Optimization: 570 seconds for 100, 000 radiosity evaluations

We presented a new method for designing optimal filters from a given lighting in-
tention. We believe that it could be a useful method for opening design, where singular
installations in buildings are unpredictable. Our test results show that optimal filter
shapes, using a global illumination approach, can be obtained in a short time. This
considerable time reduction could promote its use for interactive applications and its
inclusion in standard illumination design tools, as for example [12]. For future work, we
would like to extend our model to include time-dynamic variable holes as in Figure 5.1.
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Chapter 6

Efficient Inverse Lighting: A

Statistical Approach 1

Given a scene to illuminate satisfying a specific set of lighting intentions, the inverse
lighting techniques allow us to obtain the unknown light source parameters, such as light
position or flux emission. This paper introduces a new inverse lighting approach that
uses the radiosity mean and variance to define lighting intentions of a scene. It is shown
that these statistical parameters can be obtained without the previous calculation of the
radiosity of the scene. Avoiding the explicit computation of the illumination of the scene
results in a drastic reduction of the time required for the inverse process. This approach
also provides a methodology that transforms a current set of lighting intentions into a
single lighting intention with statistical parameters. The tests show that the processing
time to solve the inverse problem can be reduced to a few seconds in most cases, improving
the state of the art.

Keywords: Lighting Design; Optimization; Statistics

6.1 Introduction

Lighting intentions (LI) are the goals and constraints that designers would like to achieve
in an illumination design process. Given an architectural interior space to illuminate,
this process requires several steps that go from revealing the general use of the space,
to the specific light accentuation that must be obtained [1]. Concerning the LI, they
can be defined in different ways according to the reference observation (incoming light
or reflected light) or to the global feature of the intention (local subset of surfaces or
the overall scene). Once the LI are specified, the designer must provide the parameter
setting that fulfills the desired intentions. The main features, such as the position of the
lights, their shape and their spectral power, must be provided.

Finding efficiently all lighting parameters is a challenge since the space of possibilities

1Published in: E. Fernández and G. Besuievsky Efficient Inverse Lighting: A Statistical Approach,
Automation in Construction, Volume 37, January 2014, Pages 48-57.
A shorter version of the paper was published in: E. Fernández and G. Besuievsky Statistical Inverse

Lighting. Proceedings of the International Conference on Computer Graphics Theory and Applications
(GRAPP) and International Conference on Information Visualization Theory and Applications (IVAPP),
Barcelona, Spain, 21-24 February, 2013, Pages 185-190.
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is huge. The current approach to improve the solution is to treat this issue as an
optimization problem. As in other inverse problems, the initial data conditions must be
determined from the model parameters. In the case of inverse lighting problems (ILP)
the unknown illumination settings must be completely determined from the LI.

The whole ILP process involves two large computational tasks: an optimization
process for the search of an optimal solution, and the global illumination process. Both
tasks are strongly related because the first one is an iterative process that calls the second
one in each iteration. The optimization process is used to find a solution that satisfies the
set of LI, that minimizes a given goal, whereas the global illumination process consists
in the simulation of the light transport process through multiple bounces. The time
consumed in the ILP process is proportional to the number of calls to the illumination
process.

Concerning the most recent work on ILP [2, 3, 4, 5] which considers global illu-
mination, the main drawback is that they require several minutes or hours for even
simple scenarios, limiting their use in interactive applications. This work focuses on the
reduction of the global illumination processing time.

This paper presents the statistical inverse lighting (SIL) approach, a new ILP method
that greatly improves both timing and memory of previous work. Our method exploits
coherence of architectural interior spaces to build a compact representation, which can
be efficiently used to explore many lighting solutions. The main contribution of our
methodology is the introduction of a new mathematical technique that uses the statisti-
cal mean and variance of the radiosity of a scene as LI. Specifically, the designed LI are
transformed into other intentions represented by statistical parameters. The innovative
approach provides a mechanism that allows calculating this new LI, avoiding the explicit
computation of the global illumination.

Experiments were performed with different LI and showed that in most cases the
ILP processing time can be shorten to only a few seconds, a significant improvement
concerning the state of the art. We believe that this time reduction could be a step
forward in the integration of ILP methods in interactive professional illumination design
tools, as for example Dialux [6] or Relux [7].

Section 6.2 reviews the previous work and state the problem formulation. The new
approach is introduced in Section 6.3, and a proposal algorithm for automatic parameter
determination is presented in Section 6.4. Test results are shown in Section 6.5 and
conclusions are summarized in Section 6.6.

6.2 Problem Definition and Related Work

This section provides the background required for our method. First, the LI and the
general considerations taken in ILP problems are defined. Then, the ILP in the context
of an optimization problem is defined, and the low-rank radiosity is introduced as a
methodology to obtain the inverse of the radiosity matrix. The relevant related work is
described at the end of the section.

6.2.1 Lighting intentions

LI can be defined as the goals and constraints that designers must provide to achieve
a desired illumination. Regarding the reference focus and motivation, they could be
classified in different ways by:
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• Lighting representation (incoming or reflected light).

• The set of surfaces considered (the overall scene or a specific set of surfaces).

• The kind of target goal to achieve (optimize specific lighting levels or contrast
between surfaces, or satisfy several constraints).

• The light transport level (only direct lighting or global illumination).

Designers have freedom to set as many LI as necessary. Possible examples are:
“Guarantee a minimum of irradiance on a panel” or “Distribute the light homogeneously
over all surfaces of the scene” (see Figure 6.1). In the ILP the “best” lighting position

(a) LI defined on a scene.

(b) Final configuration of lights.

Figure 6.1: The ILP process. For a set of LI provided by the designer (a) the best solution
for positioning four light sources is obtained, which fulfills all the constraints (b).
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that also satisfies the constraint intentions must be obtained. Usually, a goal related to
the energy-consumption should be minimized.

6.2.2 Problem Considerations

The present work formulates the problem assuming the following considerations:

• All surfaces of the environments have perfectly diffuse materials with no specular
component.

• Emitters are approximated as point light sources. Their optimal position must
be obtained. However, this is not a restriction of our method, which could also
operate with area light sources.

• The environment is static, that is, surfaces can not change their position. The
change of position of the emitters is implemented by modifying the emission prop-
erty of previously defined patches.

• The use of indirect illumination is emphasized, a radiosity algorithm for computing
the global illumination is used.

In the discrete radiosity formulation [8], the radiosity of the scene is computed by
solving a linear system that can be expressed as:

(I−RF)B = E (6.1)

where I is the identity matrix with dimension n×n (n is the number of patches or
polygons), R is a diagonal matrix that stores the reflectivity index of the patches, F is
the form factor matrix, B is a vector with the radiosity value of each patch, and E is
the emission vector. B and E are measured in W/m2.

6.2.3 Optimization Problem

The set of LI presented in Section 6.2.1 can be formulated as an optimization problem [9].
The problem consists of finding the emission configuration E that optimizes a goal
function f(E), subject to a set of constraints G(E) that must be satisfied:

min f(E), subject to G(E) (6.2)

The radiosity values B are not expressed in Equation 6.2 because they implicitly depend
on E.

Although optimization is a well known topic, there is no computational algorithm
that provides the global optimum for a general non-linear objective function. Finding
the optimal solution by brute force is usually not feasible in a reasonable time because
of the huge search space of the possible states. Heuristic algorithms avoid visiting the
whole search space, by means of designing rules that drive the search towards optimal
solutions. There are a large number of heuristic search algorithms in the literature,
which can potentially be used to solve lighting problems [9, 10, 11]. Castro et al. [5]
explore a wide range of algorithms to solve optimal economical light positioning. Cassol
et al. [4] and Schneider et al. [3], work with rectangular simplified scenes, solving the
ILP through a generalized extremal optimization approach. In the present work, the
Variable Neighborhood Search (VNS) method [12, 13] is used.
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6.2.4 Low-Rank Radiosity

Regardless of the optimization method used, the global illumination function must be
evaluated many times before finding a converged solution. For this purpose an efficient
method should be used to compute the radiosity B given the emission E. A method to
efficiently assess the radiosity in Equation 6.1 is introduced. This method will be used
later to speed up the calculation of statistical parameters.

It is very likely that the F matrix in Equation 6.1 has a low numeric rank. This hap-
pens because each row F(i, :) is computed based on the scene view from the geometrical
patch i. As close patches have a similar view of the scene, then F also has similar rows,
resulting in the reduction of its numerical rank. References about low-rank properties
of radiosity and radiance matrices can be found in Baranoski et al. [14], Ashdown [15],
Hasan et al. [16], and Fernández [17].

The low numeric rank of F allows its approximation by the product of two matrices
(UVT ), both with dimension n×k (n≫k), without loss of relevant information. The
memory requirement for both matrices is O(nk), which is significantly less than O(n2)
required to store F. This memory saving allows storing U and VT in the main processor
memory of desktop computers for scenes with several hundred thousand patches.

As shown by Fernández [17], the matrix F can be replaced by the low-rank approxi-
mation UVT in Equation 6.1, where U is a dense n× k matrix and V is a n× k sparse
matrix with n nonzero elements. This substitution allows us to obtain the low-rank
radiosity (LRR): (

I−RUVT
)
B̃ = E (6.3)

B̃ can be calculated using a non-iterative procedure, by Sherman-Morrison-Woodbury
formula [18]:

B̃ =
(
I−YVT

)
E = M̃BE, (6.4)

where Y = −RU
(
Ik×k −VTRU

)−1

The matrix Y is n×k, and the inverse matrix included in its formulation is k×k. The
matrix M̃ is the inverse of

(
I−RUVT

)
and is also an approximation of (I−RF)−1.

In static scenes with dynamic lighting, the matrices U, V, and Y are computed once;
therefore the calculation of B̃ has complexity O(nk). This result allows us to perform
many radiosity calculations per second, and was used by Fernández and Besuievsky [13]
to accelerate ILP algorithms.

6.2.5 Related Work

In the context of radiosity, several works driven by different motivations and assump-
tions were proposed. Contensin [2] formulated an Inverse Radiosity method based on
a pseudo-inverse of the radiosity matrix, whereas Costa et al. [19] proposed an opti-
mization engine to deal with complex light specifications. Kawai et al. [20] performed
the optimization over the intensities and directions of a set of lights, in order to best
convey the subjective impression of certain scene qualities, as expressed by users. Their
so-called Radioptimization system is a framework that determines optimal setting pa-
rameters based on unconstrained optimization techniques, used in conjunction with a
hierarchical radiosity solver [21]. Castro et al. [5] developed a heuristic search algo-
rithm, which is combined with linear programming to optimize light positioning with an
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energy-saving goal. Finally, Fernández and Besuievsky [13] used the low-rank radiosity
method to build an ILP solution integrating skylights and artificial Lambertian sources.

The main drawback of previous work, as was stated before, is that they are time
consuming to be integrated in an interactive design cycle of illumination.

6.3 A Statistical Based Approach of LI

In statistics [22], the mean (µ) and the standard deviation (σ), as well as other parame-
ters, are used to describe properties about a set of numerical data. The mean describes
the central tendency of the data and the standard deviation is a measure of their dis-
persion. In this section we borrow µ and σ concepts to describe LI, taking advantage
of their mathematical properties. It is shown that µ and σ can be used as LI and the
proposal’s advantage is evaluated. In particular, it is demonstrated that µ(B(s)) and
σ(B(s)) can be obtained without the previous radiosity B(s) calculation for a scene or
a set of surfaces s. This results in a significant advantage, since the global illumination
computation is the most expensive part of the ILP process. Furthermore, it is shown
that µ and σ can be used to substitute similar lighting constraints by a single and
faster-to-check constraint.

6.3.1 µ and σ as LI

Following basic statistics concepts, B(s) can be defined as the population sample of
a variable B, and µ(B(s)) and σ(B(s)) are its sample mean and standard deviation,
respectively. These parameters can be used to describe LI. Figure 6.2 shows the opti-
mization process. At each step of the process, the illumination of the scene is computed,
and a new set of B(s) values are used to update µ and σ. These statistical parameters
may correspond to either the entire scene or a particular surface. Once these parameters
are obtained, the LI are checked. The optimization algorithm establishes states for the
position and intensity, which are used to obtain the new solution. The process stops
when all constraints are fulfilled and when no better solution is found for the goals.
Also the process may stop when it is not possible to find a solution that satisfies all the
constraints.

Figure 6.3 shows an example with five different configurations of lights. It can be
observed there that, the more homogeneously illuminated is the scene, the lower the
value of σ(B(s)).

6.3.2 Efficient Computation of µ(B(s))

Usually the sample mean of any population is computed after a sample of the population
is obtained. The formula of µ can be expressed as a weighted sum of the collected
data. This section shows that it is possible to get the mean of the radiosity values of a
scene B(s) without the explicit calculation of their radiosity values.

The radiosity of a surface s (Bs) is a measure of the flux density of the reflected
light. It is the weighted mean of the flux density values for all patches p that com-
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Figure 6.2: Optimization process. Given a tentative lighting configuration (left), LI
constraints are evaluated through an iterative process (right).

pose s (Equation 6.5), where each weight wA(p) is proportional to the area of p.

Bs = µwA
(B(s)) =

∑

p∈s

wA(p)B(p) (6.5)

where
∑

p∈s

wA(p) = 1

B(s) is defined as the vector that contains all B(p) values (p ∈ s), and µwA
(B(s)) as

their weighted mean. Equation 6.5 can also be written using the following notation:

µwA
(B(s)) =

(
1Ts WA∑

p∈sWA(p, p)

)
B (6.6)

where 1Ts is a row vector with only ones in the cells associated to the s patches, WA is
a diagonal matrix with the weights proportional to the areas of the patches, and B is
a vector with the radiosity values of the scene. As exposed in Section 6.2.4, B can be
substituted by the low-rank approximation B̃ = M̃E:

µwA
(B̃(s)) =

(
1Ts WAM̃∑
p∈sWA(p, p)

)
E (6.7)

In Equation 6.7, the expression between parenthesis is a 1×n row vector. Furthermore,
using the expanded version of B̃(s) (see Equation 6.4), µwA

(B̃(s)) can be formulated as:

µwA
(B̃(s)) =




((
1Ts WA

)
(−Y)

)
VT

∑
p∈sWA(p, p)


E (6.8)

The identity matrix defined in Equation 6.4 is not included in the definition of Equa-
tion 6.8, to avoid the inclusion of the light emission in the calculation of the mean of the
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(a) σ = 3.51 (b) σ = 2.1 (c) σ = 1.52

(d) σ = 1.03 (e) σ = 0.43

Figure 6.3: Different radiosity distributions, in a scene composed of 24736 patches. Their
σ values are indicated in each case. Red dots indicate the source’s position.

reflected radiosity. The expression between parenthesis in Equation 6.8 is also a 1×n
vector. So, in both cases the computation of µwA

(B̃(s)) is reduced to a dot product
with complexity O(n). Therefore, the µ calculation of the radiosity values in s can be
done avoiding the previous calculation of B̃(s).

6.3.3 Efficient Computation of σ(B(s))

The standard deviation is also usually computed after the population data is collected.
This parameter can be expressed as a weighted measure of the Euclidean distance be-
tween the collected data and its mean. If B(s) is defined as a linear combination of
variables, an alternative formulation can be created by using a covariance matrix. In
Equation 6.9, the vector B̃(s) is expressed as a linear combination of k column vectors
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Y(s, i), i = 1 . . . k.

B̃(s) = M̃(s, :)E = −Y(s, :)(VTE) (6.9)

=
k∑

i=1

−Y(s, i)(VTE)i

Each of these vectors has dimension |s| × 1. The expression (VTE)i refers to the ith

value in vector (VTE). Considering each vector Y(s, i) as a sample of an ith statistical
variable, it is possible to formulate the following expression for σ [22]:

σ(B̃(s))2 = (VTE)TcovwA
(Y(s, :))(VTE), (6.10)

where covwA
(Y(s, :)) refers to the k×k sample covariance matrix built with the k vec-

tors Y(s, i). The right side of Equation 6.10 is a vector×matrix×vector product. The
covariance matrix is built using a weighted approach:

covwA
(Y(s, :))i,j = (6.11)

∑

k∈s

wA(k)(Y(k, i)− µwA
(Y(s, i)))(Y(k, j)− µwA

(Y(s, j)))

where covwA
(Y(s, :))i,j is the element (i, j) of the matrix covwA

(Y(s, :)) and contains
the covariance between the ith and jth variables defined inY(s, :). The term µwA

(Y(s, i))
is the weighted sampled mean of Y(s, i).

Computing σ(B̃(s)) has complexity O(n + e2), where e is the amount of nonzero
elements in vector VTE. This can be deduced from the fact that VTE can be computed
with O(n) operations due to the sparsity of V. The term e2 corresponds to the amount
of non-zero floating point products included in the vector×matrix×vector operations.
Considering that usually e ≪ k ≪ n, it can be said that the complexity of σ calculation
is approximately linear.

The memory required to obtain σ(B̃(s)) is O(n+ k2) because V is a sparse matrix
with only n nonzero elements, and the covariance matrix has dimension k×k.

6.3.4 Chebyshev-Based Constraint

The results obtained in the previous section can also be used to simplify the LI. Equa-
tion 6.12 shows an optimization problem where there is a LI G that depends on the
radiosity values B

[E,Φ] = Opt





Φ = minEf(E)

subject to

{
B = ME

G(B)

(6.12)

This optimization problem involves the search of an optimal configuration of emitters E
and includes a f(E) optimization goal, the computation of B(E) using a radiosity engine,
and the satisfaction of a set of constraints G(B). A typical G(B) consists in bounding
the radiosity values of a surface s and can be expressed as:

G(B) : {cmin ≤ B(p) ∀p ∈ s}, (6.13)
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where cmin is the lower bound of the radiosity values.

An optimization algorithm would have to solve, at each iteration, the radiosity equa-
tion to check that all B values in s are bigger than cmin. Instead, a more efficient
approach based on Chebyshev’s inequality [22], which avoids the calculation of all B
values in each iteration, is proposed. The Chebyshev’s inequality establishes that the
probability of finding B̃(p) values outside the µ± ασ interval is not greater than 1/α2,
regardless the distribution of B̃(p) . The Chebyshev’s inequality is used to build a prob-
abilistic formulation where the initial set of constraints G(B) is substituted by a new
Chebyshev-based constraint GCh(E,α) (Equation 6.14), based on the use of α, µ, and
σ values.

GCh(E,α) : cmin ≤ µwA

(
B̃(s)

)
− ασwA

(
B̃(s)

)
(6.14)

where α ≥ 0

The equivalent to Equation 6.14 for the upper bound cmax would be:

cmax ≥ µwA

(
B̃(s)

)
+ ασwA

(
B̃(s)

)

where α ≥ 0

Equation 6.15 shows the new Chebyshev’s optimization problem OptCh, which in-
cludes the constraint GCh. The problem now consists on finding an optimal ECh, which
minimizes f(E) subject to GCh(E,α).

[ECh(α),ΦCh(α)] = OptCh(α)

{
ΦCh = minEf(E)

s.t. GCh(E,α)
(6.15)

Figure 6.4 shows an example of possible distribution of the B̃(s) values. Most B̃
values must lie inside the µ ± ασ interval, which does not prevent that some B̃ values
could be lower than cmin.

cmin

))(
~

( sBhistogram

� �+���-�� �-� �+�

Figure 6.4: Histogram of the B̃(s) values. µ and σ values characterize their dispersion.

The probability bound in Chebyshev’s inequality is the worst probability value. Usu-
ally, for lighting distributions in typical architecture scenarios, the probability bound
may be much lower than 1/α2. For instance, in the test performed in Section 6.5.3, a α
value of 3 satisfies the full compliance of the G(B̃) constraints.
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6.3.5 Statistical Based Optimization

To the extent that all LI based on radiosity are replaced by other LI using µ and σ,
the complexity of each iteration in the optimization process is reduced from O(nk) to
O(n+ e2), and the memory required from O(nk) to O(n+ k2) (with n ≫ k ≫ e). The
complexity reduction results in a great acceleration, as is analyzed in Section 6.5.5.

Figure 6.5(a) presents the new statistical transformation for the example shown in
Figure 6.1(a). The goal and the constraints now are represented by using parameters µ
and σ. The goal optimizes the σ(B̃(s)) value, and the original constraints are substituted
by two Chebyshev-based constraints.

Figure 6.5(b) presents the new optimization process, where in each iteration there
is no calculation of the radiosity of the scene. In this figure, s represents all patches in
the scene, and syw corresponds to the patches of the yellow-colored wall. The following
section presents a methodology to find appropriate values for α, where ECh(α) satisfies
all G(B̃(ECh(α)) constraints.
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Figure 6.5: New LI and new ILP optimization process.
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6.4 α value determination

The α values can be estimated by means of a trial and error method. However, a
mechanical determination may lead to a more efficient approach. An iterative approach
is proposed to find a solution of the OptCh problem which is also a good solution for
the Opt problem (i.e., an ECh(α) solution that satisfies G(B̃(ECh)) constraints, and
where ΦCh(α) would be close to Φ). The strategy implemented minimizes the amount
of radiosity calculations of the scene.

6.4.1 Considerations

Figure 6.6 shows the main elements to be considered when searching for an appropriate
αSol value. The possible α values are always positive, and can be grouped into three
regions. In region I the ECh(α) solutions do not satisfy G(B̃(ECh(α))) constraints, and
in region III there are no solutions to the OptCh(α) problem. The possible valid α are
in region II, where ECh(α) solutions satisfy the G(B̃(ECh(α))) constraints. This paper
assumes that the three regions always exist, but an implementation of the algorithm
must consider also borderline cases and pathological situations.

f(E) 

�E : G( (E)) ����

��������	

I II III

� E : G( (E)) � GCh(E,�) 

������������	
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�Ch(�Sol)

�MAX

�Ch(�) 

Figure 6.6: Elements to be considered by the algorithm for “α-determination”.

Figure 6.6 also shows the ΦCh(α) curve, defined by the optimum ΦCh value associated
to each α value. This curve has nonnegative slope, because when the value of α becomes
smaller, the GCh(E,α) constraint is relaxed, expanding the set of feasible E solutions,
and making the optimum ΦCh value lower or equal than before. Therefore, the best α
candidate that minimizes ΦCh(α) in region II is αMIN , the smallest value of this region.
So our strategy aims to find this value.
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6.4.2 Algorithm

An algorithm based on a bipartition strategy is presented. The strategy seeks for the
shortest interval (αa, αb), such that αa is in region I, and αb is in region II (see Fig-
ure 6.6). The final αb value found would be the lowest α found belonging to region II.
Then, αb can be considered as αMIN , the solution we are looking for. Figure 6.7 shows
the flowchart of the algorithm, which is divided in two steps.
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(b) Bipartition: finding αSol

Figure 6.7: Algorithm for α-determination, which finds the minimum α value where
G(B̃(ECh(α))) is satisfied.

The first procedure step (see Figure 6.7(a)) searches for an initial (αa, αb) interval,
such that the first extreme lies in region I and the second one in region II. These
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properties ensure that αMIN will be inside the interval. αa is initialized in zero, assuring
that it is in region I. When αb belongs to III, a new αb value is generated in the middle
point of the previous (αa, αb) interval. When αb belongs to I, the interval is shifted to the
right, placing αa where it was αb. The evaluation of the second conditional (G(B̃(ECh)))
implies the execution of the radiosity algorithm to find the B̃(ECh) values. This first
part of the algorithm ends when αb belongs to region II.

The second part of the algorithm (Figure 6.7 (b)) is a bipartition algorithm that
halves the size of the (αa, αb) interval in each iteration. The middle α value is obtained
and the conditional establishes which of both halves is the selected interval. Stop con-
ditions could be set using the thresholds for the number of iterations, the ∆α value, or
the ∆ΦCh value.

6.5 Test Results

In order to evaluate the proposed method, five experiments were built, some of them
composed by several tests. The first one shows the use of σ as a LI. The second ex-
periment analyzes the optimization of µ and σ values, whereas the third one focuses on
the Chebyshev-based constraints stated in Section 6.3.4. The fourth experiment shows
results of the algorithm presented in Section 6.4.2. Finally, a performance comparison
of the proposed method with other state of the art methods is given.

All simulations were performed in a Matlab environment using a standard PC (Intel
Core i7 2.2 Ghz processor and 4 GB memory). Our optimization engine is based on
the Variable Neighborhood Search (VNS) method [12]. VNS is a single-solution based
metaheuristic that approximates global optimum solutions. However, the technique
presented here has no consideration of the optimization engine used. We believe that
comparable results could be achieved with other optimization engines.

6.5.1 Dispersion

This experiment shows the use of σ to manage the distribution of light in the scene.

Scene: “E-shape” corridor. Size (n×k): (24, 736×1, 546).

LI Goal: Illuminate the scene as homogeneously as possible positioning six diffuse
light sources.

Statistical Goal Equivalent: Minimization of the standard deviation of the re-
flected radiosity in the whole scene s, through the positioning of the light sources:
min σ(B(s)).

LI Constraints:

• Six emitters.

• Emitters location is constrained to a specific area (the red-colored rectangle
in Figure 6.1).

• All emitters have the same radiosity value.

Variables: 12

• Six 2D coordinates that determine the position of the light sources.
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Experiment Details:

• The precomputation of Y, V, and cov(Y) matrices, needed to apply Equa-
tion 6.10, took 12 min.

• The VNS algorithm is executed 20 times to obtain information about the
stability and distribution of the solution.

• σ is evaluated 25000 times in each execution.

Results:

• Processing time: 10 s per execution.

• σ values for all executions: σmin = 0.425, σmax = 0.442 and σmean = 0.428.

The standard deviation (σsd) for all executions is 0.0035.

• Image result: Figure 6.3(e).

Results shown in Figures 6.3(b), (c), and (d) were computed by adding a lower bound
constraint to the objective function (σ(B(s)) ≥ σmin). Figure 6.3(a) shows the result of
maximizing the dispersion (max σ(B(s))) as a goal. For this case, it can be seen that all
light sources concentrated in a close position.

6.5.2 Statistical tools for LI

This experiment analyzes the convenience of using µ and σ to satisfy a wide variety of LI.
The same scene and experiment details as in the previous experiment are used. Four
different categories of LI were tested on a specific wall of the scene (syw is associated to
the set of patches that defines the “yellow-colored wall” in Figure 6.1(a)).

⊕
Illuminate

LI Goal: Illuminate the wall as much as possible positioning six diffuse light sources.

Statistical Equivalent Goal: maximize µ(B(syw)).

Results:

• Processing time: 10.2s per execution.

• µ values for all executions: µmin = 0.409, µmax = 0.426, µmean = 0.420, and
µsd = 0.0048.

• Image result: Figure 6.8(a).

⊕
Overshadow

LI Goal: Overshadow the wall as much as possible; six diffuse light sources are needed
to be positioned to illuminate the rest of the scene.

Statistical Equivalent Goal: min µ(B(syw)).

Results:
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(a) max µ (b) min µ (c) min σ subject to
0.30≤µ(B)≤0.35

(d) max σ subject to
0.30≤µ(B)≤0.35

Figure 6.8: Four LI configurations applied to the yellow-colored wall in Figure 6.1(a).

• Processing time: 11.2s per execution.

• µ values: µmin = 7.20×10−4, µmax = 7.64×10−4, µmean = 7.30×10−4, and
µsd = 1.43×10−5.

• Image result: Figure 6.8(b).

⊕
Homogenize

LI Goal: Disseminate homogeneously, as much as possible, the light over the focus
wall, also satisfying a set of bounding constraints.

Statistical Equivalent Goal: min σ(B(syw)).

LI Constraints: 0.30≤µ(B)≤0.35.

Results:

• Processing time: 11.4s per execution.

• σ values for all executions: σmin = 0.066, σmax = 0.072, σmean = 0.068, and
σsd = 0.0019.

• Image result: Figure 6.8(c).
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⊕
Vary

LI Goal: Obtain the highest variation in the wall illumination, satisfying a set of con-
straints.

Statistical Equivalent Goal: max σ(B(syw)).

LI Constraints: 0.30≤µ(B)≤0.35.

Results:

• Processing time: 11s per execution.

• σ values for all executions: σmin = 0.159, σmax = 0.175, σmean = 0.165, and
σsd = 0.0044.

• Image result: Figure 6.8(d).

6.5.3 Evaluation of Chebyshev-Based Constraints

This experiment substitutes a set of constraints G(B) (0.1 ≤ B(p), ∀p ∈ syw) by a
Chebyshev constraint GCh(E,α) (0.1 ≤ µ− ασ). The optimization goal consists in the
minimization of the function µ(B(syw)).

The parameter α is tested for three values: α = 1, α = 2 and α = 3 (see Figure 6.9).
According to Chebyshev inequality, when α = 3, it means that up to 11% (1/α2) of all
patches could have values below the bound (0.1). However, our test shows that in fact,
none of the 704 patches is below the bound for this case.

(a) α = 1. Final values: µ=0.13
and σ=0.026.

(b) α = 2. Final values: µ=0.17
and σ=0.034.

(c) α = 3. Final values: µ=0.30
and σ=0.063.

Figure 6.9: Substitution of the constraints to a Chebyshev-based constraint with differ-
ent values of α.
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6.5.4 Finding the Best α Value

In this section two experiments are performed. The first experiment consists in finding
the best α value for an ILP and the second one consists on drawing a ΦCh(α) curve,
similar to the curve shown in Figure 6.6. Both experiments are based on the problem
stated in Section 6.5.3, and the G(B) constraints are substituted by a GCh(E,α) con-
straint. The algorithm proposed in Section 6.4.2 for the determination of the best α
value is used.

In Figure 6.10(a), the α value obtained in each iteration, used to solve the OptCh(α)
problem (red stars), the αa value (blue square), and the αb value (black circle) are
shown. The first three iterations correspond to the first part of the algorithm, and the
following eight iterations correspond to the bipartition algorithm. The resultant final
interval was (2.24, 2.25). As αb = 2.25 is the smallest α value known in region II, then
this value is chosen as the αSol value. The execution of the algorithm takes about 120 s.

This experiment is performed 20 times in order to analyze the accuracy of the result,
obtaining a good stability (standard deviation of 0.22). Moreover, the worst ΦCh(αSol)
value within the 20 results is 0.214, a lower value than the 0.3 value found in Section 6.5.3.

The result of the second experiment is shown in Figure 6.10(b). The OptCh(α)
problem is solved for several α values. The αMIN corresponds to the value found in the
first experiment (α = 2.25), and αMAX corresponds to the lowest value found for which
the OptCh(α) problem has no feasible solution (α = 3.4).

6.5.5 Performance Comparison

In this section is discussed the performance of our method in comparison against other
state-of-the-art methods. For the tested scene, using statistical LI, our method took
around 12 s to obtain a good solution. In terms of absolute timing, this result means an
improvement regarding previous work [4, 5, 13], where reported times range from min-
utes to hours for more simple scenes and constraints. However, a rigorous comparison
is difficult to carry out because of the different assumptions in the problem formulation.
For instance, compared to [4], the main assumption differences can be mentioned. First,
they only performed tests with a box-shaped scene without occlusion while the present
approach uses a more complex scene. They also performed their tests with more opti-
mization variable (27 against 12 in our case). Finally, another difference is that they use
a multi-objective technique. Cassol et al. reported 0.022 s per evaluation step, whereas
in our test 0.0004 s per evaluation was obtained.

A more feasible comparison can be done through the implementation of the algorithm
exposed in [13]. In this work, the VNS method is used as the optimization technique
and, in each iteration, the low rank radiosity technique calculates the radiosity values
for all patches on the yellow wall. The original problem (Section 6.5.3) is solved, which
includes the G(B) constraints. The solution found, after 25000 iterations, is similar
to the solution found in Section 6.5.4. The execution time took about 830 s (0.033 s
per evaluation step), so the algorithm for α-determination presents a speed-up of about
seven.
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Figure 6.10: α-determination experiment results.

6.6 Conclusions and Future Work

A new methodology is presented to achieve lighting intentions for inverse lighting prob-
lems. The innovative approach introduces the use of the statistical parameters µ and σ
as LI. It is shown that the computation can be efficiently performed obtaining a com-
plexity of O(n) and O(n + e2), respectively. The effectiveness obtained is based on a
low-rank approach of the radiosity equation. These results allow us to perform thou-
sands of global illumination evaluations on a standard computer, reducing drastically
the overall optimization time required to solve inverse lighting problems. Based on these
results and the Chebyshev’s inequality, the substitution of the set of constraints G(B)
of the radiosity by a single constraint GCh(E,α) that depends only on the parameters
µ, σ, and α is proposed. Finally, a procedure to obtain the optimum α parameter such
that G(B̃(ECh(α))) is satisfied and ΦCh(α) is minimized is proposed.
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We believe that our proposal could open a new avenue searching for optimal ILP
solutions. The promising time reduction results could lead to the application of the
method in more complex scenes and with more elaborated LI. Concerning further work,
more effort could be focused on automatic transformation of expressive lighting intention
into mathematical parameters, as for example µ, σ and α. This would approach the
method to designer tools.
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Chapter 7

A Sample-Based Method for

Computing the Radiosity Inverse

Matrix 1

The radiosity problem can be expressed as a linear system, where the light transport
interactions of all patches of the scene are considered. Due to the amount of computation
required to solve the system, the whole matrix is rarely computed and iterative methods
are used instead. In this paper we introduce a new algorithm to obtain an approximation
of the radiosity inverse matrix. The method is based on the calculation of a random
sample of rows of the form factor matrix.

The availability of this matrix allows us to reduce the radiosity calculation costs,
speeding up the radiosity process. This is useful in applications where the radiosity equa-
tion must be solved thousands of times for different light configurations. We apply it
to solve inverse lighting problems, in scenes up to 170K patches. The optimization pro-
cess used finds optimal solutions in nearly interactive times, which improves on previous
work.

Keywords: Radiosity; Inverse Lighting Problems; Inverse Matrix Approximation

7.1 Introduction

The radiosity method is a global illumination solution that is extensively used in render-
ing applications and lighting design. The basic algorithm is based on the finite element
approach, assuming that the light is reflected diffusely by the surfaces. In the classi-
cal approach, the explicit computation of the radiosity matrix is avoided due to the
huge computational cost. One of the early formulations proposed is the progressive
refinement solution [1], where a selection of form factors is computed, belonging to the
most significant patches that must “shoot” their accumulated radiosity. Another im-
portant contribution is the hierarchical radiosity method [2], which reduces the O(n2)
form factor calculations to O(n), for a scene composed of n patches. These methods
were successful at computing the global illumination of a scene. Further developments

1Accepted by Computers & Graphics: E. Fernández and G. Besuievsky A Sample-Based Method

for Computing the Radiosity Inverse Matrix.
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resulted in interactive techniques that are currently used in architectural lighting design
applications and in visualization software.

In most cases, neither the full radiosity matrix nor its inverse are required to compute
a 3D scene, and a few number of iterations is enough to approximate the radiosity
solution. However, the inverse of the radiosity matrix, expressed as M=(I−RF)−1 [1],
is useful when the illumination of the scene must be calculated a huge number of times.
In this equation, I is the identity matrix, R is a diagonal matrix containing the surface
reflectivities, and F is the form factor matrix.

One kind of problems that requires a huge number of global illumination calcula-
tions is the inverse lighting problem (ILP). Unlike traditional direct global illumination
calculations, in ILP the surfaces have lighting goals and constraints to satisfy, and the
shape, position and power of emitters are the variables of the problem. We follow the
notion that ILPs are formulated for static geometries, as laid down by Marschner [3].

These problems could be formulated as optimization problems, which usually are
implemented as iterative algorithms where at least one radiosity calculation is performed
in each iteration. Solving ILP is a challenge since the global illumination computation
should be solved for thousands of possible configurations of the emitters. One of the
limitations observed in previous approaches of ILP is that they are only feasible for
managing simple scenes.

We present results obtained from scenes composed up to 170K triangles. As happens
with any 3D model, the fine grain scene can be simplified into a rough approximation
using standard polygon reduction techniques or clustering (Figure 7.1(a)). Instead of
doing that, our proposal is based on the random selection of a small set of patches P,
and the calculation of the form factors between those patches and all the scene patches.
Our method generates a “sample-based scene”, or SP (Figure 7.1(b)).

(a) Fine grain scene S
(above) and coarse grain
scene (below).

1p

2p

3p p

6p
5p

7p 8p

1l 2l 3l 4l

(b) A sample-based scene (SP).

Figure 7.1: Three different representations of a 2D projected scene.
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This method facilitates the calculation of an approximate representation of M. A
small selection of patches provides enough information to calculate a good approximation
of the radiosity values. This is mainly caused by the spatial coherence implicit in the
radiosity method.

If we were to build M based on a rough approximation of the scene, there would
be three key issues to solve. One issue is how to simplify the geometry when we try to
limit the error of the global illumination of the scene. A second issue is the difficulty in
reducing the number of patches to a few thousands, when the scene contains many arcs,
windows, statues, furniture and other architectural elements. Finally, another issue is
the mapping of the solution into the original model. However, the use of a sample-based
scene avoids the treatment of the key issues, facilitates the exploration of many possible
configuration of SP , and makes possible to estimate the error of the radiosity values.

Figure 7.1(b) shows a schematic representation of the information managed. In this
example, a sample-scene composed of eight patches is taken and the form factors between
the sample and the rest of the scene are computed to obtain the rows of F (Figure 7.2).
Based on the symmetry of AF, where A is a diagonal matrix containing the area values,
the columns of F can be calculated.

1p 2p 3p
4p 5p 6p 7p 8p

1p

2p

3p
4p
5p

6p

7p

8p

41  ... ll

u

Figure 7.2: Sample rows/columns of F.

The information extracted from the sample is combined through the use of operators
that process the light interactions in the scene. In Section 7.3 a generic definition of
each operator is presented, and in Section 7.4 a specific definition for them is proposed.

The main contributions of this paper are:

• A description of the radiosity inverse matrixM using operators and a sample-based
scene.

• A matrix-based implementation of the operators.

• A method to estimate the amount of patches in the sample-based scene.
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• A significant speed up in the resolution of inverse lighting problems for medium
size models.

The rest of the paper is divided into six sections. In Section 7.2 we describe previous
work. Sections 7.3 and 7.4 are dedicated to explain the details of the method proposed.
In the following section we analize the error estimation and an estimation of the sample
size. Section 7.6 describes the experimental results, and finally the conclusions and
further work are summarized in Section 7.7.

Table 7.1: Symbol notation and meaning.

L set of all potential light emitters
li emitter i
pi patch i
P {p1 · · · p|P|}; sample of S; P⊂S

PL {l1 · · · l|PL|}; sample of L; PL⊆L

S set of all scene patches
SP sample-based scene
u surface; u⊆S
n |S|; number of patches in S

MS radiosity operator for the scene S
Pu2⇐u1 projection operator from u1 to u2
Sb⇐a selection operator from a to b

AS area of the scene S
B radiosity in the entire scene

B̃ approximation of the radiosity values
Bu total radiosity in surface u
BD

u direct radiosity in surface u
BI

u indirect radiosity in surface u

φ(η) {B̃I(1) · · · B̃I(η)}; sample of B̃I

E emission
ε, E error
rff (i) (

∑
all ff )/(

∑
sampled ff ), ∀ ff ∈ F(i, :)

A diagonal matrix with area values of S
ASP

diagonal matrix with area values of SP

F form factors matrix
FSP

form factors matrix of SP

I identity matrix
M inverse of the radiosity matrix

M̃ low-rank approximation to M
R diagonal matrix with reflectivity indexes

Y, V components of M̃ (n×k matrices, n≫k)

µ mean
µ̄A sample mean, weighted by the areas
σ standard deviation
σ̄ sample standard deviation

LTI length of the tolerance interval
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7.2 Related Work

In this section we summarize previous work in factorization techniques, a brief analysis is
presented about the connection between our technique and previous global illumination
approaches, and the previous uses of the inverse matrices in ILP are exposed.

7.2.1 Matrix approximation by Factorization Techniques

The factorization of a matrix Am×n consists in the construction of a pair of matrices
Bm×k, and Ck×n such that A≈BC. The term k is the numerical rank of the approxima-
tion [4]. The factorization techniques that use a small amount of data play an important
role in several areas of scientific computing and data analysis. Matrices can be huge,
their elements can be missing or inaccurate, or the data transfer can be a bottle neck
difficult to overcome.

Several methods have been developed for matrix approximations: sparsification,
column selection methods, and approximation by submatrices, among others [5]. In the
approximation by submatrices, Goreinov et al. have developed the CUR decomposition.
In this decomposition a matrix A is approximated by a product CUR. where C and
R denote column and row submatrices of A, and U is a small square matrix [6].

Factorization techniques have also been applied to solve radiosity equations. Wang
et al. [7] presented the kernel Nyström method, based on CUR decomposition and a
kernel method, to reconstruct the light transport matrix from a small set of images. A
similar goal is pursued by O’Toole and Kutulakos [8], using Krylov subspace methods.
In [9], the full matrix computation of (I−RF)−1 is avoided through a low-rank radiosity
method.

It is very likely that the F matrix of the radiosity equation has a low numerical
rank. This happens because each row F(p, :) is computed based on the scene view from
the geometrical patch p. As close patches have a similar view of the scene, F also has
similar rows, resulting in the reduction of its numerical rank. References about low-
rank properties of radiosity and radiance matrices can be found in Baranoski et al. [10],
Ashdown [11], Hasan et al. [12], and Fernández [9].

A matrix F with low numerical rank can be approximated by the product of two
matrices (UVT ), both matrices with dimension n×k (n≫k), without the loss of relevant
information. The memory requirement for both matrices is O(nk), which is significantly
less than O(n2) required to store F. This memory saving allows to storeU andVT in the
main processor memory of desktop computers for scenes with several hundred thousand
patches. In Fernández [9], the calculation of U and V is implemented through the
execution of an hemicube algorithm n times, thus slowing the precomputation process
(O(n2)). Also, the construction of two meshes with different granularity is required (one
mesh containing k patches and another with n patches).

Another step in the radiosity calculation is the calculation of the inverse of the
radiosity matrix, which allows to simplify the radiosity calculation to a matrix·vector
product [9]:

B = ME = (I−RF)−1E ≈ (I−UVT )−1E = (I+YVT )E = M̃E = B̃ (7.1)

In Equation 7.1, matrix Y has dimension n×k and is calculated through the use of the
Sherman-Morrison-Woodbury formula [4], in O(nk + k3) operations.
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7.2.2 Global Illumination

Our method is also related to other global illumination approaches that obtain a good
approximated solution from a structured selection of samples of the scene, like instant
radiosity [13], precomputed light paths [14], or generic many lights methods [15]. Sloan
et al. [16] precompute a radiance transfer process based on spherical harmonics, which
includes a clustered principal component analysis to compress the volume of information
generated.

In our method, it is used a starting set of samples but the light paths are not
explicitly followed. We use these samples as a rough approximation of the scene, to
build a compressed version of the radiosity equation. We are not focused on obtaining
a realistic rendering but to obtain an inverse matrix approximation for forward uses.

7.2.3 The inverse matrix computation for ILP

Matrix inversion is one of the strategies used to accelerate the inverse lighting process
based on radiosity. The inverse matrix could be used to explore each step of an opti-
mization algorithm, for static scenes where their parameters are the positioning of the
light sources, and their emitting power.

Different algorithms were proposed to build inverse matrices. Contensin uses the
pseudo-inverse method to solve the system [17]. In [18], the truncated singular value
decomposition (TSVD) is used for regularization and resolution of the system. In both
cases, the complexity of each algorithm is O(n2k) and the memory requirements are
O(n2), where n is the number of patches. In [19] the low-rank radiosity method devel-
oped in [9] is applied, allowing to process one hundred solutions per second on a twenty
thousand patch scene. Fernández and Besuievsky [20] also used a low-rank approach,
but instead of computing the full radiosity solution at each step they introduce statisti-
cal operators that can be used to optimize the illumination. In this case the complexity
is reduced to almost O(n), speeding up about seven times the computation of their
previous work. However, one drawback of all these inverse lighting techniques is that
they are not well-suited for large scenes.

7.3 Sample Based Radiosity

In this section we start explaining some introductory concepts, and continue defin-
ing three basic operators: selection, projection, and radiosity operator. Finally, these
operators are used to define an approximation of the radiosity inverse matrix. The
implementation details for each operator are explained in Section 7.4.

7.3.1 Sample of F

Figure 7.1(b) shows the information extracted from a given scene S to build M̃, a
low-rank approximation to M. Another representation of the information extracted is
described in Figure 7.2. In both representations we can see that: a sample P={p1 . . . p8}
of S and a sample PL={l1 . . . l4} of the potential emission area L are taken. As can
be observed below in Equation 7.3 and Figure 7.4, L and PL must be defined in the
precomputation step to allow the calculation of the direct radiosity BD. If M̃ is only
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used in the calculation of the indirect radiosity, then the information of L is not needed
during the precomputation step.

Using the scene information extracted from the view of each patch of P, the radiosity
matrix of a sample-based scene SP is built. The patches in SP have the same position
and orientation as the P patches, but different area size. The symbol u represents a
surface whose radiosity values have to be computed. This surface could cover the whole
scene (u⊆S).

The information provided by P and PL is shown in Figure 7.2. The highlighted
cells in the intersection of the PL columns and the SP rows, are used to calculate direct
lighting to SP , and the marked cells in P columns are used to calculate the global
illumination in SP . Finally, the highlighted cells on u rows are used to calculate the
radiosity of u. Figure 7.3 shows a Cornell box with a possible P set.

Figure 7.3: P containing 200 patches in a Cornell box.

The use of a subset of columns and rows resembles some aspects of the CUR method
mentioned in Section 7.2, but our approach takes also in consideration the properties of
the matrices involved in the radiosity equation.

7.3.2 Sample-Based Scene Radiosity

A sample-based scene SP can be seen as a simplification of S. We propose to build
the radiosity equation of SP (see Section 7.4.2) bypassing the geometric modeling stage.
The equation is built from the information samples extracted from the original scene,
wishing to contain all the relevant information of S.

The light emitted by L is projected into SP , and the radiosity equation is solved to
find the radiosity in SP . Then, the light in SP is projected into u obtaining its indirect
radiosity (see Figures 7.4(b), (c), and (d)).

The direct radiosity of u can be obtained using shadow mapping or another GPU-
based technique for light projection. In our process, the direct light is projected from
PL into u (Figure 7.4(e)) through the use of the PL columns of F. The final radiosity
value in u is composed of the sum of direct plus indirect lighting (Figure 7.4(f)).



106 A Sample-Based Method for Computing the Radiosity Inverse Matrix

��������	
��������Sp �
��������������S
�

��������	
��������u � S

1p

2p

3p
4p

1l 2l 3l 4l
1p

2p

3p
4p

1l 2l 3l 4l

1p

2p

3p
4p

1l 2l 3l 4l

EE SLLSS PP ⇐⇐= SP
PPP SSS EB M=

PP SSu

I

u BB ⇐= P
)(~

�	�����	
����������������u � S

EB

BBB

uu

I

u

D

uu

M
~~

~~~ )()(

=

+=E

������������������u � S�����
		�S �����E
6p

5p

7p 8p

6p
5p

7p 8p

6p
5p

7p 8p

u

1p

2p

3p
4p

6p
5p

7p 8p

1l 2l 3l 4l

1p

2p

3p
4p

6
p

5p

1
l

2
l 3

l
4

l

u

u

( )EB SssuSu

D

u LL ⇐⇐⇐ += SPS
)(~

7
p 8

p

Figure 7.4: Overview of the sample based Radiosity approach.

7.3.3 Operators

The radiosity calculation of u is modeled through the use of operators that shape the
selection of patches, the projection of the light between surfaces and the radiosity cal-
culation.

Selection (Sb⇐a): Given a vector a containing light information, Sb⇐a generates a
smaller vector b with selected values of a. The objective of this operator is to reduce
the amount of information used. Any sample extraction method or clustering
technique of the vector a may be a valid selection criterion.

Projection (Pu2⇐u1): Given a vector with the radiosity values of a surface u1, this
operator calculates a new vector containing the radiosity in u2 of the first bounce
of the light radiated by u1.

Radiosity Operator (MSc): Given a vector with emission values in a scene Sc, this
operator returns a vector with the radiosity solution in Sc.

These operators can be built in many ways. Each one could be associated to a
matrix, but also an algorithmic approach could be formulated for them. The radiosity
operator could be based on any radiosity solver, and the projection operator could be
implemented with a ray tracer.
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7.3.4 A Low-Rank Approximation of M

If the operators defined above are built as matrices, they can be used to calculate a
low-rank approximation of M. Based on Figure 7.4 (from (b) to (d)), the calculation of
the approximated indirect radiosity in u could be expressed as Equation 7.2:

B̃I
u = Pu⇐SP

MSP
PSP⇐LSL⇐SE (7.2)

where E is the emission of the scene. Also, the approximated direct illumination (Fig-
ure 7.4(e)) is calculated using Equation 7.3:

B̃D
u = (Su⇐S +Pu⇐PL

SPL⇐S)E (7.3)

Combining Equations 7.2 and 7.3 we obtain:

B̃u = B̃D
u + B̃I

u = (Su⇐S +Pu⇐PL
SPL⇐S +Pu⇐SP

MSP
PSP⇐LSL⇐S)E (7.4)

which also can be expressed as:

B̃u =
(
Su⇐S +YVT

)
E = M̃E (7.5)

where Y (of dimension |u| × (|PL|+ |P|)) and V (of dimension (|PL|+ |P|)× n) are
composed of operators:

Y =
(
Pu⇐PL

|Pu⇐SP

)
; VT =

(
SPL⇐S

MSP
PSP⇐LSL⇐S

)

Once Y and VT are built, B̃u can be computed with complexity O(|u|(|PL| + |P|)).
Also it should be noted that, when u=S, the Su⇐S operator is the identity matrix and
Equation 7.5 is similar to Equation 7.1.

The above formulation is useful when PL⊂L and we want to use L for indirect
lighting. For practical purposes could be suitable to reduce L to its sample PL, so
L=PL. In this case SPL⇐S and SL⇐S are the same operator, so Equation 7.4 can be
transformed into Equation 7.6. Y is now a |u|×|L| matrix and VT=SL⇐S is a sparse
|L|×n matrix. Now, the calculation of B̃u has complexity O(|u||L|).

B̃u = (Su⇐S + (Pu⇐L +Pu⇐SP
MSP

PSP⇐L︸ ︷︷ ︸
Y

)SL⇐S︸ ︷︷ ︸
VT

)E (7.6)

7.4 Building Operators as Matrices

In the construction of the matrices, the information used is composed by the reflectivity
indices and the areas of all the scene patches, the set of potential emitters, and the rows
of F associated to P and PL (Figure 7.2). The complexity of the matrix generation has
O(|P|3 + |u|(|PL| + |P|)), where O(|P|3) is derived from the calculation of MSP

, with
|P|≪n, and the complexities O(|u||PL|) and O(|u||P|) are derived from the construction
of the projection operators. As P is small, O(|P|3) has not a great influence in the overall
calculation time.
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7.4.1 Previous Considerations

We base our reasoning in the assumption that the following set of premises is satisfied:

Selection of Patches: Patches of S are selected randomly and are grouped into P. A
similar process is executed in L to build PL.

The probability to choose a patch is proportional to its area size. The set S is
a sample without replacement, meaning that each patch is selected at most one
time.

Form Factor Simplification: The form factor between a differential area di and the
patch j, is equal to the form factor between i and j (Equation 7.7).

F(di, j) = F(i, j) (7.7)

The form factor value F(i, j) is independent of the area of patch i. This property
is approximately satisfied when the distance between patches is large compared
to their size [21]. This is one of the foundations of form factors calculation using
hemicubes.

Radiosity Sample: The mean radiosity coming from P that arrives to i∈P per unit
of form factor, is equal to the mean radiosity coming from S that arrives to i∈P
per unit of form factor (Equation 7.8).

∑
k∈P F(i, k)B(k)∑

k∈P F(i, k)
=

∑
j∈S F(i, j)B(j)
∑

j∈S F(i, j)
+ ε(i) ∀i ∈ P (7.8)

This equation expresses the connection between the mean of a sample and the
mean of a population. The error term ε(i) in Equation 7.8 is usually unknown.
Following the central limit theorem (CLT) [22], ε(i) has a normal distribution with
µ(ε(i))=0 and σ(ε(i))=σ(B̃)/

√
|P|, ∀i∈P. In Section 7.5 we study the influence

of ε(i) on B̃.

Symmetry of ASP
FSP

In this product, ASP
is a diagonal matrix containing the area

of SP patches.

ASP
(i, i)FSP

(i, j) = ASP
(j, j)FSP

(j, i) ∀i, j ∈ SP (7.9)

This property must be fulfilled by any form factor matrix.

Invariance of the Scene Area: The area of S must be equal to the area of the
sample-based scene SP .

ASP
=

∑

∀i∈SP

ASP
(i) =

∑

∀j∈S

A(j) = AS (7.10)

This property is useful to model the energy flux between S and SP .
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7.4.2 Computing MSP
Operator

The radiosity of any patch i belonging to the sample P must fulfill [1]:

B(i) = E(i) +R(i)
∑

∀j∈S

F(i, j)B(j) ∀i ∈ P

When this equation is combined with Equation 7.8 (ignoring ε(i)), we obtain Equa-
tion 7.11:

B(i) = E(i) +R(i)rff (i)
∑

∀k∈P

F(i, k)B(k) ∀i ∈ P (7.11)

where rff (i) =

∑
∀j∈S F(i, j)

∑
∀k∈P F(i, k)

In Equation 7.11 the values of B are limited to those belonging to P. This equation can
be expressed also as:

(I−RPFP)BP = EP (7.12)

where FP(i, k) = rff (i)F(i, k) ∀i, k ∈ P

This equation looks similar to the well-known radiosity equation. FP is a square matrix
with nonnegative values where the sum of elements in each row is not greater than one.
Also, Equation 7.12 allows to obtain the radiosity solutions for P. For this reason, we in-
terpret Equation 7.12 as the radiosity equation for a sample-based scene SP , where their
patches satisfy the form factor values defined in FP . Hence, we redefine Equation 7.12
as:

(I−RSP
FSP

)BSP
= ESP

, (7.13)

where: BSP
= BP , ESP

= EP , RSP
= RP , FSP

= FP

If P is small (a few thousand patches), then FSP
is small enough to allow the

calculation of MSP
in a standard PC (Equation 7.14).

MSP
= (I−RSP

FSP
)−1 (7.14)

7.4.3 The Area of SP Patches (ASP
)

Given the Equations 7.9, 7.12, and 7.13, it is possible to say that:

ASP
(i)rff (i)F(i, j) = ASP

(j)rff (j)F(j, i) ∀i, j ∈ SP

Considering ASP
(i)=aiA(i) ∀i∈SP , the above equation is now expressed as:

aiA(i)rff (i)F(i, j) = ajA(j)rff (j)F(j, i) ∀i, j ∈ SP

but, as A(i)F(i, j)=A(j)F(j, i) ∀i, j∈P then:

airff (i) = ajrff (j) ∀i, j ∈ P
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then the product airff (i)=K has a constant value independent of i. If K is known, the
area of the SP patches can be computed as:

ASP
(i) = aiA(i) = K

A(i)

rff (i)
∀i ∈ SP (7.15)

To find K, we combine Equations 7.10 and 7.15:

AS = ASP
=

∑

i∈SP

ASP
(i) = K

∑

i∈P

A(i)

rff (i)

so, the value of K is calculated:

K =


 AS∑

j∈P
A(j)
rff (j)




Finally, substituting K in Equation 7.15, ASP
(i) is calculated:

ASP
(i) =


 AS∑

j∈P
A(j)
rff (j)


 A(i)

rff (i)
∀i ∈ P (7.16)

7.4.4 Computing P Operators

The projection operators used in Equation 7.4 are: Pu⇐PL
, PSP⇐L, and Pu⇐SP

.

Pu⇐PL
is a light projection between a source and destination, both belonging to S. Its

matrix representation is expressed in Equation 7.17, where AL is the total area
of emission and APL

is the area of the emission sample PL. When L=PL, then
AL/APL

=1.

Pu⇐PL
= RF(u,PL)

(
AL

APL

)
(7.17)

PSP⇐L is a light projection that goes from L⊆S to SP (Equation 7.18). Due to Equa-
tion 7.7 it is assumed that F(P, L)=F(SP , L), because the area of the patches in
SP does not affect the result.

PSP⇐L = RF(P, L) (7.18)

Pu⇐SP
is a light projection from SP to u⊆S. Given Equation 7.7 and due to the

symmetry of AF, the projection can be represented as:

Pu⇐SP
= A−1

u RF(P, u)TASP
(7.19)
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7.4.5 How to Calculate M̃

To calculate M̃, first we apply the concepts developed above in this section.

1. Select P and PL : see Section 7.4.1.

2. Compute the rows {P,PL} of F: hemicube.

3. Calculate rff (i) ∀i∈P : Equation 7.11.

4. Calculate FP : Equation 7.12.

5. Calculate MSP
: Equations 7.13 and 7.14.

6. Calculate ASP
(i) ∀i∈P : Equation 7.16.

7. Calculate P operators : Equations 7.17, 7.18, and 7.19.

Applying the equations developed in Section 7.3.4, now it is possible to build the matrices
Y and VT needed to calculate M̃. The matrices can vary depending of the kind of
radiosity B to be computed:

B̃I
u : Equation 7.2, where Y=Pu⇐SP

, VT=MSP
PSP⇐LSL⇐S ;

then B̃I
u=M̃E=Y(VTE).

B̃D
u : Equation 7.3, where Y=Pu⇐PL

, VT=SPL⇐S ;

then B̃D
u =M̃E=Su⇐SE +Y(VTE).

B̃u when PL⊂L : Equation 7.4 (or 7.5) is used to build U, VT ;

then B̃u=M̃E=Su⇐SE +Y(VTE).

B̃u when PL=L : Equation 7.6 is used to build U, VT ;
then B̃u=M̃E=Su⇐SE +Y(VTE).

The operator Sb⇐a can be modeled as a sparse matrix, but also could be efficiently
programmed, by taking a subset of a to build b. To compute the rows of F, we use a
hemicube algorithm [21] but other techniques, like Monte Carlo ray tracing [1], could be

applied. The matrix M̃ is never built, because it consumes O(n2) amount of memory.
Instead we operate with its components to calculate the scene radiosity. The formula
Y(VTE) expresses the efficient way to do the calculation: first the product VTE is
performed, then its result is multiplied by Y.

7.5 Error Estimation

7.5.1 Error of the Operators

The projections Pu⇐SP
and Pu⇐PL

are random functions related to the size of P and
PL. Each operator projects light from a random sample, producing a Monte-Carlo
integration process. So, the standard deviation of their errors scales with the inverse of
the square root of the size of each sample [23]:

σ
(
‖EPu⇐SP

‖
)
∝ 1/

√
|P| ; σ

(
‖EPu⇐PL

‖
)
∝ 1/

√
|PL|
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The errors of PSP⇐L, SL⇐S and SPL⇐S are caused by projection artifacts and
selection issues. These errors can be reduced independently of the samples size, so they
are ignored.

The estimation of EMSP
is influenced by ε(i) (Equation 7.8), which follows the CLT.

When ε(i) is taken into consideration, then, Equation 7.11 is transformed into:

B(i) = E(i) +R(i)rff (i)
∑

k∈P

F(i, k)B(k) +


R(i)

∑

j∈S

F(i, j)


 ε(i)

∀ i ∈ P, and Equation 7.13 is transformed into:

BSP
= MSP

ESP
+Rε = MSP

ESP
+ EMSP

where R is a diagonal matrix which meets R(i, i)=R(i)
∑

j∈S F(i, j), and ε is a vector
composed of the ε(i) values. As EMSP

is a linear combination of the ε terms, it also
scales following Equation 7.20.

σ(‖EMSP
‖) ∝ 1/

√
|P| (7.20)

7.5.2 Errors in BI , BD and B

The errors of the operators influence the B̃I result. When Equation 7.2 is expanded to
include the first order error terms, then:

BI = B̃I + E
B̃I ≈ Pu⇐SP

MSP
PSP⇐LSL⇐SE +

(
Pu⇐SP

EMSP
+ EPu⇐SP

)

The E
B̃I term is approximated by a linear combination of EMSP

and EPu⇐SP
, then it

also scales proportionally to 1/
√

|P|:

σ(‖E
B̃I‖) ∝ 1/

√
|P| (7.21)

B̃D is linearly influenced by Pu⇐PL
(Equation 7.3), hence σ

(
‖E

B̃D‖
)
∝1/

√
|PL|. The

variables E
B̃I and E

B̃D are uncorrelated because E
B̃D depends on PL and E

B̃I depends
on P, which are independent sets. Therefore, σ(‖E

B̃
‖) fulfills Equation 7.22.

σ2
(
‖E

B̃
‖
)
= σ2

(
‖E

B̃I‖
)
+ σ2

(
‖E

B̃D‖
)

(7.22)

When PL covers all the emission area L, then EPu⇐PL
is ignored, which results in

E
B̃
=E

B̃I .

7.5.3 Estimation of |P| for the Calculation of B̃I

We focus our analysis on B̃I , because we consider it the main asset of this method. Fol-
lowing Equation 7.21 and assuming that B̃I follows a normal distribution, it is possible
to estimate the value |P2| needed to bound the error of B̃|P2|. This estimation is based

on the previous calculation of a set of radiosity solutions, φ
(η)
|P1|

={B̃
I(1)
|P1|

· · · B̃
I(η)
|P1|

}, for a

|P1| value, where η is the cardinal number of the set.
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We base our reasoning in the concept of tolerance interval [22], a statistical interval
where, with some confidence level γ, a specified proportion d of a sampled population
falls. More specifically we are interested in the length of the tolerance interval (LTI) of
B̃I . Equation 7.23 is an estimation of the LTI value for a patch p, and a size |P| of the
scene sample.

LTIη,d,γ(p, |P|) = 2σ̄
(
φ
(η)
|P|(p)

)
k(η, d, γ) (7.23)

In Equation 7.23, σ̄ is the sample standard deviation, and φ
(η)
|P|(p) is the set of radiosity

values found for patch p. The parameter k is tabulated in some books and papers, for
the case in which a population follows a normal distribution and the exact µ and σ
values are unknown [22, 24].

Due to the linear relation between LTI and σ̄, LTI is proportional to 1/
√

|P|,
so having the LTI for any given |P1|, it is possible to find the |P2| value such that
LTIη,d,γ(p, |P2|) fulfills a desired value (Equation 7.24).

|P2| =

(
LTIη,d,γ (p, |P1|)

LTIη,d,γ (p, |P2|)

)2

|P1| (7.24)

In this equation, LTIη,d,γ(p, |P1|) is calculated using Equation 7.23, and LTIη,d,γ(p, |P2|)
is the desired LTI value. Equation 7.24 can be used to estimate the size of a sample-based

scene, if previously a set φ
(η)
|P1|

(for a small |P1| value) is computed.

7.6 Experimental Results

In this section we present three sets of experiments. The first one studies the main
aspects of the error of B. In the second experiment we analyze how accurate the es-
timation of |P| is for a given length tolerance interval. Finally, M̃ is used to solve an
inverse lighting problem.

All simulations were performed in a Matlab environment using a standard PC (Intel
Core i7 2.2 Ghz processor and 8 GB memory).

7.6.1 Study of the Error

In this experiment we show results to analyze the error expressed in Equation 7.21. Our
first goal is to check the proportionality between σ(B̃I

|P|) and 1/
√

|P|. For each P size, a

set φ
(100)
|P| is calculated. After that, the weighted sample mean of the standard deviation

of each patch is calculated: µ̄A(σ̄(φ
(100)
|P| )). The sample mean µ̄A, considers the area of

each patch as the weight parameter. We use a Cornell box, composed of 10240 patches
(Figure 7.3).

In Figure 7.5, the red dotted line is a scaled inverse of the square root of |P|, and

the blue stars are the experimental result of µ̄A(σ̄(φ
(100)
|P| )) for several |P| values.

Figure 7.6 shows the estimations of µ and σ values for the Cornell box after 500
calculations of B̃. The µ(B̃I

20) estimation is very close to the reference (Figures 7.6(a)

to (c)). In Figures 7.6(d) to (f), the σ(B̃I
20), σ(B̃

I
80) and σ(B̃I

320) estimations are shown,

scaled up seven times, showing that σ(B̃I
|P|) is smaller the higher the |P| is.
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Figure 7.5: µ̄A(σ̄(φ
(100)
|P| )) is estimated (blue stars) for different |P| values.

(a) µ̄A

(
φ
(500)
20

)
. (b) B control solution. (c)

∣∣∣µ̄A

(
φ
(500)
20

)
−B

∣∣∣.

(d) σ̄(φ
(500)
20 ). (e) σ̄(φ

(500)
80 ). (f) σ̄(φ

(500)
320 ).

Figure 7.6: The sample mean and standard deviation of B̃ for 500 radiosity executions.

Figure 7.7 shows the histograms of B̃I
|P| for two individual patches. The histograms

are close to the Gaussian bell for larger |P| values, µ(B̃I
|P|) varies very little for any

|P| size, and σ(B̃I
|P|) is roughly halved when |P| increases four times, confirming the
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Equation 7.21.

Figure 7.7: Histograms of B̃I
|P| for two different patches when |P|=20, 80, 320, and 1280.

The Lilliefors test [25] is used to test the null hypothesis for a sample extracted from
a normally distributed population. This test can not reject the normal distribution
hypothesis in 80% of the Cornell box patches at the 5% significance level, when |P|=80.

7.6.2 Estimation of |P|

Based on the Cornell box scene, we estimate the P2 size for a LTI value using Equa-
tion 7.24. After that, we confirm that the estimated values are an upper bound of the
real values. Figure 7.8(a) presents several estimations of |P2|. The tolerance interval of
B̃I has a length (LTI) of 0.05, the value of |P1|=20, and η=15, 60, and 240. We choose
d=γ=0.95. Figure 7.8(b) shows the real LTI for all B̃|P|, with d=0.95, and |P|=300,
500, and 700. The calculations are based on 200 radiosity results for each |P| value.
The values of k(η, d, γ) for η=15, 60, and 240 (and d=γ=0.95) are 2.95, 2.33, and 2.12
respectively [22].

(a) |P2| value, for |P1|=20, d=γ=0.95, LTI=0.05. (b) Real LTI(B̃|P|) when d=0.95.

Figure 7.8: Estimation of |P|, and real LTI values for different |P|.

The values estimated in Figure 7.8(a) are an upper bound of the real values of
Figure 7.8(b). The minimum estimate of |P| that fulfills that 100% of the patches meets
LTI≤0.05 is of about 700 (red circle in Figure 7.8(a)), and the real best |P| value is close
to 500.
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7.6.3 Inverse Lighting Problem for Larger Scenes

ILP is usually restricted to simple scenes. In this section we show the capability of our
method to solve ILPs for more complex scenes. We build an experiment for a modified
Sponza atrium with a roof in its patio, and another experiment on a museum building.

Sponza Atrium

This scene is composed of 79230 patches and we worked with |P|=2000. The precompu-
tation step, that includes a non optimized hemicube algorithm to compute form factors
in general environments [21], takes about three minutes. Figure 7.9 shows three views of
a radiosity solution. Analyzing B̃ after 1000 executions with d=γ=0.95, it was obtained
that LTI(B̃2000)≤0.05 for 90% and LTI(B̃2000)≤0.1 for 98% of all the scene patches.

(a) Hemicube view. (b) Upper corridor. (c) Lower corridor.

Figure 7.9: Three views of a B̃2000 solution for the Sponza atrium.

We solve two different ILPs. The first one is the maximization of the radiosity of a
wall w (B̃(w)) in the Sponza atrium, and the goal of the second ILP is to minimize the
standard deviation of B̃(w) (see Figure 7.10).

�� ��� B(w)

�� ��� �(B(w))

	��

��� ��� �L� ��
�������

Figure 7.10: Scheme of the ILP in the Sponza atrium.

For both problems, the variables are the position and the shape of two rectangular
skylights in the Sponza roof. The area of each skylight is bounded by maximum and min-
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imum values. Finding the optimal rectangular areas is a combinatorial problem. This
ILP could be formulated as an optimization problem [26], which is approximately solved
by any global optimization solver. We use the variable neighborhood search (VNS)
method [27], previously tested in ILPs [19]. In each iteration of the VNS method, a new
configuration of the skylights is tested, forcing the calculation of the radiosity in the
wall, in order to verify the goal. The radiosity calculation is the most computationally
demanding subroutine in each iteration of VNS.

Equation 7.6 is used to evaluate the radiosity calculations, because PL covers all the
ceiling surface L. The calculation of B̃2000 for the whole scene takes about 0.07s (14
iterations per second), which allows to evaluate 25000 skylight configurations in about
30 minutes.

Additionally, Equation 7.6 allows to restrict the radiosity calculation to the selected
wall, which speed up the optimization process. This improvement increases the speed
to about 270 iterations per second, thus allowing to calculate 25000 iterations in about
90s. This improvement in performance is related to the small number of patches in w.
When there are goals or constraints involving the whole scene, this kind of optimization
can not be applied.

Other shortcuts can also be applied to speed up the calculation time. Graphics
cards, for instance, allows to reduce by a factor of five the matrix·vector product used
in the radiosity computation [28]. But this technique does not reduce the amount of
operations performed by the ILP solver.

From the calculation of the matrix M̃, another methods can be applied [20] based
on the use of µ̄A(B̃(w)) and σ̄(B̃(w)) operators to define the goals of both problems, for
any w⊆S. For the first problem defined, the maximization of the radiosity in the wall w
is equivalent to maximize µ̄A(B̃(w)). Following this approach, the mean of the radiosity
values for any surface could be expressed as the scalar product defined in Equation 7.25.

µ̄A(B̃(w)) =
1wAB̃∑
i∈w Ai

=

(
1wAM̃∑

i∈w Ai

)
E = vE (7.25)

In this equation, 1w is a row vector with ones only in w, and vE is the scalar product.
The complexity of the vE product is O(|PL|), so it is independent to the size of w.

In the vector v, each element v(i) is the ratio between the light power received by w
from patch i and the light power emitted by i, that is, the contribution of the emitter to
the region of most interest. This is closely related to the concept of “importance” [29].

For the second problem defined, the minimization of σ̄(B̃(w)), we measure the dis-
persion of the radiosity values in w. The covariance matrix is used, and each column of
Y(w, :) is considered as a sample of a statistical variable (Equation 7.26), following [20]
.

σ̄(B̃(w)) =
√
(VTE)T cov(Y(w, :))(VTE) (7.26)

In this equation, Y and V are calculated through Equation 7.6, and covwA
(Y(w, :)) is

the |L|×|L| covariance matrix defined from the columns of Y(w, :). For static scenes,
the covariance matrix is built only once. In Equation 7.6, VT is defined as SL⇐S , which
can be defined as a sparse matrix (one nonzero element per row), so the product VTE is
reduced to O(|L|) operations. Also, the product of the covariance matrix to both VTE
is a O(e2) operation, where e is the amount of emitters turned on [20].



118 A Sample-Based Method for Computing the Radiosity Inverse Matrix

Our optimization tests for the first problem based on Equation 7.25, iterates 830
times per second, totalizing 25000 iterations in about 30s. Also, the tests for the sec-
ond problem based on Equation 7.26, iterates 400 times per second, totalizing 25000
iterations in about 60s.

In Figure 7.11 there is a set of solutions provided by the ILP solver. Figure 7.11(a)
and (b) correspond to the first and second problem defined above, respectively. As
the solution of the second problem is darker than desired, then we add a constraint
(µ>0.085) and the result is shown in Figure 7.11(c). Finally, we propose to maximize
the standard deviation of B̃(w) (Figure 7.11(d)).

Museum Building

This scene is composed of 168160 patches, where we defined |P|=2000. The precom-
putation step takes about five minutes. There is a mezzanine that partially shadows a
yellow sculpture (Figure 7.12).

In this experiment we tried three different goals related to the standard deviation of
B in the yellow sculpture y. The first goal is to minimize σ(B(y)) (Figure 7.13(a)), and
the second goal is to maximize σ(B(y)) (Figure 7.13(b)). We can observe in the figures
that σ is directly related to µ (more dispersion is associated to more intensity), then
the third goal tested is the minimization of the coefficient of variation (σ/µ), which is
a normalized measure of dispersion [22] (Figure 7.13(c)). All the above problems were
solved in about 95s, after 25000 iterations (260 iterations per second).

7.6.4 Discussion of Experimental Results

We analize the usefulness of M̃ in different scenarios. All the radiosity values shown
in Figures 7.11, 7.12 and 7.13, were calculated through M̃E. While the error may be
estimated and bounded, as is shown in Sections 7.6.1 and 7.6.2, we still can observe
visually two main kinds of errors: errors due to the discretization level of the mesh,
and errors due to M̃ (e.g., there is some “noise” in the radiosity values of the Sponza
wall). Both errors are important to the subjective quality of rendering, but not so
much important in ILP. These errors can be reduced by the construction of meshes with
greater n, and by the increment of |P|.

The memory size of Y matrix in the museum scene is about 1.2Gbytes (with single-
precision floating-point numbers). Through Equation 7.6, the size of Y is independent
of |P|, but linearly dependent to |u| (in this case |u|=n). Then, scenes with an order of
magnitude larger produce matrices with the same order of size increment. Therefore, the
amount of memory required makes this method noncompetitive for rendering, compared
to currently used real-time global-illumination techniques, which render multiple bounce
radiosity in scenes composed of millions of polygons [30].

In ILP, the calculation of the radiosity with an infinite amount of bounces is useful
to model real world problems. The results achieved in this work solving ILP are in some
cases two orders of magnitud better than previous work [26, 31, 32], in the total number
of patches or the runtime employed. The comparison is difficult to carry out because of
the different assumptions in the problem formulation. The most noticeable differences
are centered in the size and complexity of the geometric model, and the time taken to
solve the inverse problem. A more feasible comparison can be done with [19] and [20]. In
these cases, the low-rank approach to RF is performed by a O(n2) method [9], compared
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(a) max µ̄(B̃(w)) (µ̄=0.1027).

(b) min σ̄(B̃(w)) (σ̄=0.0069).

(c) min σ̄(B̃(w)) s.t. µ̄(B̃(w))>0.085 (σ̄=0.0157).

(d) max σ̄(B̃(w)) (σ̄=0.0627).

Figure 7.11: A B̃2000 representation of the Sponza atrium showing the solutions for
several ILPs.
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Figure 7.12: Museum guilding. The yellow “sculpture” is the object to be illuminated.
The potential emitters are painted in red.

(a) min σ̄(B(y)) (σ̄=0.0170). (b) max σ̄(B(y)) (σ̄=0.0490). (c) min σ̄(B(y))
µ̄(B(y))

(
σ̄
µ̄
= 0.4645

)
.

Figure 7.13: Distribution of emitters in the potential emitters area (red rectangles) and
the resulting illumination in the sculpture.
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to the O(n|P|) complexity of our proposal, meaning an speed up of O(n/|P|). Another
advantage is that our method avoids the construction of a coarse mesh composed of k
patches for the same scene.

7.7 Conclusions and Further Work

A method for approximating the inverse radiosity matrix M̃ is presented. The con-
struction of M̃ is based in the use of three operators, defined generically. A particular
implementation is provided for each one. We showed that the error of the indirect radios-
ity is proportional to 1/

√
|P|. A set of experiments confirms these results, showing that

the distribution of the radiosity error is approximated to a Gaussian bell curve. Based
on these results, the size of the sample can be estimated for a given set of parameters.

Several inverse lighting problems based on the Sponza atrium and a museum building
were designed and solved, as examples of application. The availability of M̃ allows us
to know the global illumination influence of the light emitted by j in i, that is M̃(i, j),

which reduces the amount of radiosity calculations involved in ILP. Also, M̃ allows to
find statistical operators, reducing the calculations even more. Depending on the ILP
and the scene, the optimization times varies between 30s and 95s for 25000 radiosity
calculations, in scenes up to 170K patches.

As future work, variance reduction techniques would allow to construct even smaller
sample-based scenes for the same LTI value. Also, TSVD techniques could be applied to
reduce the size of the operators P and MSP

. GPU techniques could be used to reduce

the construction time of M̃ matrices, and to solve ILPs even faster. Finally, our method
could be integrated as part of a lighting design tool, to solve ILPs.
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J. Madeiras, J. Rodŕıguez (Eds.), Proceedings of the IV Iberoamerican Symposium
in Computer Graphics, Sociedad Venezolana de Computación Gráfica, DJ Editores,
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[14] L. Szécsi, L. Szirmay-Kalos, M. Sbert, Light animation with precomputed light
paths on the gpu, in: Proceedings of Graphics Interface 2006, GI ’06, Canadian
Information Processing Society, Toronto, Ont., Canada, Canada, 2006, pp. 187–
194.
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[30] J. Křivánek, M. Fajardo, P. H. Christensen, E. Tabellion, M. Bunnell, D. Larsson,
A. Kaplanyan, Global illumination across industries, in: ACM SIGGRAPH 2010
Courses, SIGGRAPH ’10, ACM, New York, NY, USA, 2010.

[31] F. Cassol, P. S. Schneider, F. H. França, A. J. S. Neto, Multi-objective optimization
as a new approach to illumination design of interior spaces, Building and Environ-
ment 46 (2) (2011) 331 – 338.

[32] F. Castro, E. del Acebo, M. Sbert, Energy-saving light positioning using heuristic
search, Engineering Applications of Artificial Intelligence 25 (3) (2012) 566 – 582.





Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this work has been developed several techniques to reduce the computational effort
in the inverse lighting process. These contributions are described as improvements to
the ILP solver presented in Figure 1.1, even if they may be used in other contexts.

The first practical results are related to the utilization of the GPU architecture to
speed up the matrix-vector product, which is used in the calculation of the radiosity
through the LRR method. The GPU hardware, and the transformation of Vk into
an index vector, helps to speed-up the radiosity calculation from 8.6 to 21.3 times, in
comparison to the CPU timing (for the tested hardware). When the scene has several
hundred thousand elements, and it is possible to build a coarse version of it with a few
thousand patches, then it is possible to calculate the global radiosity of the scene, with
infinite bounces, with a rate of 20 times per second.

Another important result consists in the use of the Variable Neighborhood Search
(VNS) method as the optimization heuristic, combined with the use of the penalty
approach to include the constraints, and the LRR method as a radiosity engine. This
combination of techniques allows us to solve single and multi-objective optimization
problem (MOP), mixing natural and artificial lighting goals and constraints. With the
aim of reducing the execution time, a multilevel procedure was tested. This procedure
is based on the definition of a hierarchy of scene samples, and the calculation of the
ILP, one level at a time, beginning in the sample with fewer elements. The set of ILP
tested is solved in 5 minutes at a rate of 90 radiosity calculations per second, in a low-end
CPU. This method is also used to design optimal filters given a set of lighting intentions,
achieving very good results.

The above results, specially those related to the multilevel method, lead us to think
in the relevance of the radiosity calculation time in the overall time of the ILP resolution.
The calculation of µ and σ for any surface of the scene, can be performed easily through
the use of LRR. The efficiency achieved allows the testing of thousands of configurations
per second on a standard computer, reducing drastically the overall time required to
solve ILP. Also, it was implemented an algorithm that facilitates the substitution of a
set of constraints by a single constraint built on the Chebyshev’s inequality.

Finally, it is presented a new method for the calculation of the radiosity inverse
matrix (M̃), based on the use of a randomized algorithm, which takes a small set of
columns of the form factor matrix. The amount of columns needed to achieve the error
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pursued is estimated. This methodology was tested on scenes up to 170K patches, and
the M̃ found was used in several ILP, solving them in an average time of 70 seconds
after 25000 evaluations.

All the results presented here, could be accelerated through the calculation in GPU
of the radiosity values. Instead of that we decided to accelerate the ILP pipeline, based
exclusively on the simplification of the algorithms involved. The implementation of the
VNS metaheuristic was used in all the ILP presented in this thesis, and provides very
good results. We consider that the use of µ and σ in the LI, would be extremely useful
to simplify the ILP calculation. Finally, all efficiency gains achieved in the optimization
stage were overshadowed by the modest times, O(n2), found in the pre-computation
stage. Therefore, the proposal of a sample based method, O(nk), for the calculation
of the inverse matrix, increases the usability of the developed methods in medium size
scenes.

8.2 Future Work

This section is divided in two parts. The first one is related to the published papers,
and the second one is related to medium term goals and other further works.

8.2.1 Future Work Related to Published Papers

Although some results have been fulfilled, the work could be extended in different ways.

Regarding the use of GPU on LRR calculation, it seems that an hybrid strategy
of simultaneous computation in CPU and GPU would allow a reduction in the time
employed in the radiosity calculation. Another important point to work on, is the
inclusion of these GPU based methodologies to speed-up the amount of iterations per
second performed by the optimization solver.

Related to the optimization techniques, it is important to consider the use of pop-
ulation based metaheuristic, like genetic algorithms, to solve single and multi-objective
optimization problem. These metaheuristics allow a better diversification in the whole
search space, than single-solution based metaheuristic, like VNS [1].

The results achieved when µ and σ are used in the LI, could inspire the development
of heuristics to transform the descriptive intentions (Figure 1.2) into a mathematical
equivalent. This would allow to achieve interactive times for a wider variety of situations,
and would ease the development of inverse design modules in CAD systems.

Considering the sample-based construction of the radiosity inverse matrix, variance
reduction techniques should be studied to allow the construction of even smaller sample
scenes from the same length of the tolerance interval. Also, the use of truncated sin-
gular value decomposition or rank-revealing QR techniques would allow to reduce the
rank of the matrix approximation. The search for an appropriate combination of these
techniques seems to be an interesting area of research, that would allow to solve ILP for
larger scenes and with less computational resources.

Finally, the development of real examples and working experiences with designers
are needed. This line of work will transform the code implemented into a design tool
useful for architects and interior designers.
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8.2.2 Further Works

ILP for Openings not Covered by Lambertian diffusers

In this thesis, the emitters are Lambertians diffusers. This kind of emitter illuminates
in all directions following the cosine law. A window with transparent glass is not Lam-
bertian, because the incoming light in each direction depends on the configuration of
external elements (sky, sun, clouds, other buildings). Despite that, it is possible to
model the radiosity of the scene, with a variation of the radiosity equation.

As an approach to the problem, any pair of patches ~ij defines an intensity of light
E~ij

. In ~ij, i is part of a opening and j is an element of the scene (Figure 8.1). Then, it is
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Figure 8.1: Each pair of patches ~ij defines the incoming light.

possible to define a radiosity equation that includes Gi (the first reflection of incoming
light through patch i), and E (the artificial emitters).

(I−RF)B = R



F1iE~i1

...
FniE ~in


+ E = Gi + E

In this equation, each form factor Fji establishes the visibility between j and i.
The vector Gi could be transformed into a matrix G to include all potential elements

of the opening (one column per element). Then the above equation is transformed into:

(I−RF)B = GW + E (8.1)

where W is a vector that establishes which are the patches that form part of the opening.
Consequently, each time an opening is defined, GW+E is transformed into a vector, and
the Equation 8.1 has become a radiosity equation. Therefore, all the methods developed
in this thesis could include this procedure without any additional effort.

Changing the reflection index of the surfaces

In this thesis the properties of the surfaces, as the reflectance, are fixed. The optimiza-
tion is centered in the best configuration for the emission patches.

A first consideration is that a modification in the reflection factor of any surface,
has a non-linear effect in the final radiosity values of the scene. This happens because a
modification of this kind implies a change in the R matrix, which alter the exponential
terms in the Neumann series (see Equation 2.7).
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Another important concept is that a modification in the reflection factor of a single
patch, may involve a change in all the elements of the inverse of the radiosity matrix
M. This implies a complexity of at least O(n2), or O(nk) in case of the low-rank

approximation M̃.

Matrix-Vector Vs. Matrix-Matrix Product in GPU

In this thesis, the calculation of the radiosity values is reduced to a matrix-vector product
B = ME. The simultaneous calculation of the radiosity for m configurations of the
emitters, could be done through the use of a matrix E = [E1, E2, . . . , Em]. Therefore
the simultaneous execution of m matrix-vector products could be transformed into a
single matrix-matrix product B = ME, where B = [B1, B2, . . . , Bm]. Both strategies
have the same amount of floating point operations, but the matrix-vector product is
slower because it is bandwith bound (the transfer rate between memory and processors
slows the overall process). This happen both in CPU and GPU [2] architectures.

The above findings lead us to think that, better time results can be achieved through
an strategy that favours simultaneous testing of many emitter configurations, as happens
in population based metaheuristics.

Flux and Flux density Goals and Constraints

A designer might not be interested only in the flux density (W/m2) measured as radios-
ity. Often there are goals and constraints related to lighting flux, measured in W , like
the emitted flux, the reflected flux or the incoming flux. Also, the designer could be in-
terested in other kinds of flux density such as the incoming flux density (irradiance), the
indirect irradiance, or the reflected radiosity, among others. In Table 8.1 there is a list
of “flux”, “flux density” and “importance” [3] quantities and their respective equations.

Table 8.1: Lighting-Representation Equations

Representation (Lr) Equation

Flux [W ]

Reflected Flux (LFr) (I−RF)A−1LFr=RFE

Emitted Flux (LFe) LFe=AE

Incoming Flux (LFi) (I−FR)A−1LFi=FE

Flux density [W/m2]

Irradiance (LI) (I−FR)LI=FE

Direct Irradiance (LId) LId=FE

Indirect Irradiance (LIi) (I−FR)LIi=FRFE

Radiosity (LB) (I−RF)LB=E

Emitted Radiosity (LE) LE=IE

Direct Radiosity (LBd) LBd=RFE

Reflected Radiosity (LBr) (I−RF)LBr=RFE

Importance (LIm) (I−RF)TLIm=R

It is important to highlight that all of these quantities are related to equations similar
to the radiosity equation. Therefore, a possible avenue of work would be to apply the
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same strategies (low-rank, random based decomposition of the inverse) to the matrices
involved, and the use of the same ILP strategies developed in this thesis.

Final Remarks

Much work must be accomplished prior to the inclusion of a complete set of inverse tools
in any CAD software. The inclusion of glossy surfaces requires the use of other global
illumination engines. The geometry as a design variable must be treated in a very
clever way, to transform the designer intentions into computationally tractable prob-
lems. Therefore, creative work must be done in new ILP solvers, and in the translation
of the descriptive LI into mathematical problems solvable with personal computers at
interactive speeds.
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