46 research outputs found

    2020 NASA Technology Taxonomy

    Get PDF
    This document is an update (new photos used) of the PDF version of the 2020 NASA Technology Taxonomy that will be available to download on the OCT Public Website. The updated 2020 NASA Technology Taxonomy, or "technology dictionary", uses a technology discipline based approach that realigns like-technologies independent of their application within the NASA mission portfolio. This tool is meant to serve as a common technology discipline-based communication tool across the agency and with its partners in other government agencies, academia, industry, and across the world

    Real-time implementation of 3D LiDAR point cloud semantic segmentation in an FPGA

    Get PDF
    Dissertação de mestrado em Informatics EngineeringIn the last few years, the automotive industry has relied heavily on deep learning applications for perception solutions. With data-heavy sensors, such as LiDAR, becoming a standard, the task of developing low-power and real-time applications has become increasingly more challenging. To obtain the maximum computational efficiency, no longer can one focus solely on the software aspect of such applications, while disregarding the underlying hardware. In this thesis, a hardware-software co-design approach is used to implement an inference application leveraging the SqueezeSegV3, a LiDAR-based convolutional neural network, on the Versal ACAP VCK190 FPGA. Automotive requirements carefully drive the development of the proposed solution, with real-time performance and low power consumption being the target metrics. A first experiment validates the suitability of Xilinx’s Vitis-AI tool for the deployment of deep convolutional neural networks on FPGAs. Both the ResNet-18 and SqueezeNet neural networks are deployed to the Zynq UltraScale+ MPSoC ZCU104 and Versal ACAP VCK190 FPGAs. The results show that both networks achieve far more than the real-time requirements while consuming low power. Compared to an NVIDIA RTX 3090 GPU, the performance per watt during both network’s inference is 12x and 47.8x higher and 15.1x and 26.6x higher respectively for the Zynq UltraScale+ MPSoC ZCU104 and the Versal ACAP VCK190 FPGA. These results are obtained with no drop in accuracy in the quantization step. A second experiment builds upon the results of the first by deploying a real-time application containing the SqueezeSegV3 model using the Semantic-KITTI dataset. A framerate of 11 Hz is achieved with a peak power consumption of 78 Watts. The quantization step results in a minimal accuracy and IoU degradation of 0.7 and 1.5 points respectively. A smaller version of the same model is also deployed achieving a framerate of 19 Hz and a peak power consumption of 76 Watts. The application performs semantic segmentation over all the point cloud with a field of view of 360°.Nos últimos anos a indústria automóvel tem cada vez mais aplicado deep learning para solucionar problemas de perceção. Dado que os sensores que produzem grandes quantidades de dados, como o LiDAR, se têm tornado standard, a tarefa de desenvolver aplicações de baixo consumo energético e com capacidades de reagir em tempo real tem-se tornado cada vez mais desafiante. Para obter a máxima eficiência computacional, deixou de ser possível focar-se apenas no software aquando do desenvolvimento de uma aplicação deixando de lado o hardware subjacente. Nesta tese, uma abordagem de desenvolvimento simultâneo de hardware e software é usada para implementar uma aplicação de inferência usando o SqueezeSegV3, uma rede neuronal convolucional profunda, na FPGA Versal ACAP VCK190. São os requisitos automotive que guiam o desenvolvimento da solução proposta, sendo a performance em tempo real e o baixo consumo energético, as métricas alvo principais. Uma primeira experiência valida a aptidão da ferramenta Vitis-AI para a implantação de redes neuronais convolucionais profundas em FPGAs. As redes ResNet-18 e SqueezeNet são ambas implantadas nas FPGAs Zynq UltraScale+ MPSoC ZCU104 e Versal ACAP VCK190. Os resultados mostram que ambas as redes ultrapassam os requisitos de tempo real consumindo pouca energia. Comparado com a GPU NVIDIA RTX 3090, a performance por Watt durante a inferência de ambas as redes é superior em 12x e 47.8x e 15.1x e 26.6x respetivamente na Zynq UltraScale+ MPSoC ZCU104 e na Versal ACAP VCK190. Estes resultados foram obtidos sem qualquer perda de accuracy na etapa de quantização. Uma segunda experiência é feita no seguimento dos resultados da primeira, implantando uma aplicação de inferência em tempo real contendo o modelo SqueezeSegV3 e usando o conjunto de dados Semantic-KITTI. Um framerate de 11 Hz é atingido com um pico de consumo energético de 78 Watts. O processo de quantização resulta numa perda mínima de accuracy e IoU com valores de 0.7 e 1.5 pontos respetivamente. Uma versão mais pequena do mesmo modelo é também implantada, atingindo uma framerate de 19 Hz e um pico de consumo energético de 76 Watts. A aplicação desenvolvida executa segmentação semântica sobre a totalidade das nuvens de pontos LiDAR, com um campo de visão de 360°

    Visual Techniques for Geological Fieldwork Using Mobile Devices

    Get PDF
    Visual techniques in general and 3D visualisation in particular have seen considerable adoption within the last 30 years in the geosciences and geology. Techniques such as volume visualisation, for analysing subsurface processes, and photo-coloured LiDAR point-based rendering, to digitally explore rock exposures at the earth’s surface, were applied within geology as one of the first adopting branches of science. A large amount of digital, geological surface- and volume data is nowadays available to desktop-based workflows for geological applications such as hydrocarbon reservoir exploration, groundwater modelling, CO2 sequestration and, in the future, geothermal energy planning. On the other hand, the analysis and data collection during fieldwork has yet to embrace this ”digital revolution”: sedimentary logs, geological maps and stratigraphic sketches are still captured in each geologist’s individual fieldbook, and physical rocks samples are still transported to the lab for subsequent analysis. Is this still necessary, or are there extended digital means of data collection and exploration in the field ? Are modern digital interpretation techniques accurate and intuitive enough to relevantly support fieldwork in geology and other geoscience disciplines ? This dissertation aims to address these questions and, by doing so, close the technological gap between geological fieldwork and office workflows in geology. The emergence of mobile devices and their vast array of physical sensors, combined with touch-based user interfaces, high-resolution screens and digital cameras provide a possible digital platform that can be used by field geologists. Their ubiquitous availability increases the chances to adopt digital workflows in the field without additional, expensive equipment. The use of 3D data on mobile devices in the field is furthered by the availability of 3D digital outcrop models and the increasing ease of their acquisition. This dissertation assesses the prospects of adopting 3D visual techniques and mobile devices within field geology. The research of this dissertation uses previously acquired and processed digital outcrop models in the form of textured surfaces from optical remote sensing and photogrammetry. The scientific papers in this thesis present visual techniques and algorithms to map outcrop photographs in the field directly onto the surface models. Automatic mapping allows the projection of photo interpretations of stratigraphy and sedimentary facies on the 3D textured surface while providing the domain expert with simple-touse, intuitive tools for the photo interpretation itself. The developed visual approach, combining insight from all across the computer sciences dealing with visual information, merits into the mobile device Geological Registration and Interpretation Toolset (GRIT) app, which is assessed on an outcrop analogue study of the Saltwick Formation exposed at Whitby, North Yorkshire, UK. Although being applicable to a diversity of study scenarios within petroleum geology and the geosciences, the particular target application of the visual techniques is to easily provide field-based outcrop interpretations for subsequent construction of training images for multiple point statistics reservoir modelling, as envisaged within the VOM2MPS project. Despite the success and applicability of the visual approach, numerous drawbacks and probable future extensions are discussed in the thesis based on the conducted studies. Apart from elaborating on more obvious limitations originating from the use of mobile devices and their limited computing capabilities and sensor accuracies, a major contribution of this thesis is the careful analysis of conceptual drawbacks of established procedures in modelling, representing, constructing and disseminating the available surface geometry. A more mathematically-accurate geometric description of the underlying algebraic surfaces yields improvements and future applications unaddressed within the literature of geology and the computational geosciences to this date. Also, future extensions to the visual techniques proposed in this thesis allow for expanded analysis, 3D exploration and improved geological subsurface modelling in general.publishedVersio

    ESMD Space Grant Faculty Report

    Get PDF
    The strength of the Exploration Systems Mission Directorate ESMD Faculty Project lies in its ability to meet National Aeronautics Space Administration NASA's Strategic Educational Outcome 1 by developing a sustainable and long-term integration of student involvement at academic institutions with all NASA Centers. This outcome is achieved by a three-fold approach: 1) by collecting Senior Design projects pertaining to Constellation work performed at each of the ten NASA Centers, 2) by engaging students at Minority Serving Institutions in the art of systems engineering and systems design of technologies required for space exploration, and 3) by identifying potential internships at each Center relative to exploration that provide students who are supported by their institutional Space Grant to engage in on-going mission-level and explorative systems designs. The objectives of the ESMD Faculty Project are to: 1. Aid the Centers (both Education Offices and associated technical organizations) in providing relevant opportunities for the ESMD Space Grant Program to support student and faculty in Senior Design projects 2. Enable better matches between the ESMD work required and what the Space Grant Consortia can do to effectively contribute to NASA programs 3. Provide the Space Grant Consortia an opportunity to strengthen relations with the NASA Centers 4. Develop better collective understanding of the U.S. Space Exploration Policy by the Center, Space Grant, faculty, Education Office, and students 5. Enable Space Grant institution faculty to better prepare their students to meet current and future NASA needs 6. Enable the Center Education Offices to strengthen their ties to their technical organizations and Space Grant Consortia 7. Aid KSC in gaining a greater and more detailed understanding of each of the Center activities Senior Design projects are intended to stimulate undergraduate students on current NASA activities related to lunar, Mars, and other planetary missions and to bring out innovative and novel ideas that can be used to complement those currently under development at respective NASA Centers. Additionally, such academic involvement would better the prospects for graduating seniors to pursue graduate studies and to seek careers in the space industry with a strong sense for systems engineering and understanding of design concepts. Internships, on the other hand, are intended to provide hands-on experience to students by engaging them in diverse state-of-the-art technology development, prototype bread-boarding, computer modeling and simulations, hardware and software testing, and other activities that provide students a strong perspective of NASA's vision and mission in enhancing the knowledge of Earth and space planetary sciences. Ten faculty members, each from a Space Grant Consortium-affiliated university, worked at ten NASA Centers for five weeks between June 2 and July 3, 2008. The project objectives listed above were achieved. In addition to collecting data on Senior Design ideas and identifying possible internships that would benefit NASA/ESMD, the faculty fellows promoted and collected data when required for other ESMD-funded programs and helped the Center's Education Office, as,needed.

    Contributions to Big Geospatial Data Rendering and Visualisations

    Get PDF
    Current geographical information systems lack features and components which are commonly found within rendering and game engines. When combined with computer game technologies, a modern geographical information system capable of advanced rendering and data visualisations are achievable. We have investigated the combination of big geospatial data, and computer game engines for the creation of a modern geographical information system framework capable of visualising densely populated real-world scenes using advanced rendering algorithms. The pipeline imports raw geospatial data in the form of Ordnance Survey data which is provided by the UK government, LiDAR data provided by a private company, and the global open mapping project of OpenStreetMap. The data is combined to produce additional terrain data where data is missing from the high resolution data sources of LiDAR by utilising interpolated Ordnance Survey data. Where data is missing from LiDAR, the same interpolation techniques are also utilised. Once a high resolution terrain data set which is complete in regards to coverage, is generated, sub datasets can be extracted from the LiDAR using OSM boundary data as a perimeter. The boundaries of OSM represent buildings or assets. Data can then be extracted such as the heights of buildings. This data can then be used to update the OSM database. Using a novel adjacency matrix extraction technique, 3D model mesh objects can be generated using both LiDAR and OSM information. The generation of model mesh objects created from OSM data utilises procedural content generation techniques, enabling the generation of GIS based 3D real-world scenes. Although only LiDAR and Ordnance Survey for UK data is available, restricting the generation to the UK borders, using OSM alone, the system is able to procedurally generate any place within the world covered by OSM. In this research, to manage the large amounts of data, a novel scenegraph structure has been generated to spatially separate OSM data according to OS coordinates, splitting the UK into 1kilometer squared tiles, and categorising OSM assets such as buildings, highways, amenities. Once spatially organised, and categorised as an asset of importance, the novel scenegraph allows for data dispersal through an entire scene in real-time. The 3D real-world scenes visualised within the runtime simulator can be manipulated in four main aspects; • Viewing at any angle or location through the use of a 3D and 2D camera system. • Modifying the effects or effect parameters applied to the 3D model mesh objects to visualise user defined data by use of our novel algorithms and unique lighting data-structure effect file with accompanying material interface. • Procedurally generating animations which can be applied to the spatial parameters of objects, or the visual properties of objects. • Applying Indexed Array Shader Function and taking advantage of the novel big geospatial scenegraph structure to exploit better rendering techniques in the context of a modern Geographical Information System, which has not been done, to the best of our knowledge. Combined with a novel scenegraph structure layout, the user can view and manipulate real-world procedurally generated worlds with additional user generated content in a number of unique and unseen ways within the current geographical information system implementations. We evaluate multiple functionalities and aspects of the framework. We evaluate the performance of the system, measuring frame rates with multi sized maps by stress testing means, as well as evaluating the benefits of the novel scenegraph structure for categorising, separating, manoeuvring, and data dispersal. Uniform scaling by n2 of scenegraph nodes which contain no model mesh data, procedurally generated model data, and user generated model data. The experiment compared runtime parameters, and memory consumption. We have compared the technical features of the framework against that of real-world related commercial projects; Google Maps, OSM2World, OSM-3D, OSM-Buildings, OpenStreetMap, ArcGIS, Sustainability Assessment Visualisation and Enhancement (SAVE), and Autonomous Learning Agents for Decentralised Data and Information (ALLADIN). We conclude that when compared to related research, the framework produces data-sets relevant for visualising geospatial assets from the combination of real-world data-sets, capable of being used by a multitude of external game engines, applications, and geographical information systems. The ability to manipulate the production of said data-sets at pre-compile time aids processing speeds for runtime simulation. This ability is provided by the pre-processor. The added benefit is to allow users to manipulate the spatial and visual parameters in a number of varying ways with minimal domain knowledge. The features of creating procedural animations attached to each of the spatial parameters and visual shading parameters allow users to view and encode their own representations of scenes which are unavailable within all of the products stated. Each of the alternative projects have similar features, but none which allow full animation ability of all parameters of an asset; spatially or visually, or both. We also evaluated the framework on the implemented features; implementing the needed algorithms and novelties of the framework as problems arose in the development of the framework. Examples of this is the algorithm for combining the multiple terrain data-sets we have (Ordnance Survey terrain data and Light Detection and Ranging Digital Surface Model data and Digital Terrain Model data), and combining them in a justifiable way to produce maps with no missing data values for further analysis and visualisation. A majority of visualisations are rendered using an Indexed Array Shader Function effect file, structured to create a novel design to encapsulate common rendering effects found in commercial computer games, and apply them to the rendering of real-world assets for a modern geographical information system. Maps of various size, in both dimensions, polygonal density, asset counts, and memory consumption prove successful in relation to real-time rendering parameters i.e. the visualisation of maps do not create a bottleneck for processing. The visualised scenes allow users to view large dense environments which include terrain models within procedural and user generated buildings, highways, amenities, and boundaries. The use of a novel scenegraph structure allows for the fast iteration and search from user defined dynamic queries. The interaction with the framework is allowed through a novel Interactive Visualisation Interface. Utilising the interface, a user can apply procedurally generated animations to both spatial and visual properties to any node or model mesh within the scene. We conclude that the framework has been a success. We have completed what we have set out to develop and create, we have combined multiple data-sets to create improved terrain data-sets for further research and development. We have created a framework which combines the real-world data of Ordnance Survey, LiDAR, and OpenStreetMap, and implemented algorithms to create procedural assets of buildings, highways, terrain, amenities, model meshes, and boundaries. for visualisation, with implemented features which allows users to search and manipulate a city’s worth of data on a per-object basis, or user-defined combinations. The successful framework has been built by the cross domain specialism needed for such a project. We have combined the areas of; computer games technology, engine and framework development, procedural generation techniques and algorithms, use of real-world data-sets, geographical information system development, data-parsing, big-data algorithmic reduction techniques, and visualisation using shader techniques

    New Global Perspectives on Archaeological Prospection

    Get PDF
    This volume is a product of the 13th International Conference on Archaeological Prospection 2019, which was hosted by the Department of Environmental Science in the Faculty of Science at the Institute of Technology Sligo. The conference is held every two years under the banner of the International Society for Archaeological Prospection and this was the first time that the conference was held in Ireland. New Global Perspectives on Archaeological Prospection draws together over 90 papers addressing archaeological prospection techniques, methodologies and case studies from 33 countries across Africa, Asia, Australasia, Europe and North America, reflecting current and global trends in archaeological prospection. At this particular ICAP meeting, specific consideration was given to the development and use of archaeological prospection in Ireland, archaeological feedback for the prospector, applications of prospection technology in the urban environment and the use of legacy data. Papers include novel research areas such as magnetometry near the equator, drone-mounted radar, microgravity assessment of tombs, marine electrical resistivity tomography, convolutional neural networks, data processing, automated interpretive workflows and modelling as well as recent improvements in remote sensing, multispectral imaging and visualisation

    Spinoff 2011

    Get PDF
    Topics include: Bioreactors Drive Advances in Tissue Engineering; Tooling Techniques Enhance Medical Imaging; Ventilator Technologies Sustain Critically Injured Patients; Protein Innovations Advance Drug Treatments, Skin Care; Mass Analyzers Facilitate Research on Addiction; Frameworks Coordinate Scientific Data Management; Cameras Improve Navigation for Pilots, Drivers; Integrated Design Tools Reduce Risk, Cost; Advisory Systems Save Time, Fuel for Airlines; Modeling Programs Increase Aircraft Design Safety; Fly-by-Wire Systems Enable Safer, More Efficient Flight; Modified Fittings Enhance Industrial Safety; Simulation Tools Model Icing for Aircraft Design; Information Systems Coordinate Emergency Management; Imaging Systems Provide Maps for U.S. Soldiers; High-Pressure Systems Suppress Fires in Seconds; Alloy-Enhanced Fans Maintain Fresh Air in Tunnels; Control Algorithms Charge Batteries Faster; Software Programs Derive Measurements from Photographs; Retrofits Convert Gas Vehicles into Hybrids; NASA Missions Inspire Online Video Games; Monitors Track Vital Signs for Fitness and Safety; Thermal Components Boost Performance of HVAC Systems; World Wind Tools Reveal Environmental Change; Analyzers Measure Greenhouse Gasses, Airborne Pollutants; Remediation Technologies Eliminate Contaminants; Receivers Gather Data for Climate, Weather Prediction; Coating Processes Boost Performance of Solar Cells; Analyzers Provide Water Security in Space and on Earth; Catalyst Substrates Remove Contaminants, Produce Fuel; Rocket Engine Innovations Advance Clean Energy; Technologies Render Views of Earth for Virtual Navigation; Content Platforms Meet Data Storage, Retrieval Needs; Tools Ensure Reliability of Critical Software; Electronic Handbooks Simplify Process Management; Software Innovations Speed Scientific Computing; Controller Chips Preserve Microprocessor Function; Nanotube Production Devices Expand Research Capabilities; Custom Machines Advance Composite Manufacturing; Polyimide Foams Offer Superior Insulation; Beam Steering Devices Reduce Payload Weight; Models Support Energy-Saving Microwave Technologies; Materials Advance Chemical Propulsion Technology; and High-Temperature Coatings Offer Energy Savings
    corecore