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ABSTRACT 

    In the last few years, the automotive industry has relied heavily on deep learning applications for 

perception solutions. With data-heavy sensors, such as LiDAR, becoming a standard, the task of 

developing low-power and real-time applications has become increasingly more challenging. To obtain 

the maximum computational efficiency, no longer can one focus solely on the software aspect of such 

applications, while disregarding the underlying hardware.  

    In this thesis, a hardware-software co-design approach is used to implement an inference application 

leveraging the SqueezeSegV3, a LiDAR-based convolutional neural network, on the Versal ACAP VCK190 

FPGA. Automotive requirements carefully drive the development of the proposed solution, with real-time 

performance and low power consumption being the target metrics.  

    A first experiment validates the suitability of Xilinx’s Vitis-AI tool for the deployment of deep 

convolutional neural networks on FPGAs. Both the ResNet-18 and SqueezeNet neural networks are 

deployed to the Zynq UltraScale+ MPSoC ZCU104 and Versal ACAP VCK190 FPGAs. The results show 

that both networks achieve far more than the real-time requirements while consuming low power. 

Compared to an NVIDIA RTX 3090 GPU, the performance per watt during both network’s inference is 12x 

and 47.8x higher and 15.1x and 26.6x higher respectively for the Zynq UltraScale+ MPSoC ZCU104 and 

the Versal ACAP VCK190 FPGA. These results are obtained with no drop in accuracy in the quantization 

step.  

    A second experiment builds upon the results of the first by deploying a real-time application containing 

the SqueezeSegV3 model using the Semantic-KITTI dataset. A framerate of 11 Hz is achieved with a peak 

power consumption of 78 Watts. The quantization step results in a minimal accuracy and IoU degradation 

of 0.7 and 1.5 points respectively. A smaller version of the same model is also deployed achieving a 

framerate of 19 Hz and a peak power consumption of 76 Watts. The application performs semantic 

segmentation over all the point cloud with a field of view of 360°. 

Keywords: LiDAR, Deep Learning, FPGA 
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RESUMO 

    Nos últimos anos a indústria automóvel tem cada vez mais aplicado deep learning para solucionar 

problemas de perceção. Dado que os sensores que produzem grandes quantidades de dados, como o 

LiDAR, se têm tornado standard, a tarefa de desenvolver aplicações de baixo consumo energético e com 

capacidades de reagir em tempo real tem-se tornado cada vez mais desafiante. Para obter a máxima 

eficiência computacional, deixou de ser possível focar-se apenas no software aquando do 

desenvolvimento de uma aplicação deixando de lado o hardware subjacente. 

    Nesta tese, uma abordagem de desenvolvimento simultâneo de hardware e software é usada para 

implementar uma aplicação de inferência usando o SqueezeSegV3, uma rede neuronal convolucional 

profunda, na FPGA Versal ACAP VCK190. São os requisitos automotive que guiam o desenvolvimento da 

solução proposta, sendo a performance em tempo real e o baixo consumo energético, as métricas alvo 

principais. 

    Uma primeira experiência valida a aptidão da ferramenta Vitis-AI para a implantação de redes 

neuronais convolucionais profundas em FPGAs. As redes ResNet-18 e SqueezeNet são ambas 

implantadas nas FPGAs Zynq UltraScale+ MPSoC ZCU104 e Versal ACAP VCK190. Os resultados 

mostram que ambas as redes ultrapassam os requisitos de tempo real consumindo pouca energia. 

Comparado com a GPU NVIDIA RTX 3090, a performance por Watt durante a inferência de ambas as 

redes é superior em 12x e 47.8x e 15.1x e 26.6x respetivamente na Zynq UltraScale+ MPSoC ZCU104 

e na Versal ACAP VCK190. Estes resultados foram obtidos sem qualquer perda de accuracy na etapa de 

quantização. 

    Uma segunda experiência é feita no seguimento dos resultados da primeira, implantando uma 

aplicação de inferência em tempo real contendo o modelo SqueezeSegV3 e usando o conjunto de dados 

Semantic-KITTI. Um framerate de 11 Hz é atingido com um pico de consumo energético de 78 Watts. O 

processo de quantização resulta numa perda mínima de accuracy e IoU com valores de 0.7 e 1.5 pontos 

respetivamente. Uma versão mais pequena do mesmo modelo é também implantada, atingindo uma 

framerate de 19 Hz e um pico de consumo energético de 76 Watts. A aplicação desenvolvida executa 

segmentação semântica sobre a totalidade das nuvens de pontos LiDAR, com um campo de visão de 

360°. 

 

Palavras-chave: LiDAR, Deep Learning, FPGA  
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GLOSSARY 

Activation function Any mathematical function used in a neural network’s layers to introduce 

non-linearity in the output of the layer’s neurons. 

Batch (Training) A hyperparameter that defines the number of instances to process before 

updating the internal model parameters during training of a neural 

network. 

Batch (Inference) The number of instances to inference over in parallel. 

Bit-width 

(Quantization) 

The number of bits necessary to represent an integer as a binary number. 

 

Computer Vision A field of Artificial Intelligence concerned with the extraction of high-level 

information from digital visual inputs such as images, videos and point 

clouds. 

 

Cross-entropy Loss A loss function used to measure the performance of a classification model 

that outputs probabilities between 0 and 1. Its value increases as the 

predicted probability diverges from the actual value. 

Deep Learning A subset of Machine Learning based on Deep Neural Networks in which 

multiple layers of processing are used to extract progressively higher-level 

features from data. 

 

Deep Neural Network In contrast with Shallow Neural Networks, typically referred to as just 

Neural Networks, Deep Neural Networks have multiple layers between 

the input and output layers. 

 

Deep Learning Model The resulting weights and biases of a Deep Neural Network fitted to the 

training data. 

 

 

Feature An individual measurable property or characteristic of the input. For 

example, age, gender, weight of a person or the number and location of 

a specific pattern in an image/point cloud.  
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Feature Map Each feature map or activation map is the result of convolving an image 

using a kernel/filter of a CNN and passing it through an activation 

function. 

   

Filter / Kernel (CNN) Set of learnable weights spatially structured that learn to extract relevant 

patterns when convolved over the input. 

Floating-point 

representation 

A system to represent, with a fixed number of digits, real numbers of 

different orders of magnitude. Differs from fixed-point representation by 

allowing a variable number of integer and fractional digits. 

Loss Function A function that is used to evaluate how well an algorithm models a 

dataset.  

Neural Network Neural Networks are a subset of Machine Learning algorithms that 

combine a set of progressively learned functions to model the given 

training data and perform predictions. Each individual function is 

composed of a set of parameters, namely the weights and biases that are 

combined through the notion of a neuron and passed through an 

activation function. The way individual functions are combined is through 

the notion of layers. 

 

Off-chip memory Memory that resides outside the chip where the computations happen. It 

has higher access latency but is also bigger than on-chip memory. 

On-chip memory Memory that resides in the same chip where the computations happen. 

It has very low access latency but is also very small. 

Point Cloud A set of points in 3D space representing one or more objects in a scene. 
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1.1 CONTEXT 

    LiDAR (Light Detection and Ranging) sensors have been widely recognized as key components for 

advanced driver-assistance systems (ADAS) and autonomous driving as they enable the tri-dimensional 

mapping of objects. The additional information extracted by the LiDAR is critical for the central processing 

unit of the vehicle to perceive the surrounding scenario. Evidence for this trend is the ever-growing 

adoption of the LiDAR sensor in the sensor suite of autonomous driving solutions in the market [1], [2], 

[3], [4], [5], [6], [7]. 

    Additionally, the research in autonomous systems has seen dramatic advances in recent years, due to 

the increase in available computing power and reduced cost in sensing, computing technologies, and 

price of the necessary hardware, resulting in the maturing technological willingness to produce fully 

autonomous vehicles. Figure 1 shows the forecast from Statista, a company that specializes in market 

and consumer data, for the projected sales of autonomous vehicles worldwide from 2019 to 2030. The 

growth in sales evidences the wide adoption of autonomous driving solutions in the automotive market. 

Several other sources also estimate the increasing demand and market size of autonomous driving-related 

products in the automotive market [8], [9]. 

 

 

Figure 1. Forecast of the worldwide autonomous vehicles sales from 2019 to 2030. Retrieved from [10]. 
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    The core competencies of an autonomous vehicle system are classified into three categories, namely 

perception, planning, and control [11]. While machine learning algorithms based on deep neural networks 

have demonstrated great performance in several complex cognitive tasks [12], [13], a significant gap in 

the energy and efficiency of the computational systems that implement perception algorithms still exists 

[14]. Most of these algorithms run on conventional computing systems such as Central Processing Units 

(CPUs) and General-Purpose Graphical Processing Units (GPUs). Alternatives containing embedded 

hardware solutions, such as Field Programmable Gate Arrays (FPGAs), have started to be explored to 

help develop solutions that allow more efficient computation of deep neural networks [15], [16]. 

 

1.2 MOTIVATION 

    Several works have demonstrated the capabilities of FPGAs for designing real-time applications that 

perform deep neural network inference on FPGAs [17], [18], [19]. Some works specifically focus on the 

implementation of such neural networks using LiDAR data [20], [21], [22]. The possibility to concurrently 

design hardware and software, a feature of FPGAs, allows for the exploration of more efficient solutions. 

Not only can one adapt the software for the underlying hardware, but the hardware itself can also be 

finetuned for the specific application. More, this process can be done iteratively. 

    With the advent of high-level tools [23], [24] that open the hardware-software co-design research to 

machine learning and deep learning engineers without FPGA expertise, it becomes possible to increase 

the efficiency of deep neural networks by reducing power consumption while maintaining the desired 

framerate. 

 

1.3 OBJECTIVES 

    The main goal of this work is to train and deploy a deep neural network on an FPGA to perform one 

perception task using LiDAR sensor data, in the form of a point cloud. Power consumption should be kept 

to a minimum while maximizing framerate, without losing sight of accuracy metrics. Hardware limitations 

are also expected to heavily impact the development of a solution and so the search for fitting neural 

network architectures and consequent computation layers should be carried out with them in mind. A 

review of the available tools for deep neural network deployment on FPGAs should be conducted. Once a 

tool is selected, a thorough exploration of the capabilities of the tool, as well as an evaluation of its 

suitability for the development of a real-time, low-power inferencing application, should be validated. 
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During experiments, framerate and power consumption should be the target metrics along with the 

appropriate accuracy metrics of the perception task being solved. 

 

1.4 STRUCTURE OF DISSERTATION 

    Chapter 2 introduces the technologies and concepts relevant to the understanding of this thesis. 

Chapter 3 includes a revision of past literature works that include hardware, algorithms, and works with 

a similar scope to this work. Chapters 4 and 5 contain the two experiments conducted in this thesis. The 

first explores Vitis-AI, the main tool used in this work, by validating its suitability for the objectives of this 

work. The second implements the proposed solution to the problem this thesis aims to solve. Both 

chapters 4 and 5 contain individual results, analysis, and respective discussions. Lastly, chapter 6 

examines the work and concludes its impact on the problems it aimed to solve. It also contains a section 

dedicated to suggesting further research opportunities.  
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2.1 PERCEPTION IN AUTONOMOUS DRIVING 

    A highly autonomous system must understand its environment by solving highly complex cognitive 

tasks that allow it to respond to every situation. As a result, self-driving cars rely heavily on software to 

bridge the gap between sensor information and mechanical vehicle actuation, such as steering and 

braking. From the collection and processing of sensory data to the control of the vehicle’s actuators, there 

is a system that encapsulates it all. 

  

2.1.1 ADVANCED DRIVER-ASSISTANCE SYSTEMS 

    ADAS are the electronic systems in a vehicle that use advanced technologies to assist the driver. They 

use a combination of sensor technologies to perceive the world around the vehicle, and then either provide 

information to the driver by issuing warnings or actively controlling the vehicle when necessary. To do so, 

across the desired route, the system should be able to perceive its surroundings and extract high-level 

information which may be critical for safe navigation. The consequent steps consist in taking the extracted 

information to plan a set of actions and performing them by controlling the vehicle actuators i.e., the 

devices that transform an input signal into motion. Following this description, one can distinguish 3 main 

modules namely perception, planning, and control [11]. Figure 2 presents a diagram of an ADAS 

containing all 3 modules and their respective interactions. 

 

 

 

 

Figure 2. Block diagram of an ADAS. 

 



TECHNOLOGIES AND CONCEPTS 

7 
 

    The perception module directly actuates on the raw sensory data collected by an array of sensors and 

is responsible for the extraction of relevant features from the multiple sensors' output. These features 

represent components of the vehicle's surroundings that influence the driving task. Having all these 

components correctly perceived is necessary for a perception module of a high-level automation ADAS 

and requires highly efficient and accurate perception algorithms. 

 

2.1.2 ADAS PERCEPTION REQUIREMENTS AND METRICS 

    Highly accurate, low response time, low energy consumption, and minimal physical size are four 

fundamental requirements of an ADAS identified in this work. There are other requirements, such as the 

relevancy of the information provided, that are also fundamental. However, these four are directly linked 

with performance and efficiency, the focus of this work. Metrics are usually defined to quantify how 

compliant an application or system is to a set of requirements. Refresh rate, which is linked to the 

response time requirement, directly depends on the rate at which the sensors can produce the data to 

be used by the perception module. It is then important to establish a value that considers the LiDAR 

solutions currently available in the market as well as upcoming solutions. 3.1 defines a specific value for 

the refresh rate by listing the LiDAR sensors currently available in the market and future solutions. 

    Contrarily to refresh rate, it is hard to define a maximum value for metrics associated with accuracy, 

energy consumption, and physical size since they either depend on the current perception algorithms, 

the available hardware, and the vehicle(s) that the ADAS will target. Therefore, this work will not establish 

specific values for these metrics. Instead, it will explore and propose solutions that keep these values as 

close as possible to their optimal values. This should be accomplished by carefully reviewing state-of-the-

art solutions and choosing appropriate hardware architectures to deploy the best-suited perception 

algorithms.  

 

2.2 LIDAR SENSOR 

    The LiDAR’s ability to produce an extremely accurate three-dimensional position of surrounding objects 

and its innate robustness to exterior lighting conditions has pushed the adoption of this sensor in a large 

range of automotive perception solutions [1], [2], [3]. 
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2.2.1 WORKING PRINCIPLE 

    LiDAR is an active remote sensing system. It is active because it generates energy, in this case, light, 

to collect data about its surroundings and remote because it does so by detecting the energy that is 

reflected from the surfaces. One of the techniques used in LiDAR to collect depth information is through 

what is called the time of flight (ToF). In ToF, an emitter fires short laser pulses that reflect off surrounding 

objects and are captured by the receiver. Since the emitter and receiver are approximately at the same 

position, it is possible to calculate the distance to the reflecting object using the known speed of light and 

the delay between the emission and reception of the laser. Usually, LiDAR sensors have multiple emitter-

receiver pairs. 

 

2.2.2 POINT CLOUDS 

    The spatially organized LiDAR data is referred to as a point cloud, a set of points with three-dimensional 

position and intensity information of the reflecting surfaces in the field of view. Depending on the field of 

view and resolution of the sensor, point clouds can easily become extremely large, usually, 100k-200k 

3D points per frame, which results in a total size of around 1.6MB-3.2MB considering the usual format 

of 4 floating point values to represent 𝑥, 𝑦, 𝑧 coordinates and intensity information. However, if the 

resolution of the LiDAR is not sufficiently high, the effective range is reduced i.e., objects that are distant 

from the sensor might become underrepresented or even completely undetectable. Figure 3 depicts a 

LiDAR’s effective range. The same is true for the field of view which delimits, both horizontally and 

vertically, the surrounding volume scanned. The coordinates of objects that lie outside the field of view 

will naturally be absent from the point cloud. 

    Although point clouds are extremely useful to the perception module, several challenges emerge when 

processing point cloud data, and should be addressed when designing perception algorithms. These 

challenges include variability in point density, diversified measured intensity, inter-class reflectivity 

overlap, noise, sparsity, permutation and rigid transformation invariance, and occlusions. 
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Figure 3. The effective range of Outer’s OS1 LiDAR. Adapted from [25]. 

 

2.3 DEEP LEARNING IN POINT CLOUDS 

    Advancements in device capability involving computing power, sensor resolution, and cost-

effectiveness, as well as the adoption of highly parallel hardware such as GPUs, have broken most of the 

barriers to the adoption of deep learning. Also, the increasing availability of high-quality and high-volume 

datasets highly benefits deep learning models contrary to more traditional approaches that struggle with 

high-volume data.  

 

2.3.1 THE DEEP LEARNING APPROACH 

    In the last few years, deep learning approaches have achieved state-of-the-art results in multiple 

perception tasks involving images, sound, and text. However, a similar level of success for 3D computer 

vision is only now beginning to take shape, mainly due to the larger amount of data and complexity that 

point clouds encompass compared to images and the hardware limitations that become even more 

apparent with data-heavy point clouds. 

    A typical computer vision pipeline consists of two distinct phases. The first phase usually called feature 

extraction and more recently, feature learning, consists of the extraction of descriptive or informative 

patches in the data called features or sometimes also called descriptors. Specifically, in point clouds, 

features are usually spatial and geometric attributes or relationships between points. The second phase 
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of the pipeline, which usually consists of a classifier or regressor, is responsible for performing 

classification or regression or both based on the previously extracted features. 

    With the adoption of deep learning, both the feature extraction and classification or regression are done 

“end-to-end” with a deep learning-based model, meaning that the input of the model is the point cloud, 

and the output is a classification or regression tensor. This leaves out the need for the cumbersome and 

error-prone process of manual feature extraction that usually leads to poorly generalizable models. 

Currently, state-of-the-art results on perception tasks in point clouds use end-to-end deep learning models 

as pipelines. Figure 4 compares both vision pipelines. 

 

 

Figure 4. Comparison between a traditional and DL computer vision pipeline. Retrieved from [26]. 

 

2.3.2 POINT CLOUD PERCEPTION TASKS 

    Similarly to 2D computer vision, to evaluate deep learning models on point cloud data, there are a set 

of established perception tasks. Particularly in autonomous driving perception, this work highlights three. 

 

2.3.2.1 3D OBJECT DETECTION 

    The goal of 3D Object Detection is to encapsulate every instance belonging to a set of predefined 

categories in the point cloud with an oriented 3D bounding box and an associated semantic label. As 

portrayed in Figure 5, the bounding box information can be represented using the coordinates (x, y, z) 

of the bounding box center, (h,w, l) representing respectively the height, width, and length of the 

bounding box, θ representing the object’s yaw orientation and  y𝑖  representing the class the object 

corresponds to. An assumption made about the bounding boxes is that the objects are on the ground 

plane, and so their orientation can be described only using the yaw angle. 
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Figure 5. 3D object detection in a LiDAR frame. 

 

2.3.2.2 3D SEMANTIC SEGMENTATION 

    3D point cloud segmentation aims to label homogeneous regions of a point cloud according to what 

they are representing. A more formal definition of the task is to assign every 3D point from the point cloud 

X = {x1, x2, … , xN} with a semantic or instance label  yi from a set Y = {y1, y2, … , yK} representing 

K distinct categories. Segmentation can be subdivided into sub-tasks by the different levels of granularity. 

At the coarser level, there is semantic segmentation where each group of points is represented by a 

semantic label such as road, car, or building. This type of segmentation is illustrated in Figure 6. At the 

intermediate level, there is instance segmentation which is not only trying to distinguish points based on 

their semantic meaning but also separating different instances with the same semantic meaning. This 

refers to the case where the objective is to not only identify that a group of points represents a car but to 

be able to distinguish different cars by assigning each of the groups a different instance label. Finally, the 

more fine-grained sub-task is part segmentation where several parts of a semantic region are 

distinguished. For example, from a group of points representing a car, segment the windshield, tires, etc. 
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Figure 6. 3D semantic segmentation of a LiDAR point cloud. 

 

2.3.2.3 3D OBJECT TRACKING 

    Given the locations and labels of a set of objects in a frame, the task of object tracking is to estimate 

their state in subsequent frames. A naive approach to the problem could be using object detection over 

all frames, but one obvious problem arises from this solution. If multiple objects are in the frame, the 

label associated with each object should remain unchanged over the following frames and object detection 

treats each frame independently. So, there is no way to guarantee that the detector attributes the same 

label to the detected objects over all frames. To solve this issue, one possible solution is to model the 

motion of the object i.e., the dynamic object’s heading and velocity so that the most likely position in 

future frames can be predicted, effectively reducing the search space of a detector. 

 

2.3.3 POINT CLOUD REPRESENTATION 

    Due to the unstructured and sparse nature of the point clouds, some transformations are usually 

carried out to generate a structured representation. The following sections present and explain the 

different representations, providing examples of deep learning models that use the representations. 

 

2.3.3.1 PROJECTION-BASED 

    2D deep learning on images has achieved remarkable results using deep convolutional architectures 

on tasks such as image classification [27], [28], object detection [29], [30], and semantic segmentation 

[31]. Besides, well-established 2D datasets containing a lot of data, such as ImageNet [32], are readily 

available leveraging the application of deep convolutional models pre-trained on these datasets to 2D 

images. However, the convolution operation is performed on data that is ordered, regular, and on a 
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structured grid. For this reason, to benefit from the performance of established 2D deep convolutional 

networks, a natural approach is structuring point clouds in a way that allows the application of 2D 

convolution operations. One way to achieve this is by performing a projection of the 3D point cloud into 

a 2D grid. Several projection schemes have been used in different works where predominantly two main 

schemes are used: Front View (FV) [33], [22] and Bird’s Eye View (BEV) [34], [35], [36]. Both are 

illustrated in Figure 7. 

 

 

Figure 7. Illustration of spherical, cylindrical, and bird’s eye view projections of point clouds. Adapted from [37]. 

 

    Unfortunately, there is a discretization inherent to the projection operation which results in a loss of 

information. Because the 2D grid has a limited resolution, several points in the point cloud are likely to 

end up in the same grid coordinate. There are various ways to deal with this situation. Xu, C. et. al only 

keep the point with the largest range value 𝑟 =  √𝑥2 + 𝑦2 + 𝑧2. Another possible approach is to 

combine the x, y, z, and intensity values of all the points through some average or even a small multi-

layered perceptron. PointPillars [38] is a good example of the latter approach. 

 

2.3.3.2 VOXEL-BASED 

    A different approach that allows the application of convolutions directly on 3D point clouds is through 

what is called a voxel-based representation. However, in this approach, the convolution operations used 

are 3D convolutions. 

    A voxel is a volume element that represents a specific grid value in 3D space. Voxel-based approaches 

partition the [L, W, H] 3D point cloud into fixed-sized voxels through voxelization by assigning points in 

the point cloud to voxels according to their 3D coordinates. The voxel represents all the points assigned 

to itself by combining features of those points. Figure 8 portrays the voxelization process of a point cloud 

of an airplane. 
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    However beneficial to the use of convolution operations, a voxel-based representation has some 

limitations. Firstly, not all voxels will carry important information because point clouds have denser and 

sparser zones. The sparser zones may contain lots of empty voxels. This results in a memory inefficient 

representation of the 3D space and wasted computation when applying 3D convolutions [39]. Secondly, 

because the computational and memory cost increases cubically with the increase in voxel resolution, 

there is a limit on the total number of voxels, usually around 303 [39]. 

 

Figure 8. Voxelization of a point cloud using 303 voxels. Retrieved from [40]. 

 

2.3.3.3 POINT-BASED 

    Both projection-based and voxel-based representations discretize the point cloud resulting in a loss of 

information. Contrarily, the point-based approach looks to fully exploit the 3D geometry and shape of the 

point cloud without information loss. 

    As noted in the work of Shi, S. et al., projection and voxel-based representations are more 

computationally efficient, but lose fine-grained localization information, while point-based approaches 

don’t lose so much information, but result in a higher computational cost [41]. Similarly, Deng, J. et al. 

also suggest that point-based approaches can better retain precise point positions while having a higher 

computational overhead compared to projection and voxel-based representations [42]. 

 

2.3.3.4 GRAPH-BASED 

    Graph-based approaches convert the point cloud into a graph, as illustrated in Figure 9. The nodes of 

the graph correspond to the points and the edges represent the relationship between point neighbors 
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inside a fixed radius. The explicit representation of the relationship between point neighbors through the 

graph edges is good for modeling the correlation between points in the point cloud [40], so more local 

spatial correlation features can be extracted from the grouped edge relationships on each node [43]. 

Recently, more works explore this representation to solve 3D perception tasks [44], [45], [46], [47]. 

 

Figure 9. Illustration of a graph representation of a point cloud. Adapted from [48] 

 

2.4 DEEP NEURAL NETWORK COMPRESSION 

    Although difficult to prove, deeper neural network parameter count has been long observed to be 

positively correlated with accuracy. From one extreme where natural language processing models have 

up to billions of parameters [12], to the other where smaller models are designed to fit in embedded 

hardware [49], there is a need to reduce the size of neural networks, and the computation needed to run 

them, without compromising accuracy. 

 

2.4.1 QUANTIZATION 

    Historically most neural networks are trained using 32-bit floating point values. The core idea behind 

quantization is to reduce the representation of weights and biases, usually to 16-bit, 8-bit, 4-bit, or even 

2-bit and single-bit integers. The challenge is to map the set of possible values of a neural network’s 

parameters to a fixed discrete set of integers, effectively minimizing the number of bits required to 

represent the values. Since activation outputs are usually between 0 and 1 e.g., sigmoid, or at least can 

be bounded by a low integer value e.g., relu6, the weights of a neural network usually remain within a 

reasonable small range of values and consequently are good candidates for being represented using 

lower bit-widths [50]. 

    Besides the obvious reduction in model size, there are added benefits of using lower-bit integer 

representations such as a reduction in energy consumption and inference latency. Chen, Q. et al. 
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compared an 8-bit fixed-point adder and multiplier to a 32-bit floating point adder and multiplier 

concluding that the energy and area of a fixed-point adder and multiplier scale approximately linearly and 

quadratically respectively with the number of bits used for representation [51]. Also, if the model does 

not fit on local/on-chip memory, and off-chip memory must be accessed, the lower bandwidth inherent 

to this access, when compared to local memory access, is a major bottleneck of inference latency [52]. 

Furthermore, off-chip memory accesses result in orders of magnitude higher energy consumption [23]. 

For these reasons, model size reduction can decrease inference latency by allowing for the exploration of 

memory locality. Even if it is not possible to avoid off-chip memory accesses, it is advantageous to have 

lower bit-width representations since it improves the memory bandwidth i.e., the cost of moving 

information is smaller. One last advantage of lower bit-width representations is the exploration of Single 

Instruction Multiple Data (SIMD) [50]. 

    The quantization problem can be seen as the mapping operation of floating-point values in a 

predetermined range of values to integer values that can be represented with 𝑏 bits. The quantization 

and de-quantization operations can be described as 

 

 
{

𝑥 =  𝑆(𝑥𝑞 + 𝑍)

𝑥𝑞 = (
1

𝑆
∙ 𝑥 −  𝑍)

 

 

(Equations 1 and 2) 

 

 

where 𝑥 ∈ [𝛼, 𝛽] are the floating-point values, and  𝑥𝑞 ∈ [𝛼𝑞 , 𝛽𝑞] are the quantized values. For a b-bit 

representation, [𝛼𝑞 , 𝛽𝑞] would be equal to [−2𝑏−1, 2𝑏−1 − 1] and  [0, 2𝑏 − 1] respectively when 

using signed and unsigned integers to represent the quantized values. 𝑆 and 𝑍 are variables that must 

be derived. Appendix I contains the derivation of 𝑆 and 𝑍.  

Their values are 

 

 

{
 
 

 
 𝑆 =  

𝛽 − 𝛼

𝛽𝑞 − 𝛼𝑞

𝑍 = 𝑟𝑜𝑢𝑛𝑑 (
𝛼 ∙ 𝛽𝑞 − 𝛽 ∙ 𝛼𝑞

𝛽 − 𝛼
)

 

 

 

(Equations 3 and 4) 
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    The above quantization mapping is known as affine quantization. In the special case where 𝑍 is forced 

to have the value 0, the name scale quantization or symmetric quantization is given. Figure 10 and Figure 

11 respectively depict affine and scale quantization using 8-bit integers. 

 

 

Figure 10. Affine quantization using signed 8-bit integers. 
Retrieved from [53]. 

 

Figure 11. Scale quantization using unsigned 8-bit integers. 
Retrieved from [53]. 

 

    There is one potential downside to quantizing neural networks. Usually, an accuracy drop can be 

observed, especially at lower bit-widths. This is to be expected as the range of values that can be encoded 

is halved with each removed bit. However, the drop in accuracy is usually not as significant and several 

quantization techniques have been shown to preserve accuracy, even on the more challenging models to 

quantize [54]. A review of the proposed quantization techniques and their results can be found in 3.3. 

 

2.4.2 OTHER TECHNIQUES 

    Pruning, usually used alongside quantization, is the process of removing part of a neural network’s 

parameters, namely the weights while ensuring that the model’s performance doesn’t drop below a 

specified threshold. Typically, a pruning pipeline consists of first training a network, then pruning the 

model according to a specific strategy, and finally fine-tuning the pruned network to compensate for the 

performance loss. This is done iteratively and in each iteration N number of parameters are removed. 

However, if the percentage of pruned parameters is high, the matrices representing model weights 

become sparse. Consequently, matrix operations become harder to accelerate and memory-bound [55]. 

    More techniques have been proposed to reduce neural network size, improve energy efficiency and 

reduce inference latency, such as low-rank factorization [56] and knowledge distillation [57]. However, 

like quantization and pruning, those target the neural networks. A different particularly interesting 

approach is point cloud sampling which consists of sub-sampling the point cloud by preserving the original 

structure while reducing the number of points. Random sampling and farthest point sampling are the two 

traditional sampling algorithms [37]. Lang, Itai, Manor, Asaf, and Avidan Shai argue that traditional 
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sampling approaches do not consider the perception task that the network consuming the point cloud as 

input is performing. For this reason, they propose a technique that learns task-specific sampling, 

improving results significantly [58]. 
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3.1 AUTOMOTIVE LIDAR REFRESH RATE 

    LiDAR sensors can usually be configured to operate at different frame rates, allowing them to suit 

different tasks and scenarios. The maximum frame rate of each sensor is of utmost importance, as it 

defines the minimal real-time response time that perception algorithms must adhere to. Table 1 lists 

LiDAR sensors’ frame rate as well as information about each sensor’s market release year. The selection 

criteria for the devices detailed in this section prioritizes devices by reputable, industry-leading LiDAR 

manufacturers - some of which already have commercially available devices, like Continental, Valeo, and 

Ouster - or startup companies that have established themselves by developing state-of-the-art LiDAR 

technologies, as is the case of Innoviz and Baraja. The results from Table 1 show that the frame rate is 

typically below 30 Hz and that the lower bound, although with some exceptions, is usually 5 Hz. From 

these values, one may estimate a minimum response time of 33 ms for the perception algorithms. 

However, it should be noted that higher frame rates result in lower resolutions, regardless of the sensor 

technology. A lot of the below listed LiDARs allow regulating this resolution/frame rate trade-off by having 

a refresh rate interval rather than a single value. Examples are Velodyne’s HDL-64E and VLS-128, Ouster 

OS2-128, Innoviz’s InnovizTwo and Innoviz 360, and Baraja Spectrum HD25. One can note that in these 

sensors, substantially lower resolutions result from higher frame rates. Perception systems rely heavily 

on the resolution of point clouds, especially for identifying small objects and road segments. For this 

reason, a refresh rate of 10 Hz seems to offer very reasonable resolutions on the listed LiDARs without 

compromising heavily on frame rate. And the data in the table does suggest that a refresh rate of 10 Hz 

is widely supported. Hereby, a frame rate of 10 Hz is the reference value for the perception algorithms 

explored throughout this work.  

 

Table 1. Market released and future automotive LiDAR sensors (references in the table). 

LiDAR Sensor Refresh Rate 

(Hz) 

Angular Resolution (H x V) Market Release 

Velodyne HDL-64E [59] 5 - 20 (0.08°- 0.35°) x 0.4° 2007 

Velodyne VLS-128 [60] 5 - 20 (0.08° - 0.35°) x 0.11° 2017 

Ibeo Lux [61] 25 0.25° x 0.8° 2018 

Ouster OS2-128 [62] 10 or 20 (0.7° - 0.18°) x 0.18° 2020 

Continental HFL110 [63] 25 0.94° x 0.94° 2021 

Luminar Iris [64] 1 - 30 0.05° x 0.05° * 2022 

Innoviz InnovizTwo [65] 10/15/20 0.05° x 0.05° * 2022 

Innoviz 360 [66] 0.5 - 25 0.05° x 0.05° * 2022 (Q4) 
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Baraja Spectrum HD25 [67] 4 - 30 0.04° x 0.0125° * > 2022 

Continental HRL131[68] 10 0.05° x 0.075° 2024 ** 

Valeo Scala GEN1[69] 25 0.25° x 0.8° 2024 ** 

*Highest possible resolutions 

**Expected 

 

3.2 DEEP LEARNING HARDWARE 

    Deep learning models notoriously require lots of computation and memory during inference.  With the 

limited energy consumption in the vehicle and the hardware limitations that it creates, it becomes natural 

to consider offloading some of the computation outside the vehicle through the network. However, due to 

network limitations in communication bandwidth, latency, and reliability, only offline tasks, usually 

consisting of offline model retraining and map generation, can be performed on the cloud [70]. This 

means that, concerning real-time perception, currently the best solution is to use the paradigm of edge 

computing which tries to bring the computation as close as possible to the data sources, and the sensors, 

effectively placing the hardware inside the vehicle. This trend is very visible in the data plot in Figure 12. 

Given the above-mentioned reasons, it is important to understand the different types of hardware available 

with especial attention to inference latency, memory, and energy consumption constraints. 

 

 

Figure 12. Deep learning chip revenue. Retrieved from [71]. 



LITERATURE REVIEW 

22 
 

3.2.1 CENTRAL PROCESSING UNITS 

    CPUs are the most versatile of all the hardware since they can perform almost any type of computation 

and are unavoidably present in almost every system. This makes them the easiest and less time-

consuming hardware to deploy neural network applications on, as less effort is needed to support even 

the most novel and exotic neural network layers. Even the more common layers, which usually translate 

into vector to vector or matrix to matrix operations, are supported by low-level linear algebra routines in 

libraries such as OpenBLAS [72] and Intel MKL [73]. 

    Most deep learning applications, even when accelerators are present, will inevitably use a CPU for 

receiving sensor data, data pre/post-processing, or control flow operations. This dependency makes 

CPUs a strong contender for deep learning inference since there is no latency bottleneck in transferring 

data like in a CPU-GPU application [74]. 

    However, there is a tradeoff between versatility and resource efficiency. CPUs, being on one extreme 

of this spectrum are usually not optimized for any specific application. In some cases, where metrics 

such as energy consumption and inference latency are crucial, specialized hardware is the only solution. 

 

3.2.2 GRAPHICAL PROCESSING UNITS 

    Although designed for graphical processing tasks, GPUs have become the standard hardware solution 

for training deep learning models since R. Raina, A. Madhavan, and A. Y. Ng proposed its usage over 

CPUs, remarkably reducing the training time of models [75]. Their highly parallel nature allows for the 

efficient computation of linear algebra operations, especially when transferring data in large batches [76], 

therefore reducing memory accesses outside the GPU and consequently optimizing GPU resource 

utilization. GPU programming has also become more accessible due to parallel programming tools such 

as CUDA [77] and OpenCL [78].  

    The introduction of tensor cores [79], specially designed for optimizing matrix operations and 

supporting various lower bit-width representations, further increased the applicability of GPUs for DNN 

training.  Also, Nvidia reports a latency reduction in inference by utilizing tensor cores [80],  which opens 

the usage of GPUs in latency-restricted applications such as ADAS. However, their high energy 

consumption is a hard limiting factor for their use in such systems. The study conducted by Gawron, H. 

J. et al. estimates a 3% increase in energy consumption between an autonomous and a non-autonomous 

vehicle with roughly half of the consumption due to the perception hardware (excluding sensors) [81]. 

This percentage can become more significant if the cooling of the hardware is considered as noted by 
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Lin. S. et al. [82]. To address these limitations, various efforts have been made to design and implement 

mobile GPUs with reduced power consumption, such as Nvidia RTX embedded GPU solutions [83] 

offering as low as 35W maximum power consumption. 

 

3.2.3 APPLICATION-SPECIFIC INTEGRATED CIRCUITS 

    Similarly to CPUs, GPUs are multi-purpose hardware solutions. This means that, despite the efforts 

made by graphics card manufacturers to add specialized hardware components such as tensor cores to 

their cards, GPUs are limited by the fact that they are a multi-purpose solution. Application-Specific 

Integrated Circuits (ASICs) are, as the name suggests, hardware that is specifically designed to optimize 

performance for a small set of applications. A well-known example of an ASIC widely used in deep learning 

is Tensor Processing Units (TPUs) specifically designed by Google for accelerating linear algebra 

computations [84]. TPUs excel when training models that are heavily dominated by matrix computations 

but tend to suffer from severe performance degradation when frequent branching or element-wise 

operations [84]. This inability to perform outside of the specific target application constraints is a typical 

pitfall of ASICs. Wang, Y. et al. benchmarked Google’s TPU v3 and an Nvidia V100 GPU in the training of 

DL models such as ResNet-50 [27] and SqueezeNet [85], concluding that TPUs consistently provided a 

considerable speedup in DL model training over GPUs [86]. 

    In the landscape of edge computing, where reduced inference latency and power consumption are the 

main constraints, there are several ASICs designed to optimize inference latency rather than training time, 

while keeping the energy consumption low. Examples are Tesla’s Full Self-Driving Chip [87], and 

Mobileye’s EyeQ5 [88]. Although achieving fewer operations per second compared to the state-of-the-art 

general-purpose graphics cards, ASICs designed for edge computing are far more suited for automotive 

perception due to the high energy consumption of GPUs. 

 

3.2.4 FIELD PROGRAMMABLE GATE ARRAYS 

    ASICs do not offer enough flexibility to keep up with the rapid evolution of deep learning models as the 

emergence of new types of layers poses a challenge to specialized hardware, especially since ASICs tend 

to have a high non-recurring engineering cost and time for design [89]. Field Programmable Gate Arrays 

(FPGAs) are integrated circuits that can be specifically optimized for a large subset of applications. 

Contrarily to ASICs, FPGAs are “field” reconfigurable meaning the hardware circuit can be reprogrammed 

to meet the requirements of the developer even when they change after manufacturing. This allows the 
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developers to adjust to new model architectures without having to re-design and manufacture a new chip, 

resulting in a significant reduction in design costs and time to market when compared to ASICS. For these 

reasons, Intel refers to ASIC prototyping using FPGAs as a standard practice that both decreases 

development time and accelerates verification by allowing testing of a design on silicon from day one 

[90]. However, the reconfigurable characteristic of FPGAs introduces significant overhead in raw power 

performance when compared to ASICs and GPUs. A. Boutros, S. Yazdanshenas, and V. Betz compared 

three at the time state-of-the-art computer architectures optimized for CNN inference observing an average 

of 8.7x more area required for FPGA implementations when compared to ASICs. Regarding performance, 

assuming only raw Tera Operations per Second (TOPs) without considering external memory bandwidth, 

ASIC implementations were 2.8x to 6.3x faster than FPGAs [89]. 

    Comparing energy efficiency, FPGAs typically provide a lower energy consumption compared to GPUs 

but still higher than ASICs. Aydonat, U. et al. showed that an implementation of the AlexNet network on 

an Intel’s Arria 10 FPGA achieved similar results to an Nvidia TitanX GPU when considering images per 

second per watt. The FPGA, although processing approximately 5x fewer images per second, it did so by 

consuming 5x less energy [91]. Nurvitadhi, E. et al. compared the energy efficiency of a CPU, GPU, FPGA, 

and ASIC in an implementation of a binary neural network. The results show that the FPGA and ASIC 

significantly outperform the CPU and GPU in terms of performance per watt [92]. 

    Another advantage of FPGAs is the adaptability to any type of bit-width representation when performing 

quantization. This allows for testing several possible representations and evaluating the performance, 

energy efficiency, and inference latency of deep learning models. 

    Overall, in the ever-changing area of deep learning applications and the tight accuracy, latency, and 

energy requirements of an ADAS, FPGAs seem to be the most flexible, cost-effective hardware that still 

offers a very reasonable performance-per-watt. 

 

3.3 DEEP NEURAL NETWORK QUANTIZATION 

    Introduced in 2.4.1, quantization is becoming a standard procedure when developing deep learning 

applications that run on embedded hardware. This is evidenced by the quantization toolsets available in 

widely used and established deep learning frameworks. Pytorch offers this functionality through its 

quantization API [93] and TensorFlow  offers the TensorFlow Lite, a library for deploying models on 

mobile, microcontrollers, and other edge devices [94]. Facebook has also open-sourced its library 

QNNPACK which provides support for quantized neural networks to run on mobile devices [95]. One last 
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example is Xilinx, a company that manufactures and sells FPGAs, which also provides Vitis-AI, a tool that 

supports quantization on their proprietary hardware [24] 

 

3.3.1 QUANTIZATION METHODS 

    As briefly mentioned in 2.4.1, the main problem when quantizing neural networks is the inherent 

accuracy drop. Although not as acute as in other mathematical models, given that most current neural 

network models are overparameterized [96], it can still be very significant. To mitigate this effect, several 

quantization algorithms have been proposed and fall into one of two main methods, namely quantization-

aware training (QAT), and post-training quantization.  

    In QAT, the quantized model is re-trained to fine-tune the parameters given their quantized values. To 

do this, the model weights are quantized to the integer values before the forward pass, then the data 

points are forwarded through the network and the loss with respect to the quantized weights is calculated. 

A straight-through estimator is used as an approximation of the backward function of the quantization 

operation and the gradients are added to the floating-point weights [53]. This allows the neural network 

to adapt to the quantization operation during training and results in less accuracy loss compared to post-

training quantization. Figure 13 provides a surface-level illustration of the QAT training procedure. 

    Ideally, QAT does not need to re-train the model from scratch as it is beneficial to use the pre-trained 

weights. This allows the QAT to converge faster to a solution and it is common practice in literature [97], 

[98]. Combining both pruning and QAT, S. Han, H. Mao, and W. J. Dally achieved a 49x model-size 

reduction on the VGG-16 model with no loss of accuracy on the ImageNet dataset, a 3x to 4x inference 

latency reduction, and a 3x to 7x increase in energy efficiency on the fully connected layers, also using 

Huffman coding to encode weights [99]. Nagel, M., et al. used a QAT consisting of cross-layer 

equalization, range estimation, and learnable quantization parameters to experiment with 8-bit and 4-bit 

quantization of both weights and activations. Using 8-bit weights and activations, and per-tensor 

quantization, the authors' solution surpassed the float model baseline in different perception tasks on 

datasets like Pascal VOC, COCO 2017, GLUE, and ImageNet. They also showed the robustness of their 

pipeline when quantizing weights using 4-bits by staying within 1% of the float model baseline in 5 out of 

8 models tested [100]. 

    However, because QAT requires training the model, it can be impractical given that the full dataset 

and sufficient hardware resources might not be available.  

    Post-training quantization methods allow quantizing neural networks without the overhead of training 

the network. This approach has been found to work well for larger models, which have more redundancy 
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but can struggle on smaller models [101]. It consists in analyzing the model’s weights and activations 

generated by running inference during the calibration process and selecting the correct quantization 

intervals [54]. Algorithms such as cross-layer equalization proposed by Nagel, M. et al. allow for data-free 

quantization, meaning that no additional data is needed to quantize the model. The authors demonstrate 

a top-1 accuracy degradation of only 0.5%, 0.3%, and no degradation respectively on the difficult to 

quantize MobileNetV2, MobileNetV1, and the slightly easier Resnet-18 model using the ImageNet dataset 

when quantizing the model to an 8-bit integer representation [102]. On the other hand, AdaQuant, 

proposed by Hubara, I. et al., uses a small set of unlabeled calibration data. Compared with other post-

training quantization algorithms, the authors show that the method is much less susceptible to over-fitting 

and can be used on a very small calibration set. The ImageNet top-1 accuracy of Resnet (18, 34, 50, 

101), ResNext, Inception-V3, and MobileNet-V2 after quantization to 8-bits is higher than the 

abovementioned two algorithms and depending on the model is usually within a 2% accuracy to the float 

model baselines [103]. Moreover, the accuracy of the BERT-base model on the SQuAD1.1 dataset 

achieves an accuracy degradation of only 0.46%. The usage of a calibration dataset is crucial to enable 

bit-widths lower than 8, such as INT4 in post-training quantization. However, when targeting bit-widths 

below 8 bits, post-training quantization might not be enough to mitigate the large quantization error [100]. 

Finally, extreme quantization has been proposed where neural network parameters are represented using 

only one or two bits, respectively referred to as Binarized Neural Networks (BNNs) [104], [105], [106] 

and Ternary Neural Networks (TNNs). [107], [108] Particularly, BNNs have a unique advantage since the 

multiply-accumulate operation, used in dot products, can be done without multiplications or additions 

when using one-bit representation through xnor and bit counting operations, speeding up computations 

and consuming less power [109]. 
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Figure 13. Quantization-aware training with a straight-through estimator. Retrieved from [110]. 

 

3.3.2 BENEFITS OF QUANTIZATION 

    The previous section showed how state-of-the-art quantization methods can maintain accuracy while 

reducing model size. This section specifically explores previous works that illustrate the benefits of 

quantization considering energy consumption and inference latency.  

Horowitz, M. compared the energy consumption of 8-bit and 16-bit additions and multiplications 

with the floating point 32-bit baselines on Intel’s 95nm processor chips. The results showed a 30x and 

18x reduction in energy cost between the 32-bit and the 8-bit and 16-bit additions respectively and an 

18.5x reduction between 32-bit and 8-bit multiplications [111]. Hashemi, S. et al. measured the power 

consumption savings of 16, 8, 4, and 1-bit precisions in a custom hardware accelerator. The authors 

explored three convolutional architectures containing mostly convolution, pooling, and fully connected 

layers. Compared to the 32-bit precision floating-point baseline models, the 16-bit, 8-bit, 4-bit and 1-bit 

models resulted in savings of 60%, 85%, 91%, and 94% respectively [112]. Furthermore, considering the 

area needed to execute each operation, Gholami, A. et al. showed that 8-bit and 16-bit additions result in 

a reduction of 116.2x and 62.4x respectively while the 8-bit multiplication result in a 27.3x reduction 

compared with the 32-bit float baselines [110]. Blott, M. et al. compared the power consumption of 

several convolutional neural networks on the four different FPGAs using different bit-widths, ranging from 

16 to a single bit. The results show that these implementations have very low power consumption, 

especially at the small bit-widths [23]. 
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    Regarding inference latency reduction, S. Kim, G. Park, and Y. Yi measured convolutional neural 

networks inference speedups of FP16, and INT8 in mobile GPUs. The authors showed a very significant 

speedup on two of the three hardware targets achieving between 1.5x to 3x inference speedup compared 

to the 32-bit floating-point baseline [113]. Similarly, Z. Jin and H. Finkel registered speedups ranging from 

1.02 to 1.56 of 8-bit precision compared to 32-bit floating-point precision on an Intel Xeon 4-core CPU 

and 1.1 to 2.0 speedups of 16-bit floating-point precision compared to 32-bit floating-point precision on 

the Intel Iris Pro mobile GPU. A merit of this work is that a large variety of neural networks were 

experimented [114]. Finally, in the work of Nurvitadhi, E. et al., a ternary (2-bit quantization) ResNet-50 

model was shown to have up to 65% better performance per watt (operations per second per watt) 

compared to a Titan X GPU using the ImageNet dataset [109]. 

 

3.4 DEEP LEARNING ON FPGAS 

    3.2 highlighted the suitability of FPGAs for deploying deep neural networks. Right after, 3.3 evidenced, 

through a review of existing works, that low-bit representations can retain accuracy and decrease 

inference latency and energy consumption. 

    The following two subsections aim to explore works that involved efforts to implement and deploy deep 

neural networks on FPGAs.  

 

3.4.1 DEEP NEURAL NETWORK IMPLEMENTATIONS ON FPGAS 

    Hand-coded FPGA-based accelerator designs require much experience and expertise. It can take a 

professional hardware developer several weeks just to map a deep neural network to an FPGA, even when 

using high-level synthesis tools that allow him/her to express the design in an algorithmic level of 

abstraction using languages such as C/C++ [115]. For this reason, several older works focus on 

accelerating only certain layers of neural networks [116]. However, there is still a valid reason for using 

lower levels of abstraction since it gives the developer more design freedom and optimization 

opportunities. In the work of Ma, M. et. al, the authors used Verilog, a hardware description language, to 

implement four different convolutional neural networks on FPGAs. Their implementations of NiN, VGG-

16, ResNet-50, and ResNet-152 achieved real-time inference latencies of 7.9 ms, 88.8 ms, 31.82 ms, 

and 81.8 ms per image on the ImageNet dataset with a batch size of one on Intel Stratix V GXA7 FPGA 

and 3.8ms, 43.2 ms, 12.7 ms and 32.0 ms on Intel Arria 10 GX 1150 FPGA. No accuracy metrics were 

reported [18]. 
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    Although there are use cases where the abovementioned approaches are the appropriate solution, 

they not only increase the costs necessary to implement deep neural networks on FPGAs but also keep 

deep learning engineers, with no FPGA expertise, from a hardware-software co-design approach to deep 

learning implementations. For this reason, most recent implementations use tools that interface with 

established deep learning frameworks. Faraone, J. et al. used the FINN library [117] to implement pruned 

and quantized versions of AlexNet (1-bit weights, 2-bit activations) and TinyYolo (1-bit weights and 3-bit 

activations) on a Xilinx KU115 FPGA. The authors reported a top-1 accuracy of 50.1% and a frame rate 

of 3797 FPS on ImageNet and a 48.5% top-1 accuracy on PascalVOC with a frame rate of 1226 FPS 

considering the highest pruning percentage tested. The authors however did not specify the batch size 

nor a baseline float model [19]. Ngadiuba, J. et al. used their library, hls4ml [118], to implement a simple 

multi-layered perceptron with ReLU activations. They experimented with 1-bit and 2-bit quantizations on 

MNIST [119] and Jet tagging [120] datasets. The target hardware is a Xilinx Virtex Ultrascale 9+ FPGA. 

The results show a 100 ns inference latency, however with only a 3% accuracy drop [121]. Following the 

previous work, Aarrestad, T. et al. successfully implemented a convolutional neural network. Besides 

hls4ml, they use QKeras [122] to quantize the model and TensorFlow pruning API for pruning 50% of the 

model parameters. The authors compared post-training quantization and QAT using fixed-point 

representation with 16 bits. With the QAT approach, the model retained the baseline float accuracy down 

to a bit-width of 4. The latency reported is in the microsecond range [123].  

    All the previously mentioned works target 2D computer vision tasks. There is a gap in the literature 

when it comes to FPGA implementations of 3D computer vision models since it combines two fairly new 

areas of research. Y. Lyu, L. Bai, and X. Huang designed a lightweight convolutional neural network, 

ChipNet, to process LiDAR data and perform drivable region segmentation. The network, quantized with 

a width of 18 bits, achieved an average precision of 88.29%. To showcase the real-time capabilities of 

their work, the authors directly sent LiDAR sensor data through UDP to a Xilinx UltraScale XCKU115 

FPGA, used to run the network. From end-to-end, including pre-processing and post-processing of LiDAR 

frames, the authors reported a latency of 17.59 ms [20]. However, note that the point cloud is sampled 

in the [-45°, 45°) interval in the azimuth direction. J. G. López, A. Agudo, and F. Moreno-Noguer 

implemented the convolutional layers of a VoxelNet - based model on an Arria 10 Intel FPGA using the 

leg-up 4.0 framework [124] and the ModelSim HLS suite [125] [126]. The accuracy reported is close to 

the VoxelNet baseline float implementation on the KITTI dataset. The model parameters are quantized 

down to a 12-bit representation. The reported inference latency of the convolutional layers is 17.59 ms. 

However, the batch size is not specified. Finally, L. Bai, Y. Lyu, X. Xu, and X. Huang achieved an end-to-
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end implementation of PointNet with LiDAR point cloud data in a Xilinx Zynq UltraScale+ MPSoC ZCU104 

development board. The implementation directly receives LiDAR frames via ethernet and achieves 

inference latencies of 19.8 ms and 34.6 ms in classification and segmentation respectively. However, 

each LiDAR frame has only 4096 points, much lower than, for example, a KITTI dataset frame. The 

smaller point cloud heavily influences inference latency but could lead to significantly worse accuracy 

results, which were unfortunately not reported by the authors [21]. 

 

3.4.2 HIGH-LEVEL TOOLS FOR DEEP NEURAL NETWORK DEPLOYMENT ON FPGAS 

    Although the previous examples showed several successful implementations of neural networks on 

FPGAs with high-level tools, the tools themselves are still at an infancy stage and consequently tend to be 

rather limited in their scope. For this reason, it is useful to gather a list of the currently available options. 

Solutions that target cloud-hosted FPGAs, such as Azure Machine Learning [127], were consequently not 

considered. Furthermore, all tools contemplated are currently supported and actively updated. This made 

the list smaller but hopefully more informative. 

 

3.4.2.1 FINN-R 

    Developed by Xilinx Research Labs, FINN-R is an open-source tool intended for design space 

exploration and the automatic creation of fully customized quantized neural network inference engines on 

FPGAs. In the authors’ words, this tool tries to answer the given question: “Given a set of design 

constraints and a specific neural network, what is the best possible hardware implementation that can 

be achieved?” [23]. 

    FINN-R features two converse inference accelerator architectures, represented in Figure 14. The first, 

referred to as customized Dataflow Architecture, is customizable for specific neural network topologies 

and different bit-widths in weights and activations in each layer, which aims to maximize the use of 

hardware resources. In this architecture, the computation of layers, the storage of layer weights, and 

activation maps are all performed in on-chip memory. This has the potential to significantly reduce latency 

as the amount of off-chip memory accesses is minimized. However, as noted by the authors, this 

accelerator architecture is not scalable toward really deep CNNs. For these use cases, FINN-R also offers 

a Multilayer Offload Architecture in which the layer’s weights, and resulting feature maps, are stored in 

the more abundant off-chip main memory. Both architectures are depicted in Figure 14. 
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    FINN-R uses a frontend module to interface with deep learning frameworks such as Caffe, DarkNet, 

and TensorFlow. The Brevitas tool [128] also from Xilinx Research Labs, can be used to perform QAT on 

Pytorch models, extending the reach of the FINN-R framework. The frontend module is responsible for 

translating deep neural networks, quantized in these frameworks, into a common device-agnostic 

intermediate representation. This representation is quantization-aware, meaning that it has access to the 

quantization information of each layer which enables mapping to backend primitives optimized for 

quantized computation.  

     A series of small subprograms operate on the intermediate representation to perform a series of 

optimizations such as the “direct quantization”, which converts non-quantized layers to fixed-point values. 

It is also in this phase that the previously mentioned accelerator architectures are generated. Finally, a 

corresponding high-level-synthesis code is generated. 

From the intermediate representation, a backend module creates executable inference accelerators for a 

selection of platforms, including PYNQ-Z1 [129], Ultra96 [130], and AWS F1 [131]. 

    On the tool’s GitHub page [132], a list of example neural network accelerators is presented. There, it 

is possible to verify that topologies such as simple VGG-like architectures and small fully connected 

networks are supported on all targeted FPGA boards with bit-widths of down to 1 or 2 bits. Furthermore, 

more sophisticated architectures like MobileNet-v1 and Resnet-50 are also supported, but not on all target 

boards. This limitation might indicate problems when deploying models with more complex architectures.  

 

 

Figure 14. Accelerator architectures: Dataflow Architecture (Left) and Multilayer Offload Architecture (Right). Retrieved from 
[23]. 

 

3.4.2.2 HLS4ML 

    HLS4ML is an open-source Python package designed to interpret and translate machine learning 

algorithms for implementation with both FPGA and ASIC technologies [118]. Similarly to FINN-R, the 

package first converts the user-specified model into a common internal representation of the network 
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graph. The developed converters support QKeras, TensorFlow, Pytorch, and ONNX model formats. Post-

training quantization and QAT are also supported, where the quantization settings of models trained in 

QKeras are propagated to the internal representation. Then, a set of generic optimizations are applied to 

simplify inference such as the vastly explored optimization of fusing batch normalization layers with 

preceding dense and convolutional layers [133]. The package also allows pruning the neural networks 

through what the authors call quantization-aware-pruning, which combines a pruning procedure with 

training that accounts for quantized weights. 

    Finally, at a later stage, the internal representation is converted to high-level synthesis code. One key 

aspect is the explicit support for multiple FPGA vendor high-level-synthesis backends (e.g., Xilinx, Intel, 

and Mentor). 

    To evidence the applicability of this tool, the works from Ngadiuba, J. et al. and Aarrestad, T. et al., 

described in 3.4.1, both use HLS4ML to implement neural networks on FPGAs. However, like FINN-R, 

the working examples provided by HLS4ML typically target either small networks or larger networks but 

with simpler topologies. This is further evidence of the premature state of development of such tools. 

 

3.4.2.3 OPENVINO 

    OpenVINO [134] is an open-source toolkit for optimizing and deploying AI inference. It interfaces with 

TensorFlow, Paddle Paddle [135], Pytorch, Caffe, ONNX, and MXNet [136] and targets Intel hardware. 

Unlike all other tools reviewed in this work, OpenVINO does not specialize in FPGA deployment, targeting 

CPUs, GPUs, and VPUs. Instead, it provides an FPGA plugin that allows targeting Intel Arria FPGAs. A 

wide range of examples showcasing supported models, even complex ones, is advertised in the 

documentation [137]. However, the documentation fails to mention whether these models are possible 

to deploy on the target FPGAs. 

 

3.4.2.4 VITIS-AI 

    Vitis-AI is the platform of choice for accelerating AI inference on Xilinx’s hardware platforms, targeting 

both edge and cloud FPGAs. It is designed with high-efficiency and ease-of-use in mind, making it easy 

for deep learning engineers with no FPGA knowledge to deploy deep learning applications on FPGAs. Like 

the previous tools, it interfaces with TensorFlow, Pytorch, Caffe, and ONNX.  

    Regarding quantization, Vitis-AI provides three different methods to quantize deep learning models, 

encapsulated into the Vitis-AI Quantizer. For post-training quantization, a data-free approach referred to 
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as quantized calibration, is the simplest and fastest way of quantizing a model. However, for situations 

where the decrease in accuracy is significant and QAT is not possible, a data-dependent approach is also 

provided. Similarly to quantized calibration, this approach is referred to as fast finetuning and relies on a 

small unlabeled calibration dataset. Fast finetuning can achieve better performance than quantized 

calibration, but it is slightly slower. Both algorithms behind the two post-training quantization methods 

and respective papers are cross-layer equalization [102] and AdaQuant [103]. A brief description of both 

these works is present in 3.3.1. Vitis-AI also provides QAT for situations where fast finetuning is not 

sufficient. 

    As for pruning, Xilinx advertises up to 90% pruning of model parameters with a tolerable accuracy loss, 

through the Vitis-AI Optimizer. Unfortunately, pruning-related tools require a commercial license to run. 

    After quantizing and pruning the model, it is possible to compile the model for the target board of 

choice using the Vitis-AI Compiler. The compiler is responsible for mapping the deep learning model to a 

highly efficient instruction set and dataflow model called the deep learning processing unit (DPU). It also 

performs sophisticated optimizations such as layer fusion, and instruction scheduling, and reuses on-chip 

memory as much as possible. To target the supported FPGAs, a set of DPUs are available. Each DPU is 

a group of parameterizable IP cores (Intellectual Property cores) which are integrated circuit layout 

designs that are the building blocks of more complex FPGA logic, analog to libraries in programing. The 

DPU contains a specialized instruction set that facilitates the mapping of neural networks to the underlying 

hardware. As an example, the DPUCZDX8G high-level architecture is described in Figure 15. The 

DPUCZDX8G first fetches instructions, generated by the Vitis-AI Compiler, from the off-chip memory to 

control the operation of the computing engine. The computing engine, which is implemented on the 

programable logic of the target hardware, is where neural network layers are computed. It is composed 

of processing elements (PEs) that combine the most basic operations such as adders, multipliers, and 

accumulators. These more basic primitives are combined to create more complex operations such as 2D 

convolution operations, pooling operations, or concatenations. They are also parameterizable, meaning 

that each DPU supports variants of the same convolution operations e.g., the kernel size can vary in the 

interval of 1 to 16.  
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Figure 15. DPUCZDX8G Hardware Architecture. Retrieved from [138]. 

 

    The DPUCZDX8G is optimized for Zynq UltraScale+ MPSoC boards and DPUCAHX8H is optimized for 

high throughput applications that use convolutional neural networks at their core. The list of DPUs and 

respective characteristics such as target hardware is presented in Table 2. Unfortunately, the available 

pre-built DPUs only support INT8 quantization. Also, without experimentation, it is difficult to understand 

how adaptable are the pre-built DPUs to neural networks featuring more exotic layers. By analyzing the 

previous description of the DPUCZDX8G, it is expected that implementations of neural networks targeting 

pre-built DPUs will be limited by the implemented functionality and that to support more operations, new 

functionality will have to be implemented by the developer. This is a major limitation for deep learning 

engineers without specific hardware experience. Unfortunately, the other tools suffer from the same 

limitations. Nevertheless, as the tools mature, the number of supported neural network layers is expected 

to increase. On this note, Vitis-AI does provide support for implementing custom DPUs. However, this 

approach is outside the scope of this work as it requires deep hardware design knowledge. 
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Table 2. Vitis-AI pre-built DPUs [113]. 

DPU Name Target HW Application Quantization Bit-width Domain 

DPUCZDX8G Zynq UltraScale+ MPSoC CNN 8 General purpose 

DPUCAHX8H Alveo U50/U280 boards CNN 8 High throughput 

DPUCAHX8L Alveo U50/U280 boards CNN 8 Low latency 

DPUCADF8H Alveo U200/U250 boards CNN 8 High throughput 

DPUCVDX8G Versal ACAP VCK190 board CNN 8 General purpose 

DPUCVDX8H Versal ACAP VCK5000 board CNN 8 High throughput 

 

 

    Vitis-AI also provides, through the high-level Vitis-AI Runtime Libraries (VART), a set of APIs that make 

the data loading, pre-processing, and post-processing that happen on the board CPU, and the model 

execution, as seamless as possible by abstracting away data transferring between the board CPU and 

FPGA, as well as data parallelism supported by the DPU. The C++ and Python APIs are available and well 

documented in the user guide. The developed VART applications can be profiled through the Vitis-AI 

Profiler, reporting individual layer execution time, data transfers as well as data loading and processing. 

    Contrary to the previously presented tools, Vitis-AI provides extensive and detailed documentation. The 

reader is recommended the Vitis-AI user guide [139], a document featuring detailed usage of each of the 

functionalities through tutorials and example code snippets. However, where Vitis-AI mostly distinguishes 

itself from the rest is the amount of pre-deployed models and their diversity, associated benchmarks, and 

example applications that can be used to validate the tool. These models can be found in the Vitis-AI 

Model Zoo. The extensive benchmarks of Model Zoo models for all the target boards can be found on the 

Vitis-AI GitHub page [24]. The benchmarks provide, for each model, the end-to-end inference latency and 

throughput. More interestingly for this work, some deployed models are LiDAR-based 3D computer vision 

models, particularly the PointPillars and SalsaNext [140] models. 
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4.1 EXPERIMENT DESCRIPTION 

    3.4.2.4 highlighted the suitability of Vitis-AI for deploying deep learning models on Xilinx boards by 

referencing the availability of a wide range of deep learning model benchmarks on multiple Xilinx FPGAs. 

Furthermore, the diversity of the benchmarked models is particularly interesting for this work since a 

small selection of 3D computer vision models is available in the Vitis-AI Model Zoo. For these reasons, 

Vitis-AI was elected as the most promising tool for deploying a LiDAR-based model. 

    However, a typical Vitis-AI workflow, from model description to deployment, involves a long list of 

different components such as the quantizer, compiler, VART APIs, and profiler. It would be unwise to 

implement a complex 3D computer vision model without first understanding the possibilities and 

limitations of the tool at hand and validating if the decision to choose Vitis-AI is correct given the objectives 

of this work.  

    This first experiment aimed to study the Vitis-AI tool by deploying convolutional neural networks on 

target FPGAs. During the process, it was expected to maximize the exploration of the tool. 

 

4.1.1 OBJECTIVES 

    The first objective was to understand how Vitis-AI interfaces with deep learning frameworks. To do so, 

the first step consisted in obtaining a quantized model from the model parameters and structure 

represented in the format of a deep learning framework of choice. Furthermore, during the quantization 

process, all available quantization methods were experimented with and validated in terms of accuracy 

metrics and model size. This required the development of quantization code as described in the tool’s 

documentation. Then, the resulting quantized model was compiled for the target DPU, and an application 

was developed using the VART libraries. Finally, the models needed to be validated considering accuracy, 

inference latency, model size, and power consumption, making use of the available tools including the 

Vitis-AI profiler. This formed a complete workflow that encompassed all the tools and allowed a precise 

evaluation of Vitis-AI. 

 

4.1.2 DATASET 

    The dataset used for this experiment was the CIFAR-10 dataset [141]. It consists of 60000 32x32 

color images in 10 classes, with 6000 images per class. There are 50000 training images and 10000 

test images. The perception task being solved is image classification. 
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    While it is true that CIFAR-10 is a relatively trivial dataset for today’s CNNs, the dataset has a good 

characteristic for this exploratory analysis. Because it is relatively small, it is possible to perform a deeper 

and wider exploration of the tool, avoiding long but necessary processes of model training and 

quantization. Had QAT not been considered in this experiment, model re-training would have not been 

necessary, and ImageNet would have been a more appropriate choice of dataset. 

 

 

Figure 16. Example of CIFAR-10 images. 

 

4.1.3 DEEP LEARNING FRAMEWORK 

    In this work, Pytorch was selected as the deep learning framework to interface with Vitis-AI. As detailed 

in the tool’s documentation, the workflow that allows the deployment of a deep learning model on an 

FPGA, given its code description, changes substantially from framework to framework. Studying the 

intricacies of the workflow of every supported framework would be too time-consuming for the additional 

benefit. 

    The choice of Pytorch is mainly justified by the recent growth in the usage of the framework when 

compared to the other heavily used framework, TensorFlow. AssemblyAI provides very interesting data 

regarding the comparison of the two frameworks in terms of usage in research papers and Github 

repositories [142]. As can be seen in Figure 17, the graph shows that Pytorch has surpassed TensorFlow 

in terms of new papers. The data is collected from eight top research journals over the past four years. 

In turn, Figure 18 shows a steady increase in the percentage of Pytorch Github projects and a consequent 

decrease in TensorFlow projects. The data is from the well-known website Papers With Code [143]. These 

two trends match what was observed during this work’s literature review of 3D computer vision models. 
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Figure 17. Pytorch and Tensorflow usage in publications. Retrieved from [142]. 

 

 

 

Figure 18. Pytorch and Tensorflow github repository share. Retrieved from [142]. 
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4.1.4 TARGETED DEEP NEURAL NETWORKS 

    The ResNet-18 [27] and SqueezeNet [85] networks from the Torchvision model zoo were selected to 

be quantized and deployed. Both networks feature a convolutional architecture. ResNet-18, as the name 

suggests, is 18 layers deep and features residual connections. The convolution layers are organized in 

blocks, each containing two convolutional layers. An average pooling layer is used at the end of the 

convolution blocks and a fully connected layer produces a 10-element tensor. These elements are then 

converted into class probabilities through a softmax activation layer. The SqueezeNet architecture begins 

with an isolated 1x1 convolution layer followed by 8 fire modules. Each fire module consists of 1x1 

convolution layers followed by 1x1 and 3x3 convolution layers. These convolution layers are followed by 

ReLU activations. Max pooling layers are used after fire modules 4 and 8. Finally, a convolution layer is 

used at the end of the fire modules, followed by a global average pooling layer. Likewise, in ResNet-18, a 

softmax activation layer is used at the end of the network to produce the final probabilities. Both neural 

network architectures are detailed in Figure 19. 
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Figure 19. ResNet-18 (Left) and SqueezeNet (Right) architectures. Retrieved from [144] and [85]. 

 

    Table 3 lists the number of total parameters, as well as the number of floating-point operations (FLOPS) 

of both networks. Immediately, one realizes that the ResNet-18 has 15x more parameters and requires 

37x more FLOPS to fully compute. Nevertheless, by today’s standards, these are still fairly modest 

numbers. 
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Table 3. ResNet-18 and SqueezeNet total parameter count and floating-point operations considering Cifar-10. 

Model Input Size (N, C, H, W) Total parameters FLOPS 

ResNet-18 1 x 3 x 32 x 32 11.18 M 37.1 * 106 

SqueezeNet 1 x 3 x 32 x 32 0.74 M 1 * 106 

 

4.1.5 TARGETED HARDWARE 

    Because this experiment prioritized exploration, two different Xilinx boards were targeted for model 

deployment, namely the Zynq UltraScale+ MPSoC ZCU104 and Versal ACAP VCK190, both illustrated in 

Figure 20 and Figure 21 along with the respective dimensions. More specifically, the deployment focused 

on the DPUCZDX8G and the DPUCVDX8G. Table 2 lists all the pre-built Vitis-AI DPUs. 

 

 

 

 

Figure 20. Zynq UltraScale+ MPSoC ZCU104. Figure 21. Versal ACAP VCK190. 

 

    The performance and efficiency of the DPUs depend on the nature and amount of resources in the 

underlying hardware. On the processing subsystem (PS) side, both boards feature ARM Cortex CPUs. 

Also, a 2GB and 8GB external DDR4 (Double Data Rate) memory is available for the ZCU104 and VCK190 

boards respectively. The bandwidth of the VCK190 DDR4 memory is 33% faster. On the programmable 

logic side (PS) or FPGA, the VCK190 also features substantially more resources with 4x more LUTs and 

slightly more DSP slices. Regarding both on-chip memory types, the VCK190 features approximately 3x 

more BRAM and 5x more URAM. AI engines, explained in 4.1.5.2, are only present in the VCK190 and 

are used to compute convolution operations. 

 

 

Table 4. Zynq UltraScale+ MPSoC ZCU104 and Versal ACAP VCK190 resource comparison. 

Resources ZCU104 VCK190 

CPU 4×ARM Cortex-A53 @1.5GHz 2×ARM Cortex-A72 1.7@GHz 
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External Memory 2GB DDR4 (2400 Mb/s) 8GB DDR4 (3200 Mb/s) 

CLB LUTs 230K 900K 

BRAM 312 (11.0 MB) 967 (34 MB) 

URAM 96 (27.0 MB) 463 (130.2 MB) 

DSP Slices 1728 1968 

AI Engines - 400 

 

 

4.1.5.1 DPUCZDX8G 

    The DPUCZDX8G provides user-configurable parameters that allow optimizing resource usage. The 

name given to a specific combination of parameters is a configuration. It is possible to control DSP slices, 

LUTs, BRAM, and URAM usage. Naturally, configurations are limited by the amount of available resources. 

It is also possible to enable functionality to the DPU by activating the ability to compute additional 

operations that are not active by default such as softmax, average pooling, and depth-wise convolutions.  

    The DPUCZDX8G can be configured with various architectures. Different architectures modify the 

convolution unit, used to compute convolutions, and enable different levels of parallelism. The level of 

parallelism can be modified along three dimensions: Pixel Parallelism (PP), Input Channel Parallelism 

(ICP), and Output Channel Parallelism (OCP). Figure 22 depicts a convolution operation and the three 

dimensions of parallelism that can be modified. In the image, PP has a value of 2. This means that two 

pixels of the input feature map are processed at once. ICP has the value 3. So, for every pixel, three 

values of that pixel along the input channel dimension are processed in parallel. The same applies to 

each kernel element. Lastly, OCP is 3. Consequently, kernel elements from three different kernels are 

used at once.  
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Figure 22. Three parallelism dimensions in convolution operation. Retrieved from [138]. 

 

    The higher the levels of parallelism, the higher the number of peak operations that can be executed 

each cycle.  The number of multiply accumulates (MACs) per cycle can be given as a function of the 

parallelism levels: 

 

 𝑀𝐴𝐶𝑠/𝑐𝑦𝑐𝑙𝑒 =  𝑃𝑃 ∗  𝐼𝐶𝑃 ∗  𝑂𝐶𝑃 

 

(Equation 5) 

 

    Table 5 lists all existing architectures, the respective parallelism levels, and the peak operations per 

cycle. Note that a MAC corresponds to two operations, multiply and accumulate, so the peak operations 

each cycle is equal to double the peak MACs each cycle. Naturally, the increase in the parallelism levels 

leads to an increase in programmable resource usage.  

 

Table 5. Relationship between DPUCZDX8G architectures’ parallelism levels and peak operations per cycle. 

Architecture PP ICP OCP Peak Ops per cycle 

B512 4 8 8 512 

B800 4 10 10 800 

B1024 8 8 8 1024 

B1152 4 12 12 1150 

B1600 8 10 10 1600 

B2304 8 12 12 2304 

B3136 8 14 14 3136 
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B4096 8 16 16 4096 

 

    DPUs try to utilize on-chip memory as much as possible during model inference to store intermediate 

feature maps, weights, and biases. The on-chip memory consists of the BRAM and URAM. It is possible 

to increase the RAM usage in the DPUCZDX8G architectures. Using more RAM can be beneficial because 

costlier external memory accesses can be reduced, and performance can be improved. It is also possible 

to choose which type of RAM to use. BRAM only or BRAM+URAM (Hybrid).  Furthermore, it is possible to 

enable higher ram usage which extends the amount of on-chip memory resources available. This 

parameter is known as “High RAM Usage”. 

    Lastly, it is possible to increase the number of DPU cores used. For the DPUCZDX8G specifically, a 

maximum of 4 cores can be used. More cores can be used to achieve higher performance at the cost of 

higher programmable resource usage. Table 6 details all the DPUCZDX8G configurations explored in this 

experiment and their respective resource usage. 

 

Table 6. All DPUCZDX8G configurations explored and respective resources. 

Architecture Designation  # Cores RAM Type LUTs BRAM URAM DSP 

B512 b512x1_hybrid  1 Hybrid 19.7k 15.5 14 66 

B1024 b1024x1_hybrid  1 Hybrid 24.1k 41.5 14 130 

b1024x1_bram  1 BRAM only 23.4k 101.5 0 130 

b1024x2_hybrid  2 Hybrid 50.4k 91.5 28 260 

B4096 b4096x1_hybrid  1 Hybrid 36.4k 86.5 44 514 

b4096x1_hybrid_high_ram  1 Hybrid + High 

Ram Usage 

48.0k 147 46 706 

b4096x2_hybrid  2 Hybrid 72.7k 177.5 88 1028 

 

4.1.5.2 DPUCVDX8G 

    Similarly to the ZCU104 DPU, the DPUCVDX8G also provides some configurability. Besides DSP slices, 

LUTs, BRAM, and URAM usage, it is also possible to control the number of AI Engines (AIEs). The AIEs 

in the DPUCVDX8G perform the convolution operation. The number of batch handlers is also 

parameterizable. Each batch handler is responsible for handling a batch element and performing the 

respective computations. A private group of AIEs is available for each batch handler. The number of AIEs 

per batch handler can be configured to be 32 or 64. The amount of batch handlers is also 

parameterizable. 
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    Lastly, likewise DPUCZDX8G, it is possible to control the number of DPUCVDX8G cores, here called 

compute units. This parameter supports a range of values from 1 to 3. However, it is only possible to 

increase the number of compute units when the number of batch handlers is 1. 

    The name of the configuration explicitly contains all the above-mentioned parameter values. For 

example, C32B1CU2 means that there are 32 AIEs for each batch handler, a single batch handler, and 

2 compute units. 

    Table 7 lists all the DPUCVDX8G configurations targeted in this experiment, the corresponding resource 

utilization, and the peak theoretical performance per clock cycle measured in tera operations. The peak 

theoretical performance assumes a 333MHz PL frequency and 1.25 GHz AIE frequency. The values are 

obtained with the following equation: 

 

 256 ∗  CPB_N ∗  BATCH_N ∗  CU_N ∗  AIE Frequency 

 

(Equation 6) 

 

where CPB_N is the number of AIEs per batch handler, BATCH_N is the batch number, and CU_N is the 

number of compute units. 

 

Table 7. DPUCVDX8G configurations, respective resource utilization and the peak theoretical performance per cycle. 

Configuration AIEs LUTs BRAM URAM DSP Peak Theoretical 

Performance/cycle (TOPS) 

C32B1CU1 32 82.9k 0 136 139 10.24 

C64B1CU1 64 93.2k 0 136 139 20.48 

C64B1CU2 128 18.6k 0 272 278 40.96 

 

4.2 IMPLEMENTATION 

    The process of deploying the ResNet-18 and SqueezeNet models from the Pytorch model description 

involved a large set of tools of Vitis-AI. Figure 23 describes the software and hardware components and 

respective connections used in this experiment.  

    Regarding hardware, the proposed setup comprises a Linux-based host server with an Nvidia GPU RTX 

3090 and two Xilinx boards containing FPGAs. The connections are realized by ethernet through an 

ethernet switch. This allows multiple connections to several FPGAs simultaneously.  

    On a software level, the communications with the FPGAs are done over graphical SSH sessions. For 

file transfer, the SCP protocol is used. Concerning the Vitis-AI tools, the Linux host server makes use of a 
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Docker container with Vitis-AI version 2.0. It includes Conda environments with a software stack adapted 

to interface with each of the supported deep learning frameworks. It also contains the Vitis-AI Model Zoo 

and the possibility of using custom models, the latter being the approach used in this experiment. Finally, 

it provides the Vitis-AI Quantizer and Compiler. As for the FPGAs, the software tools are made available 

by a Petalinux [145] based image. The tools available are directed towards FPGA deep learning application 

development. Following a bottom-up view, the DPU is the lowest level of abstraction that interacts with 

the underlying hardware. Refer to 3.4.2.4 for a detailed explanation of the DPUCZDX8G and a list of all 

existing DPUs and respective characteristics. Next, Vitis-AI Runtime (VART) is responsible for providing 

developers with a high-level runtime API. Internally, the API is based on the Xilinx Runtime (XRT). It also 

uses the Xilinx Intermediate Representation (XIR) format to represent the neural network models. 

    VART provides both C++ and Python implementations and exposes two main endpoints. The first is 

the Vitis-AI Library which provides more complex modules that implement varying levels of functionality. 

On one end, these functionalities can be complex classes and methods that implement classification and 

segmentation algorithms as well as entire demo applications. On the other end, they can be methods 

that expose the functionality of submitting and collecting inference jobs to and from the DPU. The second 

is the Vitis-AI profiler which allows the collection of information of the VART-based applications from data-

processing C++/Python code that runs on the board CPU to the layer computation that runs on the DPU. 

This information includes the minimum/average/maximum run times of each neural network layer, the 

achieved frames per second (FPS) and memory read/write traffic. Finally, the Petalinux image also 

includes some additional libraries such as OpenCV [146] and NumPy [147] that further facilitate the 

creation of deep learning applications, particularly in the data loading and processing phase. 
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Figure 23. Experiment setup. 

4.2.1 FLOAT MODEL TRAINING 

    The ResNet-18 and SqueezeNet models were trained for 30 and 25 epochs respectively with a batch 

size of 128. The optimization algorithm used was the ADAM algorithm [148] with a cross-entropy loss 

function and a learning rate of 10−3. The respective test and validation loss curves are plotted in Figure 

24. ResNet-18 and SqueezeNet train plots.. As for data augmentation, random crops and random 

horizontal flips were used. 
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Figure 24. ResNet-18 and SqueezeNet train plots. 

 

    From the observation of the graphs above, one can see that the ResNet-18 and SqueezeNet’s validation 

losses stop improving at around 30 and 25 epochs respectively. The two models’ inability to achieve 

better validation loss can be explained by their architectures. The ResNet-18 and SqueezeNet models 

from Torchvision’s Model Zoo are designed for the ImageNet dataset, and so the feature maps become 

very low dimensional (down to 1x1 in the case of ResNet, Figure 25). However, because rather than 

maximizing the float model accuracy, this experiment’s main goal is to explore the Vitis-AI capabilities as 

much as possible, the model architectures remained unchanged. 

 

 

Figure 25. Visualization of ResNet-18 activation map shapes. 

 

4.2.2 MODEL QUANTIZATION 

    There are 3 methods for quantizing a model in Vitis-AI. In increasing order of cost and accuracy 

performance, they are quantized calibration, fast finetuning, and QAT. This experiment contemplated all 

3 methods by deploying and benchmarking quantized models obtained from all three quantization 

methods. 3.4.2.4 details which algorithms, and respective works, are used for each method. 

    Considering the Pytorch quantizer, and depending on the quantization method, a different set of 

requirements are needed to execute quantization successfully. The methods are made available through 
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a quantization API. This allowed the quantization of the two contemplated models to be in great part 

transparent. Table 8 summarizes the most basic requirements for each method, empirically evidenced 

through the quantization of both the ResNet-18 and SqueezeNet models using the quantization API. The 

calibration dataset, used for the fast-finetuning quantization, consisted of an unlabeled subset of the 

original dataset. The length of this subset depends on the complexity of the data, but the Vitis-AI 

documentation refers to an interval between 100 and 1000 samples. In this experiment, a subset 

containing 1000 images was used. Another important point to note is that, although not strictly a 

requirement, the pre-processing and post-processing of the data, before and after model inference, should 

remain unmodified from the training of the float model to obtain comparable accuracy results. 

    Contrarily to the remaining methods, QAT also requires modifying the network description to perform 

the training. These modifications do not alter the architecture of the neural network. However, they must 

be performed manually and hence are prone to errors. A detailed list of the requirements, as well as a 

comparison between ResNet-18’s original description and a modified description used for QAT, produced 

during this experiment, are available in figures 64 and 65 of Appendix II. 

    Lastly, all the quantization methods described quantized the models using an 8-bit representation of 

the parameters. This is because the quantization bit-width of the target DPUs is limited to 8 bits. 

 

Table 8. Comparison of Vitis-AI quantization methods’ requirements. 

Method Quantize Calibration Fast Finetuning QAT 

Pre-trained float model ✓ ✓ ✕ 

Python script w/ model description ✓ ✓ ✓ 

Calibration dataset ✕ ✓ ✕ 

Original dataset ✕ ✕ ✓ 

 

4.2.3 DEPLOYMENT ON TARGET HARDWARE 

    Before deploying a model, it was first needed to compile it for a target DPU. The compilation of both 

models targeted the DPUCZDX8G and DPUCVDX8G for the Zynq UltraScale+ MPSoC ZCU104 and Versal 

ACAP VCK190 board respectively. Vitis-AI compiler was used for this effect. The resulting compiled models 

were then sent to the respective target boards over secure copy protocol. 

    The deployment phase consisted in developing a Python application using the Vitis-AI-Library and 

NumPy. The core functionality of this application is to pre-process, infer and post-process 10000 CIFAR-

10 samples measuring accuracy and inference speeds. The images are first normalized and then 
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converted to INT8 representation. Then, the inference is executed using a batch size of 1 to simulate an 

ADAS application. Lastly, the post-processing simply consists of the calculation of the index corresponding 

to the biggest probability in classification and the top-1 accuracy is calculated.  

    Since the target DPUs support pipelining, meaning that it is possible to execute different layers of 

networks of different images at the same time, a multi-threaded version of the application was also 

developed. The use of multiple threads shouldn’t be confused with batch inferencing, where multiple 

images are forwarded through the same network layers at the same time. Figure 26 depicts the 

differences between sequential inferencing, pipelining, and batch inferencing in terms of single image 

inference latency and throughput.  

 

 

Figure 26. Sequential, Pipelined and Batched inference. 

 

    In the context of an ADAS application, one would think that inference latency should always be 

prioritized. While that is correct when a model’s inference latency is smaller than the time it takes for the 

sensor to create a frame, sometimes it might not be possible to produce a fast enough inference. In this 

case, it might be useful to consider trading some throughput for inference latency. Consider Figure 27, 

where inference over a single image takes twice as long as the image generation. Here, when using a 

sequential inferencing approach, some images are discarded. For example, there is not a good reason to 

infer over image 1 when the more recent image 2 is already available. When using pipelining, all images 

become important at the expense of longer single image inference latency. This means that the results 

of inferencing over a single image will provide less relevant information because more time has passed 
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since the events that the results represent happened. On the other hand, the route planning module of 

the ADAS will have access to more images to produce accurate results. The tradeoff becomes quantity 

vs temporal relevance of the frames. The flexibility to be able to experiment with this tradeoff constituted 

a very valid reason to explore a pipelining approach.  

 

 

Figure 27. Inference latency vs temporal resolution trade-off. 

 

    In the developed multi-threaded application, as soon as the hardware responsible for computing a 

specific layer is available, a new image can start inferencing without having to wait for the previous image 

to be forwarded through all layers. This is similar to the operation pipelining that happens in CPUs.  

    To measure the theoretical frames that the developed application could process per second, the 

solution described in Figure 28 was used. In this solution, as soon as one CPU thread from the thread 

pool is available, it copies the data from an input image to a specific array that it sends to the DPU 

requesting inferencing. Then, it waits for the results and writes them to the results array. This means that 

the DPU will receive inference requests before it has finished previous requests. The management of the 

inferences given the DPU available resources is transparent to the application and made available by the 

Vitis-AI Library API through a Graph Runner object. 
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Figure 28. Multi-threaded application architecture. 

 

 

4.3 RESULTS AND ANALYSIS 

    This section is divided into two subsections. The first presents the results relative to the quantization 

of the two targeted models. All quantization methods are contemplated. Model size and accuracy are the 

two metrics considered. QAT plots are also analyzed. The second focuses on the performance and 

efficiency results of the two targeted models on both target boards during inference by leveraging the 

results of the deployed application. More specifically, the average inference FPS and the peak power 

consumption. Comparisons are also drawn with the NVIDIA RTX 3090 GPU. 

 

4.3.1 QUANTIZATION 

    All three quantization methods substantially reduced the model size while retaining the accuracy of the 

baseline float model. All methods achieved the same model size reduction ratio of 4.07 and 3.33 

respectively for the ResNet-18 and SqueezeNet models. Regarding accuracy, in the ResNet-18 model, 

quantized calibration and fast finetuning achieved values withing 0.18% and 0.06% of the baseline 

accuracy. QAT surpassed the baseline accuracy by 1.11%. In the SqueezeNet model, the differences were 

0.56% and 0.71% respectively for the first two methods and an increase of 0.42% with QAT. The results 

are listed in Table 9.  
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Table 9. Vitis-AI quantization accuracy and model size reduction. 

Model Quantization Method Best Accuracy Size (MB) 

 

ResNet-18 

None (Float) 83.67%  45.00 

Quantized Calibration 83.49%    11.04 

Fast Finetuning 83.61% 11.04 

Quantization-Aware Training 84.78%* 11.04 

 

SqueezeNet 

None (Float) 80.20% 2.90 

Quantized Calibration 79.64% 0.87 

Fast Finetuning 79.49% 0.87 

Quantization-Aware Training  80.62%* 0.87 

* Trained for extra 5 epochs 

 

    The models were trained for 5 additional epochs during QAT. As an example, Figure 29 shows the 

training and validation loss curves of the SqueezeNet model during QAT. Contrary to the float model 

validation loss curves during the standard training (figure X), the validation loss keeps decreasing past 

epoch 25. 

 

Figure 29. Quantization-aware training plot of SqueezeNet. 

 

4.3.2 PERFORMANCE AND EFFICIENCY 

    The following results compare the FPS and average power consumption of the deployed application, 

specifically during inference. Refer to 4.1.5 for the complete list of hardware configurations tested. Pre-

processing and post-processing were not considered. The FPS values result from dividing the number of 

frames in the test set (10000) by the total time it took to infer over all images. This procedure was 
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repeated 10 times and the results were averaged. A similar procedure was to calculate the peak power 

consumption. The maximum power consumed during all the 10000 frames’ inferences was saved. The 

procedure was also repeated 10 times and the results were averaged. 

    For each configuration, the FPS and peak power consumption values were calculated for application 

runs with CPU threads varying in the interval [1, 12]. The complete list of the results is available in Table 

29 of Appendix IV. 

 

4.3.2.1 ZYNQ ULTRASCALE+ MPSOC ZCU104 

    Regarding the ZCU104 architectures, and comparing framerates, the b4096 configurations 

outperformed the b1024 and b512 configurations for comparable DPU core counts and CPU thread 

numbers. Furthermore, configurations with a single DPU core only benefited from increasing the number 

of CPU threads up to 2. Configurations featuring 2 DPU cores benefited from an increase of up to 4 

threads. No difference was seen between a hybrid and BRAM-only approach to on-chip memory (green 

and orange lines are approximately superimposed in both plots). The high ram usage in the single DPU 

core b4096 architecture resulted in residual improvement in FPS. These results can be observed by the 

plots in figures Figure 30 and Figure 31. 

 

 

Figure 30. ResNet-18 average inference FPS on all ZCU104 configurations. 
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Figure 31. SqueezeNet average inference FPS on all ZCU104 configurations. 

 

    Figures Figure 32 and Figure 33 show that the power consumption of the configurations was consistent 

with the reported resource usage of each configuration (Table 6) with more resources translating to a 

higher peak power consumption during inference. Also, the peak power consumption increased when the 

number of threads increased. However, in most configurations, this increase was only significant until 2 

or 4 threads. 

 

 

Figure 32. ResNet-18 peak power consumption on all ZCU104 configurations. 
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Figure 33. SqueezeNet peak power consumption on all ZCU104 configurations. 

 

    Combining the information of the two previous measurements, FPS and peak power consumption, it 

is possible to evaluate the performance per Watt of each configuration explored. See figures Figure 34 

and Figure 35. The results closely mimic the FPS plots showing a well-marked superiority of the 2 DPU 

core b4096 configuration. These results also highlight the benefit of using multiple CPU threads which 

are a result of the greater improvements to FPS compared to power consumption when using more CPU 

threads. Again, the improvements were limited to 2 and 4 threads for single DPU core and 2 DPU cores 

configurations, as noted in the FPS results analysis. 
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Figure 34. ResNet-18 performance per Watt on all ZCU104 configurations. 

 

 

Figure 35. SqueezeNet performance per Watt on all ZCU104 configurations. 

 

4.3.2.2 VERSAL ACAP VCK190 

    The same exact measurements were realized for the VCK190 board. Regarding FPS, plots from 

figuresFigure 36 and Figure 37 indicate that the C64B1 configurations clearly improved results compared 

with the C32B1 configuration on the ResNet-18 model. In the SqueezeNet model, the difference in FPS 

is not nearly as significant. Comparing the number of DPU cores of the C64B1 configurations, the 

advantage of using one additional CPU core in the heavier ResNet-18 model is very clear. However, the 
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same is not true for the smaller SqueezeNet model. Similarly to the ZCU104 configurations, additional 

CPU threads improve the performance up to 2 and 4 threads respectively for single DPU core and 2 DPU 

cores configurations.  

 

 

Figure 36. ResNet-18 average inference FPS on all VCK190 configurations. 

 

 

Figure 37. SqueezeNet average FPS on all VCK190 configurations. 

 

    Analogous to the ZCU104 results, the peak power consumption of the VCK190 configurations, visible 

in figures Figure 38 and Figure 39, also increases with the increase in resource usage and CPU threads. 
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Figure 38. ResNet-18 peak power consumption on all VCK190 configurations. 

 

 

Figure 39. SqueezeNet peak power consumption on all VCK190 configurations. 

 

    The performance per Watt plot of the ResNet-18 model shows that all three configurations have similar 

performance per Watt values. However, the situation is far from the same in the SqueezeNet model. The 

C64B1 with 2 DPU cores is significantly less efficient. Refer to figures Figure 40 and Figure 41 for the 

respective plots. 
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Figure 40. ResNet-18 performance per Watt on all VCK190 configurations. 

 

 

Figure 41. SqueezeNet performance per Watt on all VCK190 configurations. 

 

4.3.2.3 ZCU104, VCK190, AND RTX 3090 COMPARISON 

    To further evidence the suitability of Vitis-AI to deploy CNN architectures on the two explored target 

boards, a comparison to the NVIDIA RTX 3090 board was conducted. This comparison also helps to 

frame the achieved results in the literature since most published deep learning works target state-of-the-

art GPUs. The GPU inference was performed in Pytorch with a batch size of 1. Clearly, the RTX3090 will 

be clearly underutilized with a batch size of 1 and low dimensional input. The inclusion of RTX3090 in 

this comparison is to preserve coherence with the next experiment but can also be used to show that 
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GPUs, especially GPUs such as RTX3090, are clearly not the appropriate hardware for low latency 

inferencing applications. As for the target boards, both the least resource intensive and most resource-

intensive configurations and CPU thread number combinations of each board were considered.  

    Regarding FPS values, all but one of the tested configurations surpassed the FPS that the RTX 3090 

achieved. The difference in performance is very noticeable with the ZCU104 reaching up to 2.47x and 

11x the performance of the RTX 3090 in the ResNet-18 and SqueezeNet models respectively. Comparing 

the RTX 3090 with the VCK190, the improvements are 9.34x and 16.44x. (Figure 42). 

 

 

Figure 42. Avg inference FPS of RTX3090, ZCU104 and VCK190. 

 

    More interestingly is that the observed FPS improvements were achieved at much lower power 

consumption. Figure 43 shows that all configurations consumed substantially less power during inference 

when compared with the RTX 3090. 
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Figure 43. Peak power consumptions of RTX3090, ZCU104, and VCK190. 

 

    Consequently, the result is that the performance per watt of the ZCU104 was up to 12x and 47.8x 

superior to the RTX 3090 for the ResNet-18 and SqueezeNet models. For the VCK190, the values were 

15.1x and 26.6x superior respectively, as can be observed in Figure 44. 

 

 

Figure 44. Performance per Watt of RTX3090, ZCU104, and VCK190. 

 

    Finally, it is possible to draw a comparison between the ZCU104 and VCK190 boards. Clearly, with 

more resources, the VCK190 not only achieved higher FPS values but also consumed more power. In the 

ResNet-18 model, the FPS difference between the configuration of the two boards is very large and 

compensates for the higher power consumption of the VCK190 board. For this reason, the performance 

per Watt of the VCK190 board was superior to the ZCU104. However, due to the smaller difference in 

FPS between the two boards’ configurations in the smaller SqueezeNet model, the higher power 
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consumption of the VCK190 translated into a lower performance per Watt of the VCK190 board compared 

with the ZCU104. 

 

4.4 DISCUSSION 

    This section aims to interpret the results and comment on the analysis made in the previous chapter. 

The questions it seeks to answer are related to the suitability of the Vitis-AI tool for the objectives of this 

work. To answer, an evaluation of the results is carried out through comparisons to theoretical values and 

other works highlighted in the literature review. 

    Once again, the discussion is divided into two topics, similar to the structure of the last section.  

 

4.4.1 QUANTIZATION 

    As expected, the model size reduction was close to the ratio of reduction in bit-width, 4. It is important 

to note that to obtain the size of the quantized models, compilation for the target DPU must be performed 

first. As already discussed in 3.4.2.4, the compiler introduces some optimizations such as layer fusion 

that might cause the model size to increase or reduce. This explains why the reduction ratio was not 

exactly 4. 

    Quantization results were very satisfactory with close to no accuracy degradation in the first two 

quantization methods. Better accuracy results were expected from fast finetuning when compared to the 

simpler quantized calibration. This was indeed observed in the ResNet-18 model, but not the SqueezeNet 

model. However, because the differences in accuracy were so small (<0.025%), they become irrelevant. 

It is expected that with more complex datasets which require more complex training and networks, the 

differences become more significant. Finally, QAT outperformed the baseline float model. Again, the 

difference in accuracy was not very large, especially for the SqueezeNet model. 

    Compared to the results found in the literature review, one can clearly be optimistic about the usage 

of Vitis-AI for quantizing deep neural networks. Not only was the ratio of model size reduction close to the 

theoretical value, 4, but the accuracy retention for the quantized calibration and fast finetuning methods 

also achieved results within less than 1% of the accuracy of the baseline float model. Both results are 

comparable to the ones advertised by Nagel, M., et al. work [102], responsible for the algorithm behind 

quantized calibration, and Hubara et al. work [103], responsible for the introduction of the post-training 

quantization algorithm. Regarding QAT, the results of this method even surpassed the model accuracy of 

both baseline float models. However, it is important to keep in mind that this experiment targeted a 
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simpler dataset than, for example, the ImageNet dataset. It might be the case that, even with the noise 

introduced by the quantization processes, the models were still able to retain accuracy because of the 

simplicity of the task they are solving. Hence, it is still necessary to evaluate the quantization methods on 

larger and more complex datasets. Chapter 5 explores a far more challenging dataset. 

 

4.4.2 PERFORMANCE AND EFFICIENCY 

    The performance observed during inference in both target boards, represented by the FPS achieved 

during inference, was more than satisfactory and strengthens the argument for the suitability of Vitis-AI 

to the deployment of fully convolutional architectures. Even more so when allied with the benchmarks 

advertised on the Vitis-AI GitHub page [24]. Furthermore, the developed multi-threaded application was 

shown to increase the performance of all the configurations and can serve as a good starting point for 

future works that want to explore low latency and time resolution. Similarly, the power consumption results 

were also very satisfactory. But more importantly, the capability to easily trade performance with power 

consumption by changing DPU configurations, and the number of CPU threads, is probably the most 

important asset derived from developing such an application using Vitis-AI. Compared with the RTX 3090, 

the power consumption reduction of 6.58x and 6.21x of the ResNet-18 and SqueezeNet models on the 

ZCU104, using the B512 single DPU core configuration with 1 CPU thread, which translates 

approximately into 85% and 84% reductions, compared with the results found in the work of Hashemi, S. 

et al. [112] described in 3.3.2.  

    Finally, there is an interesting observation that requires further attention when considering the 

performance per Watt of the ZCU104 and VCK190. Figure 44 shows that depending on the model, 

different DPUs can become more efficient than others. For the ResNet-18 model, the VCK190 offers a 

better performance per watt on both configurations. For the SqueezeNet model, it is the ZCU104 that 

offers better performance per watt. To understand why this happens it is important to consider the usage 

of the Vitis-AI profiler. By analyzing the load size of feature maps (LdFM), load size of weights and biases 

(LdWB), and store size of feature map (StFM), present in tables Table 10 and Table 11, it can be noted 

that the ResNet-18 requires a lot more weights and biases loads. This is expected due to the larger size 

of the model, 11 MB to 0.87 MB. Because the average off-chip memory bandwidth is considerably lower 

in the ZCU104, the smaller amount of on-chip memory available in the ZCU104 compared with the 

VCK190 might explain the lower performance of the ZCU104. On the other hand, because the 

SqueezeNet model requires such a low amount of loads, the smaller off-chip memory of the ZCU104 is 

not major a bottleneck on the performance. 
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Table 10. ResNet-18 inference DDR memory access information on ZCU104. 

Model Total LdWB (MB) Total LdFM (MB) Total StFM (MB) Avg Bw (MB/s) 

ResNet-18 10.650 0.054 0.030 6446.568 

SqueezeNet 1.333 0.060 0.045 1672.493 

 

Table 11. SqueezeNet inference DDR memory access information on ZCU104. 

Model Total LdWB (MB) Total LdFM (MB) Total StFM (MB) Avg Bw (MB/s) 

ResNet-18 10.662 0.048 0.030 26402.281 

SqueezeNet 0.714 0.024 0.024 6106.555 

 

    The results discussed above are sufficient evidence for the usefulness of Vitis-AI to tackle the remaining 

objectives of this work. Furthermore, Vitis-AI proved useful in abstracting away most complex hardware 

architecture aspects of deployment while still providing a lot of control over resource utilization. This is 

evidenced by the tradeoff that was shown between performance and power consumption. 
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5.1 EXPERIMENT DESCRIPTION 

    The previous experiment served as validation of the suitability of the Vitis-AI tool for the quantization 

and deployment of convolutional neural networks on Xilinx’s FPGAs. Based on the previously discussed 

results, the experiment here described aims to deploy a LiDAR-based deep neural network to perform 

semantic segmentation on point cloud data in real-time. The deep neural network should be deployed on 

a chosen target FPGA. Accuracy metrics, power consumption, model size, and FPS are the key 

performance indicators. 

    The data size of point clouds compared to images, as well as the more exotic architectures that are 

employed when processing 3D data, are expected to be a challenge for the real-time deployment of a 

deep learning model. For these reasons, this experiment aims to further validate the FPGAs' suitability for 

the deployment of 3D computer vision models in real-time applications. 

 

5.1.1 OBJECTIVES 

    The choice of neural network architecture depends on the available hardware support within Vitis-AI. 

For this reason, the first objective is concerned with the choice of the neural network to be deployed. 

Then, because it is unlikely that all model layers are perfectly supported by the targeted DPU, alternatives 

to those layers should be identified, implemented, and benchmarked concerning accuracy metrics, model 

size, and FPS on the GPU. When a baseline supported architecture has been found, further changes in 

the neural network architecture should be benchmarked and evaluated as an accuracy/framerate 

tradeoff. This tradeoff should ensure that the final deployed model can surpass the 10 FPS to comply 

with the LiDAR frame generation frequency of 10 Hz identified in 3.1.  Here, the inference application 

developed in the target FPGA is to be deployed similarly to the last experiment. Besides accuracy and 

inference, power consumption and model size should still be measured for every single change made in 

the baseline architecture to access its advantages and disadvantages. 

 

5.1.2 DATASET 

    To evaluate the model accuracy, the Semantic-KITTI dataset [149] was used. The dataset is partitioned 

into 22 sequences containing between 200 and 5000 frames. Each sequence represents a portion of the 

circuit driven, and consequent frames represent consequent circuit points. The data collection was 



SQUEEZESEGV3 DEPLOYMENT ON AN FPGA 

69 
 

performed across urban areas, rural areas, and highways. Up to 15 cars and 30 pedestrians are captured 

per frame. The frames were captured at a rate of 10 FPS.  

    Sequences 0 to 10 are intended for model training except for sequence 8 which is used for validation. 

All first 11 sequences are densely labeled. Concerning the task at hand, semantic segmentation, each 

point in the point cloud of the first eleven frames is labeled as one of 28 classes. However, only 19 are 

considered during training and evaluation. Figure 45 presents each class and the corresponding number 

of points across all frames. The remaining sequences are reserved for online test benchmarking of model 

submissions. Each point cloud is approximately 2.0MB in size. 

 

 

Figure 45. Semantic-KITTI dataset points class distribution. Retrieved from [150]. 

 

    The choice of the Semantic-KITTI dataset is justified by the number of papers that currently use the 

dataset. This makes this work easier to compare with the current state-of-the-art. Because Semantic-KITTI 

used the mechanical Velodyne HDL-64E LiDAR, it also has a very good resolution compared with other 

3D semantic segmentation capable datasets. Lastly, the dataset also provides the most data out of all 

the explored datasets. Table 12 summarizes all the dataset’s relevant information. 

 

 

 

Table 12. LiDAR-based 3D semantic segmentation capable datasets.  

Dataset Year LiDAR resolution (V x H) #Classes #Points #Papers (2019-2022) * 

Oakland [151] 2009 ? x 0.5° † 5 1.6 M 0 

Paris-rue- 

Madame [152] 

2014 1.33° x 0.1°- 0.4° 17 20 M 0 

IQmulus [153] 2015 0.4° x 0.08°- 0.035° 8 200 M 0 

Paris-Lille-3D [154] 2018 1.33° x 0.1°- 0.4° 50 143.1 M 9 

Semantic-KITTI [150] 2019 0.4° x 0.08°- 0.035° 28 4548 M 183 

Toronto-3D [155] 2020 1.33° x 0.1°- 0.4° 8 78.3 M 10 

* Data from site Papers With Code 

† Data collected using several 2D LiDAR scans 
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5.1.3 EVALUATION METRICS 

    To measure the deep learning model performance on the 3D semantic segmentation task, both 

accuracy and Intersection over Union (IoU) metrics are used (Equation 7). 

Accuracy simply represents the ratio of correctly classified points over all points in the point cloud. 

However, accuracy alone can produce misleading results, especially when averaged over all classes, as 

less represented classes’ results can become irrelevant. A pedestrian that represents only 1% of total 

points in a point cloud can be completely missed and yet have almost no influence on accuracy. 

    IoU quantifies the percent overlap between the predicted labels and the ground truth and is calculated 

per class. It does so by calculating the ratio between the intersection of the predictions with the ground 

truth over the union of the predictions with the ground truth. The fact that a union is used in the 

denominator discourages the models to ignore smaller classes. In the same example of the pedestrian, 

when predicting the pedestrian pixels as belonging to a more represented class, the IoU of the class will 

decrease. This wasn’t the case with accuracy. 

 

 
𝐼𝑜𝑈 =  

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 ∩  𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 ∪  𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ
 

 

(Equation 7) 

 

    IoU solves the problem of the average accuracy by allowing to discriminate which classes are being 

well identified. An average IoU can also be calculated by averaging the results of all classes. Figure 46 

depicts what is the ground truth, prediction, and respective intersections and unions for a 2D image. The 

process for a 3D image is analogous. 
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Figure 46. Intersection and union of ground truth and model predictions. Adapted from [156]. 

 

    In the Semantic-KITTI dataset, it is common practice to measure the average accuracy, the per-class 

IoU, and the average IoU. These are the 3 performance metrics compared in this experiment. 

 

5.1.4 DEEP LEARNING FRAMEWORK 

    In 4.1.3, the widespread adoption of Pytorch was highlighted. To no surprise, the original 

SqueezeSegV3 implementation is also provided by the authors using the Pytorch framework. For this 

reason, Pytorch was a natural choice in the implementation of the neural network used in this experiment, 

as well as model training, quantization, and evaluation. 

 

5.1.5 TARGETED DEEP NEURAL NETWORK 

    SqueezeSegV3-21 is the 21-layer architecture variant of the SqueezeSegV3 model proposed by Xu, C. 

et al [157]. It is designed for efficient and real-time processing of large-scale point clouds such as in 

autonomous driving applications. It is a projection-based architecture. 2.3.3.1 presents a comprehensive 

description of these methods as well as their advantages and disadvantages.  

 

5.1.5.1 SELECTION CRITERIA 

    Being a neural network specifically designed for real-time processing of large-scale point clouds makes 

SqueezeSegV3 a very fitting choice for this work. Furthermore, its projection-based architecture requires 

fewer computations compared with architectures that rely on other representations. Despite these 
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favorable characteristics, the main aspect that drove the choice of this specific neural network was the 

limited support of Vitis-AI for other architectures featuring more exotic layers. Table 13 lists a set of neural 

networks for 3D semantic segmentation, the respective accuracy metrics, and the unsupported 

operations/layers in Vitis-AI. Some of these operations are replaceable by similar operations. However, 

in certain cases, some operations are either irreplaceable or are such a fundamental feature of the 

architecture that their replacement would cause the architecture to lose its identity, e.g., swap 3D 

convolution layers for 2D convolution layers. It is important to note that, depending on the implementation 

and targeted DPUs, there might be more operations that are unsupported in each model. This table only 

gives a broad overview. The only architecture studied with more detail was SqueezeSegV3. Table 30 of 

Appendix V contains a complete list of the SqueezeSegV3-21 architecture layers of the Pytorch 

implementation with the corresponding DPUCVDX8G support for Vitis-AI version 2.0. 

 

Table 13. Vitis-AI unsupported operations of 3D semantic segmentation deep learning models. 

Model Semantic-KITTI Test-set 

mIOU 

Vitis-AI Unsupported Operations 

Cylinder3D [158] 67.8 Conv3D, Deconv3D 

SPVNAS [159] 66.4 Sparse Point-Voxel Convolution 

JS3C-Net [160] 66.0 SparseConv 

KPRNet [161] 63.1 KPConv 

SalsaNext [140] 59.5 - 

SqueezeSegV3* [157] 55.9 Unfold 

*53-layer architecture with K-nearest neighbors post-processing 

 

    From the explored models, SqueezeSegV3 was the option with the best IoU that did not contain any 

irreplaceable unsupported operation. 3D convolution layers, Sparse Convolution layers, and kernel-point 

convolution (KPConv) layers, all unsupported, are also the main operations of the listed architectures. To 

increase the relevancy of this work, SalsaNext was not chosen since Xilinx already provided two 

implementations of this model in Vitis-AI. Lastly, because the unfold operation of SqueezeSegV3 is not 

fundamental to the architecture, it can be replaced. 
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5.1.5.2 MODEL ARCHITECTURE 

    As a preprocessing step, the 3D point cloud is first projected into a spherical surface creating a 2D 

grid representation of the LiDAR data. The 3D coordinates of each point before the projection are used 

as features of the same point when projected into a 2D pixel. The projection operation is realized using  

(Equation 8), where (𝑝, 𝑞) are the resulting 2D grid coordinates or pixels, (ℎ, 𝑤) are the height and 

width of the 2D grid, 𝑓 =  𝑓𝑢𝑝  +  𝑓𝑑𝑜𝑤𝑛 is the vertical field of view of the LiDAR sensor and 𝑟 =

𝑠𝑞𝑟𝑡(𝑥2 + 𝑦2 + 𝑧2) is the range of each point in the point cloud.  

 

 
[
𝑝
𝑞]  =  [

1

2
(1 − 𝑎𝑟𝑐𝑡𝑎𝑛(𝑦, 𝑥)/𝜋)  ∙  𝑤

(1 − (𝑎𝑟𝑐𝑠𝑖𝑛(𝑧 ∙ 𝑟−1) + 𝑓𝑢𝑝)  ∙  𝑓
−1)  ∙  ℎ

] 

 

 

(Equation 8) 

 

    In the SqueezeSegV3 implementation used in this work, the values for (ℎ, 𝑤), 𝑓𝑢𝑝 and 𝑓𝑑𝑜𝑤𝑛 are (64, 

2048), 3, and -25 respectively. If multiple points are projected to the same pixel on the 2D grid, the point 

with the highest range remains. The values of 𝑥, 𝑦, 𝑧, 𝑟, and intensity are used as features of the resulting 

pixel, similar to the RGB values of 2D images. 

    The network architecture is similar to RangeNet++ [162]. However, the standard convolution 

operations present in the RangeNet++ architecture are replaced by Spatially Adaptive Convolution (SAC) 

blocks. This change aims to tackle the problem of spatially varying distribution caused by spherical 

projection. Unlike 2D RGB images, where the RGB feature distribution at different locations is rather 

similar when projecting the point cloud, the distribution at different locations is drastically different. For 

example, along the height dimension, points projected to the top of the 2D grid have higher z-values than 

the ones projected to the bottom. This spatially varying distribution can degrade the performance of 

convolution operations. 

    SqueezeSegV3  follows an encoder-decoder architecture. In the encoding phase, the 21-layer variant 

of the SqueezeSegV3 network contains 5 encoder blocks, each containing two convolution layers. The 

first convolution layer is replaced by an SAC block. As depicted in Figure 47, the coordinate map, 

containing the 𝑥, 𝑦, 𝑎𝑛𝑑 𝑧 features of the original points, is processed by a 7x7 convolution layer. The 

input features tensor, containing all features (𝑥, 𝑦, 𝑧, 𝑟 and 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦), is unfolded. Both feature maps 

are then multiplied together and finally passed through two convolution layers with 1x1 and 3x3 kernels 

each. The resulting feature maps are then added to the original input features tensor. S simplifies (ℎ, 𝑤) 

and I is 5. 
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Figure 47. SqueezeSegV3 model’s SAC block. Adapted from [157]. 

 

    In the decoding phase, the feature maps are up sampled by transposed convolution layers. Standard 

2D convolution layers are also used to refine the reconstruction of the projection. Residual connections 

are used between the feature maps of the encoding layers and the decoding layers. This allows the 

addition of the feature maps of the encoders to the feature maps of the decoders, recovering high-

frequency edge information that gets lost during the down sampling process. Figure 48 illustrates the 

architecture and the data pipeline containing pre and post-processing of the data during the training of 

the SqueezeSegV3 model. Lastly, the projected predictions can be restored by applying the inverse 

process of the projection to the spherical surface. 

 

 

Figure 48. SqueezeSegV3 model architecture with pre and post-processing. Adapted from [157]. 
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5.1.6 TARGETED HARDWARE 

    Unfortunately, the DPUCZDX8G is unable to support element-wise multiplication and addition of the 

feature maps in the SAC blocks. Because this operation is at the core of the SqueezeSegV3-21 

architecture, and there is no trivial substitute, the DPUCZDX8G was abandoned in this experiment. Vitis-

AI does support offloading unsupported DPU operations to the target CPU. However, a benchmark 

realized in this work featuring another segmentation model, PointPillars, showed that the performance 

degradation of this approach was very significant. Table 14 briefly summarizes the results. 

 

Table 14. PointPillars inference latency comparison between partial and complete DPU support. 

Model DPU support ZCU 104 inference (ms) 

 

PointPillars 

Complete 5 

  

Partial 4593 

 

    The DPUCVDX8G provides support for element-wise multiplication, but not all layers of SqueezeSegV3 

are readily supported by this DPU. However, contrarily to the element-wise multiplication, the remaining 

unsupported operations can be replaced. A complete list of all layers, respective parameters, and DPU 

support of the Pytorch implementation of the SqueezeSegV3-21 architecture used in this experiment can 

be consulted in Table 30 of Appendix V. 

    In summary, only the DPUCVDX8G was targeted in this experiment due to the limitations of the 

DPUCZDX8G. Another possible solution could have been to select another model. However, this would 

further enlarge the distance of the selected model to the current state-of-the-art models in the literature. 

SqueezeSegV3 is a good compromise in terms of support in Vitis-AI - can be deployed in the DPUCVDX8G 

– and the proximity to the current best models in the literature for 3D semantic segmentation. 

 

5.2 IMPLEMENTATION 

    Most work developed in the previous experiment applies to the implementation steps of this 

experiment. However, unlike in the ResNet-18 and SqueezeNet cases, the model cannot be deployed as 

it is. Several architectural changes need to be performed first. Furthermore, the training and quantization 

process of the resulting model, already considerably more time-consuming due to the substantially larger 

dataset, becomes an iterative process due to the recurrent changes in the model architecture. In other 
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words, most of the developed work in this experiment focuses on the neural network architecture rather 

than the tools to deploy the resulting models. 

 

5.2.1 ARCHITECTURAL CHANGES 

    Several architectural changes were made to the original SqueezeSegV3 model. The reasons lie in the 

necessity to adapt the model for the target hardware and performance, namely size, frame rate, and 

power consumption. 

 

5.2.1.1 DPU SUPPORT-DRIVEN CHANGES 

    The prebuilt DPUs made available by Xilinx support a wide range of neural network layers with a large 

set of parameter combinations. Furthermore, the suitability of both DPUCZDX8G and DPUCVDX8G for 

supporting convolutional architectures was evidenced by the previous experiment.  

    Although a convolutional architecture, SqueezeSegV3 features layers that are not supported by the 

targeted DPUs. For this reason, it was necessary to perform architectural changes in the network to make 

the model deployable to the targeted hardware. A detailed list of all the supported operations of 

DPUCZDX8G and DPUCVDX8G for Vitis-AI version 2.0, as well as the corresponding Pytorch layers, can 

be consulted in Table 27 and Table 28 of Appendix III. 

    The first architectural change was the substitution of the torch.nn.functional.unfold layer by a 2D 

convolution layer. Because the unfold layer (commonly known as im2col) is lightweight when compared 

to a 2D convolution layer, the kernel size used was 1. Another important aspect to consider is that the 

convolution layer is a trainable layer, meaning that it contains parameters. Consequently, unlike the unfold 

operation, the 2D convolution layer also increases the model memory footprint during training and most 

importantly during inference. To reduce the computation overhead of this replacement, the kernel size 

chosen was also 1. Following, all occurrences of the sigmoid activation function had to be replaced by 

hard sigmoid activations. An advantage of using the hard sigmoid is that it can be computed more 

efficiently than the regular sigmoid since, by being a composition of linear functions, it avoids the 

calculation of the exponent. Figure 49 shows a plot of both activations. 
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Figure 49. Sigmoid and hard-sigmoid activation functions. 

 

    The last change performed contemplated the torch.nn.functional.upsample_bilinear layer. This layer 

was responsible for reducing the width of the feature map by half. Again, the solution consisted in the 

usage of a 2D convolution layer, using double the stride in the width dimension. Because the number of 

input and output channels is 3 (𝑥, 𝑦 , 𝑧 features), this convolution operation is very inexpensive and so 

the replacement presents no overhead in performance. In fact, the 3 instances of this Conv2D are the 3 

least expensive layers by average time, with averages of 0.26 ms, 0.16 ms, and 0.12 ms. The complete 

list of layers and respective average times is present in Table 33 of Appendix VI. Table 33 contains 

alterations that are described in the next section. Similarly to the first 2D convolution layer, a kernel size 

of 1 was also adopted. Table 15 summarizes all the DPU support-driven architectural changes.  

 

Table 15. SqueezeSegV3 support-driven architectural changes. 

Original layer Parameters Replacement layer Parameters 

Unfold Kernel size = 3 Conv2D In channels = variable 

 Padding = 1  Out channels = variable 

   Kernel size = 1 

   Padding = 0 

Sigmoid - Hard sigmoid - 

Upsample_bilinear Size = [cm_h, cm_w//2] † Conv2D In channels = 3 

   Out channels = 3 

   Kernel size = 1 

   Stride = (1, 2) 

   Padding = 0 

*cm_[h/w] = coordinate map height/width 

† // operator is floor division 
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5.2.1.2 PERFORMANCE-DRIVEN CHANGES 

    Table 16 lists the 4 most time-consuming layers of the model based on the average time it takes to 

compute each layer during inference. The results refer to an application running on the VCK190 C64B1-

2CU configuration using 1 CPU thread, similar to the previous chapter. Again, Table 33 of Appendix VI 

contains the complete list of layers and respective average times.  

    All the layers in Table 16 are similar convolution layers that occur in the backbone, more specifically 

in the SAC Blocks of the encoder. They correspond to nearly a third of all the computation time during 

inference. Hence, these are all good candidate layers to be focused on in order to extract better 

performance. It is also relevant to note that, when considering the number of occurrences of each of the 

4 layers, the total size of parameters is 7.8 MB, corresponding to almost 18% of the model size. This 

further increases the relevance of these layers. 

 

Table 16. Top 4 most time-consuming layers during inference. 

Location Layer Occurrences Parameters Parameter 

Size (MB) 

Average 

Inference 

Time (ms) 

Backbone/Encoder3/SACBlock Conv2D 2 In channels = 3 

Out channels = 1152 

Kernel size = 7 

Padding = 3 

1.30 10.57 

Backbone/Encoder2/SACBlock Conv2D 1 In channels = 3 

Out channels = 576 

Kernel size = 7 

Padding = 3 

1.30 9.50 

Backbone/Encoder5/SACBlock Conv2D 1 In channels = 3 

Out channels = 2304 

Kernel size = 7 

Padding = 3 

1.30 8.63 

Backbone/Encoder4/SACBlock Conv2D 2 In channels = 3 

Out channels = 2304 

Kernel size = 7 

Padding = 3 

1.30 8.63 

 

    Table 17 shows all 3 variants of the abovementioned 4 Conv2D layers with their respective parameter 

and FLOPS count. Note that every SAC block contains one instance of this Conv2D. The data corresponds 
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to the 2D convolution layers of the SAC block of encoder 5. As can be observed in the table, there is a 

potential to reduce the model size by decreasing the listed convolution layers by 80% and 97% respectively 

using a kernel size of 3 and 1. The reduction in GFLOPS is 82% and 98% respectively. 

    All three variations were explored during this experiment. 

 

Table 17. SAC block's convolution kernel size comparison. 

Input Size  

(N, C, H, W) 

In 

Channels 

Out 

Channels 

Kernel 

Size 

Padding # 

Parameters 

Parameter 

Size (MB) 

GFLOPS 

   7 3 341k 1.36 5.55 

1 x 3 x 64 x 256 3 2304 3 1 64.5K 0.26 1.02 

   1 0 9K 0.04 0.11 

 

    Besides reducing a single layer’s computation cost and size, it is also possible to reduce the number 

of layers altogether. One of the explored approaches consisted in removing the encoders 4 and 5, which 

correspond to 67% of the original model’s total number of floating-point operations. 

    Lastly, a small architectural change that can be realized only at inference time is the removal of all but 

the 5th prediction head. Since the other 4 additional heads are used to compute a multi-layer loss and 

their outputs are ignored at inference time, they can be removed to save memory and computation. This 

was applied to all variants of models explored in this experiment. Table 18. SqueezeSegV3-21 model 

variants experimented. summarizes all models considered for deployment during this experiment, the 

respective combinations of support-driven changes, model size, and GFLOPS. It also contains the 

SqueezeSegV3 model from the original paper for comparison. 

 

Table 18. SqueezeSegV3-21 model variants experimented. 

Model designation SACBlock Conv2d kernel Encoders 4, 5 Model Size (MB) GFLOPS 

Original N/A Yes 36 198 

SSGV321-K7 7 Yes 44  241 

SSGV321-K3 3 Yes 40  209 

SSGV321-K1 1 Yes 39  202 

SSGV321-K1N45 1 No 17.6 77.14 
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5.2.2 FLOAT MODEL TRAINING 

    All experimented models were trained for 72 epochs. The SGD optimizer was used with an initial 

learning rate of 10−3, a momentum of 0.9 and a weight decay of 10−4. A learning rate warmup was 

also performed for 1 epoch with a learning rate decay of 0.995. Due to memory limitations, the batch 

size used was 2. Similarly to the SqueezeSegV3, the loss function used was a multi-layer cross-entropy 

loss. Each of the five decoders of the model had a prediction head consisting of a dropout layer and a 2D 

convolution layer. The outputs of these prediction heads were used as multiple outputs of the network to 

calculate the loss. The authors of SqueezeSegV3 defend that these “intermediate supervisions” guided 

the model to form features with more semantic meaning and helped mitigate vanishing gradients. The 

loss is described by the following equation: 

 

 
𝐿𝑜𝑠𝑠 =  ∑

− ∑ ∑ 𝑤𝑐 ∙ 𝑦𝑐 ∙ 𝑙𝑜𝑔(�̂�𝑐)
𝐶
𝑐=1𝐻𝑖,𝑊𝑖

𝐻𝑖 × 𝑊𝑖

5

𝑖=1

 

 

 

(Equation 9) 

 

where 𝑤𝑐  =  
1

𝑙𝑜𝑔(𝑓𝑐+𝜀)
 is a normalization factor, 𝑓𝑐 represents the frequency of class 𝑐. 𝐻𝑖 ,𝑊𝑖 are the 

height and width of the output of the 𝑖-th prediction head, 𝑦𝑐 is the prediction for the 𝑐-th class in each 

pixel and �̂�𝑐 is the corresponding label. 

    The training plots of the original and SSGV321-K3 models are depicted in figures Figure 50 through 

Figure 53. Figure 50 shows the accuracy and IoU plots of the original paper’s implementation of the 

SqueezeSegV3-21 model. Both the accuracy and IoU are evaluated in the train and validation sets. 
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Figure 50. SqueezeSegV3-21 original model training: validation accuracies and IoUs. 

 

Figure 51 shows the training loss of the original SqueezeSegV3-21 model. 

 

Figure 51. SqueezeSegV3-21 original model training: training set loss. 

 

    The next two figures are similar plots but for the SSGV321-K3 model. 
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Figure 52. SSGV321-K3 model training: validation accuracies and IoUs. 

 

 

Figure 53. SSGV321-K3 model training: training set loss. 

 

 

    Similar training plots of the SSGV321-K1 and SSGV321-K1N45 models are available in Figure 66 

through Figure 69 of Appendix VI. 

    One can see that, although models were trained for 72 epochs, there could still be room for 

improvement since the accuracy and IoU metrics seem to still be improving at the last epochs. From the 

results advertised by the original SqueezeSegV3 paper, it is known that this is the case at least for the 

original model. To validate this hypothesis for SSGV321-K3, the model was also trained for 100 epochs. 
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The choice of training the SSGV321-K3 model over SSGV321-K7 becomes obvious later when the 

framerate results are presented. Figure 54 and Figure 55 show the accuracy and IoU as well as the 

training loss of the SSGV321-K3 model trained for 100 epochs.  

 

 

Figure 54. SSGV321-K3 model training: validation accuracies and IoUs (100 epochs training). 

 

 

Figure 55. SSGV321-K3 model training: training set loss (100 epochs training). 

 

    As can be noted, there is a very slight improvement in the accuracy and IoU. However, for the rest of 

the experiment, and for comparison reasons, all models will be quantized using the float models trained 

for 72 epochs. The main reason is the lack of sufficient resources to train all models for 100 epochs. 

Nevertheless, this is still an interesting result that opens the possibility to improve the final results of this 
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work in terms of accuracy and IoU. For these reasons, the detailed results and comparison of the accuracy 

and IoU of the SSGV321-K3 model trained for 100 epochs with the same model trained for 72 epochs 

can be consulted in tables Table 34 and Table 35 of Appendix VI. 

 

5.2.3 MODEL QUANTIZATION 

    The previous experiment compared all three available quantization methods in terms of model 

accuracy. The results of 4.3.1 allowed to conclude that QAT is the superior method with no drawbacks in 

terms of model size. However, it is also the costliest of all the methods. Unlike ResNet-18 and SqueezeNet 

models using the CIFAR-10 dataset, the training process of the SqueezeSegV3 model using the Semantic-

KITTI dataset was extremely time-consuming on the available hardware. For the above reasons, QAT was 

not performed in this experiment. 

 

5.2.4 DEPLOYMENT ON TARGET HARDWARE 

    All the experimented models were compiled for the DPUCVDX8G. Again, the models were sent via SCP 

to the target Versal ACAP VCK190 board. The deployment of the SqueezeSegV3 model was realized with 

the same single-threaded and multi-threaded application used to deploy the ResNet-18 and SqueezeNet 

models. The same application architecture, used in the last experiment, was adopted in this experiment. 

Figure 28 illustrates the application architecture. This means that the batch size used was 1 and that 

single inference and pipelined inference were both available. The only change to the previous experiment 

was that pre and post-processing of the data were not contemplated in the application. 

    To further illustrate the whole implementation process, Figure 56 presents a flowchart with all the 

steps from architectural changes to the model deployment. 
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Figure 56. Model deployment flowchart. 

 

5.3 RESULTS AND ANALYSIS 

    Again, this section is divided into two subsections. The first presents the results relative to the 

quantization of the SqueezeSegV3-21 model variations. Accuracy, IoU, and model size are the 3 metrics 

considered. The second focuses on the performance and efficiency results of the targeted models during 

inference, assessing both the average inference FPS and the peak power consumption. For comparison, 

the NVIDIA RTX 3090 GPU is used. 

 

5.3.1 QUANTIZATION 

     The quantization methods experimented were quantized calibration and fast finetuning. The average 

accuracy and average IoUs of all experiments are listed in Table 19. Per-class IoU of all the models can 

be consulted in Table 31 of Appendix VI. The “original” model was obtained from the original 

implementation of the SqueezeSegV3 paper. Hence, it contains no modification related to DPU-support 

or performance. The results show an accuracy and IoU difference of 0.7 and 1.5 points respectively from 

the baseline model to the SSGV321-K7 model. However, this loss does not correspond to accuracy since 
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it is related to the necessary DPU support-driven modifications. Quantization-wise, the results show that 

accuracy degradation is in the range of 2.8% to 4.4% when applying quantized calibration but falls to the 

1% to 2.3% interval by leveraging fast-finetuning. Regarding IoU, a similar reduction is noticed. The 

intervals are of 1.4 to 3.1 and 1.1 to 2.6 points respectively. 

 

Table 19. Quantization results of SqueezeSegV3-21 model variants. 

Model Float model (72 epochs) Quantized Calibration Fast finetuning 

 Avg Acc Avg IoU Avg Acc Avg IoU Avg Acc Avg IoU 

Original  0.870 0.460 N/A N/A N/A N/A 

SSGV321-K7 0.865 0.450 0.837 0.436 0.855 0.438 

SSGV321-K3 0.862 0.439 0.834 0.421 0.851 0.428 

SSGV321-K1 0.863 0.445 0.832 0.430 0.853 0.431 

SSGV321-K7N45 0.859 0.427 0.815 0.396 0.836  0.401 

*Model not supported by Vitis-AI v2.0 

 

    The reduction ratios of the models were within the 2.10 to 2.75 interval. The quantized models were 

subject to compilation and consequent compiler optimizations and other internal alterations that allow 

the model to be deployed on the VCK190. Hence, the sizes listed in Table 20 are subject to the file format 

of the compiled model, the “.xmodel” format.  

 

Table 20. Model size reduction after quantization. 

Model Model Size (MB) Reduction Ratio 

 Float Quantized  

SSGV321-K7 44 21 2.10 

SSGV321-K3 40 14 2.86 

SSGV321-K1 39 N/A N/A 

SSGV321-K1N45 17.6 6.4 2.75 

 

5.3.2 PERFORMANCE AND EFFICIENCY 

    Similarly to chapter 4, the performance and efficiency results focused on the framerate and peak power 

consumption of the models. Both the framerate and peak power consumption measurement procedures 

are similar to the ones described in section 4.3.2. 

    Given the results from the last experiment, the thread number only varied in the [1, 4] interval. 

Unfortunately, the SSGV321-K1 model was not compatible with version 2.0 of Vitis-AI, and hence it was 
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discarded. The incompatibility is not trivial and is related to the internals of the compiler. Nevertheless, 

the variant without the encoders 4 and 5 was deployed without problems. The complete list of results for 

each model can be consulted in Table 32 of Appendix VI. 

    Figure 57 shows the FPS of the SSGV321-K7 model during inference. Similarly to the results in chapter 

4, the FPS improved with the number of threads up to 2 and 4 threads respectively when using a single 

DPU core and 2 DPU core configuration. This trend extends across all configurations and models. Albeit 

very close, the SSGV321-K7 model did not achieve the desired 10 FPS. 

 

 

Figure 57. SSGV321-K7 average inference FPS on all VCK190 configurations. 

 

    Regarding threaded performance, the results for the SSGV321-K3 model were similar to the previous 

model. However, this model did achieve a framerate of 11.17 when using the C64B1x2 configuration and 

4 CPU threads (Figure 58). 
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Figure 58. SSGV321-K3 average inference FPS on all VCK190 configurations. 

 

    The considerably smaller, and computationally less intensive, SSGV321-K1N45 model exhibited the 

same patter when varying the number of threads. However, this time, the performance was substantially 

better, with a maximum of 18.92 FPS, as can be observed in Figure 59. 
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Figure 59. SSGV321-K1N45 average inference FPS on all VCK190 configurations. 

 

    FPS values were also substantially bigger in the GPU when compared with the C64B1x2 configuration 

across all 3 models. The results are listed below in Table 21. SSGV3-21 models framerate comparison 

between RTX3090 and C64B1x2.. GFLOPS and GOP/s are also included. Note that the GOP/s refers to 

the number of giga-operations each second computed in the FPGA and should not be confused with the 

GFLOPS of the float models, since operations on the FPGA are operating on quantized values. Also, the 

computation of each layer differs from the GPU to the FPGA and so the GOPS estimation depends on the 

hardware. The GOP/s values are extracted directly from Vitis-AI profiler. 

 

Table 21. SSGV3-21 models framerate comparison between RTX3090 and C64B1x2. 

Model                                        FPS 

 RTX 3090 C64B1x2 - 4 CPU threads 

SSGV321-K7 19.93 9.83 

SSGV321-K3 21.91 11.17 

SSGV321-K1N45 36.50 18.92 
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    The power consumption of the models was also proportional to their size, as expected. It was also 

proportional to the size of the configuration and the number of CPU threads. Figure 60 shows the peak 

power consumption of the SSGV321-K7 model on the 3 targeted VCK190 configurations. 

 

 

Figure 60. SSGV321-K7 peak power consumption on all VCK190 configurations. 

 

    Table 22 shows the power consumption of some configurations, namely the configurations that 

surpassed the 10 FPS performance. The smaller SSGV321-K1N45 model consumed approximately less 

2.5 Watts than the SSGV321-K3 model, a negligible amount. Also, the peak power consumption did not 

increase substantially from 2 to 4 threads. 
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Table 22. C64B1x2 peak power consumption on all SqueezeSegV3-21 model variants. 

Model Configuration # Threads Peak Power Consumption (Watts) 

SSGV321-K3 C64B1x2 2 78.08 

SSGV321-K3 C64B1x2 4 78.30 

SSGV321-K1N45 C64B1x2 2 75.57 

SSGV321-K1N45 C64B1x2 4 76.15 

  

    Comparatively, the power consumption of the RTX 3090 GPU for the SSGV321-K3 and SSGV321-

K1N45 models was 365.17 Watts and 228.13 Watts respectively. 

    The performance per watt of each of the 3 models for the set of the 7 most representative 

configurations, as well as in the RTX 3090 GPU, is present in Figure 61. The results show that the overall 

performance per Watt slightly increased from the SSGV321-K7 to the SSGV321-K3 model. A more 

noticeable increase was noted in the SSGV321-K1N45 model with an approximately 1-7x to 1.8x increase 

in the C64B1x2 configuration compared with its single DPU core counterpart. The C64B1x2 configuration 

was the most efficient across all models. Nevertheless, the performance per Watt values are 2 orders of 

magnitude smaller than the values observed in the ResNet-18 model of the previous chapter.  

    Regarding the RTX 3090 performance, all VCK190 configurations achieved better efficiency except for 

the smaller model, where only the C64B1x2 configuration was superior when using 2 and 4 CPU threads. 

 

 

Figure 61. Performance per Watt of RTX3090 and VCK190. 

 

5.3.3 QUALITATIVE 

    Qualitatively, it is possible to gain additional insights into the accuracy of the models. Figure 62 

compares the semantic segmented point clouds of different models. The top left point cloud corresponds 

to the LiDAR point cloud labeled with the ground truth. On its right, the labeled point cloud corresponds 
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to the predictions of the original SqueezeSegV3 paper model. The SSGV321-K3 and SSGV321-K1N45 

predictions result from running the models on the VCK190. The SSGV321-K7 model, with better results, 

was not considered because it did not achieve the necessary framerate to sustain the data rate from a 

10 Hz LiDAR. From this figure, one can see that the labeling happens across all 360° horizontally. Some 

artifacts can be noted near the vegetation area in all the predictions, including the original paper model. 

The mislabeling appears to be more severe in the SSGV321-K1N45 model (big red area), as expected 

because of the lower accuracy and IoU. 

 

 

Figure 62. Semantic-KITTI semantic segmented point clouds. Ground-truth and predictions comparison. 

 

    Figure 63 allows closer inspection, as well as comparison with the corresponding camera image. The 

white bounding boxes delimit the zones where mislabeling happens. The number of mislabeling is higher 

in the SSGV321-K1N45, as expected. Nevertheless, all models mistake some areas. For example, some 
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trunks are mistaken for poles, the bicyclists’ shadows are misrepresented as additional bicyclists, and a 

traffic sign is missed in all 3 models’ predictions. 

 

 

Figure 63. Detailed semantic segmented point clouds predictions. Comparison with ground-truth and camera-view. 

 

5.4 DISCUSSION 

    Similarly to the previous chapter’s discussion, here the aim is to interpret the findings and offer 

commentary on the previous section’s results. More so, the contributions of this work are also put into 

perspective by being compared with similar works in the literature. 

 

5.4.1 QUANTIZATION 

    The first important observation that can be made about the quantization results is that the fast-

finetuning method outperformed quantized calibration. These results are consistent with the results in 
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the first experiment. It is also clear that the accuracy degradation increases slightly in comparison with 

the ResNet-18 and SqueezeNet results. However, both the model and the dataset are vastly more 

complex. Nevertheless, leveraging the fast-finetuning method allows for accuracy degradations in the 1% 

to 2.3% interval. Although the literature on 3D computer vision models implemented on FPGAs is still in 

its infancy, it is possible to draw a comparison between two existing works. The ChipNet FPGA 

implementation exhibits degradation in the evaluation metrics (F1, Average Precision, Precision, Recall, 

FPR, and FNR) when quantizing to 12-bits. The quantization was not performed with a bit-width below 

12. The degradation in average precision, for example, is 1.7%. All other metrics also suffered degradation 

due to quantization. The perception task being solved was also segmentation, but only of the drivable 

region. The VoxelNet implementation on FPGA also exhibits degradation in evaluation metrics such as F1 

and average precision. The results show that for a 12-bit-width quantization, the average precision 

decreased by 5.8% and 9.05% in the F1 metric [126]. The other close work did not list the evaluation 

metrics degradation with quantization [21]. 

    Regarding model size reduction, none of the above works mentions the ratio of reduction. Nevertheless, 

it is possible to draw a comparison with the results from the previous experiment. The model size 

reductions were smaller than the observed in chapter 4. The model size reduction ratios of ResNet-18 

and SqueezeNet were 4.07 and 3.33. These results already indicated that substantial differences in ratios 

were possible to occur with different models. The same happens with the SSGV321 model variants. 

Nevertheless, it cannot be ignored that a reduction ratio equivalent to the theoretical value of 4 is not 

guaranteed for all models and is highly dependent on the model architecture and size. More so, even for 

very similar models, the reduction can differ substantially. Again, the difference in model size to the 

theoretically expected value could be further aggravated by the internal compiler optimizations. Also, 

quantization parameters are expected to also contribute to the size of the quantized models. 

 

5.4.2 PERFORMANCE AND EFFICIENCY 

    The adopted approach of benchmarking different configurations showed once more the suitability of 

Vitis-AI to perform design space exploration. This was evidenced by the capability to perform changes to 

the SSGV321 network layers, compile the model, and test the framerate and peak power consumption of 

the network on different target configurations and a variable number of CPU threads. Ultimately, this 

back-and-forth exploration for solutions resulted in 2 models that achieved the desired framerate of 10 

Hz. The two models can be deployed to run in a real-time scenario for most of the LiDAR sensors in the 

market. 
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    The performance per Watt of the application was once again superior in the VCK190 when compared 

to the RTX 3090 GPU, on all the 3 models experimented with when considering the C64B1x2 

configuration with 2 CPU threads. However, contrarily to chapter 4 where the FPS values were higher and 

the peak power consumption lower, this time the FPS values were lower in the VCK190. The superior 

performance per Watt is a consequence of the lower power consumption – 4.67x and 3.18x lower peak 

power consumption of the C64B1x2 configuration with 2CPU threads compared with the RTX 3090. 

There is not a single explanation for why the RTX 3090 outperforms the VCK190 in framerate since both 

memory accesses and computations of each layer can play a big role. Nevertheless, one of the possible 

factors might be related to the high quantity of data reads and stores in the DDR memory in the VCK190. 

Because the DDR memory is itself limited to 8 GB in the VCK190, main memory accesses might be a 

cause for the bottleneck. Evidently the same could be happening in the RTX 3090 GPU. However, the 

GPU contains a 24 GB DDR memory that withstands more of the weights, biases, and feature maps data 

reducing the access to the main memory. Table 23 summarizes the DDR memory accesses of both the 

SGV321-K3 and SGV321-K1N45 on the VCK190. LdWB, LdFM, Total StFM, and Avg Bw correspond 

respectively to the load size of feature maps, load size of weights and biases, store size of feature maps 

and the average bandwidth in the access to the DDR memory. Indeed, the amount of memory accesses 

is vastly superior in these 2 models when compared with the ResNet-18 and SqueezeNet models from 

the last experiment. 

 

Table 23. SSGV321-K3 and SSGV321-K1N45 inference DDR memory access information on VCK190. 

Model Total LdWB (MB) Total LdFM (MB) Total StFM (MB) Avg Bw (MB/s) 

SSGV321-K3 10.75 975.35 914.78 11122.57 

SSGV321-K1N45 4.36 614.87 566.78 11062.45 

 

5.4.3 QUALITATIVE 

    The visualizations show that there are indeed noticeable artifacts in the point clouds related to miss 

classification of points. This is visible across all models’ predictions and is more noticeable for models 

with the worse accuracies and IoU. Nevertheless, one can confirm that the networks indeed learned to 

correctly classify harder classes such as cars, bicyclists, and traffic signs and not only the more abundant 

road, sidewalk, and vegetation. It also becomes clear that there is still room for improvement in the 3D 

computer vision model architectures that tackle semantic segmentation in LiDAR point clouds. However, 
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it is also important to remember that there are other models besides SqueezeSegV3 that, although not 

currently supported in Vitis-AI (see 5.1.5.1), achieve better accuracy and IoU scores. 

     The visualizations show that the deployed models perform real-time semantic segmentation of the 

complete point-clouds. This is an important but often missed aspect of similar works. Table 24 lists similar 

works that focus on the FPGA implementation of 3D computer vision models using LiDAR point clouds. 

As evidenced by the below data, the other similar works identified either do not use all the point cloud 

data, do not implement the complete network in the FPGA, or use smaller frames. Having all 3 of these 

aspects and still achieving real-time performance is a strength of the achieved results. 

 

Table 24. Comparison with similar works. 

Model Complete Point Cloud Usage # Points per Frame Complete Network in FPGA 

ChipNet ✕ Not specified ✓ 

VoxelNet ✓* 120k-125k ✕ 

PointNet ✓ 4k ✓ 

This work ✓ 120k-125k ✓ 

*Depends on the class being detected 
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6.1 SYNOPSYS 

    This work proposed a hardware-software co-design approach for the deployment of the LiDAR-based 

3D deep neural network, SqueezeSegV3, on Xilinx’s Versal ACAP VCK190. Leveraging Vitis-AI, an 

inferencing application was developed allowing a real-time performance whose framerate surpassed 10 

Hz, enabling the application to withstand the data rate of most commercially available LiDAR sensors, 

while solving the semantic segmentation task on the complete 360° point clouds of the Semantic-KITTI 

dataset. To achieve this, the first step consisted of the validation of the suitability of Vitis-AI for developing 

an inference application on an FPGA. A thorough exploration of Vitis-AI was first conducted to evaluate 

the capabilities of the tools available from float model quantization to the final deployment. To do so, the 

development of a multi-threaded application with real-time performance for the inference of both ResNet-

18 and SqueezeNet was executed. Then, a meticulous benchmarking of the developed application, 

focusing on framerate and power consumption, allowed to identify the possible accuracy/efficiency trade-

off opportunities. The developed application was tested on FPGAs, namely the Zynq Ultrascale+ MPSoC 

ZCU104 and the Versal ACAP VCK190. The results of this first experiment showed that the quantization 

tools allowed for significant model size reduction with little to no accuracy degradation. Regarding 

performance, the deployed application achieved real-time performance, with framerates in the thousands, 

while consuming very low power consumption. When comparing performance per Watt with the RTX 

3090, both FPGAs produced overwhelmingly better results. These results proved enough to prove the 

suitability of Vitis-AI. Consequently, all the validated tools and the application developed in the first 

experiment were used very similarly to implement SqueezeSegV3 on the Versal ACAP VCK190. 

 

6.2 MAIN CONTRIBUTIONS 

    In no particular order, the main contributions of this work were: 

 

• Complete implementation of a LiDAR-based neural network implementation on an 

FPGA. Some works only implement part of the layers of a neural network in the FPGA. The 

complete implementation allows accelerating an inference application completely on the FPGA 

avoiding data transfers that introduce latency and power consumption. Also, FPGA 

implementations of deep neural networks are still a relatively small, but very promising, research 

area, especially with 3D computer vison models.  
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• Inference over large LiDAR point clouds with a 360° field of view in real-time. LiDAR 

point clouds with higher resolutions result in better results but are also bigger. ADAS have to be 

capable of computing inference over such point clouds in real-time. The developed application 

serves as a proof of concept for such use cases and is capable of supporting all the 10 Hz LiDAR 

sensors. 

• Usage of the Versal ACAP VCK190. The VCK190 is underexplored in the literature. To the 

best of this thesis author’s knowledge, this is the first implementation of a 3D computer vision 

model on the VCK190 (except for Xilinx’s own Model Zoo) that is publicly available. In fact, very 

few works target this FPGA. For this reason, the results obtained serve as proof of the capabilities 

of the VCK190 for the deployment of such 3D computer vision models and as a starting point of 

comparison of future similar works. 

• Validation of the Vitis-AI tool. The successful real-time implementations of ResNet-18, 

SqueezeNet, and SqueezeSegV3 on the Zynq Ultrascale+ MPSoC ZCU104 and Versal ACAP 

VCK190 used the entire toolset of Vitis-AI. Here, the main contribution was two-fold. Firstly it was 

shown that the Vitis-AI tools are successful in allowing the processes of quantization, profiling, 

and deployment of deep learning models on FPGAs. The deployment and profiling of the 

developed inference application on the two FPGAs required no FPGA expertise and produced the 

expected results. Secondly, the tools were shown to be useful in allowing a detailed exploration 

of a broad design space through the experimentation of the hardware configurations. From this 

design space exploration resulted different real-time capable models that sit along different points 

in the accuracy/efficiency trade-off. 

• Comparison with the RTX 3090 GPU. The performance per Watt of the deployed models 

was compared with the RTX 3090. This comparison allowed to frame the results in the broader 

applied deep learning literature, which usually focuses on GPU implementations, further 

highlighting the potential of exploring different hardware solutions. 

  

6.3 RESEARCH OPPORTUNITIES 

    Despite requiring hardware expertise, Vitis-AI allows for the design of customized DPUs. This would 

solve the main limitation of the Vitis-AI tool encountered in this work. Because only a limited number of 

instructions are natively supported by each DPU, it is not possible to deploy some models completely. 

This results in a heavy dependence of the developer on the supported operations, hampering the 

possibility to explore new more exotic operations that constitute the base of most state-of-the-art 
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architectures that outperform SqueezeSegV3. Custom DPUs would, in theory, solve this dependence on 

the supported operations of the prebuilt available DPUs used in this work. 

    Another interesting direction that would provide more insights into the deep neural network’s 

performance would be to more closely and thoroughly examine the memory hierarchy usage during the 

execution of the models. This would help answer questions regarding specific layer bottlenecks that have 

been identified in this work but not completely explained. FPGA expertise would also be required. On the 

same note, it would also be interesting to quantify the inference latency-frame time resolution trade-off 

resulting from the developed application. Empirically the increase in throughput was very evident, but the 

penalty in single frame inference was not quantified. This would allow for an easier comparison of 

solutions with requirements defined by any developer or team that whishes to implement a similar 

application using Vitis-AI.  
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Recall that 𝑥 ∈ [𝛼, 𝛽] are the floating-point values and 𝑥𝑞 = [𝛼𝑞 , 𝛽𝑞] are the quantized values. 

 

{
𝛼 =  𝛼𝑞
𝛽 =  𝛽𝑞

 

⟺ 

(Equations 1 and 2) 

⟺ 

{
𝛼 =  𝑆 ∙ (𝛼𝑞 + 𝑍)

𝛽 =  𝑆 ∙ (𝛽𝑞 + 𝑍)
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{
 
 

 
 𝑆 =  

𝛽 − 𝛼

𝛽𝑞 − 𝛼𝑞
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𝛽 − 𝛼
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    The QAT APIs have some requirements for the model to be trained. The following list details all the 

requirements as of version 2.0 of Vitis-AI. 

 

1. All operations to be quantized must be instances of the torch.nn.Module object, rather than Torch 

functions or Python operators. Operations that need replacement are listed in the following table. 

 

Table 25. QAT mandatory operation replacement. 

Operation Replacement 

+ pytorch_nndct.nn.modules.functional.Add 

- pytorch_nndct.nn.modules.functional.Sub 

torch.add pytorch_nndct.nn.modules.functional.Add 

torch.sub pytorch_nndct.nn.modules.functional.Sub 

 

2. It is advised to call modules only once. For example, if a model architecture uses several ReLU 

activations, for each call, a different torch.nn.ReLu module should be used. 

3.  QuantStub should be used to quantize the inputs of the network and DeQuantStub to de-quantize 

the outputs of the network. Any sub-network from QuantStub to DeQuantStub in a forward pass 

will be quantized. Multiple QuantStub-DeQuantStub pairs are allowed. 

 

    The following code corresponds to parts of the original Torchvision implementation of the ResNet-18 

model. 
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class BasicBlock(nn.Module): 

        (...) 

        self.conv1 = conv3x3(inplanes, planes, stride) 

        self.bn1 = norm_layer(planes) 

        self.relu = nn.ReLU(inplace=True) 

        self.conv2 = conv3x3(planes, planes) 

        self.bn2 = norm_layer(planes) 

        self.downsample = downsample 

        self.stride = stride 

 

    def forward(self, x: Tensor) -> Tensor: 

        identity = x 

        out = self.conv1(x) 

        out = self.bn1(out) 

        out = self.relu(out) 

        out = self.conv2(out) 

        out = self.bn2(out) 

        if self.downsample is not None: 

            identity = self.downsample(x) 

        out += identity 

        out = self.relu(out) 

        return out 

 

class ResNet(nn.Module): 

        (...) 

    def _forward_impl(self, x: Tensor) -> Tensor: 

        x = self.conv1(x) 

        x = self.bn1(x) 

        x = self.relu(x) 

        x = self.maxpool(x) 

        x = self.layer1(x) 

        x = self.layer2(x) 

        x = self.layer3(x) 

        x = self.layer4(x) 

        x = self.avgpool(x) 

        x = torch.flatten(x, 1) 

        x = self.fc(x) 

        return x 
 

 

Figure 64. Excerpt of ResNet-18’s torchvision implementation. 

 

    This next code block corresponds to the ResNet-18 model modified to fit Vitis-AI’s QAT requirements. 

Note the additions of several torch.nn.ReLU modules, the replacement of the ‘+’ operation by the 

torch.functional.Add(), and the definition of pytorch_nndct.nn.QuantStub() and 

pytorch_nndct.nn.DeQuantStub() used in the forward_impl method.  
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class BasicBlock(nn.Module):                   

 (…)                                                                                

self.conv1 = conv3x3(inplanes, planes, stride) 

        self.bn1 = norm_layer(planes)               

        self.relu1 = nn.ReLU(inplace=True)         #added 

        self.conv2 = conv3x3(planes, planes)   

        self.bn2 = norm_layer(planes)          

        self.downsample = downsample           

        self.stride = stride                   

       # additional relu                       

       self.relu2 = nn.ReLU(inplace=True)          #added 

       # add functional Add                    

       self.skip_add = functional.Add()            #added 

 

def forward(self, x: Tensor) -> Tensor:              

        identity = x                           

        out = self.conv1(x)                    

        out = self.bn1(out)                    

        out = self.relu1(out)                      #added 

        out = self.conv2(out)                  

        out = self.bn2(out)                    

        if self.downsample is not None:        

            identity = self.downsample(x)                

        out = self.skip_add(out, identity)         #added 

        out = self.relu2(out)                      #added 

        return out     

 

class ResNet(nn.Module):                              

   self.quant_stub = pytorch_nndct.nn.QuantStub()        #added 

   self.dequant_stub = pytorch_nndct.nn.DeQuantStub()    #added 

   (…)                                                

   def _forward_impl(self, x: Tensor) -> Tensor:      

        x = self.quant_stub(x)                           #added 

        x = self.conv1(x)                             

        x = self.bn1(x)                               

        x = self.relu(x)                              

        x = self.maxpool(x)                           

        x = self.layer1(x)                            

        x = self.layer2(x)                            

        x = self.layer3(x)                            

        x = self.layer4(x)                            

        x = self.avgpool(x)                           

        x = torch.reshape(x, (x.shape[0], x.shape[1]))   #added 

        x = self.fc(x)                                

        x = self.dequant_stub(x)                         #added 

        return x                                      
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 65. Excerpt of ResNet-18’s QAT compatible implementation. 
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    The following information is a summary of the Vitis-AI documentation and refers to version 2.0 of the 

tool. 

 

Table 26. DPUCZDX8G and DPUCVDX8G channel parallel and bank depth possible values – Vitis-AI 2.0. 

Intrinsic Parameters DPUCZDX8G DPUCVDX8G 

Channel Parallel 16 16 

Bank Depth 2048 16384 

 

 

Table 27. DPUCZDX8G and DPUCVDX8G XIR operations and parameters support – Vitis-AI 2.0. 

CNN 

Operation 

Parameters DPUCZDX8G DPUCVDX8G 

Conv2d Kernel size w, h: [1, 16] w, h: [1, 16] 

w * h <= 64 

Strides w, h: [1, 8] w, h: [1, 8] 

Dilation dilation * input_channel <= 256 * channel_parallel 

Paddings pad_left, pad_right: [0, (kernel_w - 1) * dilation_w] 

pad_top, pad_bottom: [0, (kernel_h - 1) * dilation_h] 

In Size kernel_w * kernel_h * ceil (input_channel / channel_parallel) <= bank_depth 

Out Size output_channel <= 256 * channel_parallel 

Activation ReLU, LeakyReLU, ReLU6 ReLU, LeakyReLU, ReLU6, Hard-Swish, Hard-

Sigmoid 

Depthwise-

conv2d 

Kernel size w, h: [1, 16] w, h: [1, 256] 

Strides w, h: [1, 8] w, h: [1, 8] 

Dilation dilation * input_channel <= 256 * channel_parallel 

Paddings pad_left, pad_right: [0, (kernel_w - 1) 

* dilation_w] 

pad_top, pad_bottom: [0, (kernel_h - 

1) * dilation_h] 

pad_left, pad_right: [0, 15 * dilation_w] 

pad_top, pad_bottom: [0, 15 * dilation_h] 

In Size kernel_w * kernel_h * ceil (input_channel / channel_parallel) <= bank_depth 

Out Size output_channel <= 256 * channel_parallel 

Activation ReLU, ReLU6 

APPENDIX III – DPUCZDX8G AND 

DPUCVDX8G SUPPORTED OPERATORS 
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Transposed-

conv2d 

Kernel size kernel_w/stride_w, kernel_h/stride_h: [1, 16] 

Strides 

Paddings pad_left, pad_right: [1, kernel_w-1] 

pad_top, pad_bottom: [1, kernel_h-1] 

Out Size output_channel <= 256 * channel_parallel 

Activation ReLU, LeakyReLU, ReLU6 ReLU, LeakyReLU, ReLU6, Hard-Swish, Hard-

Sigmoid 

Depthwise-

transposed-

conv2d 

Kernel size kernel_w/stride_w, kernel_h/stride_h: [1, 16] 

kernel_w/stride_w, kernel_h/stride_h: [1, 256] Strides 

Paddings pad_left, pad_right: [1, kernel_w-1] 

pad_top, pad_bottom: [1, kernel_h-1] 

pad_left, pad_right: [1, 15] 

pad_top, pad_bottom: [1, 15] 

Out Size output_channel <= 256 * channel_parallel 

Activation ReLU, ReLU6 

Max-pooling Kernel size w, h: [2, 8] w, h: [1, 256] 

Strides w, h: [1, 8] 

Paddings pad_left, pad_right: [1, kernel_w-1] 

pad_top, pad_bottom: [1, kernel_h-1] 

pad_left, pad_right: [1, 15] 

pad_top, pad_bottom: [1, 15] 

Activation ReLU ReLU, ReLU6 

Average-

pooling 

Kernel size w, h: [2, 8] 

w==h 

w, h: [1, 256] 

Strides w, h: [1, 8] 

Paddings pad_left, pad_right: [1, kernel_w-1] 

pad_top, pad_bottom: [1, kernel_h-1] 

pad_left, pad_right: [1, 15] 

pad_top, pad_bottom: [1, 15] 

Activation ReLU ReLU, ReLU6 

Eltwise Type sum sum, prod 

 Input 

Channel 

input_channel <= 256 * channel_parallel 

 Activation ReLU 

Concat Network-specific limitation, which relates to the size of feature maps, quantization results and compiler 

optimizations 

Reorg Strides reverse==false : stride ^ 2 * input_channel <= 256 * channel_parallel 

 

reverse==true : input_channel <= 256 * channel_parallel 

Pad In Size input_channel <= 256 * channel_parallel 

 Mode "SYMMETRIC" ("CONSTANT" pad (value=0) would be fused into adjacent operators 

during compiler optimization process) 

Global pooling Global pooling will be processed as general pooling with kernel size equal to input tensor size 
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InnerProduct, 

Fully 

Connected, 

Matmul 

These operations will be transformed into conv2d op 

 

 

 

Table 28. Pytorch operations to XIR operations translation. 

Pytorch XIR DPU implementation notes 

Conv2d Conv2d - 

ConvTranspose2d transposed-conv2d - 

Matmul Conv2d The matmul would be transformed to 

conv2d and compiled to Convolution 

Engine. If the matmul fails to be 

transformed, it would be implemented 

by CPU.  

MaxPool2d / AdaptiveMaxPool2d Maxpool2d  Pooling Engine  

AvgPool2d / AdaptiveAvgPool2d Avgpool2d   Pooling Engine  

ReLU ReLU Activations would be fused to adjacent 

operations such as convolution and 

add 

LeakyReLU LeakyReLU 

ReLU6 ReLU6 

Hardsigmoid Hardsigmoid 

Hardswish Hardswish 

ConstantPad2d / ZeroPad2d  pad "CONSTANT" padding would be fused 

adjacent operations.  

Add Add If the add is an element-wise add, the 

add would be mapped to DPU 

Element-wise Add Engine. If the add is 

a channel-wise add, search for 

opportunities to fuse the add with 

adjacent operations such as 

convolutions. If they are shape-related 

operations, they would be removed 

during compilation. If they are 

components of a coarse-grained 

operation, they would be fused with 

adjacent operations. Otherwise, they 

Sub / Rsub Sub 

Mul Mul 

Neg Neg 

Sum Reduction Sum 

Max Reduction Max 

Mean Reduction Mean 
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would be compiled into CPU 

implementations. 

Interpolate / Upsample / 

Upsample_bilinear / 

Upsample_nearest 

Resize If the mode of the resize is 

'BILINEAR', align_corner=false, 

half_pixel_centers = false, size = 2, 4, 

8; align_corner=false, 

half_pixel_centers = true, size = 2, 4 

can be transformed to DPU 

implementations (pad+depthwise-

transposed conv2d). If the mode of 

the resize is 'NEAREST' and the size 

are integers, the resize would be 

mapped to DPU implementations. 

Transpose  Transpose  These operations would be 

transformed to the reshape operation 

in some cases. Additionally, search for 

opportunities to fuse the dimension 

transformation operations into special 

load or save instructions of adjacent 

operations to reduce the overhead. 

Otherwise, they would be mapped to 

CPU.  

Permute Transpose 

View/Reshape Reshape 

Flatten Reshape/Flatten 

Squeeze Reshape/Squeeze 

Cat Concat - 

Aten::slice Strided_slice If the strided_slice is shape-related or 

is the component of a coarse-grained 

operation, it would be removed. 

Otherwise, the strided_slice would be 

compiled into CPU implementations. 

BatchNorm2d Depthwise-conv2d / scale If the batch_norm is quantized and 

can be transformed to a depthwise-

conv2d equivalently, it would be 

transformed to depthwise-conv2d, and 

the compiler would search for 

compilation opportunities to map the 

batch_norm into DPU 

implementations. Otherwise, the 

batch_norm would be executed by 

CPU. 
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Softmax Softmax They would only be compiled into CPU 

implementations. Tanh Tanh 

Sigmoid Sigmoid 

PixelShuffle Pixel_Shuffle They would be transformed to tile if 

there's convolution as its input. PixelUnshuffle Pixel_Shuffle 

 

 

 

 

 

 

  



APPENDIX IV – RESNET-18 AND SQUEEZENET MODELS COMPLETE RESULTS 

124 
 

 

    The following table lists all the inference FPS and peak power consumption in Watts measured 

during the inference of the ResNet-18 and SqueezeNet models on the Cifar-10 test set. The number of 

CPU threads used by the application that enables inference varies in the interval [1, 12]. 

 

Table 29. ResNet-18 and SqueezeNet average inference FPS and peak power consumption across all ZCU104 and VCK190 
configurations. 

Model Hardware/Config # Threads Avg Inference 

FPS 

Peak Power 

Consumption (Watts) 

ResNet-18 ZCU104 – B512 Hybrid 1 306.72 18.75 

2 334.98 18.98 

3 334.32 19.07 

4 334.01 18.84 

5 333.68 18.76 

6 333.40 19.07 

7 333.22 18.84 

8 332.50 19.07 

9 332.45 19.07 

10 331.87 18.84 

11 330.70 18.98 

12 328.92 18.75 

ZCU104 – B1024 BRAM-only 1 316.91 19.04 

2 346.99 19.26 

3 346.37 19.44 

4 346.14 19.80 

5 345.59 19.89 

6 345.56 19.75 

7 345.02 19.58 

8 344.47 19.52 

9 344.03 19.61 

APPENDIX IV – RESNET-18 AND 

SQUEEZENET MODELS COMPLETE 

RESULTS 
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10 343.42 19.75 

11 342.56 19.89 

12 340.57 19.44 

ZCU104 – B1024 Hybrid 1 316.99 19.13 

2 346.92 19.35 

3 346.71 19.71 

4 346.45 19.49 

5 345.79 19.49 

6 345.84 19.71 

7 345.29 19.26 

8 344.68 19.62 

9 344.23 19.71 

10 343.89 19.49 

11 342.11 19.49 

12 341.04 19.26 

ZCU104 – 2x B1024 Hybrid 1 221.33 20.16 

2 347.95 20.83 

3 354.08 21.06 

4 363.11 21.06 

5 362.60 21.06 

6 361.73 21.06 

7 361.84 21.06 

8 361.53 21.06 

9 361.31 21.02 

10 361.13 21.06 

11 361.02 21.11 

12 360.97 21.02 

ZCU104 – B4096 Hybrid 1 509.03 22.02 

2 591.54 22.47 

3 589.65 22.70 

4 589.81 22.70 

5 588.71 22.47 

6 587.56 22.47 

7 588.26 22.47 

8 587.10 22.70 

9 585.71 22.70 

10 584.50 22.47 
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11 582.99 22.70 

12 579.99 22.70 

ZCU104 – 2x B4096 Hybrid 1 450.86 25.43 

2 776.93 27.00 

3 819.52 27.33 

4 856.06 27.55 

5 851.75 27.55 

6 849.27 27.55 

7 846.82 27.43 

8 847.18 27.55 

9 845.70 27.43 

10 844.32 27.43 

11 843.23 27.43 

12 842.22 27.43 

ZCU104 – B4096 Hybrid + High 

RAM usage 

1 511.63 21.50 

2 595.81 22.18 

3 594.74 22.37 

4 593.61 22.37 

5 591.58 22.37 

6 591.80 22.15 

7 589.93 22.15 

8 590.91 21.92 

9 590.27 22.37 

10 589.14 21.92 

11 586.59 22.15 

12 584.22 22.37 

VCK190 – C32B1 1 1652.69 59.40 

2 2360.24 60.98 

3 2360.32 60.98 

4 2358.81 60.98 

5 2356.67 60.98 

6 2357.35 60.98 

7 2349.25 60.79 

8 2349.42 61.02 

9 2346.41 60.98 

10 2345.42 61.06 

11 2346.94 61.06 



APPENDIX IV – RESNET-18 AND SQUEEZENET MODELS COMPLETE RESULTS 

127 
 

12 2342.03 61.06 

VCK190 – C64B1 1 1782.73 62.47 

2 2652.05 64.52 

3 2646.83 64.52 

4 2644.76 64.75 

5 2637.08 64.52 

6 2634.07 64.75 

7 2632.27 64.75 

8 2624.67 64.52 

9 2602.50 64.52 

10 2620.86 64.75 

11 2603.64 64.75 

12 2602.29 64.75 

VCK190 – 2x C64B1 1 1740.46 71.78 

2 2953.95 75.03 

3 3109.08 75.60 

4 3233.10 76.05 

5 3193.95 76.28 

6 3163.00 76.05 

7 3100.44 76.05 

8 3044.98 76.05 

9 3014.39 75.71 

10 2996.97 75.94 

11 2987.94 75.71 

12 2993.33 75.83 

SqueezeNet ZCU104 – B512 Hybrid 1 1156.31 18.08 

2 1689.90 18.53 

3 1681.65 18.53 

4 1680.18 18.53 

5 1677.29 18.45 

6 1677.51 18.31 

7 1670.03 18.45 

8 1667.70 18.31 

9 1665.64 18.53 

10 1646.84 18.31 

11 1656.37 18.31 

12 1628.70 18.53 
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ZCU104 – B1024 BRAM-only 1 1259.68 18.34 

2 1915.40 18.81 

3 1909.82 19.24 

4 1905.46 19.38 

5 1900.35 19.15 

6 1899.72 19.24 

7 1889.33 19.24 

8 1893.44 18.92 

9 1864.79 19.38 

10 1879.17 19.24 

11 1876.17 19.24 

12 1882.83 19.00 

ZCU104 – B1024 Hybrid 1 1262.26 18.45 

2 1916.81 18.90 

3 1919.94 19.04 

4 1925.07 19.26 

5 1919.28 19.04 

6 1911.44 19.18 

7 1915.10 19.26 

8 1909.77 19.26 

9 1901.69 18.82 

10 1897.50 19.04 

11 1880.49 19.26 

12 1865.17 19.04 

ZCU104 – 2x B1024 Hybrid 1 1043.95 19.49 

2 1521.51 19.94 

3 1798.77 20.03 

4 1877.30 20.16 

5 1876.00 20.25 

6 1878.36 20.25 

7 1875.58 20.25 

8 1871.34 20.25 

9 1866.03 20.34 

10 1865.23 20.25 

11 1867.11 20.34 

12 1860.00 20.34 

ZCU104 – B4096 Hybrid 1 1379.30 20.20 
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2 2205.12 20.88 

3 2201.07 21.11 

4 2201.91 21.11 

5 2190.55 21.11 

6 2189.03 20.98 

7 2183.35 20.98 

8 2176.03 21.30 

9 2153.46 21.30 

10 2158.81 21.20 

11 2168.50 21.20 

12 2132.96 21.20 

ZCU104 – 2x B4096 Hybrid 1 1365.87 23.63 

2 2667.46 24.75 

3 3309.21 25.43 

4 4023.24 25.88 

5 3871.23 26.10 

6 3776.04 25.88 

7 3819.29 25.99 

8 3821.84 26.10 

9 3697.68 26.22 

10 3688.21 25.88 

11 3663.61 25.88 

12 3658.74 25.88 

ZCU104 – B4096 Hybrid + High 

RAM Usage 

1 1408.05 23.28 

2 2283.38 23.96 

3 2273.84 23.96 

4 2273.53 23.84 

5 2267.49 23.63 

6 2262.06 23.85 

7 2251.87 23.40 

8 2207.76 23.63 

9 2229.32 23.40 

10 2221.19 23.50 

11 2222.77 23.73 

12 2176.24 23.73 

VCK190 – C32B1 1 3469.86 56.98 

2 5779.07 57.43 
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3 5920.78 57.43 

4 5925.12 57.20 

5 5619.54 57.43 

6 5423.93 57.23 

7 5332.58 57.20 

8 5188.17 57.23 

9 5073.66 56.98 

10 5052.10 57.23 

11 5013.37 56.98 

12 4976.70 56.98 

VCK190 – C64B1 1 3590.69 59.74 

2 6022.36 60.19 

3 6119.82 60.19 

4 6045.03 60.19 

5 5722.04 60.42 

6 5551.71 60.19 

7 5488.51 60.19 

8 5280.35 60.19 

9 5166.57 60.19 

10 5186.66 60 42 

11 5186.07 60.19 

12 5100.02 60 42 

VCK190 – 2x C64B1 1 3537.25 68.55 

2 5998.34 69.24 

3 6035.55 69.46 

4 6002.28 69.46 

5 5615.90 69.46 

6 5379.63 69.24 

7 5305.77 69.24 

8 5155.14 68.70 

9 5078.76 69.46 

10 5066.98 69.38 

11 5039.50 69.38 

12 4973.46 69.38 
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    The following table contains the original SqueezeSegV3-21 architecture as implemented by the authors. 

The rightmost column details whether the DPUCVDX8G supports the layer with the specified parameters, 

considering Vitis-AI version 2.0. 

 

Table 30. SqueezeSegV3-21 original implementation’s list of pytorch operations and respective parameters. 

Architecture Section Operation Parameters Support 

Backbone nn.Conv2d In Channels = 5 
Out Channels = 32 
Kernel Size = (3, 3) 

Bias = False 

DPU 

nn.BatchNorm2d Num Features = 32 

Eps = 1e-05 

Momentum = 0.01 

Affine = True 

Track Running Stats = True 

DPU 

nn.LeakyReLu Negative Slope = 0.1 DPU 

Backbone/encoder 1 Functional.unfold Kernel Size = 3 

Padding = 1 

None 

Tensor.view Shape DPU 

nn.Conv2d In Channels = 3 

Out Channels = 288 

Kernel Size = (7, 7) 

Stride = (1, 1) 

Padding = (3, 3) 

DPU 

nn.BatchNorm2d Num Features = 288 

Eps = 1e-05 

Momentum = 0.01 

Affine = True 

Track Running Stats = True 

DPU 

Functional.sigmoid - CPU 

Mul Input tensors DPU 

nn.Conv2d In Channels = 288 

Out Channels = 32 

DPU 

APPENDIX V – SQUEEZESEGV3-21 

PYTORCH ARCHITECTURE DESCRIPTION 
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Kernel Size = (1, 1) 

Stride = (1, 1) 

nn.BatchNorm2d Num Features = 32 

 Eps = 1e-05 

Momentum = 0.1 

Affine = True 

Track Running Stats = True 

DPU 

nn.ReLu Inplace = True DPU 

nn.Conv2d In channels = 32 

Out Channels = 32 

Kernel Size = (3, 3) 

Stride = (1, 1) 

Padding = (1, 1) 

DPU 

nn.BatchNorm2d Num Features = 32 

 Eps = 1e-05 

Momentum = 0.1 

Affine = True 

Track Running Stats = True 

DPU 

nn.ReLu Inplace = True DPU 

Add Input tensors DPU 

nn.Conv2d In channels = 32 

Out Channels = 64 

Kernel Size = (3, 3) 

Stride = (1, 2) 

Padding = (1, 1) 

Bias = False 

DPU 

nn.BatchNorm2d Num Features = 64 

 Eps = 1e-05 

Momentum = 0.01 

Affine = True 

Track Running Stats = True 

DPU 

nn.LeakyReLu Negative Slope = 0.1 DPU 

Functional.upsample_bilinear Input = torch.Tensor 

Size = [torch.Tensor.size()[2], 

torch.Tensor.size()[3]//2] 

None 

Tensor.Detach - None* 

nn.Dropout2d P = 0.01 None* 

Backbone/encoder 2 Functional.unfold Kernel Size = 3 None 
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Padding = 1 

Tensor.view Shape DPU 

nn.Conv2d In Channels = 3 
Out Channels = 576 
Kernel Size = (7, 7) 

Stride = (1, 1) 
Padding = (3, 3) 

DPU 

nn.BatchNorm2d Num Features = 576 
Eps = 1e-05 

Momentum = 0.1 
Affine = True 

Track Running Stats = True 

DPU 

Functional.sigmoid - CPU 

Mul Input tensors DPU 

nn.Conv2d In Channels = 576 
Out Channels = 64 
Kernel Size = (1, 1) 

Stride = (1, 1) 
 

 

nn.BatchNorm2d Num Features = 64 
Eps = 1e-05 

Momentum = 0.1 
Affine = True 

Track Running Stats = True 

DPU 

nn.ReLu Inplace = True DPU 

Conv2d 

 

 

In Channels = 64 
Out Channels = 64 
Kernel Size = (3, 3) 

Stride = (1, 1) 
Padding = (1, 1) 

DPU 

nn.BatchNorm2d Num Features = 64 
Eps = 1e-05 

Momentum = 0.1 
Affine = True 

Track Running Stats = True 

DPU 

nn.ReLu inplace=True DPU 

Add Input tensors DPU 

nn.Conv2d In Channels = 64 
Out Channels = 128 
Kernel Size = (3, 3) 

Stride = (1, 2) 
Padding = (1, 1) 

Bias = False 

DPU 

nn.BatchNorm2d Num Features = 128 
Eps = 1e-05 

Momentum = 0.01 
Affine = True 

Track Running Stats = True 

DPU 

nn.LeakyReLu Negative Slope = 0.1 DPU 

Functional.upsample_bilinear Input = torch.Tensor None 
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Size = [torch.Tensor.size()[2], 

torch.Tensor.size()[3]//2 

Tensor.detach - None* 

nn.Dropout2d P = 0.5 None* 

Backbone/encoder 3 Functional.unfold Kernel Size = 3 

Padding = 1 

None 

Tensor.view Shape DPU 

nn.Conv2d In Channels = 3 
Out Channels = 1152 
Kernel Size = (7, 7) 

Stride = (1, 1) 
Padding = (3, 3) 

DPU 

nn.BatchNorm2d Num Features = 1152 
Eps = 1e-05 

Momentum = 0.1 
Affine = True 

Track Running Stats = True 

DPU 

Functional.sigmoid - CPU 

Mul Input tensors DPU 

nn.Conv2d In Channels = 1152 
Out Channels = 128 
Kernel Size = (1, 1) 

Stride = (1, 1) 
 

DPU 

nn.BatchNorm2d Num Features = 128 
Eps = 1e-05 

Momentum = 0.1 
Affine = True 

Track Running Stats = True 

DPU 

nn.ReLu Inplace = True DPU 

Conv2d 

 

 

In Channels = 128 
Out Channels = 128 
Kernel Size = (3, 3) 

Stride = (1, 1) 
Padding = (1, 1) 

DPU 

nn.BatchNorm2d Num Features = 128 
Eps = 1e-05 

Momentum = 0.1 
Affine = True 

Track Running Stats = True 

DPU 

nn.ReLu inplace=True DPU 

Add Input tensors DPU 

Functional.unfold Kernel Size = 3 

Padding = 1 

None 

Tensor.view Shape DPU 

nn.Conv2d In Channels = 3 DPU 
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Out Channels = 1152 
Kernel Size = (7, 7) 

Stride = (1, 1) 
Padding = (3, 3) 

nn.BatchNorm2d Num Features = 1152 
Eps = 1e-05 

Momentum = 0.1 
Affine = True 

Track Running Stats = True 

DPU 

Functional.sigmoid - CPU 

Mul Input tensors DPU 

nn.Conv2d In Channels = 1152 
Out Channels = 128 
Kernel Size = (1, 1) 

Stride = (1, 1) 
 

DPU 

nn.BatchNorm2d Num Features = 128 
Eps = 1e-05 

Momentum = 0.1 
Affine = True 

Track Running Stats = True 

DPU 

nn.ReLu Inplace = True DPU 

Conv2d 

 

 

In Channels = 128 
Out Channels = 128 
Kernel Size = (3, 3) 

Stride = (1, 1) 
Padding = (1, 1) 

DPU 

nn.BatchNorm2d Num Features = 128 
Eps = 1e-05 

Momentum = 0.1 
Affine = True 

Track Running Stats = True 

DPU 

nn.ReLu inplace=True DPU 

Add Input tensors DPU 

nn.Conv2d In Channels = 128 
Out Channels = 256 
Kernel Size = (3, 3) 

Stride = (1, 2) 
Padding = (1, 1) 

Bias = False 

DPU 

nn.BatchNorm2d Num Features = 256 
Eps = 1e-05 

Momentum = 0.01 
Affine = True 

Track Running Stats = True 

DPU 

nn.LeakyReLu Negative Slope = 0.1 DPU 

Functional.upsample_bilinear Input = torch.Tensor 

Size = [torch.Tensor.size()[2], 
torch.Tensor.size()[3]//2 

None 

Tensor.detach - None* 

nn.Dropout2d P = 0.5 None* 
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Backbone/encoder 4 Functional.unfold Kernel Size = 3 

Padding = 1 

None 

Tensor.view Shape DPU 

nn.Conv2d In Channels = 3 
Out Channels = 2304 
Kernel Size = (7, 7) 

Stride = (1, 1) 
Padding = (3, 3) 

DPU 

nn.BatchNorm2d Num Features = 2304 
Eps = 1e-05 

Momentum = 0.1 
Affine = True 

Track Running Stats = True 

DPU 

Functional.sigmoid - CPU 

Mul Input tensors DPU 

nn.Conv2d In Channels = 2304 
Out Channels = 256 
Kernel Size = (1, 1) 

Stride = (1, 1) 
 

 

nn.BatchNorm2d Num Features = 256 
Eps = 1e-05 

Momentum = 0.1 
Affine = True 

Track Running Stats = True 

DPU 

nn.ReLu Inplace = True DPU 

Conv2d 

 

 

In Channels = 256 
Out Channels = 256 
Kernel Size = (3, 3) 

Stride = (1, 1) 
Padding = (1, 1) 

DPU 

nn.BatchNorm2d Num Features = 256 
Eps = 1e-05 

Momentum = 0.1 
Affine = True 

Track Running Stats = True 

DPU 

nn.ReLu inplace=True DPU 

Add Input tensors DPU 

Functional.unfold Kernel Size = 3 

Padding = 1 

None 

Tensor.view Shape DPU 

nn.Conv2d In Channels = 3 
Out Channels = 2304 
Kernel Size = (7, 7) 

Stride = (1, 1) 
Padding = (3, 3) 

DPU 

nn.BatchNorm2d Num Features = 2304 
Eps = 1e-05 

Momentum = 0.1 
Affine = True 

Track Running Stats = True 

DPU 

Functional.sigmoid - CPU 
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Mul Input tensors DPU 

nn.Conv2d In Channels = 2304 
Out Channels = 256 
Kernel Size = (1, 1) 

Stride = (1, 1) 
 

DPU 

nn.BatchNorm2d Num Features = 256 
Eps = 1e-05 

Momentum = 0.1 
Affine = True 

Track Running Stats = True 

DPU 

nn.ReLu Inplace = True DPU 

Conv2d 

 

 

In Channels = 256 
Out Channels = 256 
Kernel Size = (3, 3) 

Stride = (1, 1) 
Padding = (1, 1) 

DPU 

nn.BatchNorm2d Num Features = 256 
Eps = 1e-05 

Momentum = 0.1 
Affine = True 

Track Running Stats = True 

DPU 

nn.ReLu inplace=True DPU 

Add Input tensors DPU 

Tensor.detach - None* 

nn.Dropout2d P = 0.5 None* 

Backbone/encoder 5 Functional.unfold Kernel Size = 3 

Padding = 1 

None 

Tensor.view Shape DPU 

nn.Conv2d In Channels = 3 
Out Channels = 2304 
Kernel Size = (7, 7) 

Stride = (1, 1) 
Padding = (3, 3) 

DPU 

nn.BatchNorm2d Num Features = 2304 
Eps = 1e-05 

Momentum = 0.1 
Affine = True 

Track Running Stats = True 

DPU 

Functional.sigmoid - CPU 

Mul Input tensors DPU 

nn.Conv2d In Channels = 2304 
Out Channels = 256 
Kernel Size = (1, 1) 

Stride = (1, 1) 
 

DPU 

nn.BatchNorm2d Num Features = 256 
Eps = 1e-05 

Momentum = 0.1 
Affine = True 

Track Running Stats = True 

DPU 
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nn.ReLu Inplace = True DPU 

Conv2d 

 

 

In Channels = 256 
Out Channels = 256 
Kernel Size = (3, 3) 

Stride = (1, 1) 
Padding = (1, 1) 

DPU 

nn.BatchNorm2d Num Features = 256 
Eps = 1e-05 

Momentum = 0.1 
Affine = True 

Track Running Stats = True 

DPU 

nn.ReLu inplace=True DPU 

Add Input tensors DPU 

Tensor.detach - None* 

nn.Dropout2d P = 0.5 None* 

Decoder/decoder 5 nn.Conv2d In Channels = 256 
Out Channels = 256 
Kernel Size = (3, 3) 

Stride = (1, 1) 
Padding = (1, 1) 

DPU 

nn.BatchNorm2d Num Features = 256 
Eps = 1e-05 

Momentum = 0.01 
Affine = True 

Track Running Stats = True 

DPU 

nn.LeakyReLu Negative Slope = 0.1 DPU 

nn.Conv2d In Channels = 256 
Out Channels = 256 
Kernel Size = (1, 1) 

Stride = (1, 1) 
Bias = False 

DPU 

nn.BatchNorm2d Num Features = 256 
Eps = 1e-05 

Momentum = 0.01 
Affine = True 

Track Running Stats = True 

DPU 

nn.LeakyReLu Negative Slope = 0.1 DPU 

nn.Conv2d In Channels = 256 
Out Channels = 256 
Kernel Size = (3, 3) 

Stride = (1, 1) 
Padding = (1, 1) 

Bias = False 

DPU 

nn.BatchNorm2d Num Features = 256 
Eps = 1e-05 

Momentum = 0.01 
Affine = True 

Track Running Stats = True 

DPU 

nn.LeakyReLu Negative Slope = 0.1 DPU 

Add Input tensors DPU 

Tensor.detach  - None* 
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Add Input tensors DPU 

Decoder/decoder 4 nn.Conv2d In Channels = 256 
Out Channels = 256 
Kernel Size = (3, 3) 

Stride = (1, 1) 
Padding = (1, 1) 

DPU 

nn.BatchNorm2d Num Features = 256 
Eps = 1e-05 

Momentum = 0.01 
Affine = True 

Track Running Stats = True 

DPU 

nn.LeakyReLu Negative Slope = 0.1 DPU 

nn.Conv2d In Channels = 256 
Out Channels = 256 
Kernel Size = (1, 1) 

Stride = (1, 1) 
Bias = False 

DPU 

nn.BatchNorm2d Num Features = 256 
Eps = 1e-05 

Momentum = 0.01 
Affine = True 

Track Running Stats = True 

DPU 

nn.LeakyReLu Negative Slope = 0.1 DPU 

nn.Conv2d In Channels = 256 
Out Channels = 256 
Kernel Size = (3, 3) 

Stride = (1, 1) 
Padding = (1, 1) 

Bias = False 

DPU 

nn.BatchNorm2d Num Features = 256 
Eps = 1e-05 

Momentum = 0.01 
Affine = True 

Track Running Stats = True 

DPU 

nn.LeakyReLu Negative Slope = 0.1 DPU 

Add Input tensors DPU 

Tensor.detach  - None* 

Add Input tensors DPU 

Decoder/decoder 3 nn.ConvTranspose2d In Channels = 256 
Out Channels = 128 
Kernel Size = (1, 4) 

Stride = (1, 2) 
Padding = (0, 1) 

DPU 

nn.BatchNorm2d Num Features = 128 
Eps = 1e-05 

Momentum = 0.01 
Affine = True 

Track Running Stats = True 

DPU 

nn.LeakyReLu Negative Slope = 0.1 DPU 

nn.Conv2d In Channels = 128 
Out Channels = 256 
Kernel Size = (1, 1) 

Stride = (1, 1) 

DPU 
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Bias = False 

nn.BatchNorm2d Num Features = 256 
Eps = 1e-05 

Momentum = 0.01 
Affine = True 

Track Running Stats = True 

DPU 

nn.LeakyReLu Negative Slope = 0.1 DPU 

nn.Conv2d In Channels = 256 
Out Channels = 128 
Kernel Size = (3, 3) 

Stride = (1, 1) 
Padding = (1, 1) 

Bias = False 

DPU 

nn.BatchNorm2d Num Features = 128 
Eps = 1e-05 

Momentum = 0.01 
Affine = True 

Track Running Stats = True 

DPU 

nn.LeakyReLu Negative Slope = 0.1 DPU 

Add Input tensors DPU 

Tensor.detach  - None* 

Add Input tensors DPU 

Decoder/decoder 2 nn.ConvTranspose2d In Channels = 128 
Out Channels = 64 
Kernel Size = (1, 4) 

Stride = (1, 2) 
Padding = (0, 1) 

DPU 

nn.BatchNorm2d Num Features = 64 
Eps = 1e-05 

Momentum = 0.01 
Affine = True 

Track Running Stats = True 

DPU 

nn.LeakyReLu Negative Slope = 0.1 DPU 

nn.Conv2d In Channels = 64 
Out Channels = 128 
Kernel Size = (1, 1) 

Stride = (1, 1) 
Bias = False 

DPU 

nn.BatchNorm2d Num Features = 128 
Eps = 1e-05 

Momentum = 0.01 
Affine = True 

Track Running Stats = True 

DPU 

nn.LeakyReLu Negative Slope = 0.1 DPU 

nn.Conv2d In Channels = 128 
Out Channels = 64 
Kernel Size = (3, 3) 

Stride = (1, 1) 
Padding = (1, 1) 

Bias = False 

DPU 

nn.BatchNorm2d Num Features = 64 
Eps = 1e-05 

Momentum = 0.01 
Affine = True 

DPU 
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Track Running Stats = True 

nn.LeakyReLu Negative Slope = 0.1 DPU 

Add Input tensors DPU 

Tensor.detach  - None* 

Add Input tensors DPU 

Decoder/decoder 2 nn.ConvTranspose2d In Channels = 64 
Out Channels = 32 
Kernel Size = (1, 4) 

Stride = (1, 2) 
Padding = (0, 1) 

DPU 

nn.BatchNorm2d Num Features = 32 
Eps = 1e-05 

Momentum = 0.01 
Affine = True 

Track Running Stats = True 

DPU 

nn.LeakyReLu Negative Slope = 0.1 DPU 

nn.Conv2d In Channels = 32 
Out Channels = 64 
Kernel Size = (1, 1) 

Stride = (1, 1) 
Bias = False 

DPU 

nn.BatchNorm2d Num Features = 64 
Eps = 1e-05 

Momentum = 0.01 
Affine = True 

Track Running Stats = True 

DPU 

nn.LeakyReLu Negative Slope = 0.1 DPU 

nn.Conv2d In Channels = 64 
Out Channels = 32 
Kernel Size = (3, 3) 

Stride = (1, 1) 
Padding = (1, 1) 

Bias = False 

DPU 

nn.BatchNorm2d Num Features = 32 
Eps = 1e-05 

Momentum = 0.01 
Affine = True 

Track Running Stats = True 

DPU 

nn.LeakyReLu Negative Slope = 0.1 DPU 

Add Input tensors DPU 

Tensor.detach  - None* 

Add Input tensors DPU 

Decoder nn.Dropout2d P = 0.01 
Inplace = False 

None* 

Head 5 nn.Dropout2d P = 0.01 
Inplace = False 

None* 

nn.Conv2d In Channels = 32 
Out Channels = 20 
Kernel Size = (3, 3) 

Stride = (1, 1) 
Padding = (1, 1) 

DPU 
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Functional.softmax Dim=1 CPU 

*Discarded after training 
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    Figure 66 through Figure 69 show the accuracy and IoU, as well as the loss plot of the SSGV321-K1 

and SSGV321-K1N45 models. 

 

 

Figure 66. SSGV321-K1 model training: validation accuracies and IoUs. 
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Figure 67. SSGV321-K1 model training: training set loss. 

 

 

Figure 68. SSGV321-K1N45 model training: validation accuracies and IoUs. 
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Figure 69. SSGV321-K1 model training: training set loss. 

 

    The following table lists the per-class IoU results of the 3 SSGV3-21 model variants on the validation 

set of the Semantic-KITTI dataset (sequence 08). All models have been trained for 72 epochs. 

 

Table 31. Per-class IoU of the 3 SSGV3-21 variants on the validation set of Semantic-KITTI. 

Class SSGV321-K7 SSGV321-K3 SSGV321-K1N45 

Car 0.745 0.744 0.729 

Bicycle 0.223 0.225 0.181 

Motorcycle 0.409 0.371 0.367 

Truck 0.231 0.190 0.104 

Other vehicle 0.163 0.229 0.181 

Person 0.397 0.386 0.391 

Bicyclist 0.498 0.430 0.508 

Road 0.924 0.926 0.918 

Parking 0.397 0.385 0.366 

Sidewalk 0.790 0.791 0.756 

Other ground 0.004 0.003 0.007 

Building 0.785 0.784 0.771 

Fence 0.312 0.317 0.280 

Vegetation 0.802 0.790 0.804 

Trunk 0.463 0.441 0.438 

Terrain 0.719 0.710 0.723 
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Pole 0.348 0.332 0.280 

Traffic sign 0.333 0.293 0.317 

*Bold values represent the best IoU of all 3 models. 

 

    The following table lists all the inference FPS and peak power consumption in Watts measured 

during the inference of the SSGV321-K7, SSGV321-K3, and SSGV321-K1N45 models on Semantic-

KITTI dataset samples. The number of CPU threads used by the application that enables inference 

varies in the interval [1, 4]. 

 

Table 32. SSGV321-K7, SSGV321-K3, and SSGV321-K1N45 average inference FPS and peak power consumption across all 
VCK190 configurations. 

Model Hardware/Configuration # Threads Avg Inference 

FPS 

Peak Power 

Consumption 

(Watts) 

SSGV321-K7 VCK190 - C32B1 1 3.49 59.54 

2 3.67 60.26 

3 3.67 60.26 

4 3.67 60.03 

VCK190 – C64B1 1 4.70 63.84 

2 5.03 64.75 

3 5.03 64.75 

4 5.03 64.75 

VCK190 - 2x C64B1 1 4.65 73.80 

2 9.12 79.78 

3 9.49 80.55 

4 9.83 80.76 

SSGV321-K3 VCK190 – C32B1 1 4.84 59.11 

2 5.19 59.80 

3 5.19 59.80 

4 5.19 59.80 

VCK190 - C64B1 1 5.39 63.56 

2 5.82 64.07 

3 5.82 63.84 

4 5.82 64.07 

VCK190 - 2x C64B1 1 5.27 73.13 

2 10.31 78.08 

3 10.64 78.30 
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4 11.17 78.30 

SSGV321-K1N45 VCK190 - C32B1 1 5.60 58.19 

2 8.45 59.31 

3 8.45 59.31 

4 8.45 59.02 

VCK190 - C64B1 1 5.92 62.24 

2 9.18 63.43 

3 9.18 63.20 

4 9.19 63.43 

VCK190 - 2x C64B1 1 8.51 71.68 

2 16.44 75.57 

3 17.66 76.26 

4 18.92 76.15 

 

    The following table lists all SSGV321-K7 layers, respective parameters, and average computation time 

during inference on the VCK190 C64B1x2 configuration and 1 CPU thread. 

 

Table 33. SSGV321-K7 layer-by-layer average computation time during inference on C64B1x2 with 1 CPU thread. 

Location Layer Parameters Occurrences Average 

Computation Time 

(ms) 

Backbone/Before Encoder1 Conv2D + 

LeakyReLU 

In channels = 5 

Out channels = 32 

Kernel size = 3 

Padding = 1 

1 0.611 

Backbone/Encoder1/SACBlock Conv2D In channels = 32 

Out channels = 288 

Kernel size = 1 

Padding = 0 

1 4.817 

Backbone/Encoder1/SACBlock Conv2D + 

ReLU 

In channels = 288 

Out channels = 32 

Kernel size = 1 

Padding = 0 

1 3.643 

Backbone/Encoder1/SACBlock Conv2D + 

ReLU 

In channels = 32 

Out channels = 32 

Kernel size = 3 

Padding = 1 

1 1.031 
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Backbone/Encoder1/SACBlock Conv2D In channels = 3 

Out channels = 288 

Kernel size = 7 

Padding = 3 

1 4.891 

Backbone/Encoder1/SACBlock Mul - 1 7.275 

Backbone/Encoder1 Conv2D + 

LeakyReLU 

In channels = 32 

Out channels = 64 

Kernel size = 3 

Padding = 1 

1 0.612 

Backbone/After Encoder1 Conv2D In channels = 3 

Out channels = 3 

Kernel size = 1 

Padding = 0 

1 0.259 

Backbone/Encoder2/SACBlock Conv2D In channels = 64 

Out channels = 576 

Kernel size = 1 

Padding = 0 

1 4.818 

Backbone/Encoder2/SACBlock Conv2D In channels = 3 

Out channels = 576 

Kernel size = 7 

Padding = 3 

1 9.496 

Backbone/Encoder2/SACBlock Conv2D + 

ReLU 

In channels = 576 

Out channels = 64 

Kernel size = 1 

Padding = 0 

1 3.640 

Backbone/Encoder2/SACBlock Conv2D + 

ReLU 

In channels = 64 

Out channels = 64 

Kernel size = 3 

Padding = 1 

1 4.844 

Backbone/Encoder2/SACBlock Mul - 1 8.143 

Backbone/Encoder2/SACBlock Conv2D + 

LeakyReLU 

In channels = 64 

Out channels = 128 

Kernel size = 3 

Padding = 1 

1 0.616 

 

Backbone/After Encoder2 Conv2D In channels = 3 

Out channels = 3 

Kernel size = 1 

Padding = 0 

1 0.156 
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Backbone/Encoder3/SACBlock Conv2D In channels = 128 

Out channels = 1152 

Kernel size = 1 

Padding = 0 

2 4.818 

Backbone/Encoder3/SACBlock Conv2D In channels = 3 

Out channels = 1152 

Kernel size = 7 

Padding = 3 

2 10.573 

Backbone/Encoder3/SACBlock Mul - 2 8.143 

Backbone/Encoder3/SACBlock Conv2D + 

ReLU 

In channels = 1152 

Out channels = 128 

Kernel size = 1 

Padding = 0 

2 3.642 

Backbone/Encoder3/SACBlock Conv2D + 

ReLU 

In channels = 128 

Out channels = 128 

Kernel size = 3 

Padding = 1 

2 0.998 

Backbone/Encoder3 Conv2D + 

LeakyReLU 

In channels = 128 

Out channels = 256 

Kernel size = 3 

Padding = 1 

1 0.925 

Backbone/After Encoder 3 Conv2D In channels = 3 

Out channels = 3 

Kernel size = 1 

Padding = 0 

1 0.123 

Backbone/Encoder4/SACBlock Conv2D In channels = 3 

Out channels = 2304 

Kernel size = 7 

Padding = 3 

2 8.634 

Backbone/Encoder4/SACBlock Conv2D In channels = 256 

Out channels = 2304 

Kernel size = 1 

Padding = 0 

2 4.819 

Backbone/Encoder4/SACBlock Mul - 1 8.118 

Backbone/Encoder4/SACBlock Conv2D + 

ReLU 

In channels = 2304 

Out channels = 256 

Kernel size = 1 

Padding = 0 

2 3.656 
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Backbone/Encoder4/SACBlock Conv2D + 

ReLU 

In channels = 256 

Out channels = 256 

Kernel size = 3 

Padding = 1 

2 1.406 

Backbone/Encoder5/SACBlock Conv2D In channels = 3 

Out channels = 2304 

Kernel size = 7 

Padding = 3 

1 8.634 

Backbone/Encoder5/SACBlock Conv2D In channels = 256 

Out channels = 2304 

Kernel size = 1 

Padding = 0 

1 4.820 

Backbone/Encoder5/SACBlock Mul - 1 7.250 

Backbone/Encoder5/SACBlock Conv2D In channels = 2304 

Out channels = 256 

Kernel size = 1 

Padding = 0 

1 3.655 

Backbone/Encoder5/SACBlock Conv2D In channels = 256 

Out channels = 256 

Kernel size = 3 

Padding = 1 

1 1.406 

Decoder5 Conv2D + 

LeakyReLU 

In channels = 256 

Out channels = 256 

Kernel size = 3 

Padding = 1 

2 1.573 

Decoder5 Conv2D + 

LeakyReLU 

In channels = 256 

Out channels = 256 

Kernel size = 1 

Padding = 0 

1 0.652 

Decoder4 Conv2D + 

LeakyReLU 

In channels = 256 

Out channels = 256 

Kernel size = 3 

Padding = 1 

2 1.573 

Decoder4 Conv2D + 

LeakyReLU 

In channels = 256 

Out channels = 256 

Kernel size = 1 

Padding = 0 

1 0.652 
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Decoder3 Transposed 

Conv2D + 

LeakyReLU 

Dilation = 1 

Kernel = (4, 1) 

Pad = (1, 1, 0, 0) 

Stride = (2, 1) 

2 0.612 

Decoder3 Conv2D + 

LeakyReLU 

In channels = 128 

Out channels = 256 

Kernel size = 1 

Padding = 0 

1 1.145 

Decoder3 Add - 1 1.512 

Decoder3 Add - 1 0.882 

Decoder3 Conv2D + 

LeakyReLU 

In channels = 64 

Out channels = 128 

Kernel size = 1 

Padding = 0 

1 1.146 

Decoder2 Add - 1 1.431 

Decoder2 Add - 1 0.882 

Decoder1 Transposed 

Conv2D + 

LeakyReLU 

Dilation = 1 

Kernel = (4, 1) 

Pad = (1, 1, 0, 0) 

Stride = (2, 1) 

1 0.620 

Decoder1 Conv2D + 

LeakyReLU 

In channels = 32 

Out channels = 64 

Kernel size = 1 

Padding = 0 

1 1.139 

Decoder1 Add - 1 1.506 

Decoder1 Add - 1 0.962 

Head5 Conv2D In channels = 32 

Out channels = 20 

Kernel size = 3 

Padding = 1 

1 0.546 

 

    The following two tables contain the detailed results of training the SSGV321-K3 for 100 epochs and 

a comparison with the same model trained for 72 epochs. 

 

Table 34. Average accuracy and average IoU of SSGV321-K3. 72 epochs vs 100 epochs training. 

Model Average Accuracy Average IoU 

SSGV321-K3 (72 epochs) 0.862 0.439 
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SSGV321-K3 (100 epochs) 0.865 0.448 

 

Table 35. Per class IoU of SSGV321-K3. 72 epochs vs 100 epochs training. 

Class SSGV321-K3 (72 epochs) SSGV321-K3 (100 epochs) 

Car 0.744 0.770 

Bicycle 0.225 0.252 

Motorcycle 0.371 0.379 

Truck 0.190 0.165 

Other vehicle 0.229 0.164 

Person 0.386 0.415 

Bicyclist 0.430 0.490 

Road 0.926 0.919 

Parking 0.385 0.378 

Sidewalk 0.791 0.788 

Other ground 0.003 0.000 

Building 0.784 0.792 

Fence 0.317 0.325 

Vegetation 0.790 0.798 

Trunk 0.441 0.468 

Terrain 0.710 0.702 

Pole 0.332 0.370 

Traffic sign 0.293 0.339 

 


