

U
m

in
ho

 |
 2

02
2

P

ed
ro

 P
au

lo
 F

on
te

s
D

el
ga

do

R
e

a
l-T

im
e

 I
m

p
le

m
e

n
ta

ti
o

n
 o

f
3

D
 L

iD
A

R
 P

o
in

t
C

lo
u

d
 S

e
m

a
n

ti
c

S
eg

m
e

n
ta

ti
o

n
 in

 a
n

 F
P

G
A

October 2022

Pedro Paulo Fontes Delgado

Real-Time Implementation of 3D LiDAR

Point Cloud Semantic Segmentation in

an FPGA

 ii

Real-Time Implementation of 3D LiDAR

Point Cloud Semantic Segmentation in

an FPGA

Pedro Paulo Fontes Delgado

Master Dissertation

Master in Informatics Engineering

Dissertation supervised by

Sanaz Asgarifar

Victor Alves

October 2022

i

DECLARATION

Name: Pedro Paulo Fontes Delgado

Dissertation Title: Real-Time Implementation of 3D LiDAR Point Cloud Semantic Segmentation in an

FPGA

Supervisors: Sanaz Asgarifar, Victor Alves

Conclusion Year: 2022

Master Designation: Master in Informatics Engineering

Master Branch: Machine Learning and Data Science

I declare that I grant to the University of Minho and its agents a non-exclusive license to file and make

available through its repository, in the conditions indicated below, my dissertation, as a whole or partially,

in digital support.

I declare that I authorize the University of Minho to file more than one copy of the dissertation and, without

altering its contents, to convert the dissertation to any format or support, for the purpose of preservation

and access.

Furthermore, I retain all copyrights related to the dissertation and the right to use it in future works.

I authorize the partial reproduction of this dissertation for the purpose of investigation by means of a

written declaration of the interested person or entity.

This is an academic work that can be used by third parties if internationally accepted rules and good

practice with regard to copyright and related rights are respected.

Thus, the present work can be used under the terms of the license indicated below.

In case the user needs permission to be able to make use of the work in conditions not foreseen in the

indicated licensing, he should contact the author through the RepositóriUM of the University of Minho.

Atribuição-NãoComercial-SemDerivações

CC BY-NC-ND

https://creativecommons.org/licenses/by-nc-nd/4.0/

University of Minho, ____/____/______

Signature: ___________________________________

https://creativecommons.org/licenses/by-nc-nd/4.0/

ii

This work is supported by European Structural and Investment Funds in the FEDER component,

through the Operational Competitiveness and Internationalization Programme (COMPETE 2020)

[Project nº 047264; Funding Reference: POCI-01-0247-FEDER-047264].

iii

List of publications

Delgado, P., Asgarifar, S., Alves, V. Real-Time Implementation of Squeezeseg-V3 Semantic Segmentation

Using Vck190 FPGA Board. Submitted to WorldCist'23 - 11st World Conference on Information Systems

and Technologies

iv

Acknowledgements

A lot of people have contributed to the successful writing of this thesis. To all of you, I am truly grateful to

have shared this journey. Without you, this would have not been possible.

I would like to start by thanking both my supervisors, Sanaz Asgarifar and professor Victor Alves for giving

me the freedom to take this exploratory work where I wanted it to go.

I give out all my appreciation to Alexandre Correia for encouraging me to explore a whole new area of

study. I truly believe it had a tremendously positive impact on my development professionally and more

importantly, personally.

To the FPGA team at Bosch, who received me with open arms and created the best working environment,

thank you. Without your amazing knowledge, this work would simply have not been possible.

To my friends, who have supported me and allowed me to escape the loneliest and most stressful hours.

Thank you for all the game nights, outings, and the most foolish debates.

To my parents who I profoundly admire and whom I see as amazing role models. Thank you for your

open-minded education and amazing childhood. Without you, I would not be who I am.

To Mariana, my sister, and Artur, my nephew, with whom I can always count on for an amazingly good

time. Thank you.

To João, my brother, who I also admire greatly. You inspire me to be my best self so you can hopefully

have an additional role model.

To my dear partner, Sofia, for being there for me from the beginning of this journey, in the good and the

hardest times. Thank you for the endless ideas, and meaningful debates and for always allowing me to

trust myself. Your dedication and resilience inspire me. Your happiness drives me.

Pedro Delgado

v

STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I have not used

plagiarism or any form of undue use of information or falsification of results along the process leading to

its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the University of Minho.

University of Minho, ____/____/______

Signature: __

vi

ABSTRACT

 In the last few years, the automotive industry has relied heavily on deep learning applications for

perception solutions. With data-heavy sensors, such as LiDAR, becoming a standard, the task of

developing low-power and real-time applications has become increasingly more challenging. To obtain

the maximum computational efficiency, no longer can one focus solely on the software aspect of such

applications, while disregarding the underlying hardware.

 In this thesis, a hardware-software co-design approach is used to implement an inference application

leveraging the SqueezeSegV3, a LiDAR-based convolutional neural network, on the Versal ACAP VCK190

FPGA. Automotive requirements carefully drive the development of the proposed solution, with real-time

performance and low power consumption being the target metrics.

 A first experiment validates the suitability of Xilinx’s Vitis-AI tool for the deployment of deep

convolutional neural networks on FPGAs. Both the ResNet-18 and SqueezeNet neural networks are

deployed to the Zynq UltraScale+ MPSoC ZCU104 and Versal ACAP VCK190 FPGAs. The results show

that both networks achieve far more than the real-time requirements while consuming low power.

Compared to an NVIDIA RTX 3090 GPU, the performance per watt during both network’s inference is 12x

and 47.8x higher and 15.1x and 26.6x higher respectively for the Zynq UltraScale+ MPSoC ZCU104 and

the Versal ACAP VCK190 FPGA. These results are obtained with no drop in accuracy in the quantization

step.

 A second experiment builds upon the results of the first by deploying a real-time application containing

the SqueezeSegV3 model using the Semantic-KITTI dataset. A framerate of 11 Hz is achieved with a peak

power consumption of 78 Watts. The quantization step results in a minimal accuracy and IoU degradation

of 0.7 and 1.5 points respectively. A smaller version of the same model is also deployed achieving a

framerate of 19 Hz and a peak power consumption of 76 Watts. The application performs semantic

segmentation over all the point cloud with a field of view of 360°.

Keywords: LiDAR, Deep Learning, FPGA

vii

RESUMO

 Nos últimos anos a indústria automóvel tem cada vez mais aplicado deep learning para solucionar

problemas de perceção. Dado que os sensores que produzem grandes quantidades de dados, como o

LiDAR, se têm tornado standard, a tarefa de desenvolver aplicações de baixo consumo energético e com

capacidades de reagir em tempo real tem-se tornado cada vez mais desafiante. Para obter a máxima

eficiência computacional, deixou de ser possível focar-se apenas no software aquando do

desenvolvimento de uma aplicação deixando de lado o hardware subjacente.

 Nesta tese, uma abordagem de desenvolvimento simultâneo de hardware e software é usada para

implementar uma aplicação de inferência usando o SqueezeSegV3, uma rede neuronal convolucional

profunda, na FPGA Versal ACAP VCK190. São os requisitos automotive que guiam o desenvolvimento da

solução proposta, sendo a performance em tempo real e o baixo consumo energético, as métricas alvo

principais.

 Uma primeira experiência valida a aptidão da ferramenta Vitis-AI para a implantação de redes

neuronais convolucionais profundas em FPGAs. As redes ResNet-18 e SqueezeNet são ambas

implantadas nas FPGAs Zynq UltraScale+ MPSoC ZCU104 e Versal ACAP VCK190. Os resultados

mostram que ambas as redes ultrapassam os requisitos de tempo real consumindo pouca energia.

Comparado com a GPU NVIDIA RTX 3090, a performance por Watt durante a inferência de ambas as

redes é superior em 12x e 47.8x e 15.1x e 26.6x respetivamente na Zynq UltraScale+ MPSoC ZCU104

e na Versal ACAP VCK190. Estes resultados foram obtidos sem qualquer perda de accuracy na etapa de

quantização.

 Uma segunda experiência é feita no seguimento dos resultados da primeira, implantando uma

aplicação de inferência em tempo real contendo o modelo SqueezeSegV3 e usando o conjunto de dados

Semantic-KITTI. Um framerate de 11 Hz é atingido com um pico de consumo energético de 78 Watts. O

processo de quantização resulta numa perda mínima de accuracy e IoU com valores de 0.7 e 1.5 pontos

respetivamente. Uma versão mais pequena do mesmo modelo é também implantada, atingindo uma

framerate de 19 Hz e um pico de consumo energético de 76 Watts. A aplicação desenvolvida executa

segmentação semântica sobre a totalidade das nuvens de pontos LiDAR, com um campo de visão de

360°.

Palavras-chave: LiDAR, Deep Learning, FPGA

viii

Table of Contents

1 Introduction .. 1

1.1 Context .. 2

1.2 Motivation ... 3

1.3 Objectives .. 3

1.4 Structure of Dissertation .. 4

2 Technologies And Concepts .. 5

2.1 Perception in Autonomous Driving.. 6

2.1.1 Advanced Driver-Assistance Systems .. 6

2.1.2 ADAS Perception Requirements and Metrics.. 7

2.2 LiDAR Sensor ... 7

2.2.1 Working Principle .. 8

2.2.2 Point Clouds ... 8

2.3 Deep Learning in Point Clouds ... 9

2.3.1 The Deep Learning approach ... 9

2.3.2 Point Cloud Perception Tasks ... 10

2.3.3 Point Cloud Representation .. 12

2.4 Deep Neural Network Compression .. 15

2.4.1 Quantization ... 15

2.4.2 Other techniques .. 17

3 Literature Review .. 19

3.1 Automotive LiDAR Refresh Rate .. 20

3.2 Deep Learning Hardware ... 21

3.2.1 Central Processing Units.. 22

3.2.2 Graphical Processing Units .. 22

3.2.3 Application-Specific Integrated Circuits .. 23

3.2.4 Field Programmable Gate Arrays .. 23

3.3 Deep Neural Network Quantization .. 24

3.3.1 Quantization Methods .. 25

3.3.2 Benefits of Quantization ... 27

3.4 Deep Learning on FPGAs .. 28

3.4.1 Deep Neural Network Implementations on FPGAs .. 28

ix

3.4.2 High-Level Tools for Deep Neural Network Deployment on FPGAs ... 30

4 Vitis-AI Framework Exploration ... 36

4.1 Experiment Description .. 37

4.1.1 Objectives .. 37

4.1.2 Dataset .. 37

4.1.3 Deep Learning Framework ... 38

4.1.4 Targeted Deep Neural Networks ... 40

4.1.5 Targeted Hardware ... 42

4.2 Implementation .. 46

4.2.1 Float Model Training .. 48

4.2.2 Model Quantization ... 49

4.2.3 Deployment on Target Hardware .. 50

4.3 Results and Analysis ... 53

4.3.1 Quantization ... 53

4.3.2 Performance and Efficiency ... 54

4.4 Discussion ... 64

4.4.1 Quantization ... 64

4.4.2 Performance and Efficiency ... 65

5 SqueezeSegV3 Deployment on an FPGA .. 67

5.1 Experiment Description .. 68

5.1.1 Objectives .. 68

5.1.2 Dataset .. 68

5.1.3 Evaluation Metrics ... 70

5.1.4 Deep Learning Framework ... 71

5.1.5 Targeted Deep Neural Network .. 71

5.1.6 Targeted Hardware ... 75

5.2 Implementation .. 75

5.2.1 Architectural Changes ... 76

5.2.2 Float Model Training .. 80

5.2.3 Model Quantization ... 84

5.2.4 Deployment on Target Hardware .. 84

5.3 Results and Analysis ... 85

x

5.3.1 Quantization ... 85

5.3.2 Performance and Efficiency ... 86

5.3.3 Qualitative .. 91

5.4 Discussion ... 93

5.4.1 Quantization ... 93

5.4.2 Performance and Efficiency ... 94

5.4.3 Qualitative .. 95

6 Conclusions .. 97

6.1 Synopsys .. 98

6.2 Main Contributions .. 98

6.3 Research Opportunities .. 99

References .. 101

Appendix I – Scale and Zero-Point Derivation .. 115

Appendix II – Vitis-AI QAT Requirements .. 116

Appendix III – DPUCZDX8G and DPUCVDX8G Supported Operators 119

Appendix IV – ResNet-18 and SqueezeNet Models Complete results 124

Appendix V – SqueezeSegV3-21 Pytorch Architecture Description 131

Appendix VI – SqueezeSegV3-21 Complete Results ... 143

xi

LIST OF FIGURES

Figure 1. Forecast of the worldwide autonomous vehicles sales from 2019 to 2030. Retrieved from [10].

 .. 2

Figure 2. Block diagram of an ADAS.. 6

Figure 3. The effective range of Outer’s OS1 LiDAR. Adapted from [25]. .. 9

Figure 4. Comparison between a traditional and DL computer vision pipeline. Retrieved from [26]. 10

Figure 5. 3D object detection in a LiDAR frame. .. 11

Figure 6. 3D semantic segmentation of a LiDAR point cloud. ... 12

Figure 7. Illustration of spherical, cylindrical, and bird’s eye view projections of point clouds. Adapted

from [37].. 13

Figure 8. Voxelization of a point cloud using 303 voxels. Retrieved from [40]. 14

Figure 9. Illustration of a graph representation of a point cloud. Adapted from [48] 15

Figure 10. Affine quantization using signed 8-bit integers. Retrieved from [53]. 17

Figure 11. Scale quantization using unsigned 8-bit integers. Retrieved from [53]. 17

Figure 12. Deep learning chip revenue. Retrieved from [71]. ... 21

Figure 13. Quantization-aware training with a straight-through estimator. Retrieved from [110]........... 27

Figure 14. Accelerator architectures: Dataflow Architecture (Left) and Multilayer Offload Architecture

(Right). Retrieved from [23]. .. 31

Figure 15. DPUCZDX8G Hardware Architecture. Retrieved from [138]. .. 34

Figure 16. Example of CIFAR-10 images. .. 38

Figure 17. Pytorch and Tensorflow usage in publications. Retrieved from [142]. 39

Figure 18. Pytorch and Tensorflow github repository share. Retrieved from [142]............................... 39

Figure 19. ResNet-18 (Left) and SqueezeNet (Right) architectures. Retrieved from [144] and [85]. 41

Figure 20. Zynq UltraScale+ MPSoC ZCU104. ... 42

Figure 21. Versal ACAP VCK190. .. 42

Figure 22. Three parallelism dimensions in convolution operation. Retrieved from [138]. 44

Figure 23. Experiment setup. .. 48

Figure 24. ResNet-18 and SqueezeNet train plots. ... 49

Figure 25. Visualization of ResNet-18 activation map shapes. .. 49

Figure 26. Sequential, Pipelined and Batched inference. ... 51

Figure 27. Inference latency vs temporal resolution trade-off. ... 52

xii

Figure 28. Multi-threaded application architecture. .. 53

Figure 29. Quantization-aware training plot of SqueezeNet. .. 54

Figure 30. ResNet-18 average inference FPS on all ZCU104 configurations. 55

Figure 31. SqueezeNet average inference FPS on all ZCU104 configurations. 56

Figure 32. ResNet-18 peak power consumption on all ZCU104 configurations. 56

Figure 33. SqueezeNet peak power consumption on all ZCU104 configurations. 57

Figure 34. ResNet-18 performance per Watt on all ZCU104 configurations. 58

Figure 35. SqueezeNet performance per Watt on all ZCU104 configurations. 58

Figure 36. ResNet-18 average inference FPS on all VCK190 configurations.. 59

Figure 37. SqueezeNet average FPS on all VCK190 configurations. ... 59

Figure 38. ResNet-18 peak power consumption on all VCK190 configurations. 60

Figure 39. SqueezeNet peak power consumption on all VCK190 configurations. 60

Figure 40. ResNet-18 performance per Watt on all VCK190 configurations. 61

Figure 41. SqueezeNet performance per Watt on all VCK190 configurations. 61

Figure 42. Avg inference FPS of RTX3090, ZCU104 and VCK190. ... 62

Figure 43. Peak power consumptions of RTX3090, ZCU104, and VCK190. 63

Figure 44. Performance per Watt of RTX3090, ZCU104, and VCK190. .. 63

Figure 45. Semantic-KITTI dataset points class distribution. Retrieved from [150]. 69

Figure 46. Intersection and union of ground truth and model predictions. Adapted from [156]. 71

Figure 47. SqueezeSegV3 model’s SAC block. Adapted from [157].. 74

Figure 48. SqueezeSegV3 model architecture with pre and post-processing. Adapted from [157]. 74

Figure 49. Sigmoid and hard-sigmoid activation functions. ... 77

Figure 50. SqueezeSegV3-21 original model training: validation accuracies and IoUs. 81

Figure 51. SqueezeSegV3-21 original model training: training set loss. .. 81

Figure 52. SSGV321-K3 model training: validation accuracies and IoUs. .. 82

Figure 53. SSGV321-K3 model training: training set loss. .. 82

Figure 54. SSGV321-K3 model training: validation accuracies and IoUs (100 epochs training). 83

Figure 55. SSGV321-K3 model training: training set loss (100 epochs training).................................. 83

Figure 56. Model deployment flowchart. .. 85

Figure 57. SSGV321-K7 average inference FPS on all VCK190 configurations. 87

Figure 58. SSGV321-K3 average inference FPS on all VCK190 configurations. 88

Figure 59. SSGV321-K1N45 average inference FPS on all VCK190 configurations. 89

xiii

Figure 60. SSGV321-K7 peak power consumption on all VCK190 configurations. 90

Figure 61. Performance per Watt of RTX3090 and VCK190. .. 91

Figure 62. Semantic-KITTI semantic segmented point clouds. Ground-truth and predictions comparison.

 .. 92

Figure 63. Detailed semantic segmented point clouds predictions. Comparison with ground-truth and

camera-view. .. 93

Figure 64. Excerpt of ResNet-18’s torchvision implementation. .. 117

Figure 65. Excerpt of ResNet-18’s QAT compatible implementation. .. 118

Figure 66. SSGV321-K1 model training: validation accuracies and IoUs. .. 143

Figure 67. SSGV321-K1 model training: training set loss. .. 144

Figure 68. SSGV321-K1N45 model training: validation accuracies and IoUs. 144

Figure 69. SSGV321-K1 model training: training set loss. .. 145

xiv

LIST OF TABLES

Table 1. Market released and future automotive LiDAR sensors (references in the table). 20

Table 2. Vitis-AI pre-built DPUs [113]. ... 35

Table 3. ResNet-18 and SqueezeNet total parameter count and floating-point operations considering Cifar-

10. ... 42

Table 4. Zynq UltraScale+ MPSoC ZCU104 and Versal ACAP VCK190 resource comparison. 42

Table 5. Relationship between DPUCZDX8G architectures’ parallelism levels and peak operations per

cycle. ... 44

Table 6. All DPUCZDX8G configurations explored and respective resources. 45

Table 7. DPUCVDX8G configurations, respective resource utilization and the peak theoretical performance

per cycle. ... 46

Table 8. Comparison of Vitis-AI quantization methods’ requirements. ... 50

Table 9. Vitis-AI quantization accuracy and model size reduction. .. 54

Table 10. ResNet-18 inference DDR memory access information on ZCU104. 66

Table 11. SqueezeNet inference DDR memory access information on ZCU104. 66

Table 12. LiDAR-based 3D semantic segmentation capable datasets. .. 69

Table 13. Vitis-AI unsupported operations of 3D semantic segmentation deep learning models. 72

Table 14. PointPillars inference latency comparison between partial and complete DPU support. 75

Table 15. SqueezeSegV3 support-driven architectural changes. ... 77

Table 16. Top 4 most time-consuming layers during inference. .. 78

Table 17. SAC block's convolution kernel size comparison. .. 79

Table 18. SqueezeSegV3-21 model variants experimented. ... 79

Table 19. Quantization results of SqueezeSegV3-21 model variants. .. 86

Table 20. Model size reduction after quantization. ... 86

Table 21. SSGV3-21 models framerate comparison between RTX3090 and C64B1x2. 89

Table 22. C64B1x2 peak power consumption on all SqueezeSegV3-21 model variants. 91

Table 23. SSGV321-K3 and SSGV321-K1N45 inference DDR memory access information on VCK190.

 .. 95

Table 24. Comparison with similar works. ... 96

Table 25. QAT mandatory operation replacement. ... 116

xv

Table 26. DPUCZDX8G and DPUCVDX8G channel parallel and bank depth possible values – Vitis-AI 2.0.

 .. 119

Table 27. DPUCZDX8G and DPUCVDX8G XIR operations and parameters support – Vitis-AI 2.0. 119

Table 28. Pytorch operations to XIR operations translation. ... 121

Table 29. ResNet-18 and SqueezeNet average inference FPS and peak power consumption across all

ZCU104 and VCK190 configurations. .. 124

Table 30. SqueezeSegV3-21 original implementation’s list of pytorch operations and respective

parameters. .. 131

Table 31. Per-class IoU of the 3 SSGV3-21 variants on the validation set of Semantic-KITTI. 145

Table 32. SSGV321-K7, SSGV321-K3, and SSGV321-K1N45 average inference FPS and peak power

consumption across all VCK190 configurations. .. 146

Table 33. SSGV321-K7 layer-by-layer average computation time during inference on C64B1x2 with 1 CPU

thread. ... 147

Table 34. Average accuracy and average IoU of SSGV321-K3. 72 epochs vs 100 epochs training. ... 151

Table 35. Per class IoU of SSGV321-K3. 72 epochs vs 100 epochs training. 152

xvi

LIST OF ABBREVIATIONS AND ACRONYMS

A

ADAM Adaptive Moment

ADAS Advanced Driver-Assistance Systems

API Application Programming Interface

ASIC Application-Specific Integrated Circuit

B

BEV Bird’s Eye View

BNN Binary Neural Network

BRAM Block Random Access Memory

C

CNN Convolutional Neural Network

CPU Central Processing Unit

CU Compute Unit

D

DDR Double Data Rate

DPU Deep Learning Processing Unit

F

FLOPS Floating-point Operations

FPGA Field Programmable Gate Array

FPS Frames per Second

FV Front View

G

GPU Graphical Processing Unit

GOPS Giga Operations

GFLOPS Giga Floating-Point Operations

H

HW Hardware

xvii

I

ICP Input Channel Parallelism

IoU Intersection over Union

IP Intellectual Property

L

LiDAR Light Detection and Ranging

M

mAP Mean Average Precision

mIoU Mean Intersection Over Union

O

OCP Output Channel Parallelism

P

PE Processing element

PP Pixel Parallelism

PS Processing Subsystem

Q

QAT Quantization-aware training

R

ReLU Rectified Linear Unit

S

SAC Spatially Adaptive Convolution

SIMD Single Instruction Multiple Data

T

TNN Ternary Neural Network

TOF Time of Flight

TOPS Tera Operations

TPU Tensor Processing Unit

U

xviii

URAM Ultra Random Access Memory

V

VART Vitis-AI Runtime

X

XIR Xilinx Intermediate Representation

XRT Xilinx Runtime

xix

GLOSSARY

Activation function Any mathematical function used in a neural network’s layers to introduce

non-linearity in the output of the layer’s neurons.

Batch (Training) A hyperparameter that defines the number of instances to process before

updating the internal model parameters during training of a neural

network.

Batch (Inference) The number of instances to inference over in parallel.

Bit-width

(Quantization)

The number of bits necessary to represent an integer as a binary number.

Computer Vision A field of Artificial Intelligence concerned with the extraction of high-level

information from digital visual inputs such as images, videos and point

clouds.

Cross-entropy Loss A loss function used to measure the performance of a classification model

that outputs probabilities between 0 and 1. Its value increases as the

predicted probability diverges from the actual value.

Deep Learning A subset of Machine Learning based on Deep Neural Networks in which

multiple layers of processing are used to extract progressively higher-level

features from data.

Deep Neural Network In contrast with Shallow Neural Networks, typically referred to as just

Neural Networks, Deep Neural Networks have multiple layers between

the input and output layers.

Deep Learning Model The resulting weights and biases of a Deep Neural Network fitted to the

training data.

Feature An individual measurable property or characteristic of the input. For

example, age, gender, weight of a person or the number and location of

a specific pattern in an image/point cloud.

xx

Feature Map Each feature map or activation map is the result of convolving an image

using a kernel/filter of a CNN and passing it through an activation

function.

Filter / Kernel (CNN) Set of learnable weights spatially structured that learn to extract relevant

patterns when convolved over the input.

Floating-point

representation

A system to represent, with a fixed number of digits, real numbers of

different orders of magnitude. Differs from fixed-point representation by

allowing a variable number of integer and fractional digits.

Loss Function A function that is used to evaluate how well an algorithm models a

dataset.

Neural Network Neural Networks are a subset of Machine Learning algorithms that

combine a set of progressively learned functions to model the given

training data and perform predictions. Each individual function is

composed of a set of parameters, namely the weights and biases that are

combined through the notion of a neuron and passed through an

activation function. The way individual functions are combined is through

the notion of layers.

Off-chip memory Memory that resides outside the chip where the computations happen. It

has higher access latency but is also bigger than on-chip memory.

On-chip memory Memory that resides in the same chip where the computations happen.

It has very low access latency but is also very small.

Point Cloud A set of points in 3D space representing one or more objects in a scene.

1 INTRODUCTION

INTRODUCTION

2

1.1 CONTEXT

 LiDAR (Light Detection and Ranging) sensors have been widely recognized as key components for

advanced driver-assistance systems (ADAS) and autonomous driving as they enable the tri-dimensional

mapping of objects. The additional information extracted by the LiDAR is critical for the central processing

unit of the vehicle to perceive the surrounding scenario. Evidence for this trend is the ever-growing

adoption of the LiDAR sensor in the sensor suite of autonomous driving solutions in the market [1], [2],

[3], [4], [5], [6], [7].

 Additionally, the research in autonomous systems has seen dramatic advances in recent years, due to

the increase in available computing power and reduced cost in sensing, computing technologies, and

price of the necessary hardware, resulting in the maturing technological willingness to produce fully

autonomous vehicles. Figure 1 shows the forecast from Statista, a company that specializes in market

and consumer data, for the projected sales of autonomous vehicles worldwide from 2019 to 2030. The

growth in sales evidences the wide adoption of autonomous driving solutions in the automotive market.

Several other sources also estimate the increasing demand and market size of autonomous driving-related

products in the automotive market [8], [9].

Figure 1. Forecast of the worldwide autonomous vehicles sales from 2019 to 2030. Retrieved from [10].

INTRODUCTION

3

 The core competencies of an autonomous vehicle system are classified into three categories, namely

perception, planning, and control [11]. While machine learning algorithms based on deep neural networks

have demonstrated great performance in several complex cognitive tasks [12], [13], a significant gap in

the energy and efficiency of the computational systems that implement perception algorithms still exists

[14]. Most of these algorithms run on conventional computing systems such as Central Processing Units

(CPUs) and General-Purpose Graphical Processing Units (GPUs). Alternatives containing embedded

hardware solutions, such as Field Programmable Gate Arrays (FPGAs), have started to be explored to

help develop solutions that allow more efficient computation of deep neural networks [15], [16].

1.2 MOTIVATION

 Several works have demonstrated the capabilities of FPGAs for designing real-time applications that

perform deep neural network inference on FPGAs [17], [18], [19]. Some works specifically focus on the

implementation of such neural networks using LiDAR data [20], [21], [22]. The possibility to concurrently

design hardware and software, a feature of FPGAs, allows for the exploration of more efficient solutions.

Not only can one adapt the software for the underlying hardware, but the hardware itself can also be

finetuned for the specific application. More, this process can be done iteratively.

 With the advent of high-level tools [23], [24] that open the hardware-software co-design research to

machine learning and deep learning engineers without FPGA expertise, it becomes possible to increase

the efficiency of deep neural networks by reducing power consumption while maintaining the desired

framerate.

1.3 OBJECTIVES

 The main goal of this work is to train and deploy a deep neural network on an FPGA to perform one

perception task using LiDAR sensor data, in the form of a point cloud. Power consumption should be kept

to a minimum while maximizing framerate, without losing sight of accuracy metrics. Hardware limitations

are also expected to heavily impact the development of a solution and so the search for fitting neural

network architectures and consequent computation layers should be carried out with them in mind. A

review of the available tools for deep neural network deployment on FPGAs should be conducted. Once a

tool is selected, a thorough exploration of the capabilities of the tool, as well as an evaluation of its

suitability for the development of a real-time, low-power inferencing application, should be validated.

INTRODUCTION

4

During experiments, framerate and power consumption should be the target metrics along with the

appropriate accuracy metrics of the perception task being solved.

1.4 STRUCTURE OF DISSERTATION

 Chapter 2 introduces the technologies and concepts relevant to the understanding of this thesis.

Chapter 3 includes a revision of past literature works that include hardware, algorithms, and works with

a similar scope to this work. Chapters 4 and 5 contain the two experiments conducted in this thesis. The

first explores Vitis-AI, the main tool used in this work, by validating its suitability for the objectives of this

work. The second implements the proposed solution to the problem this thesis aims to solve. Both

chapters 4 and 5 contain individual results, analysis, and respective discussions. Lastly, chapter 6

examines the work and concludes its impact on the problems it aimed to solve. It also contains a section

dedicated to suggesting further research opportunities.

5

2 TECHNOLOGIES AND

CONCEPTS

TECHNOLOGIES AND CONCEPTS

6

2.1 PERCEPTION IN AUTONOMOUS DRIVING

 A highly autonomous system must understand its environment by solving highly complex cognitive

tasks that allow it to respond to every situation. As a result, self-driving cars rely heavily on software to

bridge the gap between sensor information and mechanical vehicle actuation, such as steering and

braking. From the collection and processing of sensory data to the control of the vehicle’s actuators, there

is a system that encapsulates it all.

2.1.1 ADVANCED DRIVER-ASSISTANCE SYSTEMS

 ADAS are the electronic systems in a vehicle that use advanced technologies to assist the driver. They

use a combination of sensor technologies to perceive the world around the vehicle, and then either provide

information to the driver by issuing warnings or actively controlling the vehicle when necessary. To do so,

across the desired route, the system should be able to perceive its surroundings and extract high-level

information which may be critical for safe navigation. The consequent steps consist in taking the extracted

information to plan a set of actions and performing them by controlling the vehicle actuators i.e., the

devices that transform an input signal into motion. Following this description, one can distinguish 3 main

modules namely perception, planning, and control [11]. Figure 2 presents a diagram of an ADAS

containing all 3 modules and their respective interactions.

Figure 2. Block diagram of an ADAS.

TECHNOLOGIES AND CONCEPTS

7

 The perception module directly actuates on the raw sensory data collected by an array of sensors and

is responsible for the extraction of relevant features from the multiple sensors' output. These features

represent components of the vehicle's surroundings that influence the driving task. Having all these

components correctly perceived is necessary for a perception module of a high-level automation ADAS

and requires highly efficient and accurate perception algorithms.

2.1.2 ADAS PERCEPTION REQUIREMENTS AND METRICS

 Highly accurate, low response time, low energy consumption, and minimal physical size are four

fundamental requirements of an ADAS identified in this work. There are other requirements, such as the

relevancy of the information provided, that are also fundamental. However, these four are directly linked

with performance and efficiency, the focus of this work. Metrics are usually defined to quantify how

compliant an application or system is to a set of requirements. Refresh rate, which is linked to the

response time requirement, directly depends on the rate at which the sensors can produce the data to

be used by the perception module. It is then important to establish a value that considers the LiDAR

solutions currently available in the market as well as upcoming solutions. 3.1 defines a specific value for

the refresh rate by listing the LiDAR sensors currently available in the market and future solutions.

 Contrarily to refresh rate, it is hard to define a maximum value for metrics associated with accuracy,

energy consumption, and physical size since they either depend on the current perception algorithms,

the available hardware, and the vehicle(s) that the ADAS will target. Therefore, this work will not establish

specific values for these metrics. Instead, it will explore and propose solutions that keep these values as

close as possible to their optimal values. This should be accomplished by carefully reviewing state-of-the-

art solutions and choosing appropriate hardware architectures to deploy the best-suited perception

algorithms.

2.2 LIDAR SENSOR

 The LiDAR’s ability to produce an extremely accurate three-dimensional position of surrounding objects

and its innate robustness to exterior lighting conditions has pushed the adoption of this sensor in a large

range of automotive perception solutions [1], [2], [3].

TECHNOLOGIES AND CONCEPTS

8

2.2.1 WORKING PRINCIPLE

 LiDAR is an active remote sensing system. It is active because it generates energy, in this case, light,

to collect data about its surroundings and remote because it does so by detecting the energy that is

reflected from the surfaces. One of the techniques used in LiDAR to collect depth information is through

what is called the time of flight (ToF). In ToF, an emitter fires short laser pulses that reflect off surrounding

objects and are captured by the receiver. Since the emitter and receiver are approximately at the same

position, it is possible to calculate the distance to the reflecting object using the known speed of light and

the delay between the emission and reception of the laser. Usually, LiDAR sensors have multiple emitter-

receiver pairs.

2.2.2 POINT CLOUDS

 The spatially organized LiDAR data is referred to as a point cloud, a set of points with three-dimensional

position and intensity information of the reflecting surfaces in the field of view. Depending on the field of

view and resolution of the sensor, point clouds can easily become extremely large, usually, 100k-200k

3D points per frame, which results in a total size of around 1.6MB-3.2MB considering the usual format

of 4 floating point values to represent 𝑥, 𝑦, 𝑧 coordinates and intensity information. However, if the

resolution of the LiDAR is not sufficiently high, the effective range is reduced i.e., objects that are distant

from the sensor might become underrepresented or even completely undetectable. Figure 3 depicts a

LiDAR’s effective range. The same is true for the field of view which delimits, both horizontally and

vertically, the surrounding volume scanned. The coordinates of objects that lie outside the field of view

will naturally be absent from the point cloud.

 Although point clouds are extremely useful to the perception module, several challenges emerge when

processing point cloud data, and should be addressed when designing perception algorithms. These

challenges include variability in point density, diversified measured intensity, inter-class reflectivity

overlap, noise, sparsity, permutation and rigid transformation invariance, and occlusions.

TECHNOLOGIES AND CONCEPTS

9

Figure 3. The effective range of Outer’s OS1 LiDAR. Adapted from [25].

2.3 DEEP LEARNING IN POINT CLOUDS

 Advancements in device capability involving computing power, sensor resolution, and cost-

effectiveness, as well as the adoption of highly parallel hardware such as GPUs, have broken most of the

barriers to the adoption of deep learning. Also, the increasing availability of high-quality and high-volume

datasets highly benefits deep learning models contrary to more traditional approaches that struggle with

high-volume data.

2.3.1 THE DEEP LEARNING APPROACH

 In the last few years, deep learning approaches have achieved state-of-the-art results in multiple

perception tasks involving images, sound, and text. However, a similar level of success for 3D computer

vision is only now beginning to take shape, mainly due to the larger amount of data and complexity that

point clouds encompass compared to images and the hardware limitations that become even more

apparent with data-heavy point clouds.

 A typical computer vision pipeline consists of two distinct phases. The first phase usually called feature

extraction and more recently, feature learning, consists of the extraction of descriptive or informative

patches in the data called features or sometimes also called descriptors. Specifically, in point clouds,

features are usually spatial and geometric attributes or relationships between points. The second phase

TECHNOLOGIES AND CONCEPTS

10

of the pipeline, which usually consists of a classifier or regressor, is responsible for performing

classification or regression or both based on the previously extracted features.

 With the adoption of deep learning, both the feature extraction and classification or regression are done

“end-to-end” with a deep learning-based model, meaning that the input of the model is the point cloud,

and the output is a classification or regression tensor. This leaves out the need for the cumbersome and

error-prone process of manual feature extraction that usually leads to poorly generalizable models.

Currently, state-of-the-art results on perception tasks in point clouds use end-to-end deep learning models

as pipelines. Figure 4 compares both vision pipelines.

Figure 4. Comparison between a traditional and DL computer vision pipeline. Retrieved from [26].

2.3.2 POINT CLOUD PERCEPTION TASKS

 Similarly to 2D computer vision, to evaluate deep learning models on point cloud data, there are a set

of established perception tasks. Particularly in autonomous driving perception, this work highlights three.

2.3.2.1 3D OBJECT DETECTION

 The goal of 3D Object Detection is to encapsulate every instance belonging to a set of predefined

categories in the point cloud with an oriented 3D bounding box and an associated semantic label. As

portrayed in Figure 5, the bounding box information can be represented using the coordinates (x, y, z)

of the bounding box center, (h,w, l) representing respectively the height, width, and length of the

bounding box, θ representing the object’s yaw orientation and y𝑖 representing the class the object

corresponds to. An assumption made about the bounding boxes is that the objects are on the ground

plane, and so their orientation can be described only using the yaw angle.

TECHNOLOGIES AND CONCEPTS

11

Figure 5. 3D object detection in a LiDAR frame.

2.3.2.2 3D SEMANTIC SEGMENTATION

 3D point cloud segmentation aims to label homogeneous regions of a point cloud according to what

they are representing. A more formal definition of the task is to assign every 3D point from the point cloud

X = {x1, x2, … , xN} with a semantic or instance label yi from a set Y = {y1, y2, … , yK} representing

K distinct categories. Segmentation can be subdivided into sub-tasks by the different levels of granularity.

At the coarser level, there is semantic segmentation where each group of points is represented by a

semantic label such as road, car, or building. This type of segmentation is illustrated in Figure 6. At the

intermediate level, there is instance segmentation which is not only trying to distinguish points based on

their semantic meaning but also separating different instances with the same semantic meaning. This

refers to the case where the objective is to not only identify that a group of points represents a car but to

be able to distinguish different cars by assigning each of the groups a different instance label. Finally, the

more fine-grained sub-task is part segmentation where several parts of a semantic region are

distinguished. For example, from a group of points representing a car, segment the windshield, tires, etc.

TECHNOLOGIES AND CONCEPTS

12

Figure 6. 3D semantic segmentation of a LiDAR point cloud.

2.3.2.3 3D OBJECT TRACKING

 Given the locations and labels of a set of objects in a frame, the task of object tracking is to estimate

their state in subsequent frames. A naive approach to the problem could be using object detection over

all frames, but one obvious problem arises from this solution. If multiple objects are in the frame, the

label associated with each object should remain unchanged over the following frames and object detection

treats each frame independently. So, there is no way to guarantee that the detector attributes the same

label to the detected objects over all frames. To solve this issue, one possible solution is to model the

motion of the object i.e., the dynamic object’s heading and velocity so that the most likely position in

future frames can be predicted, effectively reducing the search space of a detector.

2.3.3 POINT CLOUD REPRESENTATION

 Due to the unstructured and sparse nature of the point clouds, some transformations are usually

carried out to generate a structured representation. The following sections present and explain the

different representations, providing examples of deep learning models that use the representations.

2.3.3.1 PROJECTION-BASED

 2D deep learning on images has achieved remarkable results using deep convolutional architectures

on tasks such as image classification [27], [28], object detection [29], [30], and semantic segmentation

[31]. Besides, well-established 2D datasets containing a lot of data, such as ImageNet [32], are readily

available leveraging the application of deep convolutional models pre-trained on these datasets to 2D

images. However, the convolution operation is performed on data that is ordered, regular, and on a

TECHNOLOGIES AND CONCEPTS

13

structured grid. For this reason, to benefit from the performance of established 2D deep convolutional

networks, a natural approach is structuring point clouds in a way that allows the application of 2D

convolution operations. One way to achieve this is by performing a projection of the 3D point cloud into

a 2D grid. Several projection schemes have been used in different works where predominantly two main

schemes are used: Front View (FV) [33], [22] and Bird’s Eye View (BEV) [34], [35], [36]. Both are

illustrated in Figure 7.

Figure 7. Illustration of spherical, cylindrical, and bird’s eye view projections of point clouds. Adapted from [37].

 Unfortunately, there is a discretization inherent to the projection operation which results in a loss of

information. Because the 2D grid has a limited resolution, several points in the point cloud are likely to

end up in the same grid coordinate. There are various ways to deal with this situation. Xu, C. et. al only

keep the point with the largest range value 𝑟 = √𝑥2 + 𝑦2 + 𝑧2. Another possible approach is to

combine the x, y, z, and intensity values of all the points through some average or even a small multi-

layered perceptron. PointPillars [38] is a good example of the latter approach.

2.3.3.2 VOXEL-BASED

 A different approach that allows the application of convolutions directly on 3D point clouds is through

what is called a voxel-based representation. However, in this approach, the convolution operations used

are 3D convolutions.

 A voxel is a volume element that represents a specific grid value in 3D space. Voxel-based approaches

partition the [L, W, H] 3D point cloud into fixed-sized voxels through voxelization by assigning points in

the point cloud to voxels according to their 3D coordinates. The voxel represents all the points assigned

to itself by combining features of those points. Figure 8 portrays the voxelization process of a point cloud

of an airplane.

TECHNOLOGIES AND CONCEPTS

14

 However beneficial to the use of convolution operations, a voxel-based representation has some

limitations. Firstly, not all voxels will carry important information because point clouds have denser and

sparser zones. The sparser zones may contain lots of empty voxels. This results in a memory inefficient

representation of the 3D space and wasted computation when applying 3D convolutions [39]. Secondly,

because the computational and memory cost increases cubically with the increase in voxel resolution,

there is a limit on the total number of voxels, usually around 303 [39].

Figure 8. Voxelization of a point cloud using 303 voxels. Retrieved from [40].

2.3.3.3 POINT-BASED

 Both projection-based and voxel-based representations discretize the point cloud resulting in a loss of

information. Contrarily, the point-based approach looks to fully exploit the 3D geometry and shape of the

point cloud without information loss.

 As noted in the work of Shi, S. et al., projection and voxel-based representations are more

computationally efficient, but lose fine-grained localization information, while point-based approaches

don’t lose so much information, but result in a higher computational cost [41]. Similarly, Deng, J. et al.

also suggest that point-based approaches can better retain precise point positions while having a higher

computational overhead compared to projection and voxel-based representations [42].

2.3.3.4 GRAPH-BASED

 Graph-based approaches convert the point cloud into a graph, as illustrated in Figure 9. The nodes of

the graph correspond to the points and the edges represent the relationship between point neighbors

TECHNOLOGIES AND CONCEPTS

15

inside a fixed radius. The explicit representation of the relationship between point neighbors through the

graph edges is good for modeling the correlation between points in the point cloud [40], so more local

spatial correlation features can be extracted from the grouped edge relationships on each node [43].

Recently, more works explore this representation to solve 3D perception tasks [44], [45], [46], [47].

Figure 9. Illustration of a graph representation of a point cloud. Adapted from [48]

2.4 DEEP NEURAL NETWORK COMPRESSION

 Although difficult to prove, deeper neural network parameter count has been long observed to be

positively correlated with accuracy. From one extreme where natural language processing models have

up to billions of parameters [12], to the other where smaller models are designed to fit in embedded

hardware [49], there is a need to reduce the size of neural networks, and the computation needed to run

them, without compromising accuracy.

2.4.1 QUANTIZATION

 Historically most neural networks are trained using 32-bit floating point values. The core idea behind

quantization is to reduce the representation of weights and biases, usually to 16-bit, 8-bit, 4-bit, or even

2-bit and single-bit integers. The challenge is to map the set of possible values of a neural network’s

parameters to a fixed discrete set of integers, effectively minimizing the number of bits required to

represent the values. Since activation outputs are usually between 0 and 1 e.g., sigmoid, or at least can

be bounded by a low integer value e.g., relu6, the weights of a neural network usually remain within a

reasonable small range of values and consequently are good candidates for being represented using

lower bit-widths [50].

 Besides the obvious reduction in model size, there are added benefits of using lower-bit integer

representations such as a reduction in energy consumption and inference latency. Chen, Q. et al.

TECHNOLOGIES AND CONCEPTS

16

compared an 8-bit fixed-point adder and multiplier to a 32-bit floating point adder and multiplier

concluding that the energy and area of a fixed-point adder and multiplier scale approximately linearly and

quadratically respectively with the number of bits used for representation [51]. Also, if the model does

not fit on local/on-chip memory, and off-chip memory must be accessed, the lower bandwidth inherent

to this access, when compared to local memory access, is a major bottleneck of inference latency [52].

Furthermore, off-chip memory accesses result in orders of magnitude higher energy consumption [23].

For these reasons, model size reduction can decrease inference latency by allowing for the exploration of

memory locality. Even if it is not possible to avoid off-chip memory accesses, it is advantageous to have

lower bit-width representations since it improves the memory bandwidth i.e., the cost of moving

information is smaller. One last advantage of lower bit-width representations is the exploration of Single

Instruction Multiple Data (SIMD) [50].

 The quantization problem can be seen as the mapping operation of floating-point values in a

predetermined range of values to integer values that can be represented with 𝑏 bits. The quantization

and de-quantization operations can be described as

{

𝑥 = 𝑆(𝑥𝑞 + 𝑍)

𝑥𝑞 = (
1

𝑆
∙ 𝑥 − 𝑍)

(Equations 1 and 2)

where 𝑥 ∈ [𝛼, 𝛽] are the floating-point values, and 𝑥𝑞 ∈ [𝛼𝑞 , 𝛽𝑞] are the quantized values. For a b-bit

representation, [𝛼𝑞 , 𝛽𝑞] would be equal to [−2𝑏−1, 2𝑏−1 − 1] and [0, 2𝑏 − 1] respectively when

using signed and unsigned integers to represent the quantized values. 𝑆 and 𝑍 are variables that must

be derived. Appendix I contains the derivation of 𝑆 and 𝑍.

Their values are

{

 𝑆 =

𝛽 − 𝛼

𝛽𝑞 − 𝛼𝑞

𝑍 = 𝑟𝑜𝑢𝑛𝑑 (
𝛼 ∙ 𝛽𝑞 − 𝛽 ∙ 𝛼𝑞

𝛽 − 𝛼
)

(Equations 3 and 4)

TECHNOLOGIES AND CONCEPTS

17

 The above quantization mapping is known as affine quantization. In the special case where 𝑍 is forced

to have the value 0, the name scale quantization or symmetric quantization is given. Figure 10 and Figure

11 respectively depict affine and scale quantization using 8-bit integers.

Figure 10. Affine quantization using signed 8-bit integers.
Retrieved from [53].

Figure 11. Scale quantization using unsigned 8-bit integers.
Retrieved from [53].

 There is one potential downside to quantizing neural networks. Usually, an accuracy drop can be

observed, especially at lower bit-widths. This is to be expected as the range of values that can be encoded

is halved with each removed bit. However, the drop in accuracy is usually not as significant and several

quantization techniques have been shown to preserve accuracy, even on the more challenging models to

quantize [54]. A review of the proposed quantization techniques and their results can be found in 3.3.

2.4.2 OTHER TECHNIQUES

 Pruning, usually used alongside quantization, is the process of removing part of a neural network’s

parameters, namely the weights while ensuring that the model’s performance doesn’t drop below a

specified threshold. Typically, a pruning pipeline consists of first training a network, then pruning the

model according to a specific strategy, and finally fine-tuning the pruned network to compensate for the

performance loss. This is done iteratively and in each iteration N number of parameters are removed.

However, if the percentage of pruned parameters is high, the matrices representing model weights

become sparse. Consequently, matrix operations become harder to accelerate and memory-bound [55].

 More techniques have been proposed to reduce neural network size, improve energy efficiency and

reduce inference latency, such as low-rank factorization [56] and knowledge distillation [57]. However,

like quantization and pruning, those target the neural networks. A different particularly interesting

approach is point cloud sampling which consists of sub-sampling the point cloud by preserving the original

structure while reducing the number of points. Random sampling and farthest point sampling are the two

traditional sampling algorithms [37]. Lang, Itai, Manor, Asaf, and Avidan Shai argue that traditional

TECHNOLOGIES AND CONCEPTS

18

sampling approaches do not consider the perception task that the network consuming the point cloud as

input is performing. For this reason, they propose a technique that learns task-specific sampling,

improving results significantly [58].

LITERATURE REVIEW

19

3 LITERATURE REVIEW

LITERATURE REVIEW

20

3.1 AUTOMOTIVE LIDAR REFRESH RATE

 LiDAR sensors can usually be configured to operate at different frame rates, allowing them to suit

different tasks and scenarios. The maximum frame rate of each sensor is of utmost importance, as it

defines the minimal real-time response time that perception algorithms must adhere to. Table 1 lists

LiDAR sensors’ frame rate as well as information about each sensor’s market release year. The selection

criteria for the devices detailed in this section prioritizes devices by reputable, industry-leading LiDAR

manufacturers - some of which already have commercially available devices, like Continental, Valeo, and

Ouster - or startup companies that have established themselves by developing state-of-the-art LiDAR

technologies, as is the case of Innoviz and Baraja. The results from Table 1 show that the frame rate is

typically below 30 Hz and that the lower bound, although with some exceptions, is usually 5 Hz. From

these values, one may estimate a minimum response time of 33 ms for the perception algorithms.

However, it should be noted that higher frame rates result in lower resolutions, regardless of the sensor

technology. A lot of the below listed LiDARs allow regulating this resolution/frame rate trade-off by having

a refresh rate interval rather than a single value. Examples are Velodyne’s HDL-64E and VLS-128, Ouster

OS2-128, Innoviz’s InnovizTwo and Innoviz 360, and Baraja Spectrum HD25. One can note that in these

sensors, substantially lower resolutions result from higher frame rates. Perception systems rely heavily

on the resolution of point clouds, especially for identifying small objects and road segments. For this

reason, a refresh rate of 10 Hz seems to offer very reasonable resolutions on the listed LiDARs without

compromising heavily on frame rate. And the data in the table does suggest that a refresh rate of 10 Hz

is widely supported. Hereby, a frame rate of 10 Hz is the reference value for the perception algorithms

explored throughout this work.

Table 1. Market released and future automotive LiDAR sensors (references in the table).

LiDAR Sensor Refresh Rate

(Hz)

Angular Resolution (H x V) Market Release

Velodyne HDL-64E [59] 5 - 20 (0.08°- 0.35°) x 0.4° 2007

Velodyne VLS-128 [60] 5 - 20 (0.08° - 0.35°) x 0.11° 2017

Ibeo Lux [61] 25 0.25° x 0.8° 2018

Ouster OS2-128 [62] 10 or 20 (0.7° - 0.18°) x 0.18° 2020

Continental HFL110 [63] 25 0.94° x 0.94° 2021

Luminar Iris [64] 1 - 30 0.05° x 0.05° * 2022

Innoviz InnovizTwo [65] 10/15/20 0.05° x 0.05° * 2022

Innoviz 360 [66] 0.5 - 25 0.05° x 0.05° * 2022 (Q4)

LITERATURE REVIEW

21

Baraja Spectrum HD25 [67] 4 - 30 0.04° x 0.0125° * > 2022

Continental HRL131[68] 10 0.05° x 0.075° 2024 **

Valeo Scala GEN1[69] 25 0.25° x 0.8° 2024 **

*Highest possible resolutions

**Expected

3.2 DEEP LEARNING HARDWARE

 Deep learning models notoriously require lots of computation and memory during inference. With the

limited energy consumption in the vehicle and the hardware limitations that it creates, it becomes natural

to consider offloading some of the computation outside the vehicle through the network. However, due to

network limitations in communication bandwidth, latency, and reliability, only offline tasks, usually

consisting of offline model retraining and map generation, can be performed on the cloud [70]. This

means that, concerning real-time perception, currently the best solution is to use the paradigm of edge

computing which tries to bring the computation as close as possible to the data sources, and the sensors,

effectively placing the hardware inside the vehicle. This trend is very visible in the data plot in Figure 12.

Given the above-mentioned reasons, it is important to understand the different types of hardware available

with especial attention to inference latency, memory, and energy consumption constraints.

Figure 12. Deep learning chip revenue. Retrieved from [71].

LITERATURE REVIEW

22

3.2.1 CENTRAL PROCESSING UNITS

 CPUs are the most versatile of all the hardware since they can perform almost any type of computation

and are unavoidably present in almost every system. This makes them the easiest and less time-

consuming hardware to deploy neural network applications on, as less effort is needed to support even

the most novel and exotic neural network layers. Even the more common layers, which usually translate

into vector to vector or matrix to matrix operations, are supported by low-level linear algebra routines in

libraries such as OpenBLAS [72] and Intel MKL [73].

 Most deep learning applications, even when accelerators are present, will inevitably use a CPU for

receiving sensor data, data pre/post-processing, or control flow operations. This dependency makes

CPUs a strong contender for deep learning inference since there is no latency bottleneck in transferring

data like in a CPU-GPU application [74].

 However, there is a tradeoff between versatility and resource efficiency. CPUs, being on one extreme

of this spectrum are usually not optimized for any specific application. In some cases, where metrics

such as energy consumption and inference latency are crucial, specialized hardware is the only solution.

3.2.2 GRAPHICAL PROCESSING UNITS

 Although designed for graphical processing tasks, GPUs have become the standard hardware solution

for training deep learning models since R. Raina, A. Madhavan, and A. Y. Ng proposed its usage over

CPUs, remarkably reducing the training time of models [75]. Their highly parallel nature allows for the

efficient computation of linear algebra operations, especially when transferring data in large batches [76],

therefore reducing memory accesses outside the GPU and consequently optimizing GPU resource

utilization. GPU programming has also become more accessible due to parallel programming tools such

as CUDA [77] and OpenCL [78].

 The introduction of tensor cores [79], specially designed for optimizing matrix operations and

supporting various lower bit-width representations, further increased the applicability of GPUs for DNN

training. Also, Nvidia reports a latency reduction in inference by utilizing tensor cores [80], which opens

the usage of GPUs in latency-restricted applications such as ADAS. However, their high energy

consumption is a hard limiting factor for their use in such systems. The study conducted by Gawron, H.

J. et al. estimates a 3% increase in energy consumption between an autonomous and a non-autonomous

vehicle with roughly half of the consumption due to the perception hardware (excluding sensors) [81].

This percentage can become more significant if the cooling of the hardware is considered as noted by

LITERATURE REVIEW

23

Lin. S. et al. [82]. To address these limitations, various efforts have been made to design and implement

mobile GPUs with reduced power consumption, such as Nvidia RTX embedded GPU solutions [83]

offering as low as 35W maximum power consumption.

3.2.3 APPLICATION-SPECIFIC INTEGRATED CIRCUITS

 Similarly to CPUs, GPUs are multi-purpose hardware solutions. This means that, despite the efforts

made by graphics card manufacturers to add specialized hardware components such as tensor cores to

their cards, GPUs are limited by the fact that they are a multi-purpose solution. Application-Specific

Integrated Circuits (ASICs) are, as the name suggests, hardware that is specifically designed to optimize

performance for a small set of applications. A well-known example of an ASIC widely used in deep learning

is Tensor Processing Units (TPUs) specifically designed by Google for accelerating linear algebra

computations [84]. TPUs excel when training models that are heavily dominated by matrix computations

but tend to suffer from severe performance degradation when frequent branching or element-wise

operations [84]. This inability to perform outside of the specific target application constraints is a typical

pitfall of ASICs. Wang, Y. et al. benchmarked Google’s TPU v3 and an Nvidia V100 GPU in the training of

DL models such as ResNet-50 [27] and SqueezeNet [85], concluding that TPUs consistently provided a

considerable speedup in DL model training over GPUs [86].

 In the landscape of edge computing, where reduced inference latency and power consumption are the

main constraints, there are several ASICs designed to optimize inference latency rather than training time,

while keeping the energy consumption low. Examples are Tesla’s Full Self-Driving Chip [87], and

Mobileye’s EyeQ5 [88]. Although achieving fewer operations per second compared to the state-of-the-art

general-purpose graphics cards, ASICs designed for edge computing are far more suited for automotive

perception due to the high energy consumption of GPUs.

3.2.4 FIELD PROGRAMMABLE GATE ARRAYS

 ASICs do not offer enough flexibility to keep up with the rapid evolution of deep learning models as the

emergence of new types of layers poses a challenge to specialized hardware, especially since ASICs tend

to have a high non-recurring engineering cost and time for design [89]. Field Programmable Gate Arrays

(FPGAs) are integrated circuits that can be specifically optimized for a large subset of applications.

Contrarily to ASICs, FPGAs are “field” reconfigurable meaning the hardware circuit can be reprogrammed

to meet the requirements of the developer even when they change after manufacturing. This allows the

LITERATURE REVIEW

24

developers to adjust to new model architectures without having to re-design and manufacture a new chip,

resulting in a significant reduction in design costs and time to market when compared to ASICS. For these

reasons, Intel refers to ASIC prototyping using FPGAs as a standard practice that both decreases

development time and accelerates verification by allowing testing of a design on silicon from day one

[90]. However, the reconfigurable characteristic of FPGAs introduces significant overhead in raw power

performance when compared to ASICs and GPUs. A. Boutros, S. Yazdanshenas, and V. Betz compared

three at the time state-of-the-art computer architectures optimized for CNN inference observing an average

of 8.7x more area required for FPGA implementations when compared to ASICs. Regarding performance,

assuming only raw Tera Operations per Second (TOPs) without considering external memory bandwidth,

ASIC implementations were 2.8x to 6.3x faster than FPGAs [89].

 Comparing energy efficiency, FPGAs typically provide a lower energy consumption compared to GPUs

but still higher than ASICs. Aydonat, U. et al. showed that an implementation of the AlexNet network on

an Intel’s Arria 10 FPGA achieved similar results to an Nvidia TitanX GPU when considering images per

second per watt. The FPGA, although processing approximately 5x fewer images per second, it did so by

consuming 5x less energy [91]. Nurvitadhi, E. et al. compared the energy efficiency of a CPU, GPU, FPGA,

and ASIC in an implementation of a binary neural network. The results show that the FPGA and ASIC

significantly outperform the CPU and GPU in terms of performance per watt [92].

 Another advantage of FPGAs is the adaptability to any type of bit-width representation when performing

quantization. This allows for testing several possible representations and evaluating the performance,

energy efficiency, and inference latency of deep learning models.

 Overall, in the ever-changing area of deep learning applications and the tight accuracy, latency, and

energy requirements of an ADAS, FPGAs seem to be the most flexible, cost-effective hardware that still

offers a very reasonable performance-per-watt.

3.3 DEEP NEURAL NETWORK QUANTIZATION

 Introduced in 2.4.1, quantization is becoming a standard procedure when developing deep learning

applications that run on embedded hardware. This is evidenced by the quantization toolsets available in

widely used and established deep learning frameworks. Pytorch offers this functionality through its

quantization API [93] and TensorFlow offers the TensorFlow Lite, a library for deploying models on

mobile, microcontrollers, and other edge devices [94]. Facebook has also open-sourced its library

QNNPACK which provides support for quantized neural networks to run on mobile devices [95]. One last

LITERATURE REVIEW

25

example is Xilinx, a company that manufactures and sells FPGAs, which also provides Vitis-AI, a tool that

supports quantization on their proprietary hardware [24]

3.3.1 QUANTIZATION METHODS

 As briefly mentioned in 2.4.1, the main problem when quantizing neural networks is the inherent

accuracy drop. Although not as acute as in other mathematical models, given that most current neural

network models are overparameterized [96], it can still be very significant. To mitigate this effect, several

quantization algorithms have been proposed and fall into one of two main methods, namely quantization-

aware training (QAT), and post-training quantization.

 In QAT, the quantized model is re-trained to fine-tune the parameters given their quantized values. To

do this, the model weights are quantized to the integer values before the forward pass, then the data

points are forwarded through the network and the loss with respect to the quantized weights is calculated.

A straight-through estimator is used as an approximation of the backward function of the quantization

operation and the gradients are added to the floating-point weights [53]. This allows the neural network

to adapt to the quantization operation during training and results in less accuracy loss compared to post-

training quantization. Figure 13 provides a surface-level illustration of the QAT training procedure.

 Ideally, QAT does not need to re-train the model from scratch as it is beneficial to use the pre-trained

weights. This allows the QAT to converge faster to a solution and it is common practice in literature [97],

[98]. Combining both pruning and QAT, S. Han, H. Mao, and W. J. Dally achieved a 49x model-size

reduction on the VGG-16 model with no loss of accuracy on the ImageNet dataset, a 3x to 4x inference

latency reduction, and a 3x to 7x increase in energy efficiency on the fully connected layers, also using

Huffman coding to encode weights [99]. Nagel, M., et al. used a QAT consisting of cross-layer

equalization, range estimation, and learnable quantization parameters to experiment with 8-bit and 4-bit

quantization of both weights and activations. Using 8-bit weights and activations, and per-tensor

quantization, the authors' solution surpassed the float model baseline in different perception tasks on

datasets like Pascal VOC, COCO 2017, GLUE, and ImageNet. They also showed the robustness of their

pipeline when quantizing weights using 4-bits by staying within 1% of the float model baseline in 5 out of

8 models tested [100].

 However, because QAT requires training the model, it can be impractical given that the full dataset

and sufficient hardware resources might not be available.

 Post-training quantization methods allow quantizing neural networks without the overhead of training

the network. This approach has been found to work well for larger models, which have more redundancy

LITERATURE REVIEW

26

but can struggle on smaller models [101]. It consists in analyzing the model’s weights and activations

generated by running inference during the calibration process and selecting the correct quantization

intervals [54]. Algorithms such as cross-layer equalization proposed by Nagel, M. et al. allow for data-free

quantization, meaning that no additional data is needed to quantize the model. The authors demonstrate

a top-1 accuracy degradation of only 0.5%, 0.3%, and no degradation respectively on the difficult to

quantize MobileNetV2, MobileNetV1, and the slightly easier Resnet-18 model using the ImageNet dataset

when quantizing the model to an 8-bit integer representation [102]. On the other hand, AdaQuant,

proposed by Hubara, I. et al., uses a small set of unlabeled calibration data. Compared with other post-

training quantization algorithms, the authors show that the method is much less susceptible to over-fitting

and can be used on a very small calibration set. The ImageNet top-1 accuracy of Resnet (18, 34, 50,

101), ResNext, Inception-V3, and MobileNet-V2 after quantization to 8-bits is higher than the

abovementioned two algorithms and depending on the model is usually within a 2% accuracy to the float

model baselines [103]. Moreover, the accuracy of the BERT-base model on the SQuAD1.1 dataset

achieves an accuracy degradation of only 0.46%. The usage of a calibration dataset is crucial to enable

bit-widths lower than 8, such as INT4 in post-training quantization. However, when targeting bit-widths

below 8 bits, post-training quantization might not be enough to mitigate the large quantization error [100].

Finally, extreme quantization has been proposed where neural network parameters are represented using

only one or two bits, respectively referred to as Binarized Neural Networks (BNNs) [104], [105], [106]

and Ternary Neural Networks (TNNs). [107], [108] Particularly, BNNs have a unique advantage since the

multiply-accumulate operation, used in dot products, can be done without multiplications or additions

when using one-bit representation through xnor and bit counting operations, speeding up computations

and consuming less power [109].

LITERATURE REVIEW

27

Figure 13. Quantization-aware training with a straight-through estimator. Retrieved from [110].

3.3.2 BENEFITS OF QUANTIZATION

 The previous section showed how state-of-the-art quantization methods can maintain accuracy while

reducing model size. This section specifically explores previous works that illustrate the benefits of

quantization considering energy consumption and inference latency.

Horowitz, M. compared the energy consumption of 8-bit and 16-bit additions and multiplications

with the floating point 32-bit baselines on Intel’s 95nm processor chips. The results showed a 30x and

18x reduction in energy cost between the 32-bit and the 8-bit and 16-bit additions respectively and an

18.5x reduction between 32-bit and 8-bit multiplications [111]. Hashemi, S. et al. measured the power

consumption savings of 16, 8, 4, and 1-bit precisions in a custom hardware accelerator. The authors

explored three convolutional architectures containing mostly convolution, pooling, and fully connected

layers. Compared to the 32-bit precision floating-point baseline models, the 16-bit, 8-bit, 4-bit and 1-bit

models resulted in savings of 60%, 85%, 91%, and 94% respectively [112]. Furthermore, considering the

area needed to execute each operation, Gholami, A. et al. showed that 8-bit and 16-bit additions result in

a reduction of 116.2x and 62.4x respectively while the 8-bit multiplication result in a 27.3x reduction

compared with the 32-bit float baselines [110]. Blott, M. et al. compared the power consumption of

several convolutional neural networks on the four different FPGAs using different bit-widths, ranging from

16 to a single bit. The results show that these implementations have very low power consumption,

especially at the small bit-widths [23].

LITERATURE REVIEW

28

 Regarding inference latency reduction, S. Kim, G. Park, and Y. Yi measured convolutional neural

networks inference speedups of FP16, and INT8 in mobile GPUs. The authors showed a very significant

speedup on two of the three hardware targets achieving between 1.5x to 3x inference speedup compared

to the 32-bit floating-point baseline [113]. Similarly, Z. Jin and H. Finkel registered speedups ranging from

1.02 to 1.56 of 8-bit precision compared to 32-bit floating-point precision on an Intel Xeon 4-core CPU

and 1.1 to 2.0 speedups of 16-bit floating-point precision compared to 32-bit floating-point precision on

the Intel Iris Pro mobile GPU. A merit of this work is that a large variety of neural networks were

experimented [114]. Finally, in the work of Nurvitadhi, E. et al., a ternary (2-bit quantization) ResNet-50

model was shown to have up to 65% better performance per watt (operations per second per watt)

compared to a Titan X GPU using the ImageNet dataset [109].

3.4 DEEP LEARNING ON FPGAS

 3.2 highlighted the suitability of FPGAs for deploying deep neural networks. Right after, 3.3 evidenced,

through a review of existing works, that low-bit representations can retain accuracy and decrease

inference latency and energy consumption.

 The following two subsections aim to explore works that involved efforts to implement and deploy deep

neural networks on FPGAs.

3.4.1 DEEP NEURAL NETWORK IMPLEMENTATIONS ON FPGAS

 Hand-coded FPGA-based accelerator designs require much experience and expertise. It can take a

professional hardware developer several weeks just to map a deep neural network to an FPGA, even when

using high-level synthesis tools that allow him/her to express the design in an algorithmic level of

abstraction using languages such as C/C++ [115]. For this reason, several older works focus on

accelerating only certain layers of neural networks [116]. However, there is still a valid reason for using

lower levels of abstraction since it gives the developer more design freedom and optimization

opportunities. In the work of Ma, M. et. al, the authors used Verilog, a hardware description language, to

implement four different convolutional neural networks on FPGAs. Their implementations of NiN, VGG-

16, ResNet-50, and ResNet-152 achieved real-time inference latencies of 7.9 ms, 88.8 ms, 31.82 ms,

and 81.8 ms per image on the ImageNet dataset with a batch size of one on Intel Stratix V GXA7 FPGA

and 3.8ms, 43.2 ms, 12.7 ms and 32.0 ms on Intel Arria 10 GX 1150 FPGA. No accuracy metrics were

reported [18].

LITERATURE REVIEW

29

 Although there are use cases where the abovementioned approaches are the appropriate solution,

they not only increase the costs necessary to implement deep neural networks on FPGAs but also keep

deep learning engineers, with no FPGA expertise, from a hardware-software co-design approach to deep

learning implementations. For this reason, most recent implementations use tools that interface with

established deep learning frameworks. Faraone, J. et al. used the FINN library [117] to implement pruned

and quantized versions of AlexNet (1-bit weights, 2-bit activations) and TinyYolo (1-bit weights and 3-bit

activations) on a Xilinx KU115 FPGA. The authors reported a top-1 accuracy of 50.1% and a frame rate

of 3797 FPS on ImageNet and a 48.5% top-1 accuracy on PascalVOC with a frame rate of 1226 FPS

considering the highest pruning percentage tested. The authors however did not specify the batch size

nor a baseline float model [19]. Ngadiuba, J. et al. used their library, hls4ml [118], to implement a simple

multi-layered perceptron with ReLU activations. They experimented with 1-bit and 2-bit quantizations on

MNIST [119] and Jet tagging [120] datasets. The target hardware is a Xilinx Virtex Ultrascale 9+ FPGA.

The results show a 100 ns inference latency, however with only a 3% accuracy drop [121]. Following the

previous work, Aarrestad, T. et al. successfully implemented a convolutional neural network. Besides

hls4ml, they use QKeras [122] to quantize the model and TensorFlow pruning API for pruning 50% of the

model parameters. The authors compared post-training quantization and QAT using fixed-point

representation with 16 bits. With the QAT approach, the model retained the baseline float accuracy down

to a bit-width of 4. The latency reported is in the microsecond range [123].

 All the previously mentioned works target 2D computer vision tasks. There is a gap in the literature

when it comes to FPGA implementations of 3D computer vision models since it combines two fairly new

areas of research. Y. Lyu, L. Bai, and X. Huang designed a lightweight convolutional neural network,

ChipNet, to process LiDAR data and perform drivable region segmentation. The network, quantized with

a width of 18 bits, achieved an average precision of 88.29%. To showcase the real-time capabilities of

their work, the authors directly sent LiDAR sensor data through UDP to a Xilinx UltraScale XCKU115

FPGA, used to run the network. From end-to-end, including pre-processing and post-processing of LiDAR

frames, the authors reported a latency of 17.59 ms [20]. However, note that the point cloud is sampled

in the [-45°, 45°) interval in the azimuth direction. J. G. López, A. Agudo, and F. Moreno-Noguer

implemented the convolutional layers of a VoxelNet - based model on an Arria 10 Intel FPGA using the

leg-up 4.0 framework [124] and the ModelSim HLS suite [125] [126]. The accuracy reported is close to

the VoxelNet baseline float implementation on the KITTI dataset. The model parameters are quantized

down to a 12-bit representation. The reported inference latency of the convolutional layers is 17.59 ms.

However, the batch size is not specified. Finally, L. Bai, Y. Lyu, X. Xu, and X. Huang achieved an end-to-

LITERATURE REVIEW

30

end implementation of PointNet with LiDAR point cloud data in a Xilinx Zynq UltraScale+ MPSoC ZCU104

development board. The implementation directly receives LiDAR frames via ethernet and achieves

inference latencies of 19.8 ms and 34.6 ms in classification and segmentation respectively. However,

each LiDAR frame has only 4096 points, much lower than, for example, a KITTI dataset frame. The

smaller point cloud heavily influences inference latency but could lead to significantly worse accuracy

results, which were unfortunately not reported by the authors [21].

3.4.2 HIGH-LEVEL TOOLS FOR DEEP NEURAL NETWORK DEPLOYMENT ON FPGAS

 Although the previous examples showed several successful implementations of neural networks on

FPGAs with high-level tools, the tools themselves are still at an infancy stage and consequently tend to be

rather limited in their scope. For this reason, it is useful to gather a list of the currently available options.

Solutions that target cloud-hosted FPGAs, such as Azure Machine Learning [127], were consequently not

considered. Furthermore, all tools contemplated are currently supported and actively updated. This made

the list smaller but hopefully more informative.

3.4.2.1 FINN-R

 Developed by Xilinx Research Labs, FINN-R is an open-source tool intended for design space

exploration and the automatic creation of fully customized quantized neural network inference engines on

FPGAs. In the authors’ words, this tool tries to answer the given question: “Given a set of design

constraints and a specific neural network, what is the best possible hardware implementation that can

be achieved?” [23].

 FINN-R features two converse inference accelerator architectures, represented in Figure 14. The first,

referred to as customized Dataflow Architecture, is customizable for specific neural network topologies

and different bit-widths in weights and activations in each layer, which aims to maximize the use of

hardware resources. In this architecture, the computation of layers, the storage of layer weights, and

activation maps are all performed in on-chip memory. This has the potential to significantly reduce latency

as the amount of off-chip memory accesses is minimized. However, as noted by the authors, this

accelerator architecture is not scalable toward really deep CNNs. For these use cases, FINN-R also offers

a Multilayer Offload Architecture in which the layer’s weights, and resulting feature maps, are stored in

the more abundant off-chip main memory. Both architectures are depicted in Figure 14.

LITERATURE REVIEW

31

 FINN-R uses a frontend module to interface with deep learning frameworks such as Caffe, DarkNet,

and TensorFlow. The Brevitas tool [128] also from Xilinx Research Labs, can be used to perform QAT on

Pytorch models, extending the reach of the FINN-R framework. The frontend module is responsible for

translating deep neural networks, quantized in these frameworks, into a common device-agnostic

intermediate representation. This representation is quantization-aware, meaning that it has access to the

quantization information of each layer which enables mapping to backend primitives optimized for

quantized computation.

 A series of small subprograms operate on the intermediate representation to perform a series of

optimizations such as the “direct quantization”, which converts non-quantized layers to fixed-point values.

It is also in this phase that the previously mentioned accelerator architectures are generated. Finally, a

corresponding high-level-synthesis code is generated.

From the intermediate representation, a backend module creates executable inference accelerators for a

selection of platforms, including PYNQ-Z1 [129], Ultra96 [130], and AWS F1 [131].

 On the tool’s GitHub page [132], a list of example neural network accelerators is presented. There, it

is possible to verify that topologies such as simple VGG-like architectures and small fully connected

networks are supported on all targeted FPGA boards with bit-widths of down to 1 or 2 bits. Furthermore,

more sophisticated architectures like MobileNet-v1 and Resnet-50 are also supported, but not on all target

boards. This limitation might indicate problems when deploying models with more complex architectures.

Figure 14. Accelerator architectures: Dataflow Architecture (Left) and Multilayer Offload Architecture (Right). Retrieved from
[23].

3.4.2.2 HLS4ML

 HLS4ML is an open-source Python package designed to interpret and translate machine learning

algorithms for implementation with both FPGA and ASIC technologies [118]. Similarly to FINN-R, the

package first converts the user-specified model into a common internal representation of the network

LITERATURE REVIEW

32

graph. The developed converters support QKeras, TensorFlow, Pytorch, and ONNX model formats. Post-

training quantization and QAT are also supported, where the quantization settings of models trained in

QKeras are propagated to the internal representation. Then, a set of generic optimizations are applied to

simplify inference such as the vastly explored optimization of fusing batch normalization layers with

preceding dense and convolutional layers [133]. The package also allows pruning the neural networks

through what the authors call quantization-aware-pruning, which combines a pruning procedure with

training that accounts for quantized weights.

 Finally, at a later stage, the internal representation is converted to high-level synthesis code. One key

aspect is the explicit support for multiple FPGA vendor high-level-synthesis backends (e.g., Xilinx, Intel,

and Mentor).

 To evidence the applicability of this tool, the works from Ngadiuba, J. et al. and Aarrestad, T. et al.,

described in 3.4.1, both use HLS4ML to implement neural networks on FPGAs. However, like FINN-R,

the working examples provided by HLS4ML typically target either small networks or larger networks but

with simpler topologies. This is further evidence of the premature state of development of such tools.

3.4.2.3 OPENVINO

 OpenVINO [134] is an open-source toolkit for optimizing and deploying AI inference. It interfaces with

TensorFlow, Paddle Paddle [135], Pytorch, Caffe, ONNX, and MXNet [136] and targets Intel hardware.

Unlike all other tools reviewed in this work, OpenVINO does not specialize in FPGA deployment, targeting

CPUs, GPUs, and VPUs. Instead, it provides an FPGA plugin that allows targeting Intel Arria FPGAs. A

wide range of examples showcasing supported models, even complex ones, is advertised in the

documentation [137]. However, the documentation fails to mention whether these models are possible

to deploy on the target FPGAs.

3.4.2.4 VITIS-AI

 Vitis-AI is the platform of choice for accelerating AI inference on Xilinx’s hardware platforms, targeting

both edge and cloud FPGAs. It is designed with high-efficiency and ease-of-use in mind, making it easy

for deep learning engineers with no FPGA knowledge to deploy deep learning applications on FPGAs. Like

the previous tools, it interfaces with TensorFlow, Pytorch, Caffe, and ONNX.

 Regarding quantization, Vitis-AI provides three different methods to quantize deep learning models,

encapsulated into the Vitis-AI Quantizer. For post-training quantization, a data-free approach referred to

LITERATURE REVIEW

33

as quantized calibration, is the simplest and fastest way of quantizing a model. However, for situations

where the decrease in accuracy is significant and QAT is not possible, a data-dependent approach is also

provided. Similarly to quantized calibration, this approach is referred to as fast finetuning and relies on a

small unlabeled calibration dataset. Fast finetuning can achieve better performance than quantized

calibration, but it is slightly slower. Both algorithms behind the two post-training quantization methods

and respective papers are cross-layer equalization [102] and AdaQuant [103]. A brief description of both

these works is present in 3.3.1. Vitis-AI also provides QAT for situations where fast finetuning is not

sufficient.

 As for pruning, Xilinx advertises up to 90% pruning of model parameters with a tolerable accuracy loss,

through the Vitis-AI Optimizer. Unfortunately, pruning-related tools require a commercial license to run.

 After quantizing and pruning the model, it is possible to compile the model for the target board of

choice using the Vitis-AI Compiler. The compiler is responsible for mapping the deep learning model to a

highly efficient instruction set and dataflow model called the deep learning processing unit (DPU). It also

performs sophisticated optimizations such as layer fusion, and instruction scheduling, and reuses on-chip

memory as much as possible. To target the supported FPGAs, a set of DPUs are available. Each DPU is

a group of parameterizable IP cores (Intellectual Property cores) which are integrated circuit layout

designs that are the building blocks of more complex FPGA logic, analog to libraries in programing. The

DPU contains a specialized instruction set that facilitates the mapping of neural networks to the underlying

hardware. As an example, the DPUCZDX8G high-level architecture is described in Figure 15. The

DPUCZDX8G first fetches instructions, generated by the Vitis-AI Compiler, from the off-chip memory to

control the operation of the computing engine. The computing engine, which is implemented on the

programable logic of the target hardware, is where neural network layers are computed. It is composed

of processing elements (PEs) that combine the most basic operations such as adders, multipliers, and

accumulators. These more basic primitives are combined to create more complex operations such as 2D

convolution operations, pooling operations, or concatenations. They are also parameterizable, meaning

that each DPU supports variants of the same convolution operations e.g., the kernel size can vary in the

interval of 1 to 16.

LITERATURE REVIEW

34

Figure 15. DPUCZDX8G Hardware Architecture. Retrieved from [138].

 The DPUCZDX8G is optimized for Zynq UltraScale+ MPSoC boards and DPUCAHX8H is optimized for

high throughput applications that use convolutional neural networks at their core. The list of DPUs and

respective characteristics such as target hardware is presented in Table 2. Unfortunately, the available

pre-built DPUs only support INT8 quantization. Also, without experimentation, it is difficult to understand

how adaptable are the pre-built DPUs to neural networks featuring more exotic layers. By analyzing the

previous description of the DPUCZDX8G, it is expected that implementations of neural networks targeting

pre-built DPUs will be limited by the implemented functionality and that to support more operations, new

functionality will have to be implemented by the developer. This is a major limitation for deep learning

engineers without specific hardware experience. Unfortunately, the other tools suffer from the same

limitations. Nevertheless, as the tools mature, the number of supported neural network layers is expected

to increase. On this note, Vitis-AI does provide support for implementing custom DPUs. However, this

approach is outside the scope of this work as it requires deep hardware design knowledge.

LITERATURE REVIEW

35

Table 2. Vitis-AI pre-built DPUs [113].

DPU Name Target HW Application Quantization Bit-width Domain

DPUCZDX8G Zynq UltraScale+ MPSoC CNN 8 General purpose

DPUCAHX8H Alveo U50/U280 boards CNN 8 High throughput

DPUCAHX8L Alveo U50/U280 boards CNN 8 Low latency

DPUCADF8H Alveo U200/U250 boards CNN 8 High throughput

DPUCVDX8G Versal ACAP VCK190 board CNN 8 General purpose

DPUCVDX8H Versal ACAP VCK5000 board CNN 8 High throughput

 Vitis-AI also provides, through the high-level Vitis-AI Runtime Libraries (VART), a set of APIs that make

the data loading, pre-processing, and post-processing that happen on the board CPU, and the model

execution, as seamless as possible by abstracting away data transferring between the board CPU and

FPGA, as well as data parallelism supported by the DPU. The C++ and Python APIs are available and well

documented in the user guide. The developed VART applications can be profiled through the Vitis-AI

Profiler, reporting individual layer execution time, data transfers as well as data loading and processing.

 Contrary to the previously presented tools, Vitis-AI provides extensive and detailed documentation. The

reader is recommended the Vitis-AI user guide [139], a document featuring detailed usage of each of the

functionalities through tutorials and example code snippets. However, where Vitis-AI mostly distinguishes

itself from the rest is the amount of pre-deployed models and their diversity, associated benchmarks, and

example applications that can be used to validate the tool. These models can be found in the Vitis-AI

Model Zoo. The extensive benchmarks of Model Zoo models for all the target boards can be found on the

Vitis-AI GitHub page [24]. The benchmarks provide, for each model, the end-to-end inference latency and

throughput. More interestingly for this work, some deployed models are LiDAR-based 3D computer vision

models, particularly the PointPillars and SalsaNext [140] models.

VITIS-AI FRAMEWORK EXPLORATION

36

4 VITIS-AI FRAMEWORK

EXPLORATION

VITIS-AI FRAMEWORK EXPLORATION

37

4.1 EXPERIMENT DESCRIPTION

 3.4.2.4 highlighted the suitability of Vitis-AI for deploying deep learning models on Xilinx boards by

referencing the availability of a wide range of deep learning model benchmarks on multiple Xilinx FPGAs.

Furthermore, the diversity of the benchmarked models is particularly interesting for this work since a

small selection of 3D computer vision models is available in the Vitis-AI Model Zoo. For these reasons,

Vitis-AI was elected as the most promising tool for deploying a LiDAR-based model.

 However, a typical Vitis-AI workflow, from model description to deployment, involves a long list of

different components such as the quantizer, compiler, VART APIs, and profiler. It would be unwise to

implement a complex 3D computer vision model without first understanding the possibilities and

limitations of the tool at hand and validating if the decision to choose Vitis-AI is correct given the objectives

of this work.

 This first experiment aimed to study the Vitis-AI tool by deploying convolutional neural networks on

target FPGAs. During the process, it was expected to maximize the exploration of the tool.

4.1.1 OBJECTIVES

 The first objective was to understand how Vitis-AI interfaces with deep learning frameworks. To do so,

the first step consisted in obtaining a quantized model from the model parameters and structure

represented in the format of a deep learning framework of choice. Furthermore, during the quantization

process, all available quantization methods were experimented with and validated in terms of accuracy

metrics and model size. This required the development of quantization code as described in the tool’s

documentation. Then, the resulting quantized model was compiled for the target DPU, and an application

was developed using the VART libraries. Finally, the models needed to be validated considering accuracy,

inference latency, model size, and power consumption, making use of the available tools including the

Vitis-AI profiler. This formed a complete workflow that encompassed all the tools and allowed a precise

evaluation of Vitis-AI.

4.1.2 DATASET

 The dataset used for this experiment was the CIFAR-10 dataset [141]. It consists of 60000 32x32

color images in 10 classes, with 6000 images per class. There are 50000 training images and 10000

test images. The perception task being solved is image classification.

VITIS-AI FRAMEWORK EXPLORATION

38

 While it is true that CIFAR-10 is a relatively trivial dataset for today’s CNNs, the dataset has a good

characteristic for this exploratory analysis. Because it is relatively small, it is possible to perform a deeper

and wider exploration of the tool, avoiding long but necessary processes of model training and

quantization. Had QAT not been considered in this experiment, model re-training would have not been

necessary, and ImageNet would have been a more appropriate choice of dataset.

Figure 16. Example of CIFAR-10 images.

4.1.3 DEEP LEARNING FRAMEWORK

 In this work, Pytorch was selected as the deep learning framework to interface with Vitis-AI. As detailed

in the tool’s documentation, the workflow that allows the deployment of a deep learning model on an

FPGA, given its code description, changes substantially from framework to framework. Studying the

intricacies of the workflow of every supported framework would be too time-consuming for the additional

benefit.

 The choice of Pytorch is mainly justified by the recent growth in the usage of the framework when

compared to the other heavily used framework, TensorFlow. AssemblyAI provides very interesting data

regarding the comparison of the two frameworks in terms of usage in research papers and Github

repositories [142]. As can be seen in Figure 17, the graph shows that Pytorch has surpassed TensorFlow

in terms of new papers. The data is collected from eight top research journals over the past four years.

In turn, Figure 18 shows a steady increase in the percentage of Pytorch Github projects and a consequent

decrease in TensorFlow projects. The data is from the well-known website Papers With Code [143]. These

two trends match what was observed during this work’s literature review of 3D computer vision models.

VITIS-AI FRAMEWORK EXPLORATION

39

Figure 17. Pytorch and Tensorflow usage in publications. Retrieved from [142].

Figure 18. Pytorch and Tensorflow github repository share. Retrieved from [142].

VITIS-AI FRAMEWORK EXPLORATION

40

4.1.4 TARGETED DEEP NEURAL NETWORKS

 The ResNet-18 [27] and SqueezeNet [85] networks from the Torchvision model zoo were selected to

be quantized and deployed. Both networks feature a convolutional architecture. ResNet-18, as the name

suggests, is 18 layers deep and features residual connections. The convolution layers are organized in

blocks, each containing two convolutional layers. An average pooling layer is used at the end of the

convolution blocks and a fully connected layer produces a 10-element tensor. These elements are then

converted into class probabilities through a softmax activation layer. The SqueezeNet architecture begins

with an isolated 1x1 convolution layer followed by 8 fire modules. Each fire module consists of 1x1

convolution layers followed by 1x1 and 3x3 convolution layers. These convolution layers are followed by

ReLU activations. Max pooling layers are used after fire modules 4 and 8. Finally, a convolution layer is

used at the end of the fire modules, followed by a global average pooling layer. Likewise, in ResNet-18, a

softmax activation layer is used at the end of the network to produce the final probabilities. Both neural

network architectures are detailed in Figure 19.

VITIS-AI FRAMEWORK EXPLORATION

41

Figure 19. ResNet-18 (Left) and SqueezeNet (Right) architectures. Retrieved from [144] and [85].

 Table 3 lists the number of total parameters, as well as the number of floating-point operations (FLOPS)

of both networks. Immediately, one realizes that the ResNet-18 has 15x more parameters and requires

37x more FLOPS to fully compute. Nevertheless, by today’s standards, these are still fairly modest

numbers.

VITIS-AI FRAMEWORK EXPLORATION

42

Table 3. ResNet-18 and SqueezeNet total parameter count and floating-point operations considering Cifar-10.

Model Input Size (N, C, H, W) Total parameters FLOPS

ResNet-18 1 x 3 x 32 x 32 11.18 M 37.1 * 106

SqueezeNet 1 x 3 x 32 x 32 0.74 M 1 * 106

4.1.5 TARGETED HARDWARE

 Because this experiment prioritized exploration, two different Xilinx boards were targeted for model

deployment, namely the Zynq UltraScale+ MPSoC ZCU104 and Versal ACAP VCK190, both illustrated in

Figure 20 and Figure 21 along with the respective dimensions. More specifically, the deployment focused

on the DPUCZDX8G and the DPUCVDX8G. Table 2 lists all the pre-built Vitis-AI DPUs.

Figure 20. Zynq UltraScale+ MPSoC ZCU104. Figure 21. Versal ACAP VCK190.

 The performance and efficiency of the DPUs depend on the nature and amount of resources in the

underlying hardware. On the processing subsystem (PS) side, both boards feature ARM Cortex CPUs.

Also, a 2GB and 8GB external DDR4 (Double Data Rate) memory is available for the ZCU104 and VCK190

boards respectively. The bandwidth of the VCK190 DDR4 memory is 33% faster. On the programmable

logic side (PS) or FPGA, the VCK190 also features substantially more resources with 4x more LUTs and

slightly more DSP slices. Regarding both on-chip memory types, the VCK190 features approximately 3x

more BRAM and 5x more URAM. AI engines, explained in 4.1.5.2, are only present in the VCK190 and

are used to compute convolution operations.

Table 4. Zynq UltraScale+ MPSoC ZCU104 and Versal ACAP VCK190 resource comparison.

Resources ZCU104 VCK190

CPU 4×ARM Cortex-A53 @1.5GHz 2×ARM Cortex-A72 1.7@GHz

VITIS-AI FRAMEWORK EXPLORATION

43

External Memory 2GB DDR4 (2400 Mb/s) 8GB DDR4 (3200 Mb/s)

CLB LUTs 230K 900K

BRAM 312 (11.0 MB) 967 (34 MB)

URAM 96 (27.0 MB) 463 (130.2 MB)

DSP Slices 1728 1968

AI Engines - 400

4.1.5.1 DPUCZDX8G

 The DPUCZDX8G provides user-configurable parameters that allow optimizing resource usage. The

name given to a specific combination of parameters is a configuration. It is possible to control DSP slices,

LUTs, BRAM, and URAM usage. Naturally, configurations are limited by the amount of available resources.

It is also possible to enable functionality to the DPU by activating the ability to compute additional

operations that are not active by default such as softmax, average pooling, and depth-wise convolutions.

 The DPUCZDX8G can be configured with various architectures. Different architectures modify the

convolution unit, used to compute convolutions, and enable different levels of parallelism. The level of

parallelism can be modified along three dimensions: Pixel Parallelism (PP), Input Channel Parallelism

(ICP), and Output Channel Parallelism (OCP). Figure 22 depicts a convolution operation and the three

dimensions of parallelism that can be modified. In the image, PP has a value of 2. This means that two

pixels of the input feature map are processed at once. ICP has the value 3. So, for every pixel, three

values of that pixel along the input channel dimension are processed in parallel. The same applies to

each kernel element. Lastly, OCP is 3. Consequently, kernel elements from three different kernels are

used at once.

VITIS-AI FRAMEWORK EXPLORATION

44

Figure 22. Three parallelism dimensions in convolution operation. Retrieved from [138].

 The higher the levels of parallelism, the higher the number of peak operations that can be executed

each cycle. The number of multiply accumulates (MACs) per cycle can be given as a function of the

parallelism levels:

 𝑀𝐴𝐶𝑠/𝑐𝑦𝑐𝑙𝑒 = 𝑃𝑃 ∗ 𝐼𝐶𝑃 ∗ 𝑂𝐶𝑃

(Equation 5)

 Table 5 lists all existing architectures, the respective parallelism levels, and the peak operations per

cycle. Note that a MAC corresponds to two operations, multiply and accumulate, so the peak operations

each cycle is equal to double the peak MACs each cycle. Naturally, the increase in the parallelism levels

leads to an increase in programmable resource usage.

Table 5. Relationship between DPUCZDX8G architectures’ parallelism levels and peak operations per cycle.

Architecture PP ICP OCP Peak Ops per cycle

B512 4 8 8 512

B800 4 10 10 800

B1024 8 8 8 1024

B1152 4 12 12 1150

B1600 8 10 10 1600

B2304 8 12 12 2304

B3136 8 14 14 3136

VITIS-AI FRAMEWORK EXPLORATION

45

B4096 8 16 16 4096

 DPUs try to utilize on-chip memory as much as possible during model inference to store intermediate

feature maps, weights, and biases. The on-chip memory consists of the BRAM and URAM. It is possible

to increase the RAM usage in the DPUCZDX8G architectures. Using more RAM can be beneficial because

costlier external memory accesses can be reduced, and performance can be improved. It is also possible

to choose which type of RAM to use. BRAM only or BRAM+URAM (Hybrid). Furthermore, it is possible to

enable higher ram usage which extends the amount of on-chip memory resources available. This

parameter is known as “High RAM Usage”.

 Lastly, it is possible to increase the number of DPU cores used. For the DPUCZDX8G specifically, a

maximum of 4 cores can be used. More cores can be used to achieve higher performance at the cost of

higher programmable resource usage. Table 6 details all the DPUCZDX8G configurations explored in this

experiment and their respective resource usage.

Table 6. All DPUCZDX8G configurations explored and respective resources.

Architecture Designation # Cores RAM Type LUTs BRAM URAM DSP

B512 b512x1_hybrid 1 Hybrid 19.7k 15.5 14 66

B1024 b1024x1_hybrid 1 Hybrid 24.1k 41.5 14 130

b1024x1_bram 1 BRAM only 23.4k 101.5 0 130

b1024x2_hybrid 2 Hybrid 50.4k 91.5 28 260

B4096 b4096x1_hybrid 1 Hybrid 36.4k 86.5 44 514

b4096x1_hybrid_high_ram 1 Hybrid + High

Ram Usage

48.0k 147 46 706

b4096x2_hybrid 2 Hybrid 72.7k 177.5 88 1028

4.1.5.2 DPUCVDX8G

 Similarly to the ZCU104 DPU, the DPUCVDX8G also provides some configurability. Besides DSP slices,

LUTs, BRAM, and URAM usage, it is also possible to control the number of AI Engines (AIEs). The AIEs

in the DPUCVDX8G perform the convolution operation. The number of batch handlers is also

parameterizable. Each batch handler is responsible for handling a batch element and performing the

respective computations. A private group of AIEs is available for each batch handler. The number of AIEs

per batch handler can be configured to be 32 or 64. The amount of batch handlers is also

parameterizable.

VITIS-AI FRAMEWORK EXPLORATION

46

 Lastly, likewise DPUCZDX8G, it is possible to control the number of DPUCVDX8G cores, here called

compute units. This parameter supports a range of values from 1 to 3. However, it is only possible to

increase the number of compute units when the number of batch handlers is 1.

 The name of the configuration explicitly contains all the above-mentioned parameter values. For

example, C32B1CU2 means that there are 32 AIEs for each batch handler, a single batch handler, and

2 compute units.

 Table 7 lists all the DPUCVDX8G configurations targeted in this experiment, the corresponding resource

utilization, and the peak theoretical performance per clock cycle measured in tera operations. The peak

theoretical performance assumes a 333MHz PL frequency and 1.25 GHz AIE frequency. The values are

obtained with the following equation:

 256 ∗ CPB_N ∗ BATCH_N ∗ CU_N ∗ AIE Frequency

(Equation 6)

where CPB_N is the number of AIEs per batch handler, BATCH_N is the batch number, and CU_N is the

number of compute units.

Table 7. DPUCVDX8G configurations, respective resource utilization and the peak theoretical performance per cycle.

Configuration AIEs LUTs BRAM URAM DSP Peak Theoretical

Performance/cycle (TOPS)

C32B1CU1 32 82.9k 0 136 139 10.24

C64B1CU1 64 93.2k 0 136 139 20.48

C64B1CU2 128 18.6k 0 272 278 40.96

4.2 IMPLEMENTATION

 The process of deploying the ResNet-18 and SqueezeNet models from the Pytorch model description

involved a large set of tools of Vitis-AI. Figure 23 describes the software and hardware components and

respective connections used in this experiment.

 Regarding hardware, the proposed setup comprises a Linux-based host server with an Nvidia GPU RTX

3090 and two Xilinx boards containing FPGAs. The connections are realized by ethernet through an

ethernet switch. This allows multiple connections to several FPGAs simultaneously.

 On a software level, the communications with the FPGAs are done over graphical SSH sessions. For

file transfer, the SCP protocol is used. Concerning the Vitis-AI tools, the Linux host server makes use of a

VITIS-AI FRAMEWORK EXPLORATION

47

Docker container with Vitis-AI version 2.0. It includes Conda environments with a software stack adapted

to interface with each of the supported deep learning frameworks. It also contains the Vitis-AI Model Zoo

and the possibility of using custom models, the latter being the approach used in this experiment. Finally,

it provides the Vitis-AI Quantizer and Compiler. As for the FPGAs, the software tools are made available

by a Petalinux [145] based image. The tools available are directed towards FPGA deep learning application

development. Following a bottom-up view, the DPU is the lowest level of abstraction that interacts with

the underlying hardware. Refer to 3.4.2.4 for a detailed explanation of the DPUCZDX8G and a list of all

existing DPUs and respective characteristics. Next, Vitis-AI Runtime (VART) is responsible for providing

developers with a high-level runtime API. Internally, the API is based on the Xilinx Runtime (XRT). It also

uses the Xilinx Intermediate Representation (XIR) format to represent the neural network models.

 VART provides both C++ and Python implementations and exposes two main endpoints. The first is

the Vitis-AI Library which provides more complex modules that implement varying levels of functionality.

On one end, these functionalities can be complex classes and methods that implement classification and

segmentation algorithms as well as entire demo applications. On the other end, they can be methods

that expose the functionality of submitting and collecting inference jobs to and from the DPU. The second

is the Vitis-AI profiler which allows the collection of information of the VART-based applications from data-

processing C++/Python code that runs on the board CPU to the layer computation that runs on the DPU.

This information includes the minimum/average/maximum run times of each neural network layer, the

achieved frames per second (FPS) and memory read/write traffic. Finally, the Petalinux image also

includes some additional libraries such as OpenCV [146] and NumPy [147] that further facilitate the

creation of deep learning applications, particularly in the data loading and processing phase.

VITIS-AI FRAMEWORK EXPLORATION

48

Figure 23. Experiment setup.

4.2.1 FLOAT MODEL TRAINING

 The ResNet-18 and SqueezeNet models were trained for 30 and 25 epochs respectively with a batch

size of 128. The optimization algorithm used was the ADAM algorithm [148] with a cross-entropy loss

function and a learning rate of 10−3. The respective test and validation loss curves are plotted in Figure

24. ResNet-18 and SqueezeNet train plots.. As for data augmentation, random crops and random

horizontal flips were used.

VITIS-AI FRAMEWORK EXPLORATION

49

Figure 24. ResNet-18 and SqueezeNet train plots.

 From the observation of the graphs above, one can see that the ResNet-18 and SqueezeNet’s validation

losses stop improving at around 30 and 25 epochs respectively. The two models’ inability to achieve

better validation loss can be explained by their architectures. The ResNet-18 and SqueezeNet models

from Torchvision’s Model Zoo are designed for the ImageNet dataset, and so the feature maps become

very low dimensional (down to 1x1 in the case of ResNet, Figure 25). However, because rather than

maximizing the float model accuracy, this experiment’s main goal is to explore the Vitis-AI capabilities as

much as possible, the model architectures remained unchanged.

Figure 25. Visualization of ResNet-18 activation map shapes.

4.2.2 MODEL QUANTIZATION

 There are 3 methods for quantizing a model in Vitis-AI. In increasing order of cost and accuracy

performance, they are quantized calibration, fast finetuning, and QAT. This experiment contemplated all

3 methods by deploying and benchmarking quantized models obtained from all three quantization

methods. 3.4.2.4 details which algorithms, and respective works, are used for each method.

 Considering the Pytorch quantizer, and depending on the quantization method, a different set of

requirements are needed to execute quantization successfully. The methods are made available through

VITIS-AI FRAMEWORK EXPLORATION

50

a quantization API. This allowed the quantization of the two contemplated models to be in great part

transparent. Table 8 summarizes the most basic requirements for each method, empirically evidenced

through the quantization of both the ResNet-18 and SqueezeNet models using the quantization API. The

calibration dataset, used for the fast-finetuning quantization, consisted of an unlabeled subset of the

original dataset. The length of this subset depends on the complexity of the data, but the Vitis-AI

documentation refers to an interval between 100 and 1000 samples. In this experiment, a subset

containing 1000 images was used. Another important point to note is that, although not strictly a

requirement, the pre-processing and post-processing of the data, before and after model inference, should

remain unmodified from the training of the float model to obtain comparable accuracy results.

 Contrarily to the remaining methods, QAT also requires modifying the network description to perform

the training. These modifications do not alter the architecture of the neural network. However, they must

be performed manually and hence are prone to errors. A detailed list of the requirements, as well as a

comparison between ResNet-18’s original description and a modified description used for QAT, produced

during this experiment, are available in figures 64 and 65 of Appendix II.

 Lastly, all the quantization methods described quantized the models using an 8-bit representation of

the parameters. This is because the quantization bit-width of the target DPUs is limited to 8 bits.

Table 8. Comparison of Vitis-AI quantization methods’ requirements.

Method Quantize Calibration Fast Finetuning QAT

Pre-trained float model ✓ ✓ ✕

Python script w/ model description ✓ ✓ ✓

Calibration dataset ✕ ✓ ✕

Original dataset ✕ ✕ ✓

4.2.3 DEPLOYMENT ON TARGET HARDWARE

 Before deploying a model, it was first needed to compile it for a target DPU. The compilation of both

models targeted the DPUCZDX8G and DPUCVDX8G for the Zynq UltraScale+ MPSoC ZCU104 and Versal

ACAP VCK190 board respectively. Vitis-AI compiler was used for this effect. The resulting compiled models

were then sent to the respective target boards over secure copy protocol.

 The deployment phase consisted in developing a Python application using the Vitis-AI-Library and

NumPy. The core functionality of this application is to pre-process, infer and post-process 10000 CIFAR-

10 samples measuring accuracy and inference speeds. The images are first normalized and then

VITIS-AI FRAMEWORK EXPLORATION

51

converted to INT8 representation. Then, the inference is executed using a batch size of 1 to simulate an

ADAS application. Lastly, the post-processing simply consists of the calculation of the index corresponding

to the biggest probability in classification and the top-1 accuracy is calculated.

 Since the target DPUs support pipelining, meaning that it is possible to execute different layers of

networks of different images at the same time, a multi-threaded version of the application was also

developed. The use of multiple threads shouldn’t be confused with batch inferencing, where multiple

images are forwarded through the same network layers at the same time. Figure 26 depicts the

differences between sequential inferencing, pipelining, and batch inferencing in terms of single image

inference latency and throughput.

Figure 26. Sequential, Pipelined and Batched inference.

 In the context of an ADAS application, one would think that inference latency should always be

prioritized. While that is correct when a model’s inference latency is smaller than the time it takes for the

sensor to create a frame, sometimes it might not be possible to produce a fast enough inference. In this

case, it might be useful to consider trading some throughput for inference latency. Consider Figure 27,

where inference over a single image takes twice as long as the image generation. Here, when using a

sequential inferencing approach, some images are discarded. For example, there is not a good reason to

infer over image 1 when the more recent image 2 is already available. When using pipelining, all images

become important at the expense of longer single image inference latency. This means that the results

of inferencing over a single image will provide less relevant information because more time has passed

VITIS-AI FRAMEWORK EXPLORATION

52

since the events that the results represent happened. On the other hand, the route planning module of

the ADAS will have access to more images to produce accurate results. The tradeoff becomes quantity

vs temporal relevance of the frames. The flexibility to be able to experiment with this tradeoff constituted

a very valid reason to explore a pipelining approach.

Figure 27. Inference latency vs temporal resolution trade-off.

 In the developed multi-threaded application, as soon as the hardware responsible for computing a

specific layer is available, a new image can start inferencing without having to wait for the previous image

to be forwarded through all layers. This is similar to the operation pipelining that happens in CPUs.

 To measure the theoretical frames that the developed application could process per second, the

solution described in Figure 28 was used. In this solution, as soon as one CPU thread from the thread

pool is available, it copies the data from an input image to a specific array that it sends to the DPU

requesting inferencing. Then, it waits for the results and writes them to the results array. This means that

the DPU will receive inference requests before it has finished previous requests. The management of the

inferences given the DPU available resources is transparent to the application and made available by the

Vitis-AI Library API through a Graph Runner object.

VITIS-AI FRAMEWORK EXPLORATION

53

Figure 28. Multi-threaded application architecture.

4.3 RESULTS AND ANALYSIS

 This section is divided into two subsections. The first presents the results relative to the quantization

of the two targeted models. All quantization methods are contemplated. Model size and accuracy are the

two metrics considered. QAT plots are also analyzed. The second focuses on the performance and

efficiency results of the two targeted models on both target boards during inference by leveraging the

results of the deployed application. More specifically, the average inference FPS and the peak power

consumption. Comparisons are also drawn with the NVIDIA RTX 3090 GPU.

4.3.1 QUANTIZATION

 All three quantization methods substantially reduced the model size while retaining the accuracy of the

baseline float model. All methods achieved the same model size reduction ratio of 4.07 and 3.33

respectively for the ResNet-18 and SqueezeNet models. Regarding accuracy, in the ResNet-18 model,

quantized calibration and fast finetuning achieved values withing 0.18% and 0.06% of the baseline

accuracy. QAT surpassed the baseline accuracy by 1.11%. In the SqueezeNet model, the differences were

0.56% and 0.71% respectively for the first two methods and an increase of 0.42% with QAT. The results

are listed in Table 9.

VITIS-AI FRAMEWORK EXPLORATION

54

Table 9. Vitis-AI quantization accuracy and model size reduction.

Model Quantization Method Best Accuracy Size (MB)

ResNet-18

None (Float) 83.67% 45.00

Quantized Calibration 83.49% 11.04

Fast Finetuning 83.61% 11.04

Quantization-Aware Training 84.78%* 11.04

SqueezeNet

None (Float) 80.20% 2.90

Quantized Calibration 79.64% 0.87

Fast Finetuning 79.49% 0.87

Quantization-Aware Training 80.62%* 0.87

* Trained for extra 5 epochs

 The models were trained for 5 additional epochs during QAT. As an example, Figure 29 shows the

training and validation loss curves of the SqueezeNet model during QAT. Contrary to the float model

validation loss curves during the standard training (figure X), the validation loss keeps decreasing past

epoch 25.

Figure 29. Quantization-aware training plot of SqueezeNet.

4.3.2 PERFORMANCE AND EFFICIENCY

 The following results compare the FPS and average power consumption of the deployed application,

specifically during inference. Refer to 4.1.5 for the complete list of hardware configurations tested. Pre-

processing and post-processing were not considered. The FPS values result from dividing the number of

frames in the test set (10000) by the total time it took to infer over all images. This procedure was

VITIS-AI FRAMEWORK EXPLORATION

55

repeated 10 times and the results were averaged. A similar procedure was to calculate the peak power

consumption. The maximum power consumed during all the 10000 frames’ inferences was saved. The

procedure was also repeated 10 times and the results were averaged.

 For each configuration, the FPS and peak power consumption values were calculated for application

runs with CPU threads varying in the interval [1, 12]. The complete list of the results is available in Table

29 of Appendix IV.

4.3.2.1 ZYNQ ULTRASCALE+ MPSOC ZCU104

 Regarding the ZCU104 architectures, and comparing framerates, the b4096 configurations

outperformed the b1024 and b512 configurations for comparable DPU core counts and CPU thread

numbers. Furthermore, configurations with a single DPU core only benefited from increasing the number

of CPU threads up to 2. Configurations featuring 2 DPU cores benefited from an increase of up to 4

threads. No difference was seen between a hybrid and BRAM-only approach to on-chip memory (green

and orange lines are approximately superimposed in both plots). The high ram usage in the single DPU

core b4096 architecture resulted in residual improvement in FPS. These results can be observed by the

plots in figures Figure 30 and Figure 31.

Figure 30. ResNet-18 average inference FPS on all ZCU104 configurations.

VITIS-AI FRAMEWORK EXPLORATION

56

Figure 31. SqueezeNet average inference FPS on all ZCU104 configurations.

 Figures Figure 32 and Figure 33 show that the power consumption of the configurations was consistent

with the reported resource usage of each configuration (Table 6) with more resources translating to a

higher peak power consumption during inference. Also, the peak power consumption increased when the

number of threads increased. However, in most configurations, this increase was only significant until 2

or 4 threads.

Figure 32. ResNet-18 peak power consumption on all ZCU104 configurations.

VITIS-AI FRAMEWORK EXPLORATION

57

Figure 33. SqueezeNet peak power consumption on all ZCU104 configurations.

 Combining the information of the two previous measurements, FPS and peak power consumption, it

is possible to evaluate the performance per Watt of each configuration explored. See figures Figure 34

and Figure 35. The results closely mimic the FPS plots showing a well-marked superiority of the 2 DPU

core b4096 configuration. These results also highlight the benefit of using multiple CPU threads which

are a result of the greater improvements to FPS compared to power consumption when using more CPU

threads. Again, the improvements were limited to 2 and 4 threads for single DPU core and 2 DPU cores

configurations, as noted in the FPS results analysis.

VITIS-AI FRAMEWORK EXPLORATION

58

Figure 34. ResNet-18 performance per Watt on all ZCU104 configurations.

Figure 35. SqueezeNet performance per Watt on all ZCU104 configurations.

4.3.2.2 VERSAL ACAP VCK190

 The same exact measurements were realized for the VCK190 board. Regarding FPS, plots from

figuresFigure 36 and Figure 37 indicate that the C64B1 configurations clearly improved results compared

with the C32B1 configuration on the ResNet-18 model. In the SqueezeNet model, the difference in FPS

is not nearly as significant. Comparing the number of DPU cores of the C64B1 configurations, the

advantage of using one additional CPU core in the heavier ResNet-18 model is very clear. However, the

VITIS-AI FRAMEWORK EXPLORATION

59

same is not true for the smaller SqueezeNet model. Similarly to the ZCU104 configurations, additional

CPU threads improve the performance up to 2 and 4 threads respectively for single DPU core and 2 DPU

cores configurations.

Figure 36. ResNet-18 average inference FPS on all VCK190 configurations.

Figure 37. SqueezeNet average FPS on all VCK190 configurations.

 Analogous to the ZCU104 results, the peak power consumption of the VCK190 configurations, visible

in figures Figure 38 and Figure 39, also increases with the increase in resource usage and CPU threads.

VITIS-AI FRAMEWORK EXPLORATION

60

Figure 38. ResNet-18 peak power consumption on all VCK190 configurations.

Figure 39. SqueezeNet peak power consumption on all VCK190 configurations.

 The performance per Watt plot of the ResNet-18 model shows that all three configurations have similar

performance per Watt values. However, the situation is far from the same in the SqueezeNet model. The

C64B1 with 2 DPU cores is significantly less efficient. Refer to figures Figure 40 and Figure 41 for the

respective plots.

VITIS-AI FRAMEWORK EXPLORATION

61

Figure 40. ResNet-18 performance per Watt on all VCK190 configurations.

Figure 41. SqueezeNet performance per Watt on all VCK190 configurations.

4.3.2.3 ZCU104, VCK190, AND RTX 3090 COMPARISON

 To further evidence the suitability of Vitis-AI to deploy CNN architectures on the two explored target

boards, a comparison to the NVIDIA RTX 3090 board was conducted. This comparison also helps to

frame the achieved results in the literature since most published deep learning works target state-of-the-

art GPUs. The GPU inference was performed in Pytorch with a batch size of 1. Clearly, the RTX3090 will

be clearly underutilized with a batch size of 1 and low dimensional input. The inclusion of RTX3090 in

this comparison is to preserve coherence with the next experiment but can also be used to show that

VITIS-AI FRAMEWORK EXPLORATION

62

GPUs, especially GPUs such as RTX3090, are clearly not the appropriate hardware for low latency

inferencing applications. As for the target boards, both the least resource intensive and most resource-

intensive configurations and CPU thread number combinations of each board were considered.

 Regarding FPS values, all but one of the tested configurations surpassed the FPS that the RTX 3090

achieved. The difference in performance is very noticeable with the ZCU104 reaching up to 2.47x and

11x the performance of the RTX 3090 in the ResNet-18 and SqueezeNet models respectively. Comparing

the RTX 3090 with the VCK190, the improvements are 9.34x and 16.44x. (Figure 42).

Figure 42. Avg inference FPS of RTX3090, ZCU104 and VCK190.

 More interestingly is that the observed FPS improvements were achieved at much lower power

consumption. Figure 43 shows that all configurations consumed substantially less power during inference

when compared with the RTX 3090.

VITIS-AI FRAMEWORK EXPLORATION

63

Figure 43. Peak power consumptions of RTX3090, ZCU104, and VCK190.

 Consequently, the result is that the performance per watt of the ZCU104 was up to 12x and 47.8x

superior to the RTX 3090 for the ResNet-18 and SqueezeNet models. For the VCK190, the values were

15.1x and 26.6x superior respectively, as can be observed in Figure 44.

Figure 44. Performance per Watt of RTX3090, ZCU104, and VCK190.

 Finally, it is possible to draw a comparison between the ZCU104 and VCK190 boards. Clearly, with

more resources, the VCK190 not only achieved higher FPS values but also consumed more power. In the

ResNet-18 model, the FPS difference between the configuration of the two boards is very large and

compensates for the higher power consumption of the VCK190 board. For this reason, the performance

per Watt of the VCK190 board was superior to the ZCU104. However, due to the smaller difference in

FPS between the two boards’ configurations in the smaller SqueezeNet model, the higher power

VITIS-AI FRAMEWORK EXPLORATION

64

consumption of the VCK190 translated into a lower performance per Watt of the VCK190 board compared

with the ZCU104.

4.4 DISCUSSION

 This section aims to interpret the results and comment on the analysis made in the previous chapter.

The questions it seeks to answer are related to the suitability of the Vitis-AI tool for the objectives of this

work. To answer, an evaluation of the results is carried out through comparisons to theoretical values and

other works highlighted in the literature review.

 Once again, the discussion is divided into two topics, similar to the structure of the last section.

4.4.1 QUANTIZATION

 As expected, the model size reduction was close to the ratio of reduction in bit-width, 4. It is important

to note that to obtain the size of the quantized models, compilation for the target DPU must be performed

first. As already discussed in 3.4.2.4, the compiler introduces some optimizations such as layer fusion

that might cause the model size to increase or reduce. This explains why the reduction ratio was not

exactly 4.

 Quantization results were very satisfactory with close to no accuracy degradation in the first two

quantization methods. Better accuracy results were expected from fast finetuning when compared to the

simpler quantized calibration. This was indeed observed in the ResNet-18 model, but not the SqueezeNet

model. However, because the differences in accuracy were so small (<0.025%), they become irrelevant.

It is expected that with more complex datasets which require more complex training and networks, the

differences become more significant. Finally, QAT outperformed the baseline float model. Again, the

difference in accuracy was not very large, especially for the SqueezeNet model.

 Compared to the results found in the literature review, one can clearly be optimistic about the usage

of Vitis-AI for quantizing deep neural networks. Not only was the ratio of model size reduction close to the

theoretical value, 4, but the accuracy retention for the quantized calibration and fast finetuning methods

also achieved results within less than 1% of the accuracy of the baseline float model. Both results are

comparable to the ones advertised by Nagel, M., et al. work [102], responsible for the algorithm behind

quantized calibration, and Hubara et al. work [103], responsible for the introduction of the post-training

quantization algorithm. Regarding QAT, the results of this method even surpassed the model accuracy of

both baseline float models. However, it is important to keep in mind that this experiment targeted a

VITIS-AI FRAMEWORK EXPLORATION

65

simpler dataset than, for example, the ImageNet dataset. It might be the case that, even with the noise

introduced by the quantization processes, the models were still able to retain accuracy because of the

simplicity of the task they are solving. Hence, it is still necessary to evaluate the quantization methods on

larger and more complex datasets. Chapter 5 explores a far more challenging dataset.

4.4.2 PERFORMANCE AND EFFICIENCY

 The performance observed during inference in both target boards, represented by the FPS achieved

during inference, was more than satisfactory and strengthens the argument for the suitability of Vitis-AI

to the deployment of fully convolutional architectures. Even more so when allied with the benchmarks

advertised on the Vitis-AI GitHub page [24]. Furthermore, the developed multi-threaded application was

shown to increase the performance of all the configurations and can serve as a good starting point for

future works that want to explore low latency and time resolution. Similarly, the power consumption results

were also very satisfactory. But more importantly, the capability to easily trade performance with power

consumption by changing DPU configurations, and the number of CPU threads, is probably the most

important asset derived from developing such an application using Vitis-AI. Compared with the RTX 3090,

the power consumption reduction of 6.58x and 6.21x of the ResNet-18 and SqueezeNet models on the

ZCU104, using the B512 single DPU core configuration with 1 CPU thread, which translates

approximately into 85% and 84% reductions, compared with the results found in the work of Hashemi, S.

et al. [112] described in 3.3.2.

 Finally, there is an interesting observation that requires further attention when considering the

performance per Watt of the ZCU104 and VCK190. Figure 44 shows that depending on the model,

different DPUs can become more efficient than others. For the ResNet-18 model, the VCK190 offers a

better performance per watt on both configurations. For the SqueezeNet model, it is the ZCU104 that

offers better performance per watt. To understand why this happens it is important to consider the usage

of the Vitis-AI profiler. By analyzing the load size of feature maps (LdFM), load size of weights and biases

(LdWB), and store size of feature map (StFM), present in tables Table 10 and Table 11, it can be noted

that the ResNet-18 requires a lot more weights and biases loads. This is expected due to the larger size

of the model, 11 MB to 0.87 MB. Because the average off-chip memory bandwidth is considerably lower

in the ZCU104, the smaller amount of on-chip memory available in the ZCU104 compared with the

VCK190 might explain the lower performance of the ZCU104. On the other hand, because the

SqueezeNet model requires such a low amount of loads, the smaller off-chip memory of the ZCU104 is

not major a bottleneck on the performance.

VITIS-AI FRAMEWORK EXPLORATION

66

Table 10. ResNet-18 inference DDR memory access information on ZCU104.

Model Total LdWB (MB) Total LdFM (MB) Total StFM (MB) Avg Bw (MB/s)

ResNet-18 10.650 0.054 0.030 6446.568

SqueezeNet 1.333 0.060 0.045 1672.493

Table 11. SqueezeNet inference DDR memory access information on ZCU104.

Model Total LdWB (MB) Total LdFM (MB) Total StFM (MB) Avg Bw (MB/s)

ResNet-18 10.662 0.048 0.030 26402.281

SqueezeNet 0.714 0.024 0.024 6106.555

 The results discussed above are sufficient evidence for the usefulness of Vitis-AI to tackle the remaining

objectives of this work. Furthermore, Vitis-AI proved useful in abstracting away most complex hardware

architecture aspects of deployment while still providing a lot of control over resource utilization. This is

evidenced by the tradeoff that was shown between performance and power consumption.

SQUEEZESEGV3 DEPLOYMENT ON AN FPGA

67

5 SQUEEZESEGV3

DEPLOYMENT ON AN

FPGA

SQUEEZESEGV3 DEPLOYMENT ON AN FPGA

68

5.1 EXPERIMENT DESCRIPTION

 The previous experiment served as validation of the suitability of the Vitis-AI tool for the quantization

and deployment of convolutional neural networks on Xilinx’s FPGAs. Based on the previously discussed

results, the experiment here described aims to deploy a LiDAR-based deep neural network to perform

semantic segmentation on point cloud data in real-time. The deep neural network should be deployed on

a chosen target FPGA. Accuracy metrics, power consumption, model size, and FPS are the key

performance indicators.

 The data size of point clouds compared to images, as well as the more exotic architectures that are

employed when processing 3D data, are expected to be a challenge for the real-time deployment of a

deep learning model. For these reasons, this experiment aims to further validate the FPGAs' suitability for

the deployment of 3D computer vision models in real-time applications.

5.1.1 OBJECTIVES

 The choice of neural network architecture depends on the available hardware support within Vitis-AI.

For this reason, the first objective is concerned with the choice of the neural network to be deployed.

Then, because it is unlikely that all model layers are perfectly supported by the targeted DPU, alternatives

to those layers should be identified, implemented, and benchmarked concerning accuracy metrics, model

size, and FPS on the GPU. When a baseline supported architecture has been found, further changes in

the neural network architecture should be benchmarked and evaluated as an accuracy/framerate

tradeoff. This tradeoff should ensure that the final deployed model can surpass the 10 FPS to comply

with the LiDAR frame generation frequency of 10 Hz identified in 3.1. Here, the inference application

developed in the target FPGA is to be deployed similarly to the last experiment. Besides accuracy and

inference, power consumption and model size should still be measured for every single change made in

the baseline architecture to access its advantages and disadvantages.

5.1.2 DATASET

 To evaluate the model accuracy, the Semantic-KITTI dataset [149] was used. The dataset is partitioned

into 22 sequences containing between 200 and 5000 frames. Each sequence represents a portion of the

circuit driven, and consequent frames represent consequent circuit points. The data collection was

SQUEEZESEGV3 DEPLOYMENT ON AN FPGA

69

performed across urban areas, rural areas, and highways. Up to 15 cars and 30 pedestrians are captured

per frame. The frames were captured at a rate of 10 FPS.

 Sequences 0 to 10 are intended for model training except for sequence 8 which is used for validation.

All first 11 sequences are densely labeled. Concerning the task at hand, semantic segmentation, each

point in the point cloud of the first eleven frames is labeled as one of 28 classes. However, only 19 are

considered during training and evaluation. Figure 45 presents each class and the corresponding number

of points across all frames. The remaining sequences are reserved for online test benchmarking of model

submissions. Each point cloud is approximately 2.0MB in size.

Figure 45. Semantic-KITTI dataset points class distribution. Retrieved from [150].

 The choice of the Semantic-KITTI dataset is justified by the number of papers that currently use the

dataset. This makes this work easier to compare with the current state-of-the-art. Because Semantic-KITTI

used the mechanical Velodyne HDL-64E LiDAR, it also has a very good resolution compared with other

3D semantic segmentation capable datasets. Lastly, the dataset also provides the most data out of all

the explored datasets. Table 12 summarizes all the dataset’s relevant information.

Table 12. LiDAR-based 3D semantic segmentation capable datasets.

Dataset Year LiDAR resolution (V x H) #Classes #Points #Papers (2019-2022) *

Oakland [151] 2009 ? x 0.5° † 5 1.6 M 0

Paris-rue-

Madame [152]

2014 1.33° x 0.1°- 0.4° 17 20 M 0

IQmulus [153] 2015 0.4° x 0.08°- 0.035° 8 200 M 0

Paris-Lille-3D [154] 2018 1.33° x 0.1°- 0.4° 50 143.1 M 9

Semantic-KITTI [150] 2019 0.4° x 0.08°- 0.035° 28 4548 M 183

Toronto-3D [155] 2020 1.33° x 0.1°- 0.4° 8 78.3 M 10

* Data from site Papers With Code

† Data collected using several 2D LiDAR scans

SQUEEZESEGV3 DEPLOYMENT ON AN FPGA

70

5.1.3 EVALUATION METRICS

 To measure the deep learning model performance on the 3D semantic segmentation task, both

accuracy and Intersection over Union (IoU) metrics are used (Equation 7).

Accuracy simply represents the ratio of correctly classified points over all points in the point cloud.

However, accuracy alone can produce misleading results, especially when averaged over all classes, as

less represented classes’ results can become irrelevant. A pedestrian that represents only 1% of total

points in a point cloud can be completely missed and yet have almost no influence on accuracy.

 IoU quantifies the percent overlap between the predicted labels and the ground truth and is calculated

per class. It does so by calculating the ratio between the intersection of the predictions with the ground

truth over the union of the predictions with the ground truth. The fact that a union is used in the

denominator discourages the models to ignore smaller classes. In the same example of the pedestrian,

when predicting the pedestrian pixels as belonging to a more represented class, the IoU of the class will

decrease. This wasn’t the case with accuracy.

𝐼𝑜𝑈 =

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 ∩ 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 ∪ 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ

(Equation 7)

 IoU solves the problem of the average accuracy by allowing to discriminate which classes are being

well identified. An average IoU can also be calculated by averaging the results of all classes. Figure 46

depicts what is the ground truth, prediction, and respective intersections and unions for a 2D image. The

process for a 3D image is analogous.

SQUEEZESEGV3 DEPLOYMENT ON AN FPGA

71

Figure 46. Intersection and union of ground truth and model predictions. Adapted from [156].

 In the Semantic-KITTI dataset, it is common practice to measure the average accuracy, the per-class

IoU, and the average IoU. These are the 3 performance metrics compared in this experiment.

5.1.4 DEEP LEARNING FRAMEWORK

 In 4.1.3, the widespread adoption of Pytorch was highlighted. To no surprise, the original

SqueezeSegV3 implementation is also provided by the authors using the Pytorch framework. For this

reason, Pytorch was a natural choice in the implementation of the neural network used in this experiment,

as well as model training, quantization, and evaluation.

5.1.5 TARGETED DEEP NEURAL NETWORK

 SqueezeSegV3-21 is the 21-layer architecture variant of the SqueezeSegV3 model proposed by Xu, C.

et al [157]. It is designed for efficient and real-time processing of large-scale point clouds such as in

autonomous driving applications. It is a projection-based architecture. 2.3.3.1 presents a comprehensive

description of these methods as well as their advantages and disadvantages.

5.1.5.1 SELECTION CRITERIA

 Being a neural network specifically designed for real-time processing of large-scale point clouds makes

SqueezeSegV3 a very fitting choice for this work. Furthermore, its projection-based architecture requires

fewer computations compared with architectures that rely on other representations. Despite these

SQUEEZESEGV3 DEPLOYMENT ON AN FPGA

72

favorable characteristics, the main aspect that drove the choice of this specific neural network was the

limited support of Vitis-AI for other architectures featuring more exotic layers. Table 13 lists a set of neural

networks for 3D semantic segmentation, the respective accuracy metrics, and the unsupported

operations/layers in Vitis-AI. Some of these operations are replaceable by similar operations. However,

in certain cases, some operations are either irreplaceable or are such a fundamental feature of the

architecture that their replacement would cause the architecture to lose its identity, e.g., swap 3D

convolution layers for 2D convolution layers. It is important to note that, depending on the implementation

and targeted DPUs, there might be more operations that are unsupported in each model. This table only

gives a broad overview. The only architecture studied with more detail was SqueezeSegV3. Table 30 of

Appendix V contains a complete list of the SqueezeSegV3-21 architecture layers of the Pytorch

implementation with the corresponding DPUCVDX8G support for Vitis-AI version 2.0.

Table 13. Vitis-AI unsupported operations of 3D semantic segmentation deep learning models.

Model Semantic-KITTI Test-set

mIOU

Vitis-AI Unsupported Operations

Cylinder3D [158] 67.8 Conv3D, Deconv3D

SPVNAS [159] 66.4 Sparse Point-Voxel Convolution

JS3C-Net [160] 66.0 SparseConv

KPRNet [161] 63.1 KPConv

SalsaNext [140] 59.5 -

SqueezeSegV3* [157] 55.9 Unfold

*53-layer architecture with K-nearest neighbors post-processing

 From the explored models, SqueezeSegV3 was the option with the best IoU that did not contain any

irreplaceable unsupported operation. 3D convolution layers, Sparse Convolution layers, and kernel-point

convolution (KPConv) layers, all unsupported, are also the main operations of the listed architectures. To

increase the relevancy of this work, SalsaNext was not chosen since Xilinx already provided two

implementations of this model in Vitis-AI. Lastly, because the unfold operation of SqueezeSegV3 is not

fundamental to the architecture, it can be replaced.

SQUEEZESEGV3 DEPLOYMENT ON AN FPGA

73

5.1.5.2 MODEL ARCHITECTURE

 As a preprocessing step, the 3D point cloud is first projected into a spherical surface creating a 2D

grid representation of the LiDAR data. The 3D coordinates of each point before the projection are used

as features of the same point when projected into a 2D pixel. The projection operation is realized using

(Equation 8), where (𝑝, 𝑞) are the resulting 2D grid coordinates or pixels, (ℎ, 𝑤) are the height and

width of the 2D grid, 𝑓 = 𝑓𝑢𝑝 + 𝑓𝑑𝑜𝑤𝑛 is the vertical field of view of the LiDAR sensor and 𝑟 =

𝑠𝑞𝑟𝑡(𝑥2 + 𝑦2 + 𝑧2) is the range of each point in the point cloud.

[
𝑝
𝑞] = [

1

2
(1 − 𝑎𝑟𝑐𝑡𝑎𝑛(𝑦, 𝑥)/𝜋) ∙ 𝑤

(1 − (𝑎𝑟𝑐𝑠𝑖𝑛(𝑧 ∙ 𝑟−1) + 𝑓𝑢𝑝) ∙ 𝑓
−1) ∙ ℎ

]

(Equation 8)

 In the SqueezeSegV3 implementation used in this work, the values for (ℎ, 𝑤), 𝑓𝑢𝑝 and 𝑓𝑑𝑜𝑤𝑛 are (64,

2048), 3, and -25 respectively. If multiple points are projected to the same pixel on the 2D grid, the point

with the highest range remains. The values of 𝑥, 𝑦, 𝑧, 𝑟, and intensity are used as features of the resulting

pixel, similar to the RGB values of 2D images.

 The network architecture is similar to RangeNet++ [162]. However, the standard convolution

operations present in the RangeNet++ architecture are replaced by Spatially Adaptive Convolution (SAC)

blocks. This change aims to tackle the problem of spatially varying distribution caused by spherical

projection. Unlike 2D RGB images, where the RGB feature distribution at different locations is rather

similar when projecting the point cloud, the distribution at different locations is drastically different. For

example, along the height dimension, points projected to the top of the 2D grid have higher z-values than

the ones projected to the bottom. This spatially varying distribution can degrade the performance of

convolution operations.

 SqueezeSegV3 follows an encoder-decoder architecture. In the encoding phase, the 21-layer variant

of the SqueezeSegV3 network contains 5 encoder blocks, each containing two convolution layers. The

first convolution layer is replaced by an SAC block. As depicted in Figure 47, the coordinate map,

containing the 𝑥, 𝑦, 𝑎𝑛𝑑 𝑧 features of the original points, is processed by a 7x7 convolution layer. The

input features tensor, containing all features (𝑥, 𝑦, 𝑧, 𝑟 and 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦), is unfolded. Both feature maps

are then multiplied together and finally passed through two convolution layers with 1x1 and 3x3 kernels

each. The resulting feature maps are then added to the original input features tensor. S simplifies (ℎ, 𝑤)

and I is 5.

SQUEEZESEGV3 DEPLOYMENT ON AN FPGA

74

Figure 47. SqueezeSegV3 model’s SAC block. Adapted from [157].

 In the decoding phase, the feature maps are up sampled by transposed convolution layers. Standard

2D convolution layers are also used to refine the reconstruction of the projection. Residual connections

are used between the feature maps of the encoding layers and the decoding layers. This allows the

addition of the feature maps of the encoders to the feature maps of the decoders, recovering high-

frequency edge information that gets lost during the down sampling process. Figure 48 illustrates the

architecture and the data pipeline containing pre and post-processing of the data during the training of

the SqueezeSegV3 model. Lastly, the projected predictions can be restored by applying the inverse

process of the projection to the spherical surface.

Figure 48. SqueezeSegV3 model architecture with pre and post-processing. Adapted from [157].

SQUEEZESEGV3 DEPLOYMENT ON AN FPGA

75

5.1.6 TARGETED HARDWARE

 Unfortunately, the DPUCZDX8G is unable to support element-wise multiplication and addition of the

feature maps in the SAC blocks. Because this operation is at the core of the SqueezeSegV3-21

architecture, and there is no trivial substitute, the DPUCZDX8G was abandoned in this experiment. Vitis-

AI does support offloading unsupported DPU operations to the target CPU. However, a benchmark

realized in this work featuring another segmentation model, PointPillars, showed that the performance

degradation of this approach was very significant. Table 14 briefly summarizes the results.

Table 14. PointPillars inference latency comparison between partial and complete DPU support.

Model DPU support ZCU 104 inference (ms)

PointPillars

Complete 5

Partial 4593

 The DPUCVDX8G provides support for element-wise multiplication, but not all layers of SqueezeSegV3

are readily supported by this DPU. However, contrarily to the element-wise multiplication, the remaining

unsupported operations can be replaced. A complete list of all layers, respective parameters, and DPU

support of the Pytorch implementation of the SqueezeSegV3-21 architecture used in this experiment can

be consulted in Table 30 of Appendix V.

 In summary, only the DPUCVDX8G was targeted in this experiment due to the limitations of the

DPUCZDX8G. Another possible solution could have been to select another model. However, this would

further enlarge the distance of the selected model to the current state-of-the-art models in the literature.

SqueezeSegV3 is a good compromise in terms of support in Vitis-AI - can be deployed in the DPUCVDX8G

– and the proximity to the current best models in the literature for 3D semantic segmentation.

5.2 IMPLEMENTATION

 Most work developed in the previous experiment applies to the implementation steps of this

experiment. However, unlike in the ResNet-18 and SqueezeNet cases, the model cannot be deployed as

it is. Several architectural changes need to be performed first. Furthermore, the training and quantization

process of the resulting model, already considerably more time-consuming due to the substantially larger

dataset, becomes an iterative process due to the recurrent changes in the model architecture. In other

SQUEEZESEGV3 DEPLOYMENT ON AN FPGA

76

words, most of the developed work in this experiment focuses on the neural network architecture rather

than the tools to deploy the resulting models.

5.2.1 ARCHITECTURAL CHANGES

 Several architectural changes were made to the original SqueezeSegV3 model. The reasons lie in the

necessity to adapt the model for the target hardware and performance, namely size, frame rate, and

power consumption.

5.2.1.1 DPU SUPPORT-DRIVEN CHANGES

 The prebuilt DPUs made available by Xilinx support a wide range of neural network layers with a large

set of parameter combinations. Furthermore, the suitability of both DPUCZDX8G and DPUCVDX8G for

supporting convolutional architectures was evidenced by the previous experiment.

 Although a convolutional architecture, SqueezeSegV3 features layers that are not supported by the

targeted DPUs. For this reason, it was necessary to perform architectural changes in the network to make

the model deployable to the targeted hardware. A detailed list of all the supported operations of

DPUCZDX8G and DPUCVDX8G for Vitis-AI version 2.0, as well as the corresponding Pytorch layers, can

be consulted in Table 27 and Table 28 of Appendix III.

 The first architectural change was the substitution of the torch.nn.functional.unfold layer by a 2D

convolution layer. Because the unfold layer (commonly known as im2col) is lightweight when compared

to a 2D convolution layer, the kernel size used was 1. Another important aspect to consider is that the

convolution layer is a trainable layer, meaning that it contains parameters. Consequently, unlike the unfold

operation, the 2D convolution layer also increases the model memory footprint during training and most

importantly during inference. To reduce the computation overhead of this replacement, the kernel size

chosen was also 1. Following, all occurrences of the sigmoid activation function had to be replaced by

hard sigmoid activations. An advantage of using the hard sigmoid is that it can be computed more

efficiently than the regular sigmoid since, by being a composition of linear functions, it avoids the

calculation of the exponent. Figure 49 shows a plot of both activations.

SQUEEZESEGV3 DEPLOYMENT ON AN FPGA

77

Figure 49. Sigmoid and hard-sigmoid activation functions.

 The last change performed contemplated the torch.nn.functional.upsample_bilinear layer. This layer

was responsible for reducing the width of the feature map by half. Again, the solution consisted in the

usage of a 2D convolution layer, using double the stride in the width dimension. Because the number of

input and output channels is 3 (𝑥, 𝑦 , 𝑧 features), this convolution operation is very inexpensive and so

the replacement presents no overhead in performance. In fact, the 3 instances of this Conv2D are the 3

least expensive layers by average time, with averages of 0.26 ms, 0.16 ms, and 0.12 ms. The complete

list of layers and respective average times is present in Table 33 of Appendix VI. Table 33 contains

alterations that are described in the next section. Similarly to the first 2D convolution layer, a kernel size

of 1 was also adopted. Table 15 summarizes all the DPU support-driven architectural changes.

Table 15. SqueezeSegV3 support-driven architectural changes.

Original layer Parameters Replacement layer Parameters

Unfold Kernel size = 3 Conv2D In channels = variable

 Padding = 1 Out channels = variable

 Kernel size = 1

 Padding = 0

Sigmoid - Hard sigmoid -

Upsample_bilinear Size = [cm_h, cm_w//2] † Conv2D In channels = 3

 Out channels = 3

 Kernel size = 1

 Stride = (1, 2)

 Padding = 0

*cm_[h/w] = coordinate map height/width

† // operator is floor division

SQUEEZESEGV3 DEPLOYMENT ON AN FPGA

78

5.2.1.2 PERFORMANCE-DRIVEN CHANGES

 Table 16 lists the 4 most time-consuming layers of the model based on the average time it takes to

compute each layer during inference. The results refer to an application running on the VCK190 C64B1-

2CU configuration using 1 CPU thread, similar to the previous chapter. Again, Table 33 of Appendix VI

contains the complete list of layers and respective average times.

 All the layers in Table 16 are similar convolution layers that occur in the backbone, more specifically

in the SAC Blocks of the encoder. They correspond to nearly a third of all the computation time during

inference. Hence, these are all good candidate layers to be focused on in order to extract better

performance. It is also relevant to note that, when considering the number of occurrences of each of the

4 layers, the total size of parameters is 7.8 MB, corresponding to almost 18% of the model size. This

further increases the relevance of these layers.

Table 16. Top 4 most time-consuming layers during inference.

Location Layer Occurrences Parameters Parameter

Size (MB)

Average

Inference

Time (ms)

Backbone/Encoder3/SACBlock Conv2D 2 In channels = 3

Out channels = 1152

Kernel size = 7

Padding = 3

1.30 10.57

Backbone/Encoder2/SACBlock Conv2D 1 In channels = 3

Out channels = 576

Kernel size = 7

Padding = 3

1.30 9.50

Backbone/Encoder5/SACBlock Conv2D 1 In channels = 3

Out channels = 2304

Kernel size = 7

Padding = 3

1.30 8.63

Backbone/Encoder4/SACBlock Conv2D 2 In channels = 3

Out channels = 2304

Kernel size = 7

Padding = 3

1.30 8.63

 Table 17 shows all 3 variants of the abovementioned 4 Conv2D layers with their respective parameter

and FLOPS count. Note that every SAC block contains one instance of this Conv2D. The data corresponds

SQUEEZESEGV3 DEPLOYMENT ON AN FPGA

79

to the 2D convolution layers of the SAC block of encoder 5. As can be observed in the table, there is a

potential to reduce the model size by decreasing the listed convolution layers by 80% and 97% respectively

using a kernel size of 3 and 1. The reduction in GFLOPS is 82% and 98% respectively.

 All three variations were explored during this experiment.

Table 17. SAC block's convolution kernel size comparison.

Input Size

(N, C, H, W)

In

Channels

Out

Channels

Kernel

Size

Padding #

Parameters

Parameter

Size (MB)

GFLOPS

 7 3 341k 1.36 5.55

1 x 3 x 64 x 256 3 2304 3 1 64.5K 0.26 1.02

 1 0 9K 0.04 0.11

 Besides reducing a single layer’s computation cost and size, it is also possible to reduce the number

of layers altogether. One of the explored approaches consisted in removing the encoders 4 and 5, which

correspond to 67% of the original model’s total number of floating-point operations.

 Lastly, a small architectural change that can be realized only at inference time is the removal of all but

the 5th prediction head. Since the other 4 additional heads are used to compute a multi-layer loss and

their outputs are ignored at inference time, they can be removed to save memory and computation. This

was applied to all variants of models explored in this experiment. Table 18. SqueezeSegV3-21 model

variants experimented. summarizes all models considered for deployment during this experiment, the

respective combinations of support-driven changes, model size, and GFLOPS. It also contains the

SqueezeSegV3 model from the original paper for comparison.

Table 18. SqueezeSegV3-21 model variants experimented.

Model designation SACBlock Conv2d kernel Encoders 4, 5 Model Size (MB) GFLOPS

Original N/A Yes 36 198

SSGV321-K7 7 Yes 44 241

SSGV321-K3 3 Yes 40 209

SSGV321-K1 1 Yes 39 202

SSGV321-K1N45 1 No 17.6 77.14

SQUEEZESEGV3 DEPLOYMENT ON AN FPGA

80

5.2.2 FLOAT MODEL TRAINING

 All experimented models were trained for 72 epochs. The SGD optimizer was used with an initial

learning rate of 10−3, a momentum of 0.9 and a weight decay of 10−4. A learning rate warmup was

also performed for 1 epoch with a learning rate decay of 0.995. Due to memory limitations, the batch

size used was 2. Similarly to the SqueezeSegV3, the loss function used was a multi-layer cross-entropy

loss. Each of the five decoders of the model had a prediction head consisting of a dropout layer and a 2D

convolution layer. The outputs of these prediction heads were used as multiple outputs of the network to

calculate the loss. The authors of SqueezeSegV3 defend that these “intermediate supervisions” guided

the model to form features with more semantic meaning and helped mitigate vanishing gradients. The

loss is described by the following equation:

𝐿𝑜𝑠𝑠 = ∑

− ∑ ∑ 𝑤𝑐 ∙ 𝑦𝑐 ∙ 𝑙𝑜𝑔(�̂�𝑐)
𝐶
𝑐=1𝐻𝑖,𝑊𝑖

𝐻𝑖 × 𝑊𝑖

5

𝑖=1

(Equation 9)

where 𝑤𝑐 =
1

𝑙𝑜𝑔(𝑓𝑐+𝜀)
 is a normalization factor, 𝑓𝑐 represents the frequency of class 𝑐. 𝐻𝑖 ,𝑊𝑖 are the

height and width of the output of the 𝑖-th prediction head, 𝑦𝑐 is the prediction for the 𝑐-th class in each

pixel and �̂�𝑐 is the corresponding label.

 The training plots of the original and SSGV321-K3 models are depicted in figures Figure 50 through

Figure 53. Figure 50 shows the accuracy and IoU plots of the original paper’s implementation of the

SqueezeSegV3-21 model. Both the accuracy and IoU are evaluated in the train and validation sets.

SQUEEZESEGV3 DEPLOYMENT ON AN FPGA

81

Figure 50. SqueezeSegV3-21 original model training: validation accuracies and IoUs.

Figure 51 shows the training loss of the original SqueezeSegV3-21 model.

Figure 51. SqueezeSegV3-21 original model training: training set loss.

 The next two figures are similar plots but for the SSGV321-K3 model.

SQUEEZESEGV3 DEPLOYMENT ON AN FPGA

82

Figure 52. SSGV321-K3 model training: validation accuracies and IoUs.

Figure 53. SSGV321-K3 model training: training set loss.

 Similar training plots of the SSGV321-K1 and SSGV321-K1N45 models are available in Figure 66

through Figure 69 of Appendix VI.

 One can see that, although models were trained for 72 epochs, there could still be room for

improvement since the accuracy and IoU metrics seem to still be improving at the last epochs. From the

results advertised by the original SqueezeSegV3 paper, it is known that this is the case at least for the

original model. To validate this hypothesis for SSGV321-K3, the model was also trained for 100 epochs.

SQUEEZESEGV3 DEPLOYMENT ON AN FPGA

83

The choice of training the SSGV321-K3 model over SSGV321-K7 becomes obvious later when the

framerate results are presented. Figure 54 and Figure 55 show the accuracy and IoU as well as the

training loss of the SSGV321-K3 model trained for 100 epochs.

Figure 54. SSGV321-K3 model training: validation accuracies and IoUs (100 epochs training).

Figure 55. SSGV321-K3 model training: training set loss (100 epochs training).

 As can be noted, there is a very slight improvement in the accuracy and IoU. However, for the rest of

the experiment, and for comparison reasons, all models will be quantized using the float models trained

for 72 epochs. The main reason is the lack of sufficient resources to train all models for 100 epochs.

Nevertheless, this is still an interesting result that opens the possibility to improve the final results of this

SQUEEZESEGV3 DEPLOYMENT ON AN FPGA

84

work in terms of accuracy and IoU. For these reasons, the detailed results and comparison of the accuracy

and IoU of the SSGV321-K3 model trained for 100 epochs with the same model trained for 72 epochs

can be consulted in tables Table 34 and Table 35 of Appendix VI.

5.2.3 MODEL QUANTIZATION

 The previous experiment compared all three available quantization methods in terms of model

accuracy. The results of 4.3.1 allowed to conclude that QAT is the superior method with no drawbacks in

terms of model size. However, it is also the costliest of all the methods. Unlike ResNet-18 and SqueezeNet

models using the CIFAR-10 dataset, the training process of the SqueezeSegV3 model using the Semantic-

KITTI dataset was extremely time-consuming on the available hardware. For the above reasons, QAT was

not performed in this experiment.

5.2.4 DEPLOYMENT ON TARGET HARDWARE

 All the experimented models were compiled for the DPUCVDX8G. Again, the models were sent via SCP

to the target Versal ACAP VCK190 board. The deployment of the SqueezeSegV3 model was realized with

the same single-threaded and multi-threaded application used to deploy the ResNet-18 and SqueezeNet

models. The same application architecture, used in the last experiment, was adopted in this experiment.

Figure 28 illustrates the application architecture. This means that the batch size used was 1 and that

single inference and pipelined inference were both available. The only change to the previous experiment

was that pre and post-processing of the data were not contemplated in the application.

 To further illustrate the whole implementation process, Figure 56 presents a flowchart with all the

steps from architectural changes to the model deployment.

SQUEEZESEGV3 DEPLOYMENT ON AN FPGA

85

Figure 56. Model deployment flowchart.

5.3 RESULTS AND ANALYSIS

 Again, this section is divided into two subsections. The first presents the results relative to the

quantization of the SqueezeSegV3-21 model variations. Accuracy, IoU, and model size are the 3 metrics

considered. The second focuses on the performance and efficiency results of the targeted models during

inference, assessing both the average inference FPS and the peak power consumption. For comparison,

the NVIDIA RTX 3090 GPU is used.

5.3.1 QUANTIZATION

 The quantization methods experimented were quantized calibration and fast finetuning. The average

accuracy and average IoUs of all experiments are listed in Table 19. Per-class IoU of all the models can

be consulted in Table 31 of Appendix VI. The “original” model was obtained from the original

implementation of the SqueezeSegV3 paper. Hence, it contains no modification related to DPU-support

or performance. The results show an accuracy and IoU difference of 0.7 and 1.5 points respectively from

the baseline model to the SSGV321-K7 model. However, this loss does not correspond to accuracy since

SQUEEZESEGV3 DEPLOYMENT ON AN FPGA

86

it is related to the necessary DPU support-driven modifications. Quantization-wise, the results show that

accuracy degradation is in the range of 2.8% to 4.4% when applying quantized calibration but falls to the

1% to 2.3% interval by leveraging fast-finetuning. Regarding IoU, a similar reduction is noticed. The

intervals are of 1.4 to 3.1 and 1.1 to 2.6 points respectively.

Table 19. Quantization results of SqueezeSegV3-21 model variants.

Model Float model (72 epochs) Quantized Calibration Fast finetuning

 Avg Acc Avg IoU Avg Acc Avg IoU Avg Acc Avg IoU

Original 0.870 0.460 N/A N/A N/A N/A

SSGV321-K7 0.865 0.450 0.837 0.436 0.855 0.438

SSGV321-K3 0.862 0.439 0.834 0.421 0.851 0.428

SSGV321-K1 0.863 0.445 0.832 0.430 0.853 0.431

SSGV321-K7N45 0.859 0.427 0.815 0.396 0.836 0.401

*Model not supported by Vitis-AI v2.0

 The reduction ratios of the models were within the 2.10 to 2.75 interval. The quantized models were

subject to compilation and consequent compiler optimizations and other internal alterations that allow

the model to be deployed on the VCK190. Hence, the sizes listed in Table 20 are subject to the file format

of the compiled model, the “.xmodel” format.

Table 20. Model size reduction after quantization.

Model Model Size (MB) Reduction Ratio

 Float Quantized

SSGV321-K7 44 21 2.10

SSGV321-K3 40 14 2.86

SSGV321-K1 39 N/A N/A

SSGV321-K1N45 17.6 6.4 2.75

5.3.2 PERFORMANCE AND EFFICIENCY

 Similarly to chapter 4, the performance and efficiency results focused on the framerate and peak power

consumption of the models. Both the framerate and peak power consumption measurement procedures

are similar to the ones described in section 4.3.2.

 Given the results from the last experiment, the thread number only varied in the [1, 4] interval.

Unfortunately, the SSGV321-K1 model was not compatible with version 2.0 of Vitis-AI, and hence it was

SQUEEZESEGV3 DEPLOYMENT ON AN FPGA

87

discarded. The incompatibility is not trivial and is related to the internals of the compiler. Nevertheless,

the variant without the encoders 4 and 5 was deployed without problems. The complete list of results for

each model can be consulted in Table 32 of Appendix VI.

 Figure 57 shows the FPS of the SSGV321-K7 model during inference. Similarly to the results in chapter

4, the FPS improved with the number of threads up to 2 and 4 threads respectively when using a single

DPU core and 2 DPU core configuration. This trend extends across all configurations and models. Albeit

very close, the SSGV321-K7 model did not achieve the desired 10 FPS.

Figure 57. SSGV321-K7 average inference FPS on all VCK190 configurations.

 Regarding threaded performance, the results for the SSGV321-K3 model were similar to the previous

model. However, this model did achieve a framerate of 11.17 when using the C64B1x2 configuration and

4 CPU threads (Figure 58).

SQUEEZESEGV3 DEPLOYMENT ON AN FPGA

88

Figure 58. SSGV321-K3 average inference FPS on all VCK190 configurations.

 The considerably smaller, and computationally less intensive, SSGV321-K1N45 model exhibited the

same patter when varying the number of threads. However, this time, the performance was substantially

better, with a maximum of 18.92 FPS, as can be observed in Figure 59.

SQUEEZESEGV3 DEPLOYMENT ON AN FPGA

89

Figure 59. SSGV321-K1N45 average inference FPS on all VCK190 configurations.

 FPS values were also substantially bigger in the GPU when compared with the C64B1x2 configuration

across all 3 models. The results are listed below in Table 21. SSGV3-21 models framerate comparison

between RTX3090 and C64B1x2.. GFLOPS and GOP/s are also included. Note that the GOP/s refers to

the number of giga-operations each second computed in the FPGA and should not be confused with the

GFLOPS of the float models, since operations on the FPGA are operating on quantized values. Also, the

computation of each layer differs from the GPU to the FPGA and so the GOPS estimation depends on the

hardware. The GOP/s values are extracted directly from Vitis-AI profiler.

Table 21. SSGV3-21 models framerate comparison between RTX3090 and C64B1x2.

Model FPS

 RTX 3090 C64B1x2 - 4 CPU threads

SSGV321-K7 19.93 9.83

SSGV321-K3 21.91 11.17

SSGV321-K1N45 36.50 18.92

SQUEEZESEGV3 DEPLOYMENT ON AN FPGA

90

 The power consumption of the models was also proportional to their size, as expected. It was also

proportional to the size of the configuration and the number of CPU threads. Figure 60 shows the peak

power consumption of the SSGV321-K7 model on the 3 targeted VCK190 configurations.

Figure 60. SSGV321-K7 peak power consumption on all VCK190 configurations.

 Table 22 shows the power consumption of some configurations, namely the configurations that

surpassed the 10 FPS performance. The smaller SSGV321-K1N45 model consumed approximately less

2.5 Watts than the SSGV321-K3 model, a negligible amount. Also, the peak power consumption did not

increase substantially from 2 to 4 threads.

SQUEEZESEGV3 DEPLOYMENT ON AN FPGA

91

Table 22. C64B1x2 peak power consumption on all SqueezeSegV3-21 model variants.

Model Configuration # Threads Peak Power Consumption (Watts)

SSGV321-K3 C64B1x2 2 78.08

SSGV321-K3 C64B1x2 4 78.30

SSGV321-K1N45 C64B1x2 2 75.57

SSGV321-K1N45 C64B1x2 4 76.15

 Comparatively, the power consumption of the RTX 3090 GPU for the SSGV321-K3 and SSGV321-

K1N45 models was 365.17 Watts and 228.13 Watts respectively.

 The performance per watt of each of the 3 models for the set of the 7 most representative

configurations, as well as in the RTX 3090 GPU, is present in Figure 61. The results show that the overall

performance per Watt slightly increased from the SSGV321-K7 to the SSGV321-K3 model. A more

noticeable increase was noted in the SSGV321-K1N45 model with an approximately 1-7x to 1.8x increase

in the C64B1x2 configuration compared with its single DPU core counterpart. The C64B1x2 configuration

was the most efficient across all models. Nevertheless, the performance per Watt values are 2 orders of

magnitude smaller than the values observed in the ResNet-18 model of the previous chapter.

 Regarding the RTX 3090 performance, all VCK190 configurations achieved better efficiency except for

the smaller model, where only the C64B1x2 configuration was superior when using 2 and 4 CPU threads.

Figure 61. Performance per Watt of RTX3090 and VCK190.

5.3.3 QUALITATIVE

 Qualitatively, it is possible to gain additional insights into the accuracy of the models. Figure 62

compares the semantic segmented point clouds of different models. The top left point cloud corresponds

to the LiDAR point cloud labeled with the ground truth. On its right, the labeled point cloud corresponds

SQUEEZESEGV3 DEPLOYMENT ON AN FPGA

92

to the predictions of the original SqueezeSegV3 paper model. The SSGV321-K3 and SSGV321-K1N45

predictions result from running the models on the VCK190. The SSGV321-K7 model, with better results,

was not considered because it did not achieve the necessary framerate to sustain the data rate from a

10 Hz LiDAR. From this figure, one can see that the labeling happens across all 360° horizontally. Some

artifacts can be noted near the vegetation area in all the predictions, including the original paper model.

The mislabeling appears to be more severe in the SSGV321-K1N45 model (big red area), as expected

because of the lower accuracy and IoU.

Figure 62. Semantic-KITTI semantic segmented point clouds. Ground-truth and predictions comparison.

 Figure 63 allows closer inspection, as well as comparison with the corresponding camera image. The

white bounding boxes delimit the zones where mislabeling happens. The number of mislabeling is higher

in the SSGV321-K1N45, as expected. Nevertheless, all models mistake some areas. For example, some

SQUEEZESEGV3 DEPLOYMENT ON AN FPGA

93

trunks are mistaken for poles, the bicyclists’ shadows are misrepresented as additional bicyclists, and a

traffic sign is missed in all 3 models’ predictions.

Figure 63. Detailed semantic segmented point clouds predictions. Comparison with ground-truth and camera-view.

5.4 DISCUSSION

 Similarly to the previous chapter’s discussion, here the aim is to interpret the findings and offer

commentary on the previous section’s results. More so, the contributions of this work are also put into

perspective by being compared with similar works in the literature.

5.4.1 QUANTIZATION

 The first important observation that can be made about the quantization results is that the fast-

finetuning method outperformed quantized calibration. These results are consistent with the results in

SQUEEZESEGV3 DEPLOYMENT ON AN FPGA

94

the first experiment. It is also clear that the accuracy degradation increases slightly in comparison with

the ResNet-18 and SqueezeNet results. However, both the model and the dataset are vastly more

complex. Nevertheless, leveraging the fast-finetuning method allows for accuracy degradations in the 1%

to 2.3% interval. Although the literature on 3D computer vision models implemented on FPGAs is still in

its infancy, it is possible to draw a comparison between two existing works. The ChipNet FPGA

implementation exhibits degradation in the evaluation metrics (F1, Average Precision, Precision, Recall,

FPR, and FNR) when quantizing to 12-bits. The quantization was not performed with a bit-width below

12. The degradation in average precision, for example, is 1.7%. All other metrics also suffered degradation

due to quantization. The perception task being solved was also segmentation, but only of the drivable

region. The VoxelNet implementation on FPGA also exhibits degradation in evaluation metrics such as F1

and average precision. The results show that for a 12-bit-width quantization, the average precision

decreased by 5.8% and 9.05% in the F1 metric [126]. The other close work did not list the evaluation

metrics degradation with quantization [21].

 Regarding model size reduction, none of the above works mentions the ratio of reduction. Nevertheless,

it is possible to draw a comparison with the results from the previous experiment. The model size

reductions were smaller than the observed in chapter 4. The model size reduction ratios of ResNet-18

and SqueezeNet were 4.07 and 3.33. These results already indicated that substantial differences in ratios

were possible to occur with different models. The same happens with the SSGV321 model variants.

Nevertheless, it cannot be ignored that a reduction ratio equivalent to the theoretical value of 4 is not

guaranteed for all models and is highly dependent on the model architecture and size. More so, even for

very similar models, the reduction can differ substantially. Again, the difference in model size to the

theoretically expected value could be further aggravated by the internal compiler optimizations. Also,

quantization parameters are expected to also contribute to the size of the quantized models.

5.4.2 PERFORMANCE AND EFFICIENCY

 The adopted approach of benchmarking different configurations showed once more the suitability of

Vitis-AI to perform design space exploration. This was evidenced by the capability to perform changes to

the SSGV321 network layers, compile the model, and test the framerate and peak power consumption of

the network on different target configurations and a variable number of CPU threads. Ultimately, this

back-and-forth exploration for solutions resulted in 2 models that achieved the desired framerate of 10

Hz. The two models can be deployed to run in a real-time scenario for most of the LiDAR sensors in the

market.

SQUEEZESEGV3 DEPLOYMENT ON AN FPGA

95

 The performance per Watt of the application was once again superior in the VCK190 when compared

to the RTX 3090 GPU, on all the 3 models experimented with when considering the C64B1x2

configuration with 2 CPU threads. However, contrarily to chapter 4 where the FPS values were higher and

the peak power consumption lower, this time the FPS values were lower in the VCK190. The superior

performance per Watt is a consequence of the lower power consumption – 4.67x and 3.18x lower peak

power consumption of the C64B1x2 configuration with 2CPU threads compared with the RTX 3090.

There is not a single explanation for why the RTX 3090 outperforms the VCK190 in framerate since both

memory accesses and computations of each layer can play a big role. Nevertheless, one of the possible

factors might be related to the high quantity of data reads and stores in the DDR memory in the VCK190.

Because the DDR memory is itself limited to 8 GB in the VCK190, main memory accesses might be a

cause for the bottleneck. Evidently the same could be happening in the RTX 3090 GPU. However, the

GPU contains a 24 GB DDR memory that withstands more of the weights, biases, and feature maps data

reducing the access to the main memory. Table 23 summarizes the DDR memory accesses of both the

SGV321-K3 and SGV321-K1N45 on the VCK190. LdWB, LdFM, Total StFM, and Avg Bw correspond

respectively to the load size of feature maps, load size of weights and biases, store size of feature maps

and the average bandwidth in the access to the DDR memory. Indeed, the amount of memory accesses

is vastly superior in these 2 models when compared with the ResNet-18 and SqueezeNet models from

the last experiment.

Table 23. SSGV321-K3 and SSGV321-K1N45 inference DDR memory access information on VCK190.

Model Total LdWB (MB) Total LdFM (MB) Total StFM (MB) Avg Bw (MB/s)

SSGV321-K3 10.75 975.35 914.78 11122.57

SSGV321-K1N45 4.36 614.87 566.78 11062.45

5.4.3 QUALITATIVE

 The visualizations show that there are indeed noticeable artifacts in the point clouds related to miss

classification of points. This is visible across all models’ predictions and is more noticeable for models

with the worse accuracies and IoU. Nevertheless, one can confirm that the networks indeed learned to

correctly classify harder classes such as cars, bicyclists, and traffic signs and not only the more abundant

road, sidewalk, and vegetation. It also becomes clear that there is still room for improvement in the 3D

computer vision model architectures that tackle semantic segmentation in LiDAR point clouds. However,

SQUEEZESEGV3 DEPLOYMENT ON AN FPGA

96

it is also important to remember that there are other models besides SqueezeSegV3 that, although not

currently supported in Vitis-AI (see 5.1.5.1), achieve better accuracy and IoU scores.

 The visualizations show that the deployed models perform real-time semantic segmentation of the

complete point-clouds. This is an important but often missed aspect of similar works. Table 24 lists similar

works that focus on the FPGA implementation of 3D computer vision models using LiDAR point clouds.

As evidenced by the below data, the other similar works identified either do not use all the point cloud

data, do not implement the complete network in the FPGA, or use smaller frames. Having all 3 of these

aspects and still achieving real-time performance is a strength of the achieved results.

Table 24. Comparison with similar works.

Model Complete Point Cloud Usage # Points per Frame Complete Network in FPGA

ChipNet ✕ Not specified ✓

VoxelNet ✓* 120k-125k ✕

PointNet ✓ 4k ✓

This work ✓ 120k-125k ✓

*Depends on the class being detected

CONCLUSIONS

97

6 CONCLUSIONS

CONCLUSIONS

98

6.1 SYNOPSYS

 This work proposed a hardware-software co-design approach for the deployment of the LiDAR-based

3D deep neural network, SqueezeSegV3, on Xilinx’s Versal ACAP VCK190. Leveraging Vitis-AI, an

inferencing application was developed allowing a real-time performance whose framerate surpassed 10

Hz, enabling the application to withstand the data rate of most commercially available LiDAR sensors,

while solving the semantic segmentation task on the complete 360° point clouds of the Semantic-KITTI

dataset. To achieve this, the first step consisted of the validation of the suitability of Vitis-AI for developing

an inference application on an FPGA. A thorough exploration of Vitis-AI was first conducted to evaluate

the capabilities of the tools available from float model quantization to the final deployment. To do so, the

development of a multi-threaded application with real-time performance for the inference of both ResNet-

18 and SqueezeNet was executed. Then, a meticulous benchmarking of the developed application,

focusing on framerate and power consumption, allowed to identify the possible accuracy/efficiency trade-

off opportunities. The developed application was tested on FPGAs, namely the Zynq Ultrascale+ MPSoC

ZCU104 and the Versal ACAP VCK190. The results of this first experiment showed that the quantization

tools allowed for significant model size reduction with little to no accuracy degradation. Regarding

performance, the deployed application achieved real-time performance, with framerates in the thousands,

while consuming very low power consumption. When comparing performance per Watt with the RTX

3090, both FPGAs produced overwhelmingly better results. These results proved enough to prove the

suitability of Vitis-AI. Consequently, all the validated tools and the application developed in the first

experiment were used very similarly to implement SqueezeSegV3 on the Versal ACAP VCK190.

6.2 MAIN CONTRIBUTIONS

 In no particular order, the main contributions of this work were:

• Complete implementation of a LiDAR-based neural network implementation on an

FPGA. Some works only implement part of the layers of a neural network in the FPGA. The

complete implementation allows accelerating an inference application completely on the FPGA

avoiding data transfers that introduce latency and power consumption. Also, FPGA

implementations of deep neural networks are still a relatively small, but very promising, research

area, especially with 3D computer vison models.

CONCLUSIONS

99

• Inference over large LiDAR point clouds with a 360° field of view in real-time. LiDAR

point clouds with higher resolutions result in better results but are also bigger. ADAS have to be

capable of computing inference over such point clouds in real-time. The developed application

serves as a proof of concept for such use cases and is capable of supporting all the 10 Hz LiDAR

sensors.

• Usage of the Versal ACAP VCK190. The VCK190 is underexplored in the literature. To the

best of this thesis author’s knowledge, this is the first implementation of a 3D computer vision

model on the VCK190 (except for Xilinx’s own Model Zoo) that is publicly available. In fact, very

few works target this FPGA. For this reason, the results obtained serve as proof of the capabilities

of the VCK190 for the deployment of such 3D computer vision models and as a starting point of

comparison of future similar works.

• Validation of the Vitis-AI tool. The successful real-time implementations of ResNet-18,

SqueezeNet, and SqueezeSegV3 on the Zynq Ultrascale+ MPSoC ZCU104 and Versal ACAP

VCK190 used the entire toolset of Vitis-AI. Here, the main contribution was two-fold. Firstly it was

shown that the Vitis-AI tools are successful in allowing the processes of quantization, profiling,

and deployment of deep learning models on FPGAs. The deployment and profiling of the

developed inference application on the two FPGAs required no FPGA expertise and produced the

expected results. Secondly, the tools were shown to be useful in allowing a detailed exploration

of a broad design space through the experimentation of the hardware configurations. From this

design space exploration resulted different real-time capable models that sit along different points

in the accuracy/efficiency trade-off.

• Comparison with the RTX 3090 GPU. The performance per Watt of the deployed models

was compared with the RTX 3090. This comparison allowed to frame the results in the broader

applied deep learning literature, which usually focuses on GPU implementations, further

highlighting the potential of exploring different hardware solutions.

6.3 RESEARCH OPPORTUNITIES

 Despite requiring hardware expertise, Vitis-AI allows for the design of customized DPUs. This would

solve the main limitation of the Vitis-AI tool encountered in this work. Because only a limited number of

instructions are natively supported by each DPU, it is not possible to deploy some models completely.

This results in a heavy dependence of the developer on the supported operations, hampering the

possibility to explore new more exotic operations that constitute the base of most state-of-the-art

CONCLUSIONS

100

architectures that outperform SqueezeSegV3. Custom DPUs would, in theory, solve this dependence on

the supported operations of the prebuilt available DPUs used in this work.

 Another interesting direction that would provide more insights into the deep neural network’s

performance would be to more closely and thoroughly examine the memory hierarchy usage during the

execution of the models. This would help answer questions regarding specific layer bottlenecks that have

been identified in this work but not completely explained. FPGA expertise would also be required. On the

same note, it would also be interesting to quantify the inference latency-frame time resolution trade-off

resulting from the developed application. Empirically the increase in throughput was very evident, but the

penalty in single frame inference was not quantified. This would allow for an easier comparison of

solutions with requirements defined by any developer or team that whishes to implement a similar

application using Vitis-AI.

REFERENCES

101

[1] “Waymo Driver – Waymo.” https://waymo.com/waymo-driver/ (accessed Dec. 13, 2021).

[2] “Yandex Self-Driving Cars.” https://sdg.yandex.com/ (accessed Jul. 28, 2022).

[3] “Luminar to be Standardized on Next Generation Electric Volvo | Luminar Technologies, Inc.”

https://investors.luminartech.com/news-releases/news-release-details/luminar-be-standardized-

next-generation-electric-volvo (accessed Jul. 28, 2022).

[4] “Sensor setup | a2d2.audi.” https://www.a2d2.audi/a2d2/en/sensor-setup.html (accessed

Sep. 04, 2022).

[5] “NVIDIA Drive Hyperion | NVIDIA Developer.” https://developer.nvidia.com/drive/drive-hyperion

(accessed Dec. 13, 2021).

[6] “Apollo | Robotaxi Autonomous Driving Solution,” 2020. https://apollo.auto/robotaxi/index.html

(accessed Dec. 14, 2021).

[7] “Autonomous Vehicle Technology | Driverless Cars | Cruise.”

https://getcruise.com/technology/ (accessed Sep. 04, 2022).

[8] “Autonomous Car Market Size to Grow Worth USD 11.03 Billion.”

https://www.globenewswire.com/en/news-

release/2022/06/08/2458427/0/en/Autonomous-Car-Market-Size-to-Grow-Worth-USD-11-03-

Billion-at-a-CAGR-of-31-3-for-2021-2029-Fortune-Business-Insights.html (accessed Sep. 04,

2022).

[9] “Global Autonomous Vehicles Market (2022-2030) - Projected.”

https://www.globenewswire.com/en/news-release/2022/06/01/2454154/28124/en/Global-

Autonomous-Vehicles-Market-2022-2030-Projected-CAGR-of-53-6-During-the-Forecast-Period.html

(accessed Sep. 04, 2022).

[10] “Projected sales of autonomous vehicles worldwide | Statista.”

https://www.statista.com/statistics/1230733/projected-sales-autonomous-vehicles-worldwide/

(accessed Sep. 04, 2022).

[11] J. Kocic, N. Jovicic, and V. Drndarevic, “Sensors and Sensor Fusion in Autonomous Vehicles,”

2018 26th Telecommunications Forum, TELFOR 2018 - Proceedings, 2018, doi:

10.1109/TELFOR.2018.8612054.

[12] T. B. Brown et al., “Language Models are Few-Shot Learners,” Adv Neural Inf Process Syst, vol.

2020-December, May 2020, doi: 10.48550/arxiv.2005.14165.

REFERENCES

REFERENCES

102

[13] J. Yu et al., “CoCa: Contrastive Captioners are Image-Text Foundation Models,” May 2022, doi:

10.48550/arxiv.2205.01917.

[14] Q. Li, Q. Xiao, and Y. Liang, “Enabling high performance deep learning networks on embedded

systems,” Proceedings IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics

Society, vol. 2017-January, pp. 8405–8410, Dec. 2017, doi: 10.1109/IECON.2017.8217476.

[15] E. H. C. Tourad and M. Eleuldj, “Survey of Deep Learning Neural Networks Implementation on

FPGAs,” Proceedings of 2020 5th International Conference on Cloud Computing and Artificial

Intelligence: Technologies and Applications, CloudTech 2020, Nov. 2020, doi:

10.1109/CLOUDTECH49835.2020.9365911.

[16] G. Lacey, G. W. Taylor, and S. Areibi, “Deep Learning on FPGAs: Past, Present, and Future,” Feb.

2016, doi: 10.48550/arxiv.1602.04283.

[17] N. Ghielmetti et al., “Real-time semantic segmentation on FPGAs for autonomous vehicles with

hls4ml,” May 2022, doi: 10.48550/arxiv.2205.07690.

[18] Y. Ma, Y. Cao, S. Vrudhula, and J. S. Seo, “Optimizing the Convolution Operation to Accelerate

Deep Neural Networks on FPGA,” IEEE Trans Very Large Scale Integr VLSI Syst, vol. 26, no. 7,

pp. 1354–1367, Jul. 2018, doi: 10.1109/TVLSI.2018.2815603.

[19] J. Faraone, G. Gambardella, N. Fraser, M. Blott, P. Leong, and D. Boland, “Customizing low-

precision deep neural networks for FPGAs,” Proceedings - 2018 International Conference on Field-

Programmable Logic and Applications, FPL 2018, pp. 97–100, Nov. 2018, doi:

10.1109/FPL.2018.00025.

[20] Y. Lyu, L. Bai, and X. Huang, “ChipNet: Real-Time LiDAR Processing for Drivable Region

Segmentation on an FPGA,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol.

66, no. 5, pp. 1769–1779, Aug. 2018, doi: 10.1109/TCSI.2018.2881162.

[21] L. Bai, Y. Lyu, X. Xu, and X. Huang, “Pointnet on FPGA for real-time LiDAR point cloud processing,”

Proceedings - IEEE International Symposium on Circuits and Systems, vol. 2020-October, 2020,

doi: 10.1109/iscas45731.2020.9180841.

[22] B. Li, T. Zhang, and T. Xia, “Vehicle Detection from 3D Lidar Using Fully Convolutional Network,”

Robotics: Science and Systems, vol. 12, Aug. 2016, doi: 10.15607/rss.2016.xii.042.

[23] M. Blott et al., “FINN-R: An End-to-End Deep-Learning Framework for Fast Exploration of Quantized

Neural Networks,” ACM Trans Reconfigurable Technol Syst, vol. 11, no. 3, Sep. 2018, doi:

10.48550/arxiv.1809.04570.

REFERENCES

103

[24] “GitHub - Xilinx/Vitis-AI: Vitis AI is Xilinx’s development stack for AI inference on Xilinx hardware

platforms, including both edge devices and Alveo cards.” https://github.com/Xilinx/Vitis-AI

(accessed Jul. 28, 2022).

[25] “Effective range and the high resolution advantage | Ouster.” https://ouster.com/blog/effective-

range-and-resolution/ (accessed Sep. 04, 2022).

[26] N. O. Mahony et al., “Deep Learning vs. Traditional Computer Vision,” vol. 943, Oct. 2019, doi:

10.1007/978-3-030-17795-9.

[27] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” Proceedings

of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2016-

December, pp. 770–778, Dec. 2015, doi: 10.1109/CVPR.2016.90.

[28] Z. Dai, H. Liu, Q. v. Le, and M. Tan, “CoAtNet: Marrying Convolution and Attention for All Data

Sizes,” Jun. 2021, Accessed: Dec. 14, 2021. [Online]. Available:

https://arxiv.org/abs/2106.04803v2

[29] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “YOLOv4: Optimal Speed and Accuracy of Object

Detection”, Accessed: Dec. 14, 2021. [Online]. Available: https://github.com/AlexeyAB/darknet.

[30] H. Qiu, Y. Ma, Z. Li, S. Liu, and J. Sun, “BorderDet: Border Feature for Dense Object Detection,”

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), vol. 12346 LNCS, pp. 549–564, Jul. 2020, doi: 10.1007/978-

3-030-58452-8_32.

[31] M. Tan and Q. v. Le, “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks,”

36th International Conference on Machine Learning, ICML 2019, vol. 2019-June, pp. 10691–

10700, May 2019, Accessed: Dec. 14, 2021. [Online]. Available:

https://arxiv.org/abs/1905.11946v5

[32] O. Russakovsky et al., “ImageNet Large Scale Visual Recognition Challenge,” Int J Comput Vis,

vol. 115, no. 3, pp. 211–252, Sep. 2014, doi: 10.1007/s11263-015-0816-y.

[33] K. Minemura, H. Liau, A. Monrroy, and S. Kato, “LMNet: Real-time Multiclass Object Detection on

CPU using 3D LiDAR,” Proceedings of 2018 3rd Asia-Pacific Conference on Intelligent Robot

Systems, ACIRS 2018, pp. 28–34, May 2018, doi: 10.1109/ACIRS.2018.8467245.

[34] M. Simon, S. Milz, K. Amende, and H.-M. Gross, “Complex-YOLO: Real-time 3D Object Detection

on Point Clouds,” Mar. 2018, Accessed: Dec. 14, 2021. [Online]. Available:

https://arxiv.org/abs/1803.06199v2

REFERENCES

104

[35] J. Beltrán, C. Guindel, F. M. Moreno, D. Cruzado, F. García, and A. de La Escalera, “BirdNet: a

3D Object Detection Framework from LiDAR information,” IEEE Conference on Intelligent

Transportation Systems, Proceedings, ITSC, vol. 2018-November, pp. 3517–3523, May 2018,

doi: 10.1109/ITSC.2018.8569311.

[36] B. Yang, W. Luo, and R. Urtasun, “PIXOR: Real-time 3D Object Detection from Point Clouds,”

Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, pp. 7652–7660, Dec. 2018, doi: 10.1109/CVPR.2018.00798.

[37] G. Zamanakos, L. Tsochatzidis, A. Amanatiadis, and I. Pratikakis, “A comprehensive survey of

LIDAR-based 3D object detection methods with deep learning for autonomous driving,” Comput

Graph, vol. 99, pp. 153–181, Oct. 2021, doi: 10.1016/J.CAG.2021.07.003.

[38] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom, “PointPillars: Fast Encoders for

Object Detection from Point Clouds,” Proceedings of the IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, vol. 2019-June, pp. 12689–12697, Dec. 2018, doi:

10.1109/CVPR.2019.01298.

[39] G. Riegler, A. O. Ulusoy, and A. Geiger, “OctNet: Learning Deep 3D Representations at High

Resolutions,” Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition,

CVPR 2017, vol. 2017-January, pp. 6620–6629, Nov. 2016, doi: 10.1109/CVPR.2017.701.

[40] S. A. Bello, S. Yu, C. Wang, J. M. Adam, and J. Li, “Review: deep learning on 3D point clouds,”

Remote Sens (Basel), vol. 12, no. 11, Jan. 2020, doi: 10.3390/rs12111729.

[41] S. Shi et al., “PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection,” Proceedings

of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.

10526–10535, Dec. 2019, doi: 10.1109/CVPR42600.2020.01054.

[42] J. Deng, S. Shi, P. Li, W. Zhou, Y. Zhang, and H. Li, “Voxel R-CNN: Towards High Performance

Voxel-based 3D Object Detection,” Dec. 2020, Accessed: Jan. 21, 2022. [Online]. Available:

https://arxiv.org/abs/2012.15712v2

[43] Y. Li et al., “Deep Learning for LiDAR Point Clouds in Autonomous Driving: A Review”.

[44] R. Klokov and V. Lempitsky, “Escape from Cells: Deep Kd-Networks for the Recognition of 3D

Point Cloud Models,” Proceedings of the IEEE International Conference on Computer Vision, vol.

2017-October, pp. 863–872, Apr. 2017, doi: 10.1109/ICCV.2017.99.

[45] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon, “Dynamic Graph CNN

for Learning on Point Clouds,” ACM Trans Graph, vol. 38, no. 5, p. 13, Jan. 2018, doi:

10.1145/3326362.

REFERENCES

105

[46] C. Wang, B. Samari, and K. Siddiqi, “Local Spectral Graph Convolution for Point Set Feature

Learning,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), vol. 11208 LNCS, pp. 56–71, Sep. 2018, doi:

10.1007/978-3-030-01225-0_4.

[47] W. Han, C. Wen, C. Wang, X. Li, and Q. Li, “Point2Node: Correlation Learning of Dynamic-Node

for Point Cloud Feature Modeling,” AAAI 2020 - 34th AAAI Conference on Artificial Intelligence,

pp. 10925–10932, Dec. 2019, doi: 10.1609/aaai.v34i07.6725.

[48] W. Shi and R. Rajkumar, “Point-GNN: Graph Neural Network for 3D Object Detection in a Point

Cloud,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, pp. 1708–1716, Mar. 2020, doi: 10.1109/CVPR42600.2020.00178.

[49] I. Alonso, L. Riazuelo, L. Montesano, and A. C. Murillo, “3D-MiniNet: Learning a 2D Representation

from Point Clouds for Fast and Efficient 3D LIDAR Semantic Segmentation,” IEEE Robot Autom

Lett, vol. 5, no. 4, pp. 5432–5439, Feb. 2020, doi: 10.48550/arxiv.2002.10893.

[50] V. Vanhoucke, A. Senior, and M. Z. Mao, “Improving the speed of neural networks on CPUs,”

NIPS 2011, 2011, Accessed: Dec. 15, 2021. [Online]. Available:

https://research.google/pubs/pub37631/

[51] Q. Chen, C. Xin, C. Zou, X. Wang, and B. Wang, “A low bit-width parameter representation method

for hardware-oriented convolution neural networks,” Proceedings of International Conference on

ASIC, vol. 2017-October, pp. 148–151, Jul. 2017, doi: 10.1109/ASICON.2017.8252433.

[52] C. Murphy and Y. Fu, “Xilinx All Programmable Devices: A Superior Platform for Compute-Intensive

Systems (WP492),” 2017, Accessed: Dec. 15, 2021. [Online]. Available: www.xilinx.com1

[53] H. Wu, P. Judd, X. Zhang, M. Isaev, and P. Micikevicius, “Integer Quantization for Deep Learning

Inference: Principles and Empirical Evaluation,” Apr. 2020, doi: 10.48550/arxiv.2004.09602.

[54] H. Wu, P. Judd, X. Zhang, M. Isaev, and P. Micikevicius, “Integer Quantization for Deep Learning

Inference: Principles and Empirical Evaluation,” Apr. 2020, doi: 10.48550/arxiv.2004.09602.

[55] T. Gale, E. Elsen, and S. Hooker, “The State of Sparsity in Deep Neural Networks,” Feb. 2019,

doi: 10.48550/arxiv.1902.09574.

[56] S. Swaminathan, D. Garg, R. Kannan, and F. Andres, “Sparse low rank factorization for deep

neural network compression,” Neurocomputing, vol. 398, pp. 185–196, Jul. 2020, doi:

10.1016/J.NEUCOM.2020.02.035.

[57] G. Hinton, O. Vinyals, and J. Dean, “Distilling the Knowledge in a Neural Network,” Mar. 2015,

doi: 10.48550/arxiv.1503.02531.

REFERENCES

106

[58] I. Lang, A. Manor, and S. Avidan, “SampleNet: Differentiable Point Cloud Sampling,” Proceedings

of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 7575–

7585, Dec. 2019, doi: 10.1109/CVPR42600.2020.00760.

[59] “The HDL-64E Lidar Sensor Retires | Velodyne Lidar.” https://velodynelidar.com/blog/hdl-64e-

lidar-sensor-retires/ (accessed Sep. 04, 2022).

[60] “Alpha Prime | Velodyne Lidar.” https://velodynelidar.com/products/alpha-prime/ (accessed

Dec. 13, 2021).

[61] “The Ibeo Lux LiDAR sensor - Homepage.” https://www.ibeo-

as.com/en/products/sensors/IbeoLUX (accessed Sep. 04, 2022).

[62] “OS2 Long-range lidar sensor for autonomous vehicles, trucking, and drones | Ouster.”

https://ouster.com/products/scanning-lidar/os2-sensor/ (accessed Sep. 04, 2022).

[63] “Continental Automotive - High Resolution 3D Flash LiDARTM.” https://www.continental-

automotive.com/en-gl/Passenger-Cars/Autonomous-Mobility/Enablers/Lidars/3D-Flash-Lidar

(accessed Sep. 04, 2022).

[64] “Iris | Luminar (Nasdaq: LAZR).” https://www.luminartech.com/iris/ (accessed Sep. 04, 2022).

[65] “InnovizTwo | 2nd-Generation Automotive Lidar.” https://innoviz.tech/innoviztwo (accessed Dec.

14, 2021).

[66] “InnovizOne | Automotive Lidar System.” https://innoviz.tech/innoviz360 (accessed Sep. 04,

2022).

[67] “Spectrum HD25 - Baraja.” https://www.baraja.com/en/spectrum-hd25 (accessed Sep. 04,

2022).

[68] “Continental Automotive - HRL131 Long Range LiDAR.” https://www.continental-

automotive.com/en-gl/Passenger-Cars/Autonomous-Mobility/Enablers/Lidars/HRL131

(accessed Sep. 04, 2022).

[69] “LiDAR sensor | Autonomous vehicle sensors | Valeo.” https://www.valeo.com/en/valeo-scala-

lidar/ (accessed Sep. 04, 2022).

[70] S. Liu, L. Liu, J. Tang, B. Yu, Y. Wang, and W. Shi, “Edge Computing for Autonomous Driving:

Opportunities and Challenges,” Proceedings of the IEEE, 2019, doi:

10.1109/JPROC.2019.2915983.

[71] “Artificial Intelligence :: Omdia.” https://omdia.tech.informa.com/topic-pages/artificial-

intelligence (accessed Jul. 28, 2022).

[72] “OpenBLAS : An optimized BLAS library.” https://www.openblas.net/ (accessed Jul. 28, 2022).

REFERENCES

107

[73] “Intel oneAPI Math Kernel Library (oneMKL).”

https://www.intel.com/content/www/us/en/develop/documentation/oneapi-programming-

guide/top/api-based-programming/intel-oneapi-math-kernel-library-onemkl.html (accessed Jul.

28, 2022).

[74] S. Mittal and J. S. Vetter, “A Survey of CPU-GPU Heterogeneous Computing Techniques,” ACM

Computing Surveys (CSUR), vol. 47, no. 4, Jul. 2015, doi: 10.1145/2788396.

[75] R. Raina, A. Madhavan, and A. Y. Ng, “Large-scale deep unsupervised learning using graphics

processors,” ACM International Conference Proceeding Series, vol. 382, 2009, doi:

10.1145/1553374.1553486.

[76] J. Yin and X. Wang, “Measurement of machine learning performance with different condition and

hyperparameter,” 2020.

[77] “CUDA Toolkit Documentation.” https://docs.nvidia.com/cuda/ (accessed Jul. 28, 2022).

[78] J. E. Stone, D. Gohara, and G. Shi, “OpenCL: A parallel programming standard for heterogeneous

computing systems,” Comput Sci Eng, vol. 12, no. 3, pp. 66–72, May 2010, doi:

10.1109/MCSE.2010.69.

[79] P. Kharya, “TensorFloat-32 in the A100 GPU Accelerates AI Training, HPC up to 20x | NVIDIA

Blog,” May 14, 2020. https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-

format/ (accessed Dec. 21, 2021).

[80] N. Corporation, “NVIDIA A100 TENSOR CORE GPU Unprecedented Acceleration at Every Scale.”

2020. Accessed: Dec. 21, 2021. [Online]. Available: www.nvidia.com/a100

[81] J. H. Gawron, G. A. Keoleian, R. D. de Kleine, T. J. Wallington, and H. C. Kim, “Life Cycle

Assessment of Connected and Automated Vehicles: Sensing and Computing Subsystem and

Vehicle Level Effects,” Environ Sci Technol, vol. 52, no. 5, pp. 3249–3256, Mar. 2018, doi:

10.1021/ACS.EST.7B04576/SUPPL_FILE/ES7B04576_SI_001.PDF.

[82] S.-C. Lin et al., “The Architectural Implications of Autonomous Driving: Constraints and

Acceleration,” Proceedings of the Twenty-Third International Conference on Architectural Support

for Programming Languages and Operating Systems, vol. 18, 2018, doi: 10.1145/3173162.

[83] “NVIDIA RTX Embedded GPU Solutions | NVIDIA.” https://www.nvidia.com/en-us/design-

visualization/resources/rtx-embedded/ (accessed Jul. 28, 2022).

[84] “Cloud Tensor Processing Units (TPUs) | Google Cloud.”

https://cloud.google.com/tpu/docs/tpus (accessed Dec. 21, 2021).

REFERENCES

108

[85] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer, “SqueezeNet:

AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size,” Feb. 2016, Accessed:

Dec. 21, 2021. [Online]. Available: https://arxiv.org/abs/1602.07360v4

[86] Y. Wang, G.-Y. Wei, D. Brooks, and J. A. Paulson, “Benchmarking TPU, GPU, and CPU Platforms

for Deep Learning,” Jul. 2019, Accessed: Dec. 21, 2021. [Online]. Available:

https://arxiv.org/abs/1907.10701v4

[87] “Artificial Intelligence & Autopilot | Tesla.” https://www.tesla.com/AI (accessed Dec. 21, 2021).

[88] “EyeQ5 - Mobileye - WikiChip.” https://en.wikichip.org/wiki/mobileye/eyeq/eyeq5 (accessed

Dec. 21, 2021).

[89] A. Boutros, S. Yazdanshenas, and V. Betz, “You Cannot Improve What You Do not Measure,” ACM

Transactions on Reconfigurable Technology and Systems (TRETS), vol. 11, no. 3, Dec. 2018, doi:

10.1145/3242898.

[90] “ASIC Prototyping with Stratix Series FPGAs | Intel.”

https://www.intel.com/content/www/us/en/programmable/products/general/fpga/stratix-

fpgas/about/stx-asic-prototyping.html (accessed Dec. 21, 2021).

[91] U. Aydonat, S. O’Connell, D. Capalija, A. C. Ling, and G. R. Chiu, “An OpenCLTM deep learning

accelerator on Arria 10,” FPGA 2017 - Proceedings of the 2017 ACM/SIGDA International

Symposium on Field-Programmable Gate Arrays, pp. 55–64, Feb. 2017, doi:

10.1145/3020078.3021738.

[92] E. Nurvitadhi, D. Sheffield, J. Sim, A. Mishra, G. Venkatesh, and D. Marr, “Accelerating binarized

neural networks: Comparison of FPGA, CPU, GPU, and ASIC,” Proceedings of the 2016

International Conference on Field-Programmable Technology, FPT 2016, pp. 77–84, May 2017,

doi: 10.1109/FPT.2016.7929192.

[93] “Quantization — PyTorch 1.12 documentation.”

https://pytorch.org/docs/stable/quantization.html (accessed Jul. 28, 2022).

[94] “TensorFlow Lite | ML for Mobile and Edge Devices.” https://www.tensorflow.org/lite (accessed

Jul. 28, 2022).

[95] “GitHub - pytorch/QNNPACK: Quantized Neural Network PACKage - mobile-optimized

implementation of quantized neural network operators.” https://github.com/pytorch/QNNPACK

(accessed Jul. 28, 2022).

REFERENCES

109

[96] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer, “A Survey of Quantization

Methods for Efficient Neural Network Inference,” Low-Power Computer Vision, pp. 291–326, Mar.

2021, doi: 10.48550/arxiv.2103.13630.

[97] S. R. Jain, A. Gural, M. Wu, and C. H. Dick, “Trained Quantization Thresholds for Accurate and

Efficient Fixed-Point Inference of Deep Neural Networks,” Mar. 2019, doi:

10.48550/arxiv.1903.08066.

[98] S. K. Esser, J. L. McKinstry, D. Bablani, R. Appuswamy, and D. S. Modha, “Learned Step Size

Quantization,” Feb. 2019, doi: 10.48550/arxiv.1902.08153.

[99] S. Han, H. Mao, and W. J. Dally, “Deep Compression: Compressing Deep Neural Networks With

Pruning, Trained Quantization And HUFFMAN Coding,” 4th International Conference on Learning

Representations, ICLR 2016 - Conference Track Proceedings, Oct. 2015, Accessed: Dec. 15,

2021. [Online]. Available: https://arxiv.org/abs/1510.00149v5

[100] M. Nagel et al., “A White Paper on Neural Network Quantization,” Jun. 2021, doi:

10.48550/arxiv.2106.08295.

[101] B. Jacob et al., “Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only

Inference,” Proceedings of the IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, pp. 2704–2713, Dec. 2017, doi: 10.1109/CVPR.2018.00286.

[102] M. Nagel, M. van Baalen, T. Blankevoort, and M. Welling, “Data-Free Quantization Through Weight

Equalization and Bias Correction,” Proceedings of the IEEE International Conference on Computer

Vision, vol. 2019-October, pp. 1325–1334, Jun. 2019, doi: 10.48550/arxiv.1906.04721.

[103] I. Hubara, Y. Nahshan, Y. Hanani, R. Banner, and D. Soudry, “Improving Post Training Neural

Quantization: Layer-wise Calibration and Integer Programming,” Jun. 2020, doi:

10.48550/arxiv.2006.10518.

[104] M. Courbariaux, Y. Bengio, and J. P. David, “BinaryConnect: Training Deep Neural Networks with

binary weights during propagations,” Adv Neural Inf Process Syst, vol. 2015-January, pp. 3123–

3131, Nov. 2015, Accessed: Dec. 21, 2021. [Online]. Available:

https://arxiv.org/abs/1511.00363v3

[105] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, Y. Bengio, and Y. U. Com, “Binarized Neural

Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1,”

Feb. 2016, Accessed: Dec. 21, 2021. [Online]. Available: https://arxiv.org/abs/1602.02830v3

[106] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net: ImageNet Classification Using

Binary Convolutional Neural Networks,” Lecture Notes in Computer Science (including subseries

REFERENCES

110

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9908 LNCS, pp.

525–542, Mar. 2016, doi: 10.1007/978-3-319-46493-0_32.

[107] F. Li, B. Zhang, and B. Liu, “Ternary Weight Networks,” May 2016, Accessed: Dec. 21, 2021.

[Online]. Available: https://arxiv.org/abs/1605.04711v2

[108] G. Venkatesh, E. Nurvitadhi, and D. Marr, “Accelerating Deep Convolutional Networks using low-

precision and sparsity,” ICASSP, IEEE International Conference on Acoustics, Speech and Signal

Processing - Proceedings, pp. 2861–2865, Oct. 2016, doi: 10.1109/ICASSP.2017.7952679.

[109] E. Nurvitadhi et al., “Can FPGAs beat GPUs in accelerating next-generation deep neural

networks?,” FPGA 2017 - Proceedings of the 2017 ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays, pp. 5–14, Feb. 2017, doi: 10.1145/3020078.3021740.

[110] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer, “A Survey of Quantization

Methods for Efficient Neural Network Inference,” Low-Power Computer Vision, pp. 291–326, Mar.

2021, doi: 10.48550/arxiv.2103.13630.

[111] M. Horowitz, “1.1 Computing’s energy problem (and what we can do about it),” Dig Tech Pap

IEEE Int Solid State Circuits Conf, vol. 57, pp. 10–14, 2014, doi: 10.1109/ISSCC.2014.6757323.

[112] S. Hashemi, N. Anthony, H. Tann, R. I. Bahar, and S. Reda, “Understanding the Impact of

Precision Quantization on the Accuracy and Energy of Neural Networks,” Proceedings of the 2017

Design, Automation and Test in Europe, DATE 2017, pp. 1474–1479, Dec. 2016, doi:

10.48550/arxiv.1612.03940.

[113] S. Kim, G. Park, and Y. Yi, “Performance Evaluation of INT8 Quantized Inference on Mobile GPUs,”

IEEE Access, vol. 9, pp. 164245–164255, 2021, doi: 10.1109/ACCESS.2021.3133100.

[114] Z. Jin and H. Finkel, “Analyzing deep learning model inferences for image classification using

OpenVINO,” Proceedings - 2020 IEEE 34th International Parallel and Distributed Processing

Symposium Workshops, IPDPSW 2020, pp. 908–911, May 2020, doi:

10.1109/IPDPSW50202.2020.00152.

[115] Y. Guan et al., “FP-DNN: An automated framework for mapping deep neural networks onto FPGAs

with RTL-HLS hybrid templates,” Proceedings - IEEE 25th Annual International Symposium on

Field-Programmable Custom Computing Machines, FCCM 2017, pp. 152–159, Jun. 2017, doi:

10.1109/FCCM.2017.25.

[116] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing FPGA-based accelerator design

for deep convolutional neural networks,” FPGA 2015 - 2015 ACM/SIGDA International

REFERENCES

111

Symposium on Field-Programmable Gate Arrays, pp. 161–170, Feb. 2015, doi:

10.1145/2684746.2689060.

[117] “FINN | finn.” https://xilinx.github.io/finn/ (accessed Jul. 28, 2022).

[118] F. Fahim et al., “hls4ml: An Open-Source Codesign Workflow to Empower Scientific Low-Power

Machine Learning Devices,” TinyML Research Symposium, vol. 21, Mar. 2021, doi:

10.48550/arxiv.2103.05579.

[119] “MNIST handwritten digit database, Yann LeCun, Corinna Cortes and Chris Burges.”

http://yann.lecun.com/exdb/mnist/ (accessed Jul. 28, 2022).

[120] H. Qu, C. Li, and S. Qian, “Particle Transformer for Jet Tagging,” Feb. 2022, doi:

10.48550/arxiv.2202.03772.

[121] G. di Guglielmo et al., “Compressing deep neural networks on FPGAs to binary and ternary

precision with HLS4ML,” Mach Learn Sci Technol, vol. 2, no. 1, p. 015001, Mar. 2020, doi:

10.1088/2632-2153/aba042.

[122] “GitHub - google/qkeras: QKeras: a quantization deep learning library for Tensorflow Keras.”

https://github.com/google/qkeras (accessed Jul. 28, 2022).

[123] T. Aarrestad et al., “Fast convolutional neural networks on FPGAs with hls4ml,” Mach Learn Sci

Technol, vol. 2, no. 4, Jan. 2021, doi: 10.1088/2632-2153/ac0ea1.

[124] “LegUp 4.0 Documentation — LegUp 4.0 documentation.”

http://legup.eecg.utoronto.ca/docs/4.0/index.html (accessed Jul. 28, 2022).

[125] “Intel® FPGA Simulation - ModelSim*-Intel® FPGA.”

https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/model-

sim.html (accessed Jul. 28, 2022).

[126] J. G. López, A. Agudo, and F. Moreno-Noguer, “3D vehicle detection on an FPGA from LIDAR point

clouds,” ACM International Conference Proceeding Series, pp. 21–26, Sep. 2019, doi:

10.1145/3369973.3369984.

[127] “Azure Machine Learning - ML as a Service | Microsoft Azure.” https://azure.microsoft.com/en-

us/services/machine-learning/ (accessed Jul. 28, 2022).

[128] “GitHub - Xilinx/brevitas: Brevitas: quantization-aware training in PyTorch.”

https://github.com/Xilinx/brevitas (accessed Jul. 28, 2022).

[129] “PYNQ - Python productivity for Zynq - Home.” http://www.pynq.io/ (accessed Jul. 28, 2022).

[130] “Ultra96 - 96Boards.” https://www.96boards.org/product/ultra96/ (accessed Jul. 28, 2022).

REFERENCES

112

[131] “Amazon EC2 F1 Instances.” https://aws.amazon.com/ec2/instance-types/f1/ (accessed Jul.

28, 2022).

[132] “GitHub - Xilinx/finn: Dataflow compiler for QNN inference on FPGAs.”

https://github.com/Xilinx/finn (accessed Sep. 04, 2022).

[133] W. Jung, D. Jung, and B. Kim, S. Lee, W. Rhee, and J. H. Ahn, “Restructuring Batch Normalization

to Accelerate CNN Training,” Jul. 2018, doi: 10.48550/arxiv.1807.01702.

[134] “OpenVINOTM Documentation — OpenVINOTM documentation — Version(latest).”

https://docs.openvino.ai/latest/index.html (accessed Jul. 28, 2022).

[135] “GitHub - PaddlePaddle/Paddle: PArallel Distributed Deep LEarning: Machine Learning

Framework from Industrial Practice .” https://github.com/PaddlePaddle/Paddle (accessed Jul.

28, 2022).

[136] “Apache MXNet | A flexible and efficient library for deep learning.”

https://mxnet.apache.org/versions/1.9.1/ (accessed Jul. 28, 2022).

[137] “FPGA Plugin - OpenVINOTM Toolkit.”

https://docs.openvino.ai/2020.4/openvino_docs_IE_DG_supported_plugins_FPGA.html

(accessed Jul. 28, 2022).

[138] “Hardware Architecture • DPUCZDX8G for Zynq UltraScale+ MPSoCs Product Guide (PG338) •

Reader • Documentation Portal.” https://docs.xilinx.com/r/en-US/pg338-dpu/Hardware-

Architecture (accessed Jul. 28, 2022).

[139] “Vitis AI Overview • Vitis AI User Guide (UG1414) • Reader • Documentation Portal.”

https://docs.xilinx.com/r/2.0-English/ug1414-vitis-ai/Vitis-AI-Overview (accessed Jul. 28, 2022).

[140] T. Cortinhal, G. Tzelepis, and E. E. Aksoy, “SalsaNext: Fast, Uncertainty-aware Semantic

Segmentation of LiDAR Point Clouds for Autonomous Driving,” NVIDIA Technical Report NVR-

2016-002, pp. 1–9, Mar. 2020, doi: 10.48550/arxiv.2003.03653.

[141] “CIFAR-10 and CIFAR-100 datasets.” https://www.cs.toronto.edu/~kriz/cifar.html (accessed

Jul. 28, 2022).

[142] “PyTorch vs TensorFlow in 2022.” https://www.assemblyai.com/blog/pytorch-vs-tensorflow-in-

2022/ (accessed Jul. 28, 2022).

[143] “The latest in Machine Learning | Papers With Code.” https://paperswithcode.com/ (accessed

Jul. 28, 2022).

REFERENCES

113

[144] F. Ramzan et al., “A Deep Learning Approach for Automated Diagnosis and Multi-Class

Classification of Alzheimer’s Disease Stages Using Resting-State fMRI and Residual Neural

Networks,” J Med Syst, vol. 44, no. 2, Feb. 2019, doi: 10.1007/S10916-019-1475-2.

[145] “PetaLinux Tools.” https://www.xilinx.com/products/design-tools/embedded-

software/petalinux-sdk.html (accessed Sep. 04, 2022).

[146] “Home - OpenCV.” https://opencv.org/ (accessed Jul. 28, 2022).

[147] “NumPy.” https://numpy.org/ (accessed Jul. 28, 2022).

[148] D. P. Kingma and J. L. Ba, “Adam: A Method for Stochastic Optimization,” 3rd International

Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, Dec. 2014,

doi: 10.48550/arxiv.1412.6980.

[149] J. Behley et al., “Towards 3D LiDAR-based semantic scene understanding of 3D point cloud

sequences: The SemanticKITTI Dataset:,” https://doi.org/10.1177/02783649211006735, vol.

40, no. 8–9, pp. 959–967, Apr. 2021, doi: 10.1177/02783649211006735.

[150] “SemanticKITTI - A Dataset for LiDAR-based Semantic Scene Understanding.”

http://www.semantic-kitti.org/dataset.html#overview (accessed Sep. 04, 2022).

[151] “Oakland 3-D Point Cloud Dataset - CVPR 2009 subset.”

https://www.cs.cmu.edu/~vmr/datasets/oakland_3d/cvpr09/doc/ (accessed Sep. 04, 2022).

[152] A. Serna, B. Marcotegui, F. Goulette, and J. E. Deschaud, “Paris-rue-madame database: A 3D

mobile laser scanner dataset for benchmarking urban detection, segmentation and classification

methods,” ICPRAM 2014 - Proceedings of the 3rd International Conference on Pattern Recognition

Applications and Methods, pp. 819–824, 2014, doi: 10.5220/0004934808190824.

[153] “iQmulus & TerraMobilita 3D urban analysis contest.”

http://data.ign.fr/benchmarks/UrbanAnalysis/ (accessed Sep. 04, 2022).

[154] X. Roynard, J. E. Deschaud, and F. Goulette, “Paris-Lille-3D: a large and high-quality ground truth

urban point cloud dataset for automatic segmentation and classification,” International Journal of

Robotics Research, vol. 37, no. 6, pp. 545–557, Nov. 2017, doi: 10.48550/arxiv.1712.00032.

[155] W. Tan et al., “Toronto-3D: A Large-scale Mobile LiDAR Dataset for Semantic Segmentation of

Urban Roadways,” IEEE Computer Society Conference on Computer Vision and Pattern

Recognition Workshops, vol. 2020-June, pp. 797–806, Mar. 2020, doi:

10.1109/CVPRW50498.2020.00109.

[156] “Evaluating image segmentation models.” https://www.jeremyjordan.me/evaluating-image-

segmentation-models/ (accessed Sep. 04, 2022).

REFERENCES

114

[157] C. Xu et al., “SqueezeSegV3: Spatially-Adaptive Convolution for Efficient Point-Cloud

Segmentation,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), vol. 12373 LNCS, pp. 1–19, Apr. 2020, doi:

10.48550/arxiv.2004.01803.

[158] H. Zhou et al., “Cylinder3D: An Effective 3D Framework for Driving-scene LiDAR Semantic

Segmentation,” Aug. 2020, doi: 10.48550/arxiv.2008.01550.

[159] H. Tang et al., “Searching Efficient 3D Architectures with Sparse Point-Voxel Convolution,” Lecture

Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics), vol. 12373 LNCS, pp. 685–702, Jul. 2020, doi:

10.48550/arxiv.2007.16100.

[160] X. Yan et al., “Sparse Single Sweep LiDAR Point Cloud Segmentation via Learning Contextual

Shape Priors from Scene Completion,” 35th AAAI Conference on Artificial Intelligence, AAAI 2021,

vol. 4A, pp. 3101–3109, Dec. 2020, doi: 10.48550/arxiv.2012.03762.

[161] D. Kochanov, F. K. Nejadasl, and O. Booij, “KPRNet: Improving projection-based LiDAR semantic

segmentation,” Jul. 2020, doi: 10.48550/arxiv.2007.12668.

[162] A. Milioto, I. Vizzo, J. Behley, and C. Stachniss, “RangeNet ++: Fast and Accurate LiDAR Semantic

Segmentation,” IEEE International Conference on Intelligent Robots and Systems, pp. 4213–

4220, Nov. 2019, doi: 10.1109/IROS40897.2019.8967762.

APPENDIX I – SCALE AND ZERO-POINT DERIVATION

115

Recall that 𝑥 ∈ [𝛼, 𝛽] are the floating-point values and 𝑥𝑞 = [𝛼𝑞 , 𝛽𝑞] are the quantized values.

{
𝛼 = 𝛼𝑞
𝛽 = 𝛽𝑞

⟺

(Equations 1 and 2)

⟺

{
𝛼 = 𝑆 ∙ (𝛼𝑞 + 𝑍)

𝛽 = 𝑆 ∙ (𝛽𝑞 + 𝑍)

⟺

{

 𝑆 =

𝛽 − 𝛼

𝛽𝑞 − 𝛼𝑞

𝑆 =
𝛼 ∙ 𝛽𝑞 − 𝛽 ∙ 𝛼𝑞

𝛽 − 𝛼

APPENDIX I – SCALE AND ZERO-POINT

DERIVATION

APPENDIX II – VITIS-AI QAT REQUIREMENTS

116

 The QAT APIs have some requirements for the model to be trained. The following list details all the

requirements as of version 2.0 of Vitis-AI.

1. All operations to be quantized must be instances of the torch.nn.Module object, rather than Torch

functions or Python operators. Operations that need replacement are listed in the following table.

Table 25. QAT mandatory operation replacement.

Operation Replacement

+ pytorch_nndct.nn.modules.functional.Add

- pytorch_nndct.nn.modules.functional.Sub

torch.add pytorch_nndct.nn.modules.functional.Add

torch.sub pytorch_nndct.nn.modules.functional.Sub

2. It is advised to call modules only once. For example, if a model architecture uses several ReLU

activations, for each call, a different torch.nn.ReLu module should be used.

3. QuantStub should be used to quantize the inputs of the network and DeQuantStub to de-quantize

the outputs of the network. Any sub-network from QuantStub to DeQuantStub in a forward pass

will be quantized. Multiple QuantStub-DeQuantStub pairs are allowed.

 The following code corresponds to parts of the original Torchvision implementation of the ResNet-18

model.

APPENDIX II – VITIS-AI QAT REQUIREMENTS

APPENDIX II – VITIS-AI QAT REQUIREMENTS

117

class BasicBlock(nn.Module):

 (...)

 self.conv1 = conv3x3(inplanes, planes, stride)

 self.bn1 = norm_layer(planes)

 self.relu = nn.ReLU(inplace=True)

 self.conv2 = conv3x3(planes, planes)

 self.bn2 = norm_layer(planes)

 self.downsample = downsample

 self.stride = stride

 def forward(self, x: Tensor) -> Tensor:

 identity = x

 out = self.conv1(x)

 out = self.bn1(out)

 out = self.relu(out)

 out = self.conv2(out)

 out = self.bn2(out)

 if self.downsample is not None:

 identity = self.downsample(x)

 out += identity

 out = self.relu(out)

 return out

class ResNet(nn.Module):

 (...)

 def _forward_impl(self, x: Tensor) -> Tensor:

 x = self.conv1(x)

 x = self.bn1(x)

 x = self.relu(x)

 x = self.maxpool(x)

 x = self.layer1(x)

 x = self.layer2(x)

 x = self.layer3(x)

 x = self.layer4(x)

 x = self.avgpool(x)

 x = torch.flatten(x, 1)

 x = self.fc(x)

 return x

Figure 64. Excerpt of ResNet-18’s torchvision implementation.

 This next code block corresponds to the ResNet-18 model modified to fit Vitis-AI’s QAT requirements.

Note the additions of several torch.nn.ReLU modules, the replacement of the ‘+’ operation by the

torch.functional.Add(), and the definition of pytorch_nndct.nn.QuantStub() and

pytorch_nndct.nn.DeQuantStub() used in the forward_impl method.

APPENDIX II – VITIS-AI QAT REQUIREMENTS

118

class BasicBlock(nn.Module):

 (…)

self.conv1 = conv3x3(inplanes, planes, stride)

 self.bn1 = norm_layer(planes)

 self.relu1 = nn.ReLU(inplace=True) #added

 self.conv2 = conv3x3(planes, planes)

 self.bn2 = norm_layer(planes)

 self.downsample = downsample

 self.stride = stride

 # additional relu

 self.relu2 = nn.ReLU(inplace=True) #added

 # add functional Add

 self.skip_add = functional.Add() #added

def forward(self, x: Tensor) -> Tensor:

 identity = x

 out = self.conv1(x)

 out = self.bn1(out)

 out = self.relu1(out) #added

 out = self.conv2(out)

 out = self.bn2(out)

 if self.downsample is not None:

 identity = self.downsample(x)

 out = self.skip_add(out, identity) #added

 out = self.relu2(out) #added

 return out

class ResNet(nn.Module):

 self.quant_stub = pytorch_nndct.nn.QuantStub() #added

 self.dequant_stub = pytorch_nndct.nn.DeQuantStub() #added

 (…)

 def _forward_impl(self, x: Tensor) -> Tensor:

 x = self.quant_stub(x) #added

 x = self.conv1(x)

 x = self.bn1(x)

 x = self.relu(x)

 x = self.maxpool(x)

 x = self.layer1(x)

 x = self.layer2(x)

 x = self.layer3(x)

 x = self.layer4(x)

 x = self.avgpool(x)

 x = torch.reshape(x, (x.shape[0], x.shape[1])) #added

 x = self.fc(x)

 x = self.dequant_stub(x) #added

 return x

Figure 65. Excerpt of ResNet-18’s QAT compatible implementation.

APPENDIX III – DPUCZDX8G AND DPUCVDX8G SUPPORTED OPERATORS

119

 The following information is a summary of the Vitis-AI documentation and refers to version 2.0 of the

tool.

Table 26. DPUCZDX8G and DPUCVDX8G channel parallel and bank depth possible values – Vitis-AI 2.0.

Intrinsic Parameters DPUCZDX8G DPUCVDX8G

Channel Parallel 16 16

Bank Depth 2048 16384

Table 27. DPUCZDX8G and DPUCVDX8G XIR operations and parameters support – Vitis-AI 2.0.

CNN

Operation

Parameters DPUCZDX8G DPUCVDX8G

Conv2d Kernel size w, h: [1, 16] w, h: [1, 16]

w * h <= 64

Strides w, h: [1, 8] w, h: [1, 8]

Dilation dilation * input_channel <= 256 * channel_parallel

Paddings pad_left, pad_right: [0, (kernel_w - 1) * dilation_w]

pad_top, pad_bottom: [0, (kernel_h - 1) * dilation_h]

In Size kernel_w * kernel_h * ceil (input_channel / channel_parallel) <= bank_depth

Out Size output_channel <= 256 * channel_parallel

Activation ReLU, LeakyReLU, ReLU6 ReLU, LeakyReLU, ReLU6, Hard-Swish, Hard-

Sigmoid

Depthwise-

conv2d

Kernel size w, h: [1, 16] w, h: [1, 256]

Strides w, h: [1, 8] w, h: [1, 8]

Dilation dilation * input_channel <= 256 * channel_parallel

Paddings pad_left, pad_right: [0, (kernel_w - 1)

* dilation_w]

pad_top, pad_bottom: [0, (kernel_h -

1) * dilation_h]

pad_left, pad_right: [0, 15 * dilation_w]

pad_top, pad_bottom: [0, 15 * dilation_h]

In Size kernel_w * kernel_h * ceil (input_channel / channel_parallel) <= bank_depth

Out Size output_channel <= 256 * channel_parallel

Activation ReLU, ReLU6

APPENDIX III – DPUCZDX8G AND

DPUCVDX8G SUPPORTED OPERATORS

APPENDIX III – DPUCZDX8G AND DPUCVDX8G SUPPORTED OPERATORS

120

Transposed-

conv2d

Kernel size kernel_w/stride_w, kernel_h/stride_h: [1, 16]

Strides

Paddings pad_left, pad_right: [1, kernel_w-1]

pad_top, pad_bottom: [1, kernel_h-1]

Out Size output_channel <= 256 * channel_parallel

Activation ReLU, LeakyReLU, ReLU6 ReLU, LeakyReLU, ReLU6, Hard-Swish, Hard-

Sigmoid

Depthwise-

transposed-

conv2d

Kernel size kernel_w/stride_w, kernel_h/stride_h: [1, 16]

kernel_w/stride_w, kernel_h/stride_h: [1, 256] Strides

Paddings pad_left, pad_right: [1, kernel_w-1]

pad_top, pad_bottom: [1, kernel_h-1]

pad_left, pad_right: [1, 15]

pad_top, pad_bottom: [1, 15]

Out Size output_channel <= 256 * channel_parallel

Activation ReLU, ReLU6

Max-pooling Kernel size w, h: [2, 8] w, h: [1, 256]

Strides w, h: [1, 8]

Paddings pad_left, pad_right: [1, kernel_w-1]

pad_top, pad_bottom: [1, kernel_h-1]

pad_left, pad_right: [1, 15]

pad_top, pad_bottom: [1, 15]

Activation ReLU ReLU, ReLU6

Average-

pooling

Kernel size w, h: [2, 8]

w==h

w, h: [1, 256]

Strides w, h: [1, 8]

Paddings pad_left, pad_right: [1, kernel_w-1]

pad_top, pad_bottom: [1, kernel_h-1]

pad_left, pad_right: [1, 15]

pad_top, pad_bottom: [1, 15]

Activation ReLU ReLU, ReLU6

Eltwise Type sum sum, prod

 Input

Channel

input_channel <= 256 * channel_parallel

 Activation ReLU

Concat Network-specific limitation, which relates to the size of feature maps, quantization results and compiler

optimizations

Reorg Strides reverse==false : stride ^ 2 * input_channel <= 256 * channel_parallel

reverse==true : input_channel <= 256 * channel_parallel

Pad In Size input_channel <= 256 * channel_parallel

 Mode "SYMMETRIC" ("CONSTANT" pad (value=0) would be fused into adjacent operators

during compiler optimization process)

Global pooling Global pooling will be processed as general pooling with kernel size equal to input tensor size

APPENDIX III – DPUCZDX8G AND DPUCVDX8G SUPPORTED OPERATORS

121

InnerProduct,

Fully

Connected,

Matmul

These operations will be transformed into conv2d op

Table 28. Pytorch operations to XIR operations translation.

Pytorch XIR DPU implementation notes

Conv2d Conv2d -

ConvTranspose2d transposed-conv2d -

Matmul Conv2d The matmul would be transformed to

conv2d and compiled to Convolution

Engine. If the matmul fails to be

transformed, it would be implemented

by CPU.

MaxPool2d / AdaptiveMaxPool2d Maxpool2d Pooling Engine

AvgPool2d / AdaptiveAvgPool2d Avgpool2d Pooling Engine

ReLU ReLU Activations would be fused to adjacent

operations such as convolution and

add

LeakyReLU LeakyReLU

ReLU6 ReLU6

Hardsigmoid Hardsigmoid

Hardswish Hardswish

ConstantPad2d / ZeroPad2d pad "CONSTANT" padding would be fused

adjacent operations.

Add Add If the add is an element-wise add, the

add would be mapped to DPU

Element-wise Add Engine. If the add is

a channel-wise add, search for

opportunities to fuse the add with

adjacent operations such as

convolutions. If they are shape-related

operations, they would be removed

during compilation. If they are

components of a coarse-grained

operation, they would be fused with

adjacent operations. Otherwise, they

Sub / Rsub Sub

Mul Mul

Neg Neg

Sum Reduction Sum

Max Reduction Max

Mean Reduction Mean

APPENDIX III – DPUCZDX8G AND DPUCVDX8G SUPPORTED OPERATORS

122

would be compiled into CPU

implementations.

Interpolate / Upsample /

Upsample_bilinear /

Upsample_nearest

Resize If the mode of the resize is

'BILINEAR', align_corner=false,

half_pixel_centers = false, size = 2, 4,

8; align_corner=false,

half_pixel_centers = true, size = 2, 4

can be transformed to DPU

implementations (pad+depthwise-

transposed conv2d). If the mode of

the resize is 'NEAREST' and the size

are integers, the resize would be

mapped to DPU implementations.

Transpose Transpose These operations would be

transformed to the reshape operation

in some cases. Additionally, search for

opportunities to fuse the dimension

transformation operations into special

load or save instructions of adjacent

operations to reduce the overhead.

Otherwise, they would be mapped to

CPU.

Permute Transpose

View/Reshape Reshape

Flatten Reshape/Flatten

Squeeze Reshape/Squeeze

Cat Concat -

Aten::slice Strided_slice If the strided_slice is shape-related or

is the component of a coarse-grained

operation, it would be removed.

Otherwise, the strided_slice would be

compiled into CPU implementations.

BatchNorm2d Depthwise-conv2d / scale If the batch_norm is quantized and

can be transformed to a depthwise-

conv2d equivalently, it would be

transformed to depthwise-conv2d, and

the compiler would search for

compilation opportunities to map the

batch_norm into DPU

implementations. Otherwise, the

batch_norm would be executed by

CPU.

APPENDIX III – DPUCZDX8G AND DPUCVDX8G SUPPORTED OPERATORS

123

Softmax Softmax They would only be compiled into CPU

implementations. Tanh Tanh

Sigmoid Sigmoid

PixelShuffle Pixel_Shuffle They would be transformed to tile if

there's convolution as its input. PixelUnshuffle Pixel_Shuffle

APPENDIX IV – RESNET-18 AND SQUEEZENET MODELS COMPLETE RESULTS

124

 The following table lists all the inference FPS and peak power consumption in Watts measured

during the inference of the ResNet-18 and SqueezeNet models on the Cifar-10 test set. The number of

CPU threads used by the application that enables inference varies in the interval [1, 12].

Table 29. ResNet-18 and SqueezeNet average inference FPS and peak power consumption across all ZCU104 and VCK190
configurations.

Model Hardware/Config # Threads Avg Inference

FPS

Peak Power

Consumption (Watts)

ResNet-18 ZCU104 – B512 Hybrid 1 306.72 18.75

2 334.98 18.98

3 334.32 19.07

4 334.01 18.84

5 333.68 18.76

6 333.40 19.07

7 333.22 18.84

8 332.50 19.07

9 332.45 19.07

10 331.87 18.84

11 330.70 18.98

12 328.92 18.75

ZCU104 – B1024 BRAM-only 1 316.91 19.04

2 346.99 19.26

3 346.37 19.44

4 346.14 19.80

5 345.59 19.89

6 345.56 19.75

7 345.02 19.58

8 344.47 19.52

9 344.03 19.61

APPENDIX IV – RESNET-18 AND

SQUEEZENET MODELS COMPLETE

RESULTS

APPENDIX IV – RESNET-18 AND SQUEEZENET MODELS COMPLETE RESULTS

125

10 343.42 19.75

11 342.56 19.89

12 340.57 19.44

ZCU104 – B1024 Hybrid 1 316.99 19.13

2 346.92 19.35

3 346.71 19.71

4 346.45 19.49

5 345.79 19.49

6 345.84 19.71

7 345.29 19.26

8 344.68 19.62

9 344.23 19.71

10 343.89 19.49

11 342.11 19.49

12 341.04 19.26

ZCU104 – 2x B1024 Hybrid 1 221.33 20.16

2 347.95 20.83

3 354.08 21.06

4 363.11 21.06

5 362.60 21.06

6 361.73 21.06

7 361.84 21.06

8 361.53 21.06

9 361.31 21.02

10 361.13 21.06

11 361.02 21.11

12 360.97 21.02

ZCU104 – B4096 Hybrid 1 509.03 22.02

2 591.54 22.47

3 589.65 22.70

4 589.81 22.70

5 588.71 22.47

6 587.56 22.47

7 588.26 22.47

8 587.10 22.70

9 585.71 22.70

10 584.50 22.47

APPENDIX IV – RESNET-18 AND SQUEEZENET MODELS COMPLETE RESULTS

126

11 582.99 22.70

12 579.99 22.70

ZCU104 – 2x B4096 Hybrid 1 450.86 25.43

2 776.93 27.00

3 819.52 27.33

4 856.06 27.55

5 851.75 27.55

6 849.27 27.55

7 846.82 27.43

8 847.18 27.55

9 845.70 27.43

10 844.32 27.43

11 843.23 27.43

12 842.22 27.43

ZCU104 – B4096 Hybrid + High

RAM usage

1 511.63 21.50

2 595.81 22.18

3 594.74 22.37

4 593.61 22.37

5 591.58 22.37

6 591.80 22.15

7 589.93 22.15

8 590.91 21.92

9 590.27 22.37

10 589.14 21.92

11 586.59 22.15

12 584.22 22.37

VCK190 – C32B1 1 1652.69 59.40

2 2360.24 60.98

3 2360.32 60.98

4 2358.81 60.98

5 2356.67 60.98

6 2357.35 60.98

7 2349.25 60.79

8 2349.42 61.02

9 2346.41 60.98

10 2345.42 61.06

11 2346.94 61.06

APPENDIX IV – RESNET-18 AND SQUEEZENET MODELS COMPLETE RESULTS

127

12 2342.03 61.06

VCK190 – C64B1 1 1782.73 62.47

2 2652.05 64.52

3 2646.83 64.52

4 2644.76 64.75

5 2637.08 64.52

6 2634.07 64.75

7 2632.27 64.75

8 2624.67 64.52

9 2602.50 64.52

10 2620.86 64.75

11 2603.64 64.75

12 2602.29 64.75

VCK190 – 2x C64B1 1 1740.46 71.78

2 2953.95 75.03

3 3109.08 75.60

4 3233.10 76.05

5 3193.95 76.28

6 3163.00 76.05

7 3100.44 76.05

8 3044.98 76.05

9 3014.39 75.71

10 2996.97 75.94

11 2987.94 75.71

12 2993.33 75.83

SqueezeNet ZCU104 – B512 Hybrid 1 1156.31 18.08

2 1689.90 18.53

3 1681.65 18.53

4 1680.18 18.53

5 1677.29 18.45

6 1677.51 18.31

7 1670.03 18.45

8 1667.70 18.31

9 1665.64 18.53

10 1646.84 18.31

11 1656.37 18.31

12 1628.70 18.53

APPENDIX IV – RESNET-18 AND SQUEEZENET MODELS COMPLETE RESULTS

128

ZCU104 – B1024 BRAM-only 1 1259.68 18.34

2 1915.40 18.81

3 1909.82 19.24

4 1905.46 19.38

5 1900.35 19.15

6 1899.72 19.24

7 1889.33 19.24

8 1893.44 18.92

9 1864.79 19.38

10 1879.17 19.24

11 1876.17 19.24

12 1882.83 19.00

ZCU104 – B1024 Hybrid 1 1262.26 18.45

2 1916.81 18.90

3 1919.94 19.04

4 1925.07 19.26

5 1919.28 19.04

6 1911.44 19.18

7 1915.10 19.26

8 1909.77 19.26

9 1901.69 18.82

10 1897.50 19.04

11 1880.49 19.26

12 1865.17 19.04

ZCU104 – 2x B1024 Hybrid 1 1043.95 19.49

2 1521.51 19.94

3 1798.77 20.03

4 1877.30 20.16

5 1876.00 20.25

6 1878.36 20.25

7 1875.58 20.25

8 1871.34 20.25

9 1866.03 20.34

10 1865.23 20.25

11 1867.11 20.34

12 1860.00 20.34

ZCU104 – B4096 Hybrid 1 1379.30 20.20

APPENDIX IV – RESNET-18 AND SQUEEZENET MODELS COMPLETE RESULTS

129

2 2205.12 20.88

3 2201.07 21.11

4 2201.91 21.11

5 2190.55 21.11

6 2189.03 20.98

7 2183.35 20.98

8 2176.03 21.30

9 2153.46 21.30

10 2158.81 21.20

11 2168.50 21.20

12 2132.96 21.20

ZCU104 – 2x B4096 Hybrid 1 1365.87 23.63

2 2667.46 24.75

3 3309.21 25.43

4 4023.24 25.88

5 3871.23 26.10

6 3776.04 25.88

7 3819.29 25.99

8 3821.84 26.10

9 3697.68 26.22

10 3688.21 25.88

11 3663.61 25.88

12 3658.74 25.88

ZCU104 – B4096 Hybrid + High

RAM Usage

1 1408.05 23.28

2 2283.38 23.96

3 2273.84 23.96

4 2273.53 23.84

5 2267.49 23.63

6 2262.06 23.85

7 2251.87 23.40

8 2207.76 23.63

9 2229.32 23.40

10 2221.19 23.50

11 2222.77 23.73

12 2176.24 23.73

VCK190 – C32B1 1 3469.86 56.98

2 5779.07 57.43

APPENDIX IV – RESNET-18 AND SQUEEZENET MODELS COMPLETE RESULTS

130

3 5920.78 57.43

4 5925.12 57.20

5 5619.54 57.43

6 5423.93 57.23

7 5332.58 57.20

8 5188.17 57.23

9 5073.66 56.98

10 5052.10 57.23

11 5013.37 56.98

12 4976.70 56.98

VCK190 – C64B1 1 3590.69 59.74

2 6022.36 60.19

3 6119.82 60.19

4 6045.03 60.19

5 5722.04 60.42

6 5551.71 60.19

7 5488.51 60.19

8 5280.35 60.19

9 5166.57 60.19

10 5186.66 60 42

11 5186.07 60.19

12 5100.02 60 42

VCK190 – 2x C64B1 1 3537.25 68.55

2 5998.34 69.24

3 6035.55 69.46

4 6002.28 69.46

5 5615.90 69.46

6 5379.63 69.24

7 5305.77 69.24

8 5155.14 68.70

9 5078.76 69.46

10 5066.98 69.38

11 5039.50 69.38

12 4973.46 69.38

APPENDIX V – SQUEEZESEGV3-21 PYTORCH ARCHITECTURE DESCRIPTION

131

 The following table contains the original SqueezeSegV3-21 architecture as implemented by the authors.

The rightmost column details whether the DPUCVDX8G supports the layer with the specified parameters,

considering Vitis-AI version 2.0.

Table 30. SqueezeSegV3-21 original implementation’s list of pytorch operations and respective parameters.

Architecture Section Operation Parameters Support

Backbone nn.Conv2d In Channels = 5
Out Channels = 32
Kernel Size = (3, 3)

Bias = False

DPU

nn.BatchNorm2d Num Features = 32

Eps = 1e-05

Momentum = 0.01

Affine = True

Track Running Stats = True

DPU

nn.LeakyReLu Negative Slope = 0.1 DPU

Backbone/encoder 1 Functional.unfold Kernel Size = 3

Padding = 1

None

Tensor.view Shape DPU

nn.Conv2d In Channels = 3

Out Channels = 288

Kernel Size = (7, 7)

Stride = (1, 1)

Padding = (3, 3)

DPU

nn.BatchNorm2d Num Features = 288

Eps = 1e-05

Momentum = 0.01

Affine = True

Track Running Stats = True

DPU

Functional.sigmoid - CPU

Mul Input tensors DPU

nn.Conv2d In Channels = 288

Out Channels = 32

DPU

APPENDIX V – SQUEEZESEGV3-21

PYTORCH ARCHITECTURE DESCRIPTION

APPENDIX V – SQUEEZESEGV3-21 PYTORCH ARCHITECTURE DESCRIPTION

132

Kernel Size = (1, 1)

Stride = (1, 1)

nn.BatchNorm2d Num Features = 32

 Eps = 1e-05

Momentum = 0.1

Affine = True

Track Running Stats = True

DPU

nn.ReLu Inplace = True DPU

nn.Conv2d In channels = 32

Out Channels = 32

Kernel Size = (3, 3)

Stride = (1, 1)

Padding = (1, 1)

DPU

nn.BatchNorm2d Num Features = 32

 Eps = 1e-05

Momentum = 0.1

Affine = True

Track Running Stats = True

DPU

nn.ReLu Inplace = True DPU

Add Input tensors DPU

nn.Conv2d In channels = 32

Out Channels = 64

Kernel Size = (3, 3)

Stride = (1, 2)

Padding = (1, 1)

Bias = False

DPU

nn.BatchNorm2d Num Features = 64

 Eps = 1e-05

Momentum = 0.01

Affine = True

Track Running Stats = True

DPU

nn.LeakyReLu Negative Slope = 0.1 DPU

Functional.upsample_bilinear Input = torch.Tensor

Size = [torch.Tensor.size()[2],

torch.Tensor.size()[3]//2]

None

Tensor.Detach - None*

nn.Dropout2d P = 0.01 None*

Backbone/encoder 2 Functional.unfold Kernel Size = 3 None

APPENDIX V – SQUEEZESEGV3-21 PYTORCH ARCHITECTURE DESCRIPTION

133

Padding = 1

Tensor.view Shape DPU

nn.Conv2d In Channels = 3
Out Channels = 576
Kernel Size = (7, 7)

Stride = (1, 1)
Padding = (3, 3)

DPU

nn.BatchNorm2d Num Features = 576
Eps = 1e-05

Momentum = 0.1
Affine = True

Track Running Stats = True

DPU

Functional.sigmoid - CPU

Mul Input tensors DPU

nn.Conv2d In Channels = 576
Out Channels = 64
Kernel Size = (1, 1)

Stride = (1, 1)

nn.BatchNorm2d Num Features = 64
Eps = 1e-05

Momentum = 0.1
Affine = True

Track Running Stats = True

DPU

nn.ReLu Inplace = True DPU

Conv2d

In Channels = 64
Out Channels = 64
Kernel Size = (3, 3)

Stride = (1, 1)
Padding = (1, 1)

DPU

nn.BatchNorm2d Num Features = 64
Eps = 1e-05

Momentum = 0.1
Affine = True

Track Running Stats = True

DPU

nn.ReLu inplace=True DPU

Add Input tensors DPU

nn.Conv2d In Channels = 64
Out Channels = 128
Kernel Size = (3, 3)

Stride = (1, 2)
Padding = (1, 1)

Bias = False

DPU

nn.BatchNorm2d Num Features = 128
Eps = 1e-05

Momentum = 0.01
Affine = True

Track Running Stats = True

DPU

nn.LeakyReLu Negative Slope = 0.1 DPU

Functional.upsample_bilinear Input = torch.Tensor None

APPENDIX V – SQUEEZESEGV3-21 PYTORCH ARCHITECTURE DESCRIPTION

134

Size = [torch.Tensor.size()[2],

torch.Tensor.size()[3]//2

Tensor.detach - None*

nn.Dropout2d P = 0.5 None*

Backbone/encoder 3 Functional.unfold Kernel Size = 3

Padding = 1

None

Tensor.view Shape DPU

nn.Conv2d In Channels = 3
Out Channels = 1152
Kernel Size = (7, 7)

Stride = (1, 1)
Padding = (3, 3)

DPU

nn.BatchNorm2d Num Features = 1152
Eps = 1e-05

Momentum = 0.1
Affine = True

Track Running Stats = True

DPU

Functional.sigmoid - CPU

Mul Input tensors DPU

nn.Conv2d In Channels = 1152
Out Channels = 128
Kernel Size = (1, 1)

Stride = (1, 1)

DPU

nn.BatchNorm2d Num Features = 128
Eps = 1e-05

Momentum = 0.1
Affine = True

Track Running Stats = True

DPU

nn.ReLu Inplace = True DPU

Conv2d

In Channels = 128
Out Channels = 128
Kernel Size = (3, 3)

Stride = (1, 1)
Padding = (1, 1)

DPU

nn.BatchNorm2d Num Features = 128
Eps = 1e-05

Momentum = 0.1
Affine = True

Track Running Stats = True

DPU

nn.ReLu inplace=True DPU

Add Input tensors DPU

Functional.unfold Kernel Size = 3

Padding = 1

None

Tensor.view Shape DPU

nn.Conv2d In Channels = 3 DPU

APPENDIX V – SQUEEZESEGV3-21 PYTORCH ARCHITECTURE DESCRIPTION

135

Out Channels = 1152
Kernel Size = (7, 7)

Stride = (1, 1)
Padding = (3, 3)

nn.BatchNorm2d Num Features = 1152
Eps = 1e-05

Momentum = 0.1
Affine = True

Track Running Stats = True

DPU

Functional.sigmoid - CPU

Mul Input tensors DPU

nn.Conv2d In Channels = 1152
Out Channels = 128
Kernel Size = (1, 1)

Stride = (1, 1)

DPU

nn.BatchNorm2d Num Features = 128
Eps = 1e-05

Momentum = 0.1
Affine = True

Track Running Stats = True

DPU

nn.ReLu Inplace = True DPU

Conv2d

In Channels = 128
Out Channels = 128
Kernel Size = (3, 3)

Stride = (1, 1)
Padding = (1, 1)

DPU

nn.BatchNorm2d Num Features = 128
Eps = 1e-05

Momentum = 0.1
Affine = True

Track Running Stats = True

DPU

nn.ReLu inplace=True DPU

Add Input tensors DPU

nn.Conv2d In Channels = 128
Out Channels = 256
Kernel Size = (3, 3)

Stride = (1, 2)
Padding = (1, 1)

Bias = False

DPU

nn.BatchNorm2d Num Features = 256
Eps = 1e-05

Momentum = 0.01
Affine = True

Track Running Stats = True

DPU

nn.LeakyReLu Negative Slope = 0.1 DPU

Functional.upsample_bilinear Input = torch.Tensor

Size = [torch.Tensor.size()[2],
torch.Tensor.size()[3]//2

None

Tensor.detach - None*

nn.Dropout2d P = 0.5 None*

APPENDIX V – SQUEEZESEGV3-21 PYTORCH ARCHITECTURE DESCRIPTION

136

Backbone/encoder 4 Functional.unfold Kernel Size = 3

Padding = 1

None

Tensor.view Shape DPU

nn.Conv2d In Channels = 3
Out Channels = 2304
Kernel Size = (7, 7)

Stride = (1, 1)
Padding = (3, 3)

DPU

nn.BatchNorm2d Num Features = 2304
Eps = 1e-05

Momentum = 0.1
Affine = True

Track Running Stats = True

DPU

Functional.sigmoid - CPU

Mul Input tensors DPU

nn.Conv2d In Channels = 2304
Out Channels = 256
Kernel Size = (1, 1)

Stride = (1, 1)

nn.BatchNorm2d Num Features = 256
Eps = 1e-05

Momentum = 0.1
Affine = True

Track Running Stats = True

DPU

nn.ReLu Inplace = True DPU

Conv2d

In Channels = 256
Out Channels = 256
Kernel Size = (3, 3)

Stride = (1, 1)
Padding = (1, 1)

DPU

nn.BatchNorm2d Num Features = 256
Eps = 1e-05

Momentum = 0.1
Affine = True

Track Running Stats = True

DPU

nn.ReLu inplace=True DPU

Add Input tensors DPU

Functional.unfold Kernel Size = 3

Padding = 1

None

Tensor.view Shape DPU

nn.Conv2d In Channels = 3
Out Channels = 2304
Kernel Size = (7, 7)

Stride = (1, 1)
Padding = (3, 3)

DPU

nn.BatchNorm2d Num Features = 2304
Eps = 1e-05

Momentum = 0.1
Affine = True

Track Running Stats = True

DPU

Functional.sigmoid - CPU

APPENDIX V – SQUEEZESEGV3-21 PYTORCH ARCHITECTURE DESCRIPTION

137

Mul Input tensors DPU

nn.Conv2d In Channels = 2304
Out Channels = 256
Kernel Size = (1, 1)

Stride = (1, 1)

DPU

nn.BatchNorm2d Num Features = 256
Eps = 1e-05

Momentum = 0.1
Affine = True

Track Running Stats = True

DPU

nn.ReLu Inplace = True DPU

Conv2d

In Channels = 256
Out Channels = 256
Kernel Size = (3, 3)

Stride = (1, 1)
Padding = (1, 1)

DPU

nn.BatchNorm2d Num Features = 256
Eps = 1e-05

Momentum = 0.1
Affine = True

Track Running Stats = True

DPU

nn.ReLu inplace=True DPU

Add Input tensors DPU

Tensor.detach - None*

nn.Dropout2d P = 0.5 None*

Backbone/encoder 5 Functional.unfold Kernel Size = 3

Padding = 1

None

Tensor.view Shape DPU

nn.Conv2d In Channels = 3
Out Channels = 2304
Kernel Size = (7, 7)

Stride = (1, 1)
Padding = (3, 3)

DPU

nn.BatchNorm2d Num Features = 2304
Eps = 1e-05

Momentum = 0.1
Affine = True

Track Running Stats = True

DPU

Functional.sigmoid - CPU

Mul Input tensors DPU

nn.Conv2d In Channels = 2304
Out Channels = 256
Kernel Size = (1, 1)

Stride = (1, 1)

DPU

nn.BatchNorm2d Num Features = 256
Eps = 1e-05

Momentum = 0.1
Affine = True

Track Running Stats = True

DPU

APPENDIX V – SQUEEZESEGV3-21 PYTORCH ARCHITECTURE DESCRIPTION

138

nn.ReLu Inplace = True DPU

Conv2d

In Channels = 256
Out Channels = 256
Kernel Size = (3, 3)

Stride = (1, 1)
Padding = (1, 1)

DPU

nn.BatchNorm2d Num Features = 256
Eps = 1e-05

Momentum = 0.1
Affine = True

Track Running Stats = True

DPU

nn.ReLu inplace=True DPU

Add Input tensors DPU

Tensor.detach - None*

nn.Dropout2d P = 0.5 None*

Decoder/decoder 5 nn.Conv2d In Channels = 256
Out Channels = 256
Kernel Size = (3, 3)

Stride = (1, 1)
Padding = (1, 1)

DPU

nn.BatchNorm2d Num Features = 256
Eps = 1e-05

Momentum = 0.01
Affine = True

Track Running Stats = True

DPU

nn.LeakyReLu Negative Slope = 0.1 DPU

nn.Conv2d In Channels = 256
Out Channels = 256
Kernel Size = (1, 1)

Stride = (1, 1)
Bias = False

DPU

nn.BatchNorm2d Num Features = 256
Eps = 1e-05

Momentum = 0.01
Affine = True

Track Running Stats = True

DPU

nn.LeakyReLu Negative Slope = 0.1 DPU

nn.Conv2d In Channels = 256
Out Channels = 256
Kernel Size = (3, 3)

Stride = (1, 1)
Padding = (1, 1)

Bias = False

DPU

nn.BatchNorm2d Num Features = 256
Eps = 1e-05

Momentum = 0.01
Affine = True

Track Running Stats = True

DPU

nn.LeakyReLu Negative Slope = 0.1 DPU

Add Input tensors DPU

Tensor.detach - None*

APPENDIX V – SQUEEZESEGV3-21 PYTORCH ARCHITECTURE DESCRIPTION

139

Add Input tensors DPU

Decoder/decoder 4 nn.Conv2d In Channels = 256
Out Channels = 256
Kernel Size = (3, 3)

Stride = (1, 1)
Padding = (1, 1)

DPU

nn.BatchNorm2d Num Features = 256
Eps = 1e-05

Momentum = 0.01
Affine = True

Track Running Stats = True

DPU

nn.LeakyReLu Negative Slope = 0.1 DPU

nn.Conv2d In Channels = 256
Out Channels = 256
Kernel Size = (1, 1)

Stride = (1, 1)
Bias = False

DPU

nn.BatchNorm2d Num Features = 256
Eps = 1e-05

Momentum = 0.01
Affine = True

Track Running Stats = True

DPU

nn.LeakyReLu Negative Slope = 0.1 DPU

nn.Conv2d In Channels = 256
Out Channels = 256
Kernel Size = (3, 3)

Stride = (1, 1)
Padding = (1, 1)

Bias = False

DPU

nn.BatchNorm2d Num Features = 256
Eps = 1e-05

Momentum = 0.01
Affine = True

Track Running Stats = True

DPU

nn.LeakyReLu Negative Slope = 0.1 DPU

Add Input tensors DPU

Tensor.detach - None*

Add Input tensors DPU

Decoder/decoder 3 nn.ConvTranspose2d In Channels = 256
Out Channels = 128
Kernel Size = (1, 4)

Stride = (1, 2)
Padding = (0, 1)

DPU

nn.BatchNorm2d Num Features = 128
Eps = 1e-05

Momentum = 0.01
Affine = True

Track Running Stats = True

DPU

nn.LeakyReLu Negative Slope = 0.1 DPU

nn.Conv2d In Channels = 128
Out Channels = 256
Kernel Size = (1, 1)

Stride = (1, 1)

DPU

APPENDIX V – SQUEEZESEGV3-21 PYTORCH ARCHITECTURE DESCRIPTION

140

Bias = False

nn.BatchNorm2d Num Features = 256
Eps = 1e-05

Momentum = 0.01
Affine = True

Track Running Stats = True

DPU

nn.LeakyReLu Negative Slope = 0.1 DPU

nn.Conv2d In Channels = 256
Out Channels = 128
Kernel Size = (3, 3)

Stride = (1, 1)
Padding = (1, 1)

Bias = False

DPU

nn.BatchNorm2d Num Features = 128
Eps = 1e-05

Momentum = 0.01
Affine = True

Track Running Stats = True

DPU

nn.LeakyReLu Negative Slope = 0.1 DPU

Add Input tensors DPU

Tensor.detach - None*

Add Input tensors DPU

Decoder/decoder 2 nn.ConvTranspose2d In Channels = 128
Out Channels = 64
Kernel Size = (1, 4)

Stride = (1, 2)
Padding = (0, 1)

DPU

nn.BatchNorm2d Num Features = 64
Eps = 1e-05

Momentum = 0.01
Affine = True

Track Running Stats = True

DPU

nn.LeakyReLu Negative Slope = 0.1 DPU

nn.Conv2d In Channels = 64
Out Channels = 128
Kernel Size = (1, 1)

Stride = (1, 1)
Bias = False

DPU

nn.BatchNorm2d Num Features = 128
Eps = 1e-05

Momentum = 0.01
Affine = True

Track Running Stats = True

DPU

nn.LeakyReLu Negative Slope = 0.1 DPU

nn.Conv2d In Channels = 128
Out Channels = 64
Kernel Size = (3, 3)

Stride = (1, 1)
Padding = (1, 1)

Bias = False

DPU

nn.BatchNorm2d Num Features = 64
Eps = 1e-05

Momentum = 0.01
Affine = True

DPU

APPENDIX V – SQUEEZESEGV3-21 PYTORCH ARCHITECTURE DESCRIPTION

141

Track Running Stats = True

nn.LeakyReLu Negative Slope = 0.1 DPU

Add Input tensors DPU

Tensor.detach - None*

Add Input tensors DPU

Decoder/decoder 2 nn.ConvTranspose2d In Channels = 64
Out Channels = 32
Kernel Size = (1, 4)

Stride = (1, 2)
Padding = (0, 1)

DPU

nn.BatchNorm2d Num Features = 32
Eps = 1e-05

Momentum = 0.01
Affine = True

Track Running Stats = True

DPU

nn.LeakyReLu Negative Slope = 0.1 DPU

nn.Conv2d In Channels = 32
Out Channels = 64
Kernel Size = (1, 1)

Stride = (1, 1)
Bias = False

DPU

nn.BatchNorm2d Num Features = 64
Eps = 1e-05

Momentum = 0.01
Affine = True

Track Running Stats = True

DPU

nn.LeakyReLu Negative Slope = 0.1 DPU

nn.Conv2d In Channels = 64
Out Channels = 32
Kernel Size = (3, 3)

Stride = (1, 1)
Padding = (1, 1)

Bias = False

DPU

nn.BatchNorm2d Num Features = 32
Eps = 1e-05

Momentum = 0.01
Affine = True

Track Running Stats = True

DPU

nn.LeakyReLu Negative Slope = 0.1 DPU

Add Input tensors DPU

Tensor.detach - None*

Add Input tensors DPU

Decoder nn.Dropout2d P = 0.01
Inplace = False

None*

Head 5 nn.Dropout2d P = 0.01
Inplace = False

None*

nn.Conv2d In Channels = 32
Out Channels = 20
Kernel Size = (3, 3)

Stride = (1, 1)
Padding = (1, 1)

DPU

APPENDIX V – SQUEEZESEGV3-21 PYTORCH ARCHITECTURE DESCRIPTION

142

Functional.softmax Dim=1 CPU

*Discarded after training

APPENDIX VI – SQUEEZESEGV3-21 COMPLETE RESULTS

143

 Figure 66 through Figure 69 show the accuracy and IoU, as well as the loss plot of the SSGV321-K1

and SSGV321-K1N45 models.

Figure 66. SSGV321-K1 model training: validation accuracies and IoUs.

APPENDIX VI – SQUEEZESEGV3-21

COMPLETE RESULTS

APPENDIX VI – SQUEEZESEGV3-21 COMPLETE RESULTS

144

Figure 67. SSGV321-K1 model training: training set loss.

Figure 68. SSGV321-K1N45 model training: validation accuracies and IoUs.

APPENDIX VI – SQUEEZESEGV3-21 COMPLETE RESULTS

145

Figure 69. SSGV321-K1 model training: training set loss.

 The following table lists the per-class IoU results of the 3 SSGV3-21 model variants on the validation

set of the Semantic-KITTI dataset (sequence 08). All models have been trained for 72 epochs.

Table 31. Per-class IoU of the 3 SSGV3-21 variants on the validation set of Semantic-KITTI.

Class SSGV321-K7 SSGV321-K3 SSGV321-K1N45

Car 0.745 0.744 0.729

Bicycle 0.223 0.225 0.181

Motorcycle 0.409 0.371 0.367

Truck 0.231 0.190 0.104

Other vehicle 0.163 0.229 0.181

Person 0.397 0.386 0.391

Bicyclist 0.498 0.430 0.508

Road 0.924 0.926 0.918

Parking 0.397 0.385 0.366

Sidewalk 0.790 0.791 0.756

Other ground 0.004 0.003 0.007

Building 0.785 0.784 0.771

Fence 0.312 0.317 0.280

Vegetation 0.802 0.790 0.804

Trunk 0.463 0.441 0.438

Terrain 0.719 0.710 0.723

APPENDIX VI – SQUEEZESEGV3-21 COMPLETE RESULTS

146

Pole 0.348 0.332 0.280

Traffic sign 0.333 0.293 0.317

*Bold values represent the best IoU of all 3 models.

 The following table lists all the inference FPS and peak power consumption in Watts measured

during the inference of the SSGV321-K7, SSGV321-K3, and SSGV321-K1N45 models on Semantic-

KITTI dataset samples. The number of CPU threads used by the application that enables inference

varies in the interval [1, 4].

Table 32. SSGV321-K7, SSGV321-K3, and SSGV321-K1N45 average inference FPS and peak power consumption across all
VCK190 configurations.

Model Hardware/Configuration # Threads Avg Inference

FPS

Peak Power

Consumption

(Watts)

SSGV321-K7 VCK190 - C32B1 1 3.49 59.54

2 3.67 60.26

3 3.67 60.26

4 3.67 60.03

VCK190 – C64B1 1 4.70 63.84

2 5.03 64.75

3 5.03 64.75

4 5.03 64.75

VCK190 - 2x C64B1 1 4.65 73.80

2 9.12 79.78

3 9.49 80.55

4 9.83 80.76

SSGV321-K3 VCK190 – C32B1 1 4.84 59.11

2 5.19 59.80

3 5.19 59.80

4 5.19 59.80

VCK190 - C64B1 1 5.39 63.56

2 5.82 64.07

3 5.82 63.84

4 5.82 64.07

VCK190 - 2x C64B1 1 5.27 73.13

2 10.31 78.08

3 10.64 78.30

APPENDIX VI – SQUEEZESEGV3-21 COMPLETE RESULTS

147

4 11.17 78.30

SSGV321-K1N45 VCK190 - C32B1 1 5.60 58.19

2 8.45 59.31

3 8.45 59.31

4 8.45 59.02

VCK190 - C64B1 1 5.92 62.24

2 9.18 63.43

3 9.18 63.20

4 9.19 63.43

VCK190 - 2x C64B1 1 8.51 71.68

2 16.44 75.57

3 17.66 76.26

4 18.92 76.15

 The following table lists all SSGV321-K7 layers, respective parameters, and average computation time

during inference on the VCK190 C64B1x2 configuration and 1 CPU thread.

Table 33. SSGV321-K7 layer-by-layer average computation time during inference on C64B1x2 with 1 CPU thread.

Location Layer Parameters Occurrences Average

Computation Time

(ms)

Backbone/Before Encoder1 Conv2D +

LeakyReLU

In channels = 5

Out channels = 32

Kernel size = 3

Padding = 1

1 0.611

Backbone/Encoder1/SACBlock Conv2D In channels = 32

Out channels = 288

Kernel size = 1

Padding = 0

1 4.817

Backbone/Encoder1/SACBlock Conv2D +

ReLU

In channels = 288

Out channels = 32

Kernel size = 1

Padding = 0

1 3.643

Backbone/Encoder1/SACBlock Conv2D +

ReLU

In channels = 32

Out channels = 32

Kernel size = 3

Padding = 1

1 1.031

APPENDIX VI – SQUEEZESEGV3-21 COMPLETE RESULTS

148

Backbone/Encoder1/SACBlock Conv2D In channels = 3

Out channels = 288

Kernel size = 7

Padding = 3

1 4.891

Backbone/Encoder1/SACBlock Mul - 1 7.275

Backbone/Encoder1 Conv2D +

LeakyReLU

In channels = 32

Out channels = 64

Kernel size = 3

Padding = 1

1 0.612

Backbone/After Encoder1 Conv2D In channels = 3

Out channels = 3

Kernel size = 1

Padding = 0

1 0.259

Backbone/Encoder2/SACBlock Conv2D In channels = 64

Out channels = 576

Kernel size = 1

Padding = 0

1 4.818

Backbone/Encoder2/SACBlock Conv2D In channels = 3

Out channels = 576

Kernel size = 7

Padding = 3

1 9.496

Backbone/Encoder2/SACBlock Conv2D +

ReLU

In channels = 576

Out channels = 64

Kernel size = 1

Padding = 0

1 3.640

Backbone/Encoder2/SACBlock Conv2D +

ReLU

In channels = 64

Out channels = 64

Kernel size = 3

Padding = 1

1 4.844

Backbone/Encoder2/SACBlock Mul - 1 8.143

Backbone/Encoder2/SACBlock Conv2D +

LeakyReLU

In channels = 64

Out channels = 128

Kernel size = 3

Padding = 1

1 0.616

Backbone/After Encoder2 Conv2D In channels = 3

Out channels = 3

Kernel size = 1

Padding = 0

1 0.156

APPENDIX VI – SQUEEZESEGV3-21 COMPLETE RESULTS

149

Backbone/Encoder3/SACBlock Conv2D In channels = 128

Out channels = 1152

Kernel size = 1

Padding = 0

2 4.818

Backbone/Encoder3/SACBlock Conv2D In channels = 3

Out channels = 1152

Kernel size = 7

Padding = 3

2 10.573

Backbone/Encoder3/SACBlock Mul - 2 8.143

Backbone/Encoder3/SACBlock Conv2D +

ReLU

In channels = 1152

Out channels = 128

Kernel size = 1

Padding = 0

2 3.642

Backbone/Encoder3/SACBlock Conv2D +

ReLU

In channels = 128

Out channels = 128

Kernel size = 3

Padding = 1

2 0.998

Backbone/Encoder3 Conv2D +

LeakyReLU

In channels = 128

Out channels = 256

Kernel size = 3

Padding = 1

1 0.925

Backbone/After Encoder 3 Conv2D In channels = 3

Out channels = 3

Kernel size = 1

Padding = 0

1 0.123

Backbone/Encoder4/SACBlock Conv2D In channels = 3

Out channels = 2304

Kernel size = 7

Padding = 3

2 8.634

Backbone/Encoder4/SACBlock Conv2D In channels = 256

Out channels = 2304

Kernel size = 1

Padding = 0

2 4.819

Backbone/Encoder4/SACBlock Mul - 1 8.118

Backbone/Encoder4/SACBlock Conv2D +

ReLU

In channels = 2304

Out channels = 256

Kernel size = 1

Padding = 0

2 3.656

APPENDIX VI – SQUEEZESEGV3-21 COMPLETE RESULTS

150

Backbone/Encoder4/SACBlock Conv2D +

ReLU

In channels = 256

Out channels = 256

Kernel size = 3

Padding = 1

2 1.406

Backbone/Encoder5/SACBlock Conv2D In channels = 3

Out channels = 2304

Kernel size = 7

Padding = 3

1 8.634

Backbone/Encoder5/SACBlock Conv2D In channels = 256

Out channels = 2304

Kernel size = 1

Padding = 0

1 4.820

Backbone/Encoder5/SACBlock Mul - 1 7.250

Backbone/Encoder5/SACBlock Conv2D In channels = 2304

Out channels = 256

Kernel size = 1

Padding = 0

1 3.655

Backbone/Encoder5/SACBlock Conv2D In channels = 256

Out channels = 256

Kernel size = 3

Padding = 1

1 1.406

Decoder5 Conv2D +

LeakyReLU

In channels = 256

Out channels = 256

Kernel size = 3

Padding = 1

2 1.573

Decoder5 Conv2D +

LeakyReLU

In channels = 256

Out channels = 256

Kernel size = 1

Padding = 0

1 0.652

Decoder4 Conv2D +

LeakyReLU

In channels = 256

Out channels = 256

Kernel size = 3

Padding = 1

2 1.573

Decoder4 Conv2D +

LeakyReLU

In channels = 256

Out channels = 256

Kernel size = 1

Padding = 0

1 0.652

APPENDIX VI – SQUEEZESEGV3-21 COMPLETE RESULTS

151

Decoder3 Transposed

Conv2D +

LeakyReLU

Dilation = 1

Kernel = (4, 1)

Pad = (1, 1, 0, 0)

Stride = (2, 1)

2 0.612

Decoder3 Conv2D +

LeakyReLU

In channels = 128

Out channels = 256

Kernel size = 1

Padding = 0

1 1.145

Decoder3 Add - 1 1.512

Decoder3 Add - 1 0.882

Decoder3 Conv2D +

LeakyReLU

In channels = 64

Out channels = 128

Kernel size = 1

Padding = 0

1 1.146

Decoder2 Add - 1 1.431

Decoder2 Add - 1 0.882

Decoder1 Transposed

Conv2D +

LeakyReLU

Dilation = 1

Kernel = (4, 1)

Pad = (1, 1, 0, 0)

Stride = (2, 1)

1 0.620

Decoder1 Conv2D +

LeakyReLU

In channels = 32

Out channels = 64

Kernel size = 1

Padding = 0

1 1.139

Decoder1 Add - 1 1.506

Decoder1 Add - 1 0.962

Head5 Conv2D In channels = 32

Out channels = 20

Kernel size = 3

Padding = 1

1 0.546

 The following two tables contain the detailed results of training the SSGV321-K3 for 100 epochs and

a comparison with the same model trained for 72 epochs.

Table 34. Average accuracy and average IoU of SSGV321-K3. 72 epochs vs 100 epochs training.

Model Average Accuracy Average IoU

SSGV321-K3 (72 epochs) 0.862 0.439

APPENDIX VI – SQUEEZESEGV3-21 COMPLETE RESULTS

152

SSGV321-K3 (100 epochs) 0.865 0.448

Table 35. Per class IoU of SSGV321-K3. 72 epochs vs 100 epochs training.

Class SSGV321-K3 (72 epochs) SSGV321-K3 (100 epochs)

Car 0.744 0.770

Bicycle 0.225 0.252

Motorcycle 0.371 0.379

Truck 0.190 0.165

Other vehicle 0.229 0.164

Person 0.386 0.415

Bicyclist 0.430 0.490

Road 0.926 0.919

Parking 0.385 0.378

Sidewalk 0.791 0.788

Other ground 0.003 0.000

Building 0.784 0.792

Fence 0.317 0.325

Vegetation 0.790 0.798

Trunk 0.441 0.468

Terrain 0.710 0.702

Pole 0.332 0.370

Traffic sign 0.293 0.339

