1,627 research outputs found

    GPU-Accelerated Hypothesis Cover Set Testing for Learning in Logic

    Get PDF
    ILP learners are commonly implemented to consider sequentially each training example for each of the hypotheses tested. Computing the cover set of a hypothesis in this way is costly, and introduces a major bottleneck in the learning process. This computation can be implemented more efficiently through the use of data level parallelism. Here we propose a GPU-accelerated approach to this task for propositional logic and for a subset of first order logic. This approach can be used with one’s strategy of choice for the exploration of the hypothesis space. At present, the hypothesis language is limited to logic formulae using unary and binary predicates, such as those covered by certain types of description logic. The approach is tested on a commodity GPU and datasets of up to 200 million training examples, achieving run times of below 30ms per cover set computation

    CONNER : A Concurrent ILP Learner in Description Logic

    Get PDF
    Machine Learning (ML) approaches can achieve impressive results, but many lack transparency or have difficulties handling data of high structural complexity. The class of ML known as Inductive Logic Programming (ILP) draws on the expressivity and rigour of subsets of First Order Logic to represent both data and models. When Description Logics (DL) are used, the approach can be applied directly to knowledge represented as ontologies. ILP output is a prime candidate for explainable artificial intelligence; the expense being computational complexity. We have recently demonstrated how a critical component of ILP learners in DL, namely, cover set testing, can be sped up through the use of concurrent processing. Here we describe the first prototype of an ILP learner in DL that benefits from this use of concurrency. The result is a fast, scalable tool that can be applied directly to large ontologies

    A Hybrid Approach to Formal Verification of Higher-Order Masked Arithmetic Programs

    Get PDF
    Side-channel attacks, which are capable of breaking secrecy via side-channel information, pose a growing threat to the implementation of cryptographic algorithms. Masking is an effective countermeasure against side-channel attacks by removing the statistical dependence between secrecy and power consumption via randomization. However, designing efficient and effective masked implementations turns out to be an error-prone task. Current techniques for verifying whether masked programs are secure are limited in their applicability and accuracy, especially when they are applied. To bridge this gap, in this article, we first propose a sound type system, equipped with an efficient type inference algorithm, for verifying masked arithmetic programs against higher-order attacks. We then give novel model-counting based and pattern-matching based methods which are able to precisely determine whether the potential leaky observable sets detected by the type system are genuine or simply spurious. We evaluate our approach on various implementations of arithmetic cryptographicprograms.The experiments confirm that our approach out performs the state-of-the-art base lines in terms of applicability, accuracy and efficiency

    MetaLDA: a Topic Model that Efficiently Incorporates Meta information

    Full text link
    Besides the text content, documents and their associated words usually come with rich sets of meta informa- tion, such as categories of documents and semantic/syntactic features of words, like those encoded in word embeddings. Incorporating such meta information directly into the generative process of topic models can improve modelling accuracy and topic quality, especially in the case where the word-occurrence information in the training data is insufficient. In this paper, we present a topic model, called MetaLDA, which is able to leverage either document or word meta information, or both of them jointly. With two data argumentation techniques, we can derive an efficient Gibbs sampling algorithm, which benefits from the fully local conjugacy of the model. Moreover, the algorithm is favoured by the sparsity of the meta information. Extensive experiments on several real world datasets demonstrate that our model achieves comparable or improved performance in terms of both perplexity and topic quality, particularly in handling sparse texts. In addition, compared with other models using meta information, our model runs significantly faster.Comment: To appear in ICDM 201

    Real-time multi-domain optimization controller for multi-motor electric vehicles using automotive-suitable methods and heterogeneous embedded platforms

    Get PDF
    Los capítulos 2,3 y 7 están sujetos a confidencialidad por el autor. 145 p.In this Thesis, an elaborate control solution combining Machine Learning and Soft Computing techniques has been developed, targeting a chal lenging vehicle dynamics application aiming to optimize the torque distribution across the wheels with four independent electric motors.The technological context that has motivated this research brings together potential -and challenges- from multiple dom ains: new automotive powertrain topologies with increased degrees of freedom and controllability, which can be approached with innovative Machine Learning algorithm concepts, being implementable by exploiting the computational capacity of modern heterogeneous embedded platforms and automated toolchains. The complex relations among these three domains that enable the potential for great enhancements, do contrast with the fourth domain in this context: challenging constraints brought by industrial aspects and safe ty regulations. The innovative control architecture that has been conce ived combines Neural Networks as Virtual Sensor for unmeasurable forces , with a multi-objective optimization function driven by Fuzzy Logic , which defines priorities basing on the real -time driving situation. The fundamental principle is to enhance vehicle dynamics by implementing a Torque Vectoring controller that prevents wheel slip using the inputs provided by the Neural Network. Complementary optimization objectives are effici ency, thermal stress and smoothness. Safety -critical concerns are addressed through architectural and functional measures.Two main phases can be identified across the activities and milestones achieved in this work. In a first phase, a baseline Torque Vectoring controller was implemented on an embedded platform and -benefiting from a seamless transition using Hardware-in -the -Loop - it was integrated into a real Motor -in -Wheel vehicle for race track tests. Having validated the concept, framework, methodology and models, a second simulation-based phase proceeds to develop the more sophisticated controller, targeting a more capable vehicle, leading to the final solution of this work. Besides, this concept was further evolved to support a joint research work which lead to outstanding FPGA and GPU based embedded implementations of Neural Networks. Ultimately, the different building blocks that compose this work have shown results that have met or exceeded the expectations, both on technical and conceptual level. The highly non-linear multi-variable (and multi-objective) control problem was tackled. Neural Network estimations are accurate, performance metrics in general -and vehicle dynamics and efficiency in particular- are clearly improved, Fuzzy Logic and optimization behave as expected, and efficient embedded implementation is shown to be viable. Consequently, the proposed control concept -and the surrounding solutions and enablers- have proven their qualities in what respects to functionality, performance, implementability and industry suitability.The most relevant contributions to be highlighted are firstly each of the algorithms and functions that are implemented in the controller solutions and , ultimately, the whole control concept itself with the architectural approaches it involves. Besides multiple enablers which are exploitable for future work have been provided, as well as an illustrative insight into the intricacies of a vivid technological context, showcasing how they can be harmonized. Furthermore, multiple international activities in both academic and professional contexts -which have provided enrichment as well as acknowledgement, for this work-, have led to several publications, two high-impact journal papers and collateral work products of diverse nature

    Real-time multi-domain optimization controller for multi-motor electric vehicles using automotive-suitable methods and heterogeneous embedded platforms

    Get PDF
    Los capítulos 2,3 y 7 están sujetos a confidencialidad por el autor. 145 p.In this Thesis, an elaborate control solution combining Machine Learning and Soft Computing techniques has been developed, targeting a chal lenging vehicle dynamics application aiming to optimize the torque distribution across the wheels with four independent electric motors.The technological context that has motivated this research brings together potential -and challenges- from multiple dom ains: new automotive powertrain topologies with increased degrees of freedom and controllability, which can be approached with innovative Machine Learning algorithm concepts, being implementable by exploiting the computational capacity of modern heterogeneous embedded platforms and automated toolchains. The complex relations among these three domains that enable the potential for great enhancements, do contrast with the fourth domain in this context: challenging constraints brought by industrial aspects and safe ty regulations. The innovative control architecture that has been conce ived combines Neural Networks as Virtual Sensor for unmeasurable forces , with a multi-objective optimization function driven by Fuzzy Logic , which defines priorities basing on the real -time driving situation. The fundamental principle is to enhance vehicle dynamics by implementing a Torque Vectoring controller that prevents wheel slip using the inputs provided by the Neural Network. Complementary optimization objectives are effici ency, thermal stress and smoothness. Safety -critical concerns are addressed through architectural and functional measures.Two main phases can be identified across the activities and milestones achieved in this work. In a first phase, a baseline Torque Vectoring controller was implemented on an embedded platform and -benefiting from a seamless transition using Hardware-in -the -Loop - it was integrated into a real Motor -in -Wheel vehicle for race track tests. Having validated the concept, framework, methodology and models, a second simulation-based phase proceeds to develop the more sophisticated controller, targeting a more capable vehicle, leading to the final solution of this work. Besides, this concept was further evolved to support a joint research work which lead to outstanding FPGA and GPU based embedded implementations of Neural Networks. Ultimately, the different building blocks that compose this work have shown results that have met or exceeded the expectations, both on technical and conceptual level. The highly non-linear multi-variable (and multi-objective) control problem was tackled. Neural Network estimations are accurate, performance metrics in general -and vehicle dynamics and efficiency in particular- are clearly improved, Fuzzy Logic and optimization behave as expected, and efficient embedded implementation is shown to be viable. Consequently, the proposed control concept -and the surrounding solutions and enablers- have proven their qualities in what respects to functionality, performance, implementability and industry suitability.The most relevant contributions to be highlighted are firstly each of the algorithms and functions that are implemented in the controller solutions and , ultimately, the whole control concept itself with the architectural approaches it involves. Besides multiple enablers which are exploitable for future work have been provided, as well as an illustrative insight into the intricacies of a vivid technological context, showcasing how they can be harmonized. Furthermore, multiple international activities in both academic and professional contexts -which have provided enrichment as well as acknowledgement, for this work-, have led to several publications, two high-impact journal papers and collateral work products of diverse nature

    Software Defined Multi-Spectral Imaging for Arctic Sensor Networks

    Get PDF
    Availability of off-the-shelf infrared sensors combined with high definition visible cameras has made possible the construction of a Software Defined Multi-Spectral Imager (SDMSI) combining long-wave, near-infrared and visible imaging. The SDMSI requires a real-time embedded processor to fuse images and to create real-time depth maps for opportunistic uplink in sensor networks. Researchers at Embry Riddle Aeronautical University working with University of Alaska Anchorage at the Arctic Domain Awareness Center and the University of Colorado Boulder have built several versions of a low-cost drop-in-place SDMSI to test alternatives for power efficient image fusion. The SDMSI is intended for use in field applications including marine security, search and rescue operations and environmental surveys in the Arctic region. Based on Arctic marine sensor network mission goals, the team has designed the SDMSI to include features to rank images based on saliency and to provide on camera fusion and depth mapping. A major challenge has been the design of the camera computing system to operate within a 10 to 20 Watt power budget. This paper presents a power analysis of three options: 1) multi-core, 2) field programmable gate array with multi-core, and 3) graphics processing units with multi-core. For each test, power consumed for common fusion workloads has been measured at a range of frame rates and resolutions. Detailed analyses from our power efficiency comparison for workloads specific to stereo depth mapping and sensor fusion are summarized. Preliminary mission feasibility results from testing with off-the-shelf long-wave infrared and visible cameras in Alaska and Arizona are also summarized to demonstrate the value of the SDMSI for applications such as ice tracking, ocean color, soil moisture, animal and marine vessel detection and tracking. The goal is to select the most power efficient solution for the SDMSI for use on UAVs (Unoccupied Aerial Vehicles) and other drop-in-place installations in the Arctic. The prototype selected will be field tested in Alaska in the summer of 2016

    GPU Computing for Cognitive Robotics

    Get PDF
    This thesis presents the first investigation of the impact of GPU computing on cognitive robotics by providing a series of novel experiments in the area of action and language acquisition in humanoid robots and computer vision. Cognitive robotics is concerned with endowing robots with high-level cognitive capabilities to enable the achievement of complex goals in complex environments. Reaching the ultimate goal of developing cognitive robots will require tremendous amounts of computational power, which was until recently provided mostly by standard CPU processors. CPU cores are optimised for serial code execution at the expense of parallel execution, which renders them relatively inefficient when it comes to high-performance computing applications. The ever-increasing market demand for high-performance, real-time 3D graphics has evolved the GPU into a highly parallel, multithreaded, many-core processor extraordinary computational power and very high memory bandwidth. These vast computational resources of modern GPUs can now be used by the most of the cognitive robotics models as they tend to be inherently parallel. Various interesting and insightful cognitive models were developed and addressed important scientific questions concerning action-language acquisition and computer vision. While they have provided us with important scientific insights, their complexity and application has not improved much over the last years. The experimental tasks as well as the scale of these models are often minimised to avoid excessive training times that grow exponentially with the number of neurons and the training data. This impedes further progress and development of complex neurocontrollers that would be able to take the cognitive robotics research a step closer to reaching the ultimate goal of creating intelligent machines. This thesis presents several cases where the application of the GPU computing on cognitive robotics algorithms resulted in the development of large-scale neurocontrollers of previously unseen complexity enabling the conducting of the novel experiments described herein.European Commission Seventh Framework Programm

    Architectures and GPU-Based Parallelization for Online Bayesian Computational Statistics and Dynamic Modeling

    Get PDF
    Recent work demonstrates that coupling Bayesian computational statistics methods with dynamic models can facilitate the analysis of complex systems associated with diverse time series, including those involving social and behavioural dynamics. Particle Markov Chain Monte Carlo (PMCMC) methods constitute a particularly powerful class of Bayesian methods combining aspects of batch Markov Chain Monte Carlo (MCMC) and the sequential Monte Carlo method of Particle Filtering (PF). PMCMC can flexibly combine theory-capturing dynamic models with diverse empirical data. Online machine learning is a subcategory of machine learning algorithms characterized by sequential, incremental execution as new data arrives, which can give updated results and predictions with growing sequences of available incoming data. While many machine learning and statistical methods are adapted to online algorithms, PMCMC is one example of the many methods whose compatibility with and adaption to online learning remains unclear. In this thesis, I proposed a data-streaming solution supporting PF and PMCMC methods with dynamic epidemiological models and demonstrated several successful applications. By constructing an automated, easy-to-use streaming system, analytic applications and simulation models gain access to arriving real-time data to shorten the time gap between data and resulting model-supported insight. The well-defined architecture design emerging from the thesis would substantially expand traditional simulation models' potential by allowing such models to be offered as continually updated services. Contingent on sufficiently fast execution time, simulation models within this framework can consume the incoming empirical data in real-time and generate informative predictions on an ongoing basis as new data points arrive. In a second line of work, I investigated the platform's flexibility and capability by extending this system to support the use of a powerful class of PMCMC algorithms with dynamic models while ameliorating such algorithms' traditionally stiff performance limitations. Specifically, this work designed and implemented a GPU-enabled parallel version of a PMCMC method with dynamic simulation models. The resulting codebase readily has enabled researchers to adapt their models to the state-of-art statistical inference methods, and ensure that the computation-heavy PMCMC method can perform significant sampling between the successive arrival of each new data point. Investigating this method's impact with several realistic PMCMC application examples showed that GPU-based acceleration allows for up to 160x speedup compared to a corresponding CPU-based version not exploiting parallelism. The GPU accelerated PMCMC and the streaming processing system can complement each other, jointly providing researchers with a powerful toolset to greatly accelerate learning and securing additional insight from the high-velocity data increasingly prevalent within social and behavioural spheres. The design philosophy applied supported a platform with broad generalizability and potential for ready future extensions. The thesis discusses common barriers and difficulties in designing and implementing such systems and offers solutions to solve or mitigate them
    corecore