
This is a repository copy of CONNER : A Concurrent ILP Learner in Description Logic.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/152616/

Version: Accepted Version

Proceedings Paper:
Algahtani, Eyad and Kazakov, Dimitar Lubomirov orcid.org/0000-0002-0637-8106 (2020)
CONNER : A Concurrent ILP Learner in Description Logic. In: Inductive Logic
Programming:29th International Conference, ILP 2019. LNAI . Springer , pp. 1-15.

https://doi.org/10.1007/978-3-030-49210-6_1

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by White Rose Research Online

https://core.ac.uk/display/237067808?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CONNER: A Concurrent ILP Learner

in Description Logic

Eyad Algahtani and Dimitar Kazakov

University of York, Heslington, York YO10 5GH, UK,
ea922@york.ac.uk, kazakov@cs.york.ac.uk,

WWW home page: https://www-users.cs.york.ac.uk/kazakov/

Abstract. Machine Learning (ML) approaches can achieve impressive
results, but many lack transparency or have difficulties handling data of
high structural complexity. The class of ML known as Inductive Logic
Programming (ILP) draws on the expressivity and rigour of subsets of
First Order Logic to represent both data and models. When Description
Logics (DL) are used, the approach can be applied directly to knowledge
represented as ontologies. ILP output is a prime candidate for explainable
artificial intelligence; the expense being computational complexity. We
have recently demonstrated how a critical component of ILP learners
in DL, namely, cover set testing, can be speeded up through the use of
concurrent processing. Here we describe the first prototype of an ILP
learner in DL that benefits from this use of concurrency. The result is a
fast, scalable tool that can be applied directly to large ontologies.

Keywords: Inductive logic programming · description logics · ontologies
· parallel computing · GPGPU

1 Introduction

Graphic processing units (GPU) can be used with benefits for general purpose
computation. GPU-based data parallelism has proven very efficient in a number
of application areas [1]. We have recently proposed a GPU-accelerated approach
to the computation of the cover set for a given hypothesis expressed in ALC
description logic, which results in a speed up of two orders of magnitude when
compared with a single-threaded CPU implementation [2]. The present article
combines this approach with an implementation of a well-studied refinement
operator and a search strategy for the exploration of the hypothesis space. The
result is the first version of a GPU-accelerated inductive learner, further on
referred to as CONNER1.0 (CONcurrent learNER).

In more detail, here we present the first complete description of the way bi-
nary predicates (or roles in description logic parlance) are handled by our cover
set procedure, which is now extended beyond ALC to make use of cardinal-
ity restrictions (e.g. OffpeakTrain ⊑ ≤ 6 hasCar.Car) and data properties (e.g.
Bike ⊑ numberOfWheels = 2). We test the speed and accuracy of our learner
on a combination of synthetic and real world data sets. To emphasise the low

2 Eyad Algahtani and Dimitar Kazakov

cost of adoption of this algorithm, we have run the tests on a commodity GPU,
Nvidia GeForce GTX 1070.

The rest of this paper is structured as follows: Section 2 covers relevant work,
Section 3 completes the previously published description of how the hypothesis
cover set is computed [2] with the algorithms handling value restriction and
existential restriction, and tests the speed of their execution. Section 4 extends
the list of operators with the algorithms for handling the cardinality restriction
and data property operators. Section 5 describes a complete GPU-accelerated
ILP learner in DL, CONNER, and evaluates its performance, while Section 6
draws conclusions and outlines future work.

2 Background

CONNER lays at the intersection of ILP, parallel computation, and description
logics (Fig. 1). In this section, we review the notable overlaps between these
three areas. Algathani and Kazakov [2] can be further consulted for a suitable
overview of the basics of GPU architecture.

Fig. 1. Intersection of ILP, parallel computation and DL [3,5,8–10,16–24].

Arguably, the implementation of an ILP algorithm can be defined by the
ways it approaches hypothesis cover set testing, the application of its refinement
operator, and the search algorithm used to explore the hypothesis space. While
all three are amenable to parallelisation, here we focus our efforts in this direction
on the first component, and with a description logic as a hypothesis language.

CONNER: A Concurrent ILP Learner in DL 3

Description Logics (DL) is a family of subsets of first order logic that are
used to represent knowledge in the form of ontologies. ALC (Attributive Lan-
guage with Complement) is a commonly used subset of DL, which makes use of
propositional operators, as well as two binary operators, existential restriction
and value restriction. As ontologies continue to gain popularity, e.g. in the form
of linked open data, this strengthens the case for learners that can work directly
with this type of data. A few notable examples of ILP learners in DL follow.

DL-FOIL [3] is an adaptation of the classical ILP algorithm FOIL [4] to DL as
data and hypothesis language. It still uses a top-down refinement operator with
search guided by information gain, but the latter is modified to accommodate
the use of the Open World Assumption (OWA).

The DL-Learner [5] is a framework for learning in DL. The framework allows
the user to select from different reasoners to handle inference. It is also possible to
choose from four learning algorithms: OWL Class Expression Learner (OCEL),
Class Expression Learning for Ontology Engineering (CELOE), EL Tree Learner
(ELTL), and Inductive Statistical Learning of Expressions (ISLE). One can also
choose from different refinement operators. The framework provides facilities to
handle large datasets by the use of sampling.

APARELL [6] is an ILP algorithm for the learning of ordinal relations (e.g.
better than [7]) in DL. The algorithm borrows ideas from the Progol/Aleph pair
of algorithms about the way hypothesis search operates. APARELL processes DL
data directly from OWL ontologies, and can read any format which is supported
by the OWL API.

There have been several attempts to implement reasoners in DL using par-
allel computation [8, 9]. The most relevant effort here is Chantrapornchai and
Choksuchat’s [10] recently proposed GPU-accelerated framework for RDF query
processing, TripleID-Q. The framework maintains a separate hash table for each
of the three arguments (subject, predicate, object) of the RDF triples. Each triple
is represented through the three hash keys (all integers) and stored in the shared
memory of the GPU. RDF queries are mapped onto that representation and the
data is split among multiple GPU threads to retrieve the matching triples in par-
allel. In this context, the work of Mart́ınez-Angeles et al on the use of GPU to
speed up cover set computation for first-order logic ILP systems, such as Aleph,
should also be noted [11].

3 Concurrent, GPU-Accelerated Cover Set Computation

A GPU can manipulate matrices very efficiently. Here we complete the descrip-
tion of the GPU-powered approach first presented by Algahtani and Kazakov [2],
which aims at speeding up the calculation of the cover set of hypotheses ex-
pressed in ALC description logic. We also present experimental results on the
performance of this algorithm.

DL allows one to describe concepts Ci defined over a universe of individuals
Ii, and to define roles relating individuals to each other. Concept membership
can be represented as a Boolean matrix M of size |C|×|I| (see Fig. 2). Using this

4 Eyad Algahtani and Dimitar Kazakov

representation, it is possible to employ data parallelism for the application of
logic operations to concepts. We have already shown how the three propositional
operators {⊓, ⊔, ¬} can be implemented, and tested the speed with which they
are computed [2]. Here we describe the concurrent implementation of the value
restriction operator (∀r.C) and the existential restriction operator (∃r.C).

Either restriction operator takes a role and a concept as input, and makes
use of the concept matrix M and another matrix, R, storing all role assertions
(see Figure 2). The matrix is sorted by the role. As a consequence, all assertions
of a given role are stored in a contiguous range of rows. This facilitates a more
efficient GPU memory access pattern (namely, coalesced memory access). For
each role, the start and end row indices corresponding to its range of rows are
stored in a hash table, H, and can be retrieved efficiently using the role name
as key.

Algorithm 1 shows the implementation of the existential operator. Its first
step is to allocate memory for the output array result and set all values to 0
(representing False). This is done in a concurrent, multi-threaded fashion. The
range of rows in R storing all assertions of Role is then looked up in H (in
O(1) time). After that, the role assertions in R within the role range are divided
among a number of threads, and for each such assertion, a check in matrix M

is made whether IndvB belongs to Concept (i.e. the concept in the existential
restriction). The result of this step is combined through OR with the current
value in row IndvA of the output array result and stored back there.

This implementation avoids the use of conditional statement, which could
slow down the process. At the same time, it is important that an atomic OR is
used to avoid a race-condition situation between the individual threads. 1

C1 C2 C3 IndvA Role IndvB DP1 DP2 DP3

Indv1 0 1 0 6 1 46 Indv1 3 2.5 1

Indv2 1 1 0 6 1 5 Indv2 7 3.7 1

Indv3 0 0 1 9 2 14 Indv3 0 -0.5 0

(a) Table M (b) Table R (c) Table D

Fig. 2. Main data structures in the GPU memory

The implementation of the value restriction operator ∀Role.Concept is anal-
ogous to the existential restriction, with the only difference being that all initial
values in the result array are set to 1 (i.e. True), and an atomic AND operator
is applied instead of OR.2

1 Here we use the CUDA built-in atomic function atomicOR(A,B), which implements
the (atomic) Boolean operation A := A OR B.

2 Note that this implementation returns the correct result for the following special
case: if ∄IndvB : Role(IndvA, IndvB) then IndvA ∈ ∀Role.Concept.

CONNER: A Concurrent ILP Learner in DL 5

Algorithm 1 Existential Restriction Cover Set (∃Role.Concept)

procedure ParallelExistentialRestriction(Concept,Role)

Given:

M: Boolean 2D matrix of size (individuals x concepts)

R: Integer 2D matrix of size (# of property assertions x 3) // each row

// representing a triple: subj,role,obj

HT: hash table // Role -> (Offsets for first and last entries in R)

Concept: Pointer to a column in M

Role: Integer

result: Boolean 1D array of size NumberOfIndividuals

Do:

parallel_foreach thread T_j

| for each individual i in result

| | set result[i] = 0

| endfor

endfor

set role_range := HT[Role] // get range of Role assertions in R from HT

parallel_foreach thread T_j

| foreach roleAssertion in role_range

| | set IndvA := R[row(roleAssertion),1] // first column of roleAssertion

| | set IndvB := R[row(roleAssertion),3] // third column of roleAssertion

| | set local_result := M[row(IndvB),Concept]

| | atomicOR(result[row(IndvA)],local_result)

| endfor

endfor

return result(1..numberOfIndividuals)

Table 1. Execution times for computing the cover sets of ∃has car.Long and
∀has car.Long (average of 10).

Data set size Execution time [ms]

Total number Total number of Total number of ∃has car.Long ∀has car.Long
of individuals has car assertions all role assertions mean (stdev) mean (stdev)

50 30 149 0.49(0.08) 0.48(0.08)

410 300 1,490 0.56(0.10) 0.50(0.10)

4,010 3,000 14,900 0.50(0.06) 0.51(0.08)

40,010 30,000 149,000 0.55(0.02) 0.55(0.03)

400,010 300,000 1,490,000 0.97(0.02) 1.02(0.03)

4,000,010 3,000,000 14,900,000 4.82(0.05) 5.85(0.28)

8,000,010 6,000,000 29,800,000 10.55(0.34) 11.38(0.48)

6 Eyad Algahtani and Dimitar Kazakov

Fig. 3. Computing existential (∃) and value (∀) role restrictions

To evaluate the execution times of the two restriction operators, we use a
dataset consisting of multiple copies of Michalski’s eastbound/westbound trains
dataset [12], here in its DL representation [5]. The dataset consists of 12 concepts
(unary predicates), and 5 roles (binary predicates); these predicates describe 10
trains (5 eastbound and 5 westbound) and their respective cars. The results are
shown in Table 1 and plotted in Figure 3. It should be noted that only the number
of assertions for the given role has an impact on the execution times when matrix
R is traversed: while matrixM grows with the number of individuals, access time
to each row remains the same as, internally, an individual is represented directly
with its row index in M . Also, the actual content of the assertions for the role
in question makes no difference, which is why this dataset is appropriate here.
The results show that the execution times remain virtually constant up to a
point, possibly until the full potential for parallel computation in the GPU is
harnessed, and then grow more slowly than O(n) for the range of dataset sizes
studied.

4 Extending The Hypothesis Language

This section describes how the hypothesis language has now been extended to
include cardinality and data property (also known as concrete role) restrictions.
The result is a type of description logic referred to as ALCQ(D).

4.1 Cardinality Restriction Support

The cardinality operator restricts for a given role the allowed number of asser-
tions per individual. A cardinality restriction can be qualified (Q), or unqualified

CONNER: A Concurrent ILP Learner in DL 7

(N), where N is a special case of Q. In Q, any concept can be used in the re-
striction. While in N , only the Top Concept is used. There are three kinds of
cardinality restrictions: the minimum (≥), maximum (≤), and the exactly (==)
restriction. Algorithm 2 implements the first of these three.

Algorithm 2 Qualified Cardinality Restriction Cover Set

procedure ParallelCardinalityRestriction(Concept,Role,n)

Given:

M: Boolean 2D matrix of size (individuals x concepts)

R: Integer 2D matrix of size (individuals x 3) // Storing (subj,role,obj)

H: hash table // Role -> (Offsets for first and last entries in R)

Concept: Pointer to a column in M

Role: Integer

n: restriction number

result: Boolean 1D array of size NumberOfIndividuals

Do:

parallel_foreach thread T_j

| for each individual i in result

| | set result[i] = 0

| endfor

endfor

set role_range := H[Role] // retrieve range of Role assertions in R from H

parallel_foreach thread T_j

| foreach roleAssertion in role_range

| | set IndvA := R[row(roleAssertion),1] // first column of roleAssertion

| | set IndvB := R[row(roleAssertion),3] // third column of roleAssertion

| | set local_result := M[row(IndvB),Concept]

| | atomicAdd(result[row(IndvA)],local_result)

| endfor

endfor

parallel_foreach thread T_i

| foreach individual I_j in thread T_i

| | result(row(I_j)):= result(row(I_j)) >= n // OR =< n OR == n

| endfor

endfor

return result(1..numberOfIndividuals)

It first clears the result array (just as in the existential restriction). It then
uses the CUDA atomic addition atomicAdd(A,B) to increment the counter of the
corresponding IndvA for every assertion matching the role and concept. The val-
ues in the result-array are then compared with the cardinality condition, and
the counter for each individual is replaced with 1 or 0 (representing True/False)
according to whether the condition in question has been met. The condition in

8 Eyad Algahtani and Dimitar Kazakov

this last loop determines the type of cardinality restriction: min (≥), max (≤),
or exactly (==).

4.2 Data Property Restriction Support

Data properties (or concrete roles) map individuals on to simple values. In this
implementation, we (currently) limit the range of values to numerical ones: in-
teger, float and Boolean; supporting other types like Strings, is considered for
future work. In order to handle such properties in the GPU, the individuals
and their data properties are mapped on to a matrix, D (see Figure 2), in a
way similar to matrix M . Each cell in the new 2D matrix, is of float datatype,
as it is inclusive to integers and Booleans. As with the cardinality restrictions,
there are three kinds of data property restrictions: min, max, and exactly. Algo-
rithm 3 shows how the minimum data property restriction is implemented, with
the other two requiring only a trivial variation.

Algorithm 3 Data Property Restriction Cover Set

procedure ParallelDataPropertyRestriction(Property,Value)

D := 2D matrix (individuals x data properties)

parallel_foreach thread T_i

| foreach individual I_j in thread T_i

| | result(row(I_j)) := D(row(I_j),column(Property)) >= Value //OR =< OR ==

| endfor

endfor

return result(1..numberOfIndividuals)

In Algorithm 3, a parallel for loop will iterate through all individuals, and
the result— array will be set to 1 for all individuals matching the condition or
to 0 otherwise. For the maximum and exactly restriction types, the condition
will be changed to ≤ (for maximum), and == (for exactly).

5 CONNER: All together now

The work described in this section was motivated by the desire to incorporate
our approach to computing the DL hypothesis cover set in a learner in order to
gauge the benefits this approach can offer.

5.1 TBox Processing

Every ontology consists of two parts, the so called ABox and TBox. Both of
these need to be processed to establish correctly the membership of individuals

CONNER: A Concurrent ILP Learner in DL 9

to concepts. It is possible to employ off-the-shelf reasoners for this purpose.
Indeed, this is the approach employed by DL-Learner. While it is expected that
CONNER will make the same provision in the next iteration of its development,
we have decided to use our own implementation here in order to have full control
over how the planned tests are run. The implementation described below is
somewhat limited, but sufficient for the test data sets used.

The ABox explicitly lists individuals belonging to a given concept or relation.
These are easily processed and matrices M and R updated accordingly. The
TBox provides intensional definitions of concepts (C ≡ . . .) and their hierarchy
(e.g. C1 ⊂ C2). Here we only handle subsumption between single concepts. This
information is processed by a dedicated multi-pass algorithm which updates
matrix M , and is repeated until no further changes in concept definitions occur.
Cyclic references are also detected and flagged up as an error. For instance, if the
membership of the concept Man is defined extensively, through the ABox, and
the TBox contains the statement Man ⊂ Person, the individuals in Man will also
be marked in matrix M as belonging to the concept Person after the TBox is
processed (Figure 4). The TBox needs only be processed once, when the ontology
is imported, and represents no overhead on any subsequent computations. The
hierarchy of concepts derived from the TBox statements is then used by the
refinement operator to generate candidate hypotheses.

Fig. 4. Example of processing the TBox

5.2 Refinement Operator and Search Algorithm

CONNER borrows the top-down refinement operators used in DL-Learner. The
operator used with ALC is complete, albeit improper ([13], p.69–70). Figure 5
shows a sample ALC refinement path produced by this operator for a data set
discussed in this section. When the hypothesis language is extended toALCQ(D),
i.e., to include cardinality restrictions and data properties, the corresponding
operator is no longer complete ([13], p.72–73).

The original operator is capable of producing a hypothesis consisting of a sin-
gle clause (making use of the disjunction operator, when needed). A refinement
step of the type ⊤ → C⊔C⊔· · ·⊔C is used to produce a disjunction of concepts
that are all subsumed by C, e.g. moving from Car ⊔ Car to Petrol ⊔ Electric

(potentially excluding Diesel). Here the number of copies of C appears to be
part of the user input reminiscent of, say, the limit on the maximum length of the

10 Eyad Algahtani and Dimitar Kazakov

target clause used in Progol. We have experimented with alternatives, such as
cautious learning where the above step is omitted from the refinement operator,
and the disjunction of all consistent clauses found is used in the final hypothesis.

The refinement operator can be used under the closed world assumption
(CWA), where test examples not covered by the hypothesis are labelled as nega-
tive examples. An example of such use was employed when the DL-Learner was
tested by its author on Michalski’s trains ([13], p.143–146). We have done the
same to replicate the results, but we also implement the open world assumption
(OWA), which is more commonly used with DL. In this case, two hypotheses
H+ and H− are learned for the target class and its complement (by swapping
the positive and negative examples). Test data is labelled as a positive, resp.
negative example when either hypothesis is true, and an “I don’t know” label is
produced when neither or both hypotheses are true.

The learner uses informed search with a scoring function derived from the
one used in the OCEL algorithm of the DL-Learner [13]:

ocel score(N) = accuracy(N) + 0.5.acc gain(N)− 0.02.n (1)

Here acc gain(N) is the increase in accuracy w.r.t. the parent of N , where N is
the candidate hypothesis (e.g. conjunction of concepts and/or restrictions), and
n is an upper bound on the length of child concepts, which we set to be equal
to the number of concepts in the ontology. We extend this function to take into
account the length of a hypothesis (i.e. #concepts + #operators) and its depth
which represents (here) the refinement steps taken to reach the current hypoth-
esis, not necessarily its depth in the search tree. Thus the scoring function in
CONNER is:

conner score(N) = 10 ∗ ocel score(N)− length(N)− depth(N) (2)

The parser currently used to parse the hypotheses tested is Dijkstra’s shunting-
yard algorithm. The effect of its use here is equivalent to using a binary parse
tree, so all conjunctions and disjunctions of three and more concepts are han-
dled as series of applications of the given operator to a pair of concepts. This
simplifies the parsing task, but results in a significant drop in performance when
compared to simultaneously computing conjunctions or disjunctions of K con-
cepts in the given hypothesis (cf. [2]). A more sophisticated parser or the use of
lazy evaluation [2] can be employed with potential benefits, but are not discussed
here for reasons of space. We do use memoization [14] in the evaluation of each
hypothesis, where partial computations are stored and reused.

5.3 Evaluation

The overall run time of the learner is first tested under the CWA on data con-
sisting of multiple copies of the Michalski train set (in its DL version distributed
with DL-Learner’s examples). While the task results in a relatively limited hy-
pothesis space, this artificial data strains the cover set algorithm exactly as much
as any real world data set with the same number of instances and assertions.

CONNER: A Concurrent ILP Learner in DL 11

Fig. 5. A sample ALC refinement path to a solution: Michalski’s trains

12 Eyad Algahtani and Dimitar Kazakov

The results are shown in Table 2 and Figure 6. All experiments are deterministic
and the results of multiple runs on the same data are remarkably consistent, so
presenting results of single runs was deemed sufficient. Figure 5 shows the search
path to the solution found. The solution itself is listed again in Table 3.

Table 2. Learning time vs size of data set (multiple copies of Michalski’s trains)

Size (by factor) Training examples All individuals Role assertions Time [ms]

1x 10 50 149 227

10x 100 410 1,490 233

100x 1,000 4,010 14,900 292

1,000x 10,000 40,010 149,000 291

10,000x 100,000 400,010 1,490,000 712

100,000x 1,000,000 4,000,010 14,900,000 2,764

200,000x 2,000,000 8,000,010 29,800,000 4,836

Fig. 6. Plot of results in Table 2: learning time vs size of data set

To confirm that all components of the learner have been correctly imple-
mented, and to further test its speed, another artificial data set in the style
of Michalski’s trains (here with four cars each) has been generated and used
in a second set of experiments.3 There are 21,156 unique trains (5,184 east-
bound and 15,972 westbound) in the data set, which are represented through
105,780 individuals and 148,092 role assertions. Table 4 shows the average run
times of the learner for data sets of varying size using 10-fold cross-validation.

3 The dataset is available from https://osf.io/kf4h6/.

CONNER: A Concurrent ILP Learner in DL 13

Table 3. Solution to Michalski’s trains task in DL and FOL

Description Logic First Order Logic

∃has car(Closed ⊓ Short) eastbound(X) ← has car(X,Y)∧ closed(Y) ∧ short(Y)

Under CWA, out-of-sample accuracy of 100% was achieved for all reported sam-
ples except for one of the samples of the lowest reported size. The hypothesis
found in most cases is Train⊓∃has_car(Big⊓∃inFrontOf.Rectangle). The
rule ∃has_car.Rectangle⊓∃has_car(Big⊓∃inFrontOf.Rectangle) is found
by the DL-Learner as its first solution when applied to all data. The two hypo-
theses are functionally equivalent.

Table 4. Learning time vs sample size (21,156 unique trains, 10-fold cross-validation)

Proportion of data used for training [%] 0.09 0.9 90

Time [ms]: mean (stdev) 34,106 (90,035) 1,492 (700) 1,862 (66)

Out-of-sample accuracy [%]: mean (stdev) 97.64 (0.80) 100 (0.00) 100 (0.00)

We have also tested CONNER on the well-known mutagenesis ILP dataset [15]
in its DL representation, using 10-fold cross-validation, with the following results:

Under CWA: accuracy = 82.61(8.70)%

Under OWA: precision = 96.00(4.63)%,
recall = 80.43(9.22)%,

F-score = 87.24(6.27)%.

6 Conclusion and Future Work

This article completes the implementation of the first working prototype of the
CONNER algorithm. The results suggest that this GPU-powered ILP learner in
DL has a lot of potential to scale up learning from ontologies. We have demon-
strated how GPGPU can be used to accelerate the computation of the cover set
of a hypothesis expressed in ALC and ALCQ(D) description logics. The results
add to our previous findings (cf. [2]) that even the use of a commodity GPU can
provide the ability to process data sets of size well beyond what can be expected
from a CPU-based sequential algorithm of the same type, and within a time that
makes the evaluation of hypotheses on a data set with 107–108 training examples
a viable proposition.

Future work should consider provisions for the use of external, off-the-shelf
reasoners. However, extending the in-house facilities in this aspect is expected to
play an important role when the use of concurrency in the search, and its possible

14 Eyad Algahtani and Dimitar Kazakov

integration with cover set computation are considered. Finally, it should be said
that the use of DL as hypothesis language simplifies the task of parallelising
the cover set computation when compared to a Horn clause-based hypothesis
language. It is clear that some of the problems traditionally tackled through
learning in first-order logic can be effectively modelled in DL, and a broader
evaluation of the trade-off between expressive power and potential speed up
that this choice offers would certainly also provide useful insights.

References

1. Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A. E.,
and Purcell, T.: A Survey of General-Purpose Computation on Graphics Hardware.
Computer Graphics Forum, 26(1):80–113 (2007).

2. Algahtani, E. and Kazakov, D. GPU-Accelerated Hypothesis Cover Set Testing for

Learning in Logic. CEUR Proceedings of the 28th International Conference on
Inductive Logic Programming, (2018). CEUR Workshop Proceedings.

3. Fanizzi,N., d’Amato, C. and Esposito, F.: DL-FOIL Concept Learning in Descrip-

tion Logics. Proc. of the Intl Conf. on ILP (ILP2008), 107–121, 2008.
4. Quinlan, R.: Learning Logical Definitions from Relations. Mach. Learn. 5:239–266

(1990).
5. Bühmann, L., Lehmann, J. and Westphal, P. DL-Learner – A framework for induc-

tive learning on the Semantic Web, Web Semantics: Science, Services and Agents
on the World Wide Web, Volume 39, pp 15–24, 2016.

6. Qomariyah, N. and Kazakov, D.: Learning from Ordinal Data with Inductive Logic

Programming in Description Logic. Proc. of the Late Breaking Papers of the 27th
Intl Conf. on Inductive Logic Programming, 38–50 (2017).

7. Qomariyah, N. and Kazakov, D. Learning Binary Preference Relations: A Com-

parison of Logic-based and Statistical Approaches. Joint Workshop on Interfaces
and Human Decision Making for Recommender Systems. Como, Italy (2017).

8. Wu, K. and Haarslev, V.: A Parallel Reasoner for the Description Logic ALC.
Proc. of the 2012 International Workshop on Description Logics (DL-2012), 2012.

9. Meissner, A.: A Simple Parallel Reasoning System for the ALC Description Logic.
International Conference on Computational Collective Intelligence - Semantic Web,
Social Networks Multiagent Systems, 2009.

10. Chantrapornchai, C. and Choksuchat, C. TripleID-Q: RDF Query Processing
Framework Using GPU, IEEE Transactions on Parallel and Distributed Systems,
29(9), pp. 2121–2135, 2018.

11. Mart́ınez-Angeles, C. A., Wu, H., Dutra, I., Costa, V. and Buenabad-Chávez, J.:
Relational Learning with GPUs: Accelerating Rule Coverage. International Journal
of Parallel Programming, 2015.

12. Michalski, R. S., Pattern Recognition as Rule-Guided Inductive Inference, IEEE
Transactions on Pattern Analysis and Machine Intelligence, PAMI-2 (4), 349–361,
1980.

13. Lehmann, J.: Learning OWL Class Expressions, Amsterdam, IOS Press, 2010.
14. Michie, D.: Memo Functions and Machine Learning, Nature 218:19–22 (1968).
15. Lavrac, N., Zupanic, D., Weber, I., Kazakov, D., Stepankova, O., and Dzeroski, S.

ILPNET repositories on WWW: Inductive Logic Programming Systems, Datasets
and Bibliography. AI Communications, 9(4), 1996.

CONNER: A Concurrent ILP Learner in DL 15

16. Fonseca, N. A., Silva, F. and Camacho, R.: Strategies to Parallelize ILP Systems.

Inductive Logic Programming: Proc. of the 15th Intl Conf. (2005).
17. Fonseca, N. A., Srinivasan, A., Silva, F. and Camacho, R.: Parallel ILP for

Distributed-memory Architectures. Machine Learning 74(3):257–279 (2009).
18. Fukunaga, A., Botea, A., Jinnai, Y., and Kishimoto, A.: A Survey of Parallel A*.

arXiv :1708.05296, 2017.
19. Konstantopoulos, S. K..: A Data-parallel Version of Aleph. Proceedings of the

Workshop on Parallel and Distributed Computing for Machine Learning (2007).
20. Nishiyama, H. Ohwada, H., Yet Another Parallel Hypothesis Search for Inverse

Entailment, 25th International Conference on ILP, 2017.
21. Ohwada, H., Mizoguchi, F.: Parallel Execution for Speeding up Inductive Logic

Programming Systems. Proceedings of the 9th Intl Workshop on Inductive Logic
Programming, pp. 277–286 (1999).

22. Ohwada, H., Nishiyama, H., and Mizoguchi, F.: Concurrent Execution of Optimal

Hypothesis Search for Inverse Entailment, Inductive Logic Programming, LNCS
Vol. 1866, pp. 165-173, 2000.

23. Srinivasan, A., Faruquie, T. A. Joshi, S., Exact Data Parallel Computation for
Very Large ILP Datasets, The 20th International Conference on ILP, 2010.

24. Zhou, Y. and Zeng, J.:Massively parallel A* search on a GPU. 29th AAAI Confer-
ence on Artificial Intelligence, 2015.

