144 research outputs found

    Mochi: Fast \& Exact Collision Detection

    Full text link
    Collision Detection (CD) has several applications across the domains such as robotics, visual graphics, and fluid mechanics. Finding exact collisions between the objects in the scene is quite computationally intensive. To quickly filter the object pairs that do not result in a collision, bounding boxes are built on the objects, indexed using a Bounding Volume Hierarchy(BVH), and tested for intersection before performing the expensive object-object intersection tests. In state-of-the-art CD libraries, accelerators such as GPUs are used to accelerate BVH traversal by building specialized data structures. The recent addition of ray tracing architecture to GPU hardware is designed to do the same but in the context of implementing a Ray Tracing algorithm to render a graphical scene in real-time. We present Mochi, a fast and exact collision detection engine that accelerates both the broad and narrow phases by taking advantage of the capabilities of Ray Tracing cores. We introduce multiple new reductions to perform generic CD to support three types of objects for CD: simple spherical particles, objects describable by mathematical equations, and complex objects composed of a triangle mesh. By implementing our reductions, Mochi achieves several orders of magnitude speedups on synthetic datasets and 5x-28x speedups on real-world triangle mesh datasets. We further evaluate our reductions thoroughly and provide several architectural insights on the ray tracing cores that are otherwise unknown due to their proprietorship

    Interactive ray tracing of massive and deformable models

    Get PDF
    Ray tracing is a fundamental algorithm used for many applications such as computer graphics, geometric simulation, collision detection and line-of-sight computation. Even though the performance of ray tracing algorithms scales with the model complexity, the high memory requirements and the use of static hierarchical structures pose problems with massive models and dynamic data-sets. We present several approaches to address these problems based on new acceleration structures and traversal algorithms. We introduce a compact representation for storing the model and hierarchy while ray tracing triangle meshes that can reduce the memory footprint by up to 80%, while maintaining high performance. As a result, can ray trace massive models with hundreds of millions of triangles on workstations with a few gigabytes of memory. We also show how to use bounding volume hierarchies for ray tracing complex models with interactive performance. In order to handle dynamic scenes, we use refitting algorithms and also present highly-parallel GPU-based algorithms to reconstruct the hierarchies. In practice, our method can construct hierarchies for models with hundreds of thousands of triangles at interactive speeds. Finally, we demonstrate several applications that are enabled by these algorithms. Using deformable BVH and fast data parallel techniques, we introduce a geometric sound propagation algorithm that can run on complex deformable scenes interactively and orders of magnitude faster than comparable previous approaches. In addition, we also use these hierarchical algorithms for fast collision detection between deformable models and GPU rendering of shadows on massive models by employing our compact representations for hybrid ray tracing and rasterization

    Virtual tour

    Get PDF
    Interactive 3D Visualization of Architectural models might be the best way to get some idea about an Architecture Plan. Photo-realistic visualization often attracts the investors and customers for whom the architectural blueprints are obscure. Architectural Visualization is considered to have a bright future ahead of it as more and more architects and real estate developers are using this technology. Virtual Walk-through can give not only ideas about your building but its interiors and design too. The Architectural Virtual Environment also most widely used in Gaming and Entertainment Industry in creating a complex movie scenes or a game environment

    SOFA: A Multi-Model Framework for Interactive Physical Simulation

    Get PDF
    International audienceSOFA (Simulation Open Framework Architecture) is an open-source C++ library primarily targeted at interactive computational medical simulation. SOFA facilitates collaborations between specialists from various domains, by decomposing complex simulators into components designed independently and organized in a scenegraph data structure. Each component encapsulates one of the aspects of a simulation, such as the degrees of freedom, the forces and constraints, the differential equations, the main loop algorithms, the linear solvers, the collision detection algorithms or the interaction devices. The simulated objects can be represented using several models, each of them optimized for a different task such as the computation of internal forces, collision detection, haptics or visual display. These models are synchronized during the simulation using a mapping mechanism. CPU and GPU implementations can be transparently combined to exploit the computational power of modern hardware architectures. Thanks to this flexible yet efficient architecture, \sofa{} can be used as a test-bed to compare models and algorithms, or as a basis for the development of complex, high-performance simulators

    Real-time simulation and visualisation of cloth using edge-based adaptive meshes

    Get PDF
    Real-time rendering and the animation of realistic virtual environments and characters has progressed at a great pace, following advances in computer graphics hardware in the last decade. The role of cloth simulation is becoming ever more important in the quest to improve the realism of virtual environments. The real-time simulation of cloth and clothing is important for many applications such as virtual reality, crowd simulation, games and software for online clothes shopping. A large number of polygons are necessary to depict the highly exible nature of cloth with wrinkling and frequent changes in its curvature. In combination with the physical calculations which model the deformations, the effort required to simulate cloth in detail is very computationally expensive resulting in much diffculty for its realistic simulation at interactive frame rates. Real-time cloth simulations can lack quality and realism compared to their offline counterparts, since coarse meshes must often be employed for performance reasons. The focus of this thesis is to develop techniques to allow the real-time simulation of realistic cloth and clothing. Adaptive meshes have previously been developed to act as a bridge between low and high polygon meshes, aiming to adaptively exploit variations in the shape of the cloth. The mesh complexity is dynamically increased or refined to balance quality against computational cost during a simulation. A limitation of many approaches is they do not often consider the decimation or coarsening of previously refined areas, or otherwise are not fast enough for real-time applications. A novel edge-based adaptive mesh is developed for the fast incremental refinement and coarsening of a triangular mesh. A mass-spring network is integrated into the mesh permitting the real-time adaptive simulation of cloth, and techniques are developed for the simulation of clothing on an animated character

    New geometric algorithms and data structures for collision detection of dynamically deforming objects

    Get PDF
    Any virtual environment that supports interactions between virtual objects and/or a user and objects, needs a collision detection system to handle all interactions in a physically correct or plausible way. A collision detection system is needed to determine if objects are in contact or interpenetrates. These interpenetrations are resolved by a collision handling system. Because of the fact, that in nearly all simulations objects can interact with each other, collision detection is a fundamental technology, that is needed in all these simulations, like physically based simulation, robotic path and motion planning, virtual prototyping, and many more. Most virtual environments aim to represent the real-world as realistic as possible and therefore, virtual environments getting more and more complex. Furthermore, all models in a virtual environment should interact like real objects do, if forces are applied to the objects. Nearly all real-world objects will deform or break down in its individual parts if forces are acted upon the objects. Thus deformable objects are becoming more and more common in virtual environments, which want to be as realistic as possible and thus, will present new challenges to the collision detection system. The necessary collision detection computations can be very complex and this has the effect, that the collision detection process is the performance bottleneck in most simulations. Most rigid body collision detection approaches use a BVH as acceleration data structure. This technique is perfectly suitable if the object does not change its shape. For a soft body an update step is necessary to ensure that the underlying acceleration data structure is still valid after performing a simulation step. This update step can be very time consuming, is often hard to implement and in most cases will produce a degenerated BVH after some simulation steps, if the objects generally deform. Therefore, the here presented collision detection approach works entirely without an acceleration data structure and supports rigid and soft bodies. Furthermore, we can compute inter-object and intraobject collisions of rigid and deformable objects consisting of many tens of thousands of triangles in a few milliseconds. To realize this, a subdivision of the scene into parts using a fuzzy clustering approach is applied. Based on that all further steps for each cluster can be performed in parallel and if desired, distributed to different GPUs. Tests have been performed to judge the performance of our approach against other state-of-the-art collision detection algorithms. Additionally, we integrated our approach into Bullet, a commonly used physics engine, to evaluate our algorithm. In order to make a fair comparison of different rigid body collision detection algorithms, we propose a new collision detection Benchmarking Suite. Our Benchmarking Suite can evaluate both the performance as well as the quality of the collision response. Therefore, the Benchmarking Suite is subdivided into a Performance Benchmark and a Quality Benchmark. This approach needs to be extended to support soft body collision detection algorithms in the future.Jede virtuelle Umgebung, welche eine Interaktion zwischen den virtuellen Objekten in der Szene zulässt und/oder zwischen einem Benutzer und den Objekten, benötigt für eine korrekte Behandlung der Interaktionen eine Kollisionsdetektion. Nur dank der Kollisionsdetektion können Berührungen zwischen Objekten erkannt und mittels der Kollisionsbehandlung aufgelöst werden. Dies ist der Grund für die weite Verbreitung der Kollisionsdetektion in die verschiedensten Fachbereiche, wie der physikalisch basierten Simulation, der Pfadplanung in der Robotik, dem virtuellen Prototyping und vielen weiteren. Auf Grund des Bestrebens, die reale Umgebung in der virtuellen Welt so realistisch wie möglich nachzubilden, steigt die Komplexität der Szenen stetig. Fortwährend steigen die Anforderungen an die Objekte, sich realistisch zu verhalten, sollten Kräfte auf die einzelnen Objekte ausgeübt werden. Die meisten Objekte, die uns in unserer realen Welt umgeben, ändern ihre Form oder zerbrechen in ihre Einzelteile, wenn Kräfte auf sie einwirken. Daher kommen in realitätsnahen, virtuellen Umgebungen immer häufiger deformierbare Objekte zum Einsatz, was neue Herausforderungen an die Kollisionsdetektion stellt. Die hierfür Notwendigen, teils komplexen Berechnungen, führen dazu, dass die Kollisionsdetektion häufig der Performance-Bottleneck in der jeweiligen Simulation darstellt. Die meisten Kollisionsdetektionen für starre Körper benutzen eine Hüllkörperhierarchie als Beschleunigungsdatenstruktur. Diese Technik ist hervorragend geeignet, solange sich die Form des Objektes nicht verändert. Im Fall von deformierbaren Objekten ist eine Aktualisierung der Datenstruktur nach jedem Schritt der Simulation notwendig, damit diese weiterhin gültig ist. Dieser Aktualisierungsschritt kann, je nach Hierarchie, sehr zeitaufwendig sein, ist in den meisten Fällen schwer zu implementieren und generiert nach vielen Schritten der Simulation häufig eine entartete Hüllkörperhierarchie, sollte sich das Objekt sehr stark verformen. Um dies zu vermeiden, verzichtet unsere Kollisionsdetektion vollständig auf eine Beschleunigungsdatenstruktur und unterstützt sowohl rigide, wie auch deformierbare Körper. Zugleich können wir Selbstkollisionen und Kollisionen zwischen starren und/oder deformierbaren Objekten, bestehend aus vielen Zehntausenden Dreiecken, innerhalb von wenigen Millisekunden berechnen. Um dies zu realisieren, unterteilen wir die gesamte Szene in einzelne Bereiche mittels eines Fuzzy Clustering-Verfahrens. Dies ermöglicht es, dass alle Cluster unabhängig bearbeitet werden und falls gewünscht, die Berechnungen für die einzelnen Cluster auf verschiedene Grafikkarten verteilt werden können. Um die Leistungsfähigkeit unseres Ansatzes vergleichen zu können, haben wir diesen gegen aktuelle Verfahren für die Kollisionsdetektion antreten lassen. Weiterhin haben wir unser Verfahren in die Physik-Engine Bullet integriert, um das Verhalten in dynamischen Situationen zu evaluieren. Um unterschiedliche Kollisionsdetektionsalgorithmen für starre Körper korrekt und objektiv miteinander vergleichen zu können, haben wir eine Benchmarking-Suite entwickelt. Unsere Benchmarking- Suite kann sowohl die Geschwindigkeit, für die Bestimmung, ob zwei Objekte sich durchdringen, wie auch die Qualität der berechneten Kräfte miteinander vergleichen. Hierfür ist die Benchmarking-Suite in den Performance Benchmark und den Quality Benchmark unterteilt worden. In der Zukunft wird diese Benchmarking-Suite dahingehend erweitert, dass auch Kollisionsdetektionsalgorithmen für deformierbare Objekte unterstützt werden

    Realistic Visualization of Animated Virtual Cloth

    Get PDF
    Photo-realistic rendering of real-world objects is a broad research area with applications in various different areas, such as computer generated films, entertainment, e-commerce and so on. Within photo-realistic rendering, the rendering of cloth is a subarea which involves many important aspects, ranging from material surface reflection properties and macroscopic self-shadowing to animation sequence generation and compression. In this thesis, besides an introduction to the topic plus a broad overview of related work, different methods to handle major aspects of cloth rendering are described. Material surface reflection properties play an important part to reproduce the look & feel of materials, that is, to identify a material only by looking at it. The BTF (bidirectional texture function), as a function of viewing and illumination direction, is an appropriate representation of reflection properties. It captures effects caused by the mesostructure of a surface, like roughness, self-shadowing, occlusion, inter-reflections, subsurface scattering and color bleeding. Unfortunately a BTF data set of a material consists of hundreds to thousands of images, which exceeds current memory size of personal computers by far. This work describes the first usable method to efficiently compress and decompress a BTF data for rendering at interactive to real-time frame rates. It is based on PCA (principal component analysis) of the BTF data set. While preserving the important visual aspects of the BTF, the achieved compression rates allow the storage of several different data sets in main memory of consumer hardware, while maintaining a high rendering quality. Correct handling of complex illumination conditions plays another key role for the realistic appearance of cloth. Therefore, an upgrade of the BTF compression and rendering algorithm is described, which allows the support of distant direct HDR (high-dynamic-range) illumination stored in environment maps. To further enhance the appearance, macroscopic self-shadowing has to be taken into account. For the visualization of folds and the life-like 3D impression, these kind of shadows are absolutely necessary. This work describes two methods to compute these shadows. The first is seamlessly integrated into the illumination part of the rendering algorithm and optimized for static meshes. Furthermore, another method is proposed, which allows the handling of dynamic objects. It uses hardware-accelerated occlusion queries for the visibility determination. In contrast to other algorithms, the presented algorithm, despite its simplicity, is fast and produces less artifacts than other methods. As a plus, it incorporates changeable distant direct high-dynamic-range illumination. The human perception system is the main target of any computer graphics application and can also be treated as part of the rendering pipeline. Therefore, optimization of the rendering itself can be achieved by analyzing human perception of certain visual aspects in the image. As a part of this thesis, an experiment is introduced that evaluates human shadow perception to speedup shadow rendering and provides optimization approaches. Another subarea of cloth visualization in computer graphics is the animation of the cloth and avatars for presentations. This work also describes two new methods for automatic generation and compression of animation sequences. The first method to generate completely new, customizable animation sequences, is based on the concept of finding similarities in animation frames of a given basis sequence. Identifying these similarities allows jumps within the basis sequence to generate endless new sequences. Transmission of any animated 3D data over bandwidth-limited channels, like extended networks or to less powerful clients requires efficient compression schemes. The second method included in this thesis in the animation field is a geometry data compression scheme. Similar to the BTF compression, it uses PCA in combination with clustering algorithms to segment similar moving parts of the animated objects to achieve high compression rates in combination with a very exact reconstruction quality.Realistische Visualisierung von animierter virtueller Kleidung Das photorealistisches Rendering realer Gegenstände ist ein weites Forschungsfeld und hat Anwendungen in vielen Bereichen. Dazu zählen Computer generierte Filme (CGI), die Unterhaltungsindustrie und E-Commerce. Innerhalb dieses Forschungsbereiches ist das Rendern von photorealistischer Kleidung ein wichtiger Bestandteil. Hier reichen die wichtigen Aspekte, die es zu berücksichtigen gilt, von optischen Materialeigenschaften über makroskopische Selbstabschattung bis zur Animationsgenerierung und -kompression. In dieser Arbeit wird, neben der Einführung in das Thema, ein weiter Überblick über ähnlich gelagerte Arbeiten gegeben. Der Schwerpunkt der Arbeit liegt auf den wichtigen Aspekten der virtuellen Kleidungsvisualisierung, die oben beschrieben wurden. Die optischen Reflektionseigenschaften von Materialoberflächen spielen eine wichtige Rolle, um das so genannte look & feel von Materialien zu charakterisieren. Hierbei kann ein Material vom Nutzer identifiziert werden, ohne dass er es direkt anfassen muss. Die BTF (bidirektionale Texturfunktion)ist eine Funktion die abhängig von der Blick- und Beleuchtungsrichtung ist. Daher ist sie eine angemessene Repräsentation von Reflektionseigenschaften. Sie enthält Effekte wie Rauheit, Selbstabschattungen, Verdeckungen, Interreflektionen, Streuung und Farbbluten, die durch die Mesostruktur der Oberfläche hervorgerufen werden. Leider besteht ein BTF Datensatz eines Materials aus hunderten oder tausenden von Bildern und sprengt damit herkömmliche Hauptspeicher in Computern bei weitem. Diese Arbeit beschreibt die erste praktikable Methode, um BTF Daten effizient zu komprimieren, zu speichern und für Echtzeitanwendungen zum Visualisieren wieder zu dekomprimieren. Die Methode basiert auf der Principal Component Analysis (PCA), die Daten nach Signifikanz ordnet. Während die PCA die entscheidenen visuellen Aspekte der BTF erhält, können mit ihrer Hilfe Kompressionsraten erzielt werden, die es erlauben mehrere BTF Materialien im Hauptspeicher eines Consumer PC zu verwalten. Dies erlaubt ein High-Quality Rendering. Korrektes Verwenden von komplexen Beleuchtungssituationen spielt eine weitere, wichtige Rolle, um Kleidung realistisch erscheinen zu lassen. Daher wird zudem eine Erweiterung des BTF Kompressions- und Renderingalgorithmuses erläutert, die den Einsatz von High-Dynamic Range (HDR) Beleuchtung erlaubt, die in environment maps gespeichert wird. Um die realistische Erscheinung der Kleidung weiter zu unterstützen, muss die makroskopische Selbstabschattung integriert werden. Für die Visualisierung von Falten und den lebensechten 3D Eindruck ist diese Art von Schatten absolut notwendig. Diese Arbeit beschreibt daher auch zwei Methoden, diese Schatten schnell und effizient zu berechnen. Die erste ist nahtlos in den Beleuchtungspart des obigen BTF Renderingalgorithmuses integriert und für statische Geometrien optimiert. Die zweite Methode behandelt dynamische Objekte. Dazu werden hardwarebeschleunigte Occlusion Queries verwendet, um die Sichtbarkeitsberechnung durchzuführen. Diese Methode ist einerseits simpel und leicht zu implementieren, anderseits ist sie schnell und produziert weniger Artefakte, als vergleichbare Methoden. Zusätzlich ist die Verwendung von veränderbarer, entfernter HDR Beleuchtung integriert. Das menschliche Wahrnehmungssystem ist das eigentliche Ziel jeglicher Anwendung in der Computergrafik und kann daher selbst als Teil einer erweiterten Rendering Pipeline gesehen werden. Daher kann das Rendering selbst optimiert werden, wenn man die menschliche Wahrnehmung verschiedener visueller Aspekte der berechneten Bilder analysiert. Teil der vorliegenden Arbeit ist die Beschreibung eines Experimentes, das menschliche Schattenwahrnehmung untersucht, um das Rendern der Schatten zu beschleunigen. Ein weiteres Teilgebiet der Kleidungsvisualisierung in der Computergrafik ist die Animation der Kleidung und von Avataren für Präsentationen. Diese Arbeit beschreibt zwei neue Methoden auf diesem Teilgebiet. Einmal ein Algorithmus, der für die automatische Generierung neuer Animationssequenzen verwendet werden kann und zum anderen einen Kompressionsalgorithmus für eben diese Sequenzen. Die automatische Generierung von völlig neuen, anpassbaren Animationen basiert auf dem Konzept der Ähnlichkeitssuche. Hierbei werden die einzelnen Schritte von gegebenen Basisanimationen auf Ähnlichkeiten hin untersucht, die zum Beispiel die Geschwindigkeiten einzelner Objektteile sein können. Die Identifizierung dieser Ähnlichkeiten erlaubt dann Sprünge innerhalb der Basissequenz, die dazu benutzt werden können, endlose, neue Sequenzen zu erzeugen. Die Übertragung von animierten 3D Daten über bandbreitenlimitierte Kanäle wie ausgedehnte Netzwerke, Mobilfunk oder zu sogenannten thin clients erfordert eine effiziente Komprimierung. Die zweite, in dieser Arbeit vorgestellte Methode, ist ein Kompressionsschema für Geometriedaten. Ähnlich wie bei der Kompression von BTF Daten wird die PCA in Verbindung mit Clustering benutzt, um die animierte Geometrie zu analysieren und in sich ähnlich bewegende Teile zu segmentieren. Diese erkannten Segmente lassen sich dann hoch komprimieren. Der Algorithmus arbeitet automatisch und erlaubt zudem eine sehr exakte Rekonstruktionsqualität nach der Dekomprimierung

    Accelerating and simulating detected physical interations

    Get PDF
    The aim of this doctoral thesis is to present a body of work aimed at improving performance and developing new methods for animating physical interactions using simulation in virtual environments. To this end we develop a number of novel parallel collision detection and fracture simulation algorithms. Methods for traversing and constructing bounding volume hierarchies (BVH) on graphics processing units (GPU) have had a wide success. In particular, they have been adopted widely in simulators, libraries and benchmarks as they allow applications to reach new heights in terms of performance. Even with such a development however, a thorough adoption of techniques has not occurred in commercial and practical applications. Due to this, parallel collision detection on GPUs remains a relatively niche problem and a wide number of applications could benefit from a significant boost in proclaimed performance gains. In fracture simulations, explicit surface tracking methods have a good track record of success. In particular they have been adopted thoroughly in 3D modelling and animation software like Houdini [124] as they allow accurate simulation of intricate fracture patterns with complex interactions, which are generated using physical laws. Even so, existing methods can pose restrictions on the geometries of simulated objects. Further, they often have tight dependencies on implicit surfaces (e.g. level sets) for representing cracks and performing cutting to produce rigid-body fragments. Due to these restrictions, catering to various geometries can be a challenge and the memory cost of using implicit surfaces can be detrimental and without guarantee on the preservation of sharp features. We present our work in four main chapters. We first tackle the problem in the accelerating collision detection on the GPU via BVH traversal - one of the most demanding components during collision detection. Secondly, we show the construction of a new representation of the BVH called the ostensibly implicit tree - a layout of nodes in memory which is encoded using the bitwise representation of the number of enclosed objects in the tree (e.g. polygons). Thirdly, we shift paradigm to the task of simulating breaking objects after collision: we show how traditional finite elements can be extended as a way to prevent frequent re-meshing during fracture evolution problems. Finally, we show how the fracture surface–represented as an explicit (e.g. triangulated) surface mesh–is used to generate rigid body fragments using a novel approach to mesh cutting

    Robust interactive simulation of deformable solids with detailed geometry using corotational FEM

    Get PDF
    This thesis focuses on the interactive simulation of highly detailed deformable solids modelled with the Corotational Finite Element Method. Starting from continuum mechanics we derive the discrete equations of motion and present a simulation scheme with support for user-in-the-loop interaction, geometric constraints and contact treatment. The interplay between accuracy and computational cost is discussed in depth, and practical approximations are analyzed with an emphasis on robustness and efficiency, as required by interactive simulation. The first part of the thesis focuses on deformable material discretization using the Finite Element Method with simplex elements and a corotational linear constitutive model, and presents our contributions to the solution of widely reported robustness problems in case of large stretch deformations and finite element degeneration. First,we introduce a stress differential approximation for quasi-implicit corotational linear FEM that improves its results for large deformations and closely matches the fullyimplicit solution with minor computational overhead. Next, we address the problem ofrobustness and realism in simulations involving element degeneration, and show that existing methods have previously unreported flaws that seriously threaten robustness and physical plausibility in interactive applications. We propose a new continuous-time approach, degeneration-aware polar decomposition, that avoids such flaws and yields robust degeneration recovery. In the second part we focus on geometry representation and contact determination for deformable solids with highly detailed surfaces. Given a high resolution closed surface mesh we automatically build a coarse embedding tetrahedralization and a partitioned representation of the collision geometry in a preprocess. During simulation, our proposed contact determination algorithm finds all intersecting pairs of deformed triangles using a memory-efficient barycentric bounding volume hierarchy, connects them into potentially disjoint intersection curves and performs a topological flood process on the exact intersection surfaces to discover a minimal set of contact points. A novel contact normal definition is used to find contact point correspondences suitable for contact treatment.Aquesta tesi tracta sobre la simulació interactiva de sòlids deformables amb superfícies detallades, modelats amb el Mètode dels Elements Finits (FEM) Corotacionals. A partir de la mecànica del continuu derivem les equacions del moviment discretes i presentem un esquema de simulació amb suport per a interacció d'usuari, restriccions geomètriques i tractament de contactes. Aprofundim en la interrelació entre precisió i cost de computació, i analitzem aproximacions pràctiques fent èmfasi en la robustesa i l'eficiència necessàries per a la simulació interactiva. La primera part de la tesi es centra en la discretització del material deformable mitjançant el Mètode dels Elements Finits amb elements de tipus s'implex i un model constituent basat en elasticitat linial corotacional, i presenta les nostres contribucions a la solució de problemes de robustesa àmpliament coneguts que apareixen en cas de sobreelongament i degeneració dels elements finits. Primer introduïm una aproximació dels diferencials d'estress per a FEM linial corotacional amb integració quasi-implícita que en millora els resultats per a deformacions grans i s'apropa a la solució implícita amb un baix cost computacional. A continuació tractem el problema de la robustesa i el realisme en simulacions que inclouen degeneració d'elements finits, i mostrem que els mètodes existents presenten inconvenients que posen en perill la robustesa plausibilitat de la simulació en aplicacions interactives. Proposem un enfocament nou basat en temps continuu, la descomposició polar amb coneixement de degeneració, que evita els inconvenients esmentats i permet corregir la degeneració de forma robusta. A la segona part de la tesi ens centrem en la representació de geometria i la determinació de contactes per a sòlids deformables amb superfícies detallades. A partir d'una malla de superfície tancada construím una tetraedralització englobant de forma automàtica en un preprocés, i particionem la geometria de colisió. Proposem un algorisme de detecció de contactes que troba tots els parells de triangles deformats que intersecten mitjançant una jerarquia de volums englobants en coordenades baricèntriques, els connecta en corbes d'intersecció potencialment disjuntes i realitza un procés d'inundació topològica sobre les superfícies d'intersecció exactes per tal de descobrir un conjunt mínim de punts de contacte. Usem una definició nova de la normal de contacte per tal de calcular correspondències entre punts de contacte útils per al seu tractament.Postprint (published version
    corecore