221 research outputs found

    Towards Predictive Rendering in Virtual Reality

    Get PDF
    The strive for generating predictive images, i.e., images representing radiometrically correct renditions of reality, has been a longstanding problem in computer graphics. The exactness of such images is extremely important for Virtual Reality applications like Virtual Prototyping, where users need to make decisions impacting large investments based on the simulated images. Unfortunately, generation of predictive imagery is still an unsolved problem due to manifold reasons, especially if real-time restrictions apply. First, existing scenes used for rendering are not modeled accurately enough to create predictive images. Second, even with huge computational efforts existing rendering algorithms are not able to produce radiometrically correct images. Third, current display devices need to convert rendered images into some low-dimensional color space, which prohibits display of radiometrically correct images. Overcoming these limitations is the focus of current state-of-the-art research. This thesis also contributes to this task. First, it briefly introduces the necessary background and identifies the steps required for real-time predictive image generation. Then, existing techniques targeting these steps are presented and their limitations are pointed out. To solve some of the remaining problems, novel techniques are proposed. They cover various steps in the predictive image generation process, ranging from accurate scene modeling over efficient data representation to high-quality, real-time rendering. A special focus of this thesis lays on real-time generation of predictive images using bidirectional texture functions (BTFs), i.e., very accurate representations for spatially varying surface materials. The techniques proposed by this thesis enable efficient handling of BTFs by compressing the huge amount of data contained in this material representation, applying them to geometric surfaces using texture and BTF synthesis techniques, and rendering BTF covered objects in real-time. Further approaches proposed in this thesis target inclusion of real-time global illumination effects or more efficient rendering using novel level-of-detail representations for geometric objects. Finally, this thesis assesses the rendering quality achievable with BTF materials, indicating a significant increase in realism but also confirming the remainder of problems to be solved to achieve truly predictive image generation

    Efficient From-Point Visibility for Global Illumination in Virtual Scenes with Participating Media

    Get PDF
    Sichtbarkeitsbestimmung ist einer der fundamentalen Bausteine fotorealistischer Bildsynthese. Da die Berechnung der Sichtbarkeit allerdings äußerst kostspielig zu berechnen ist, wird nahezu die gesamte Berechnungszeit darauf verwendet. In dieser Arbeit stellen wir neue Methoden zur Speicherung, Berechnung und Approximation von Sichtbarkeit in Szenen mit streuenden Medien vor, die die Berechnung erheblich beschleunigen, dabei trotzdem qualitativ hochwertige und artefaktfreie Ergebnisse liefern

    Efficient Many-Light Rendering of Scenes with Participating Media

    Get PDF
    We present several approaches based on virtual lights that aim at capturing the light transport without compromising quality, and while preserving the elegance and efficiency of many-light rendering. By reformulating the integration scheme, we obtain two numerically efficient techniques; one tailored specifically for interactive, high-quality lighting on surfaces, and one for handling scenes with participating media

    Real-time Cinematic Design Of Visual Aspects In Computer-generated Images

    Get PDF
    Creation of visually-pleasing images has always been one of the main goals of computer graphics. Two important components are necessary to achieve this goal --- artists who design visual aspects of an image (such as materials or lighting) and sophisticated algorithms that render the image. Traditionally, rendering has been of greater interest to researchers, while the design part has always been deemed as secondary. This has led to many inefficiencies, as artists, in order to create a stunning image, are often forced to resort to the traditional, creativity-baring, pipelines consisting of repeated rendering and parameter tweaking. Our work shifts the attention away from the rendering problem and focuses on the design. We propose to combine non-physical editing with real-time feedback and provide artists with efficient ways of designing complex visual aspects such as global illumination or all-frequency shadows. We conform to existing pipelines by inserting our editing components into existing stages, hereby making editing of visual aspects an inherent part of the design process. Many of the examples showed in this work have been, until now, extremely hard to achieve. The non-physical aspect of our work enables artists to express themselves in more creative ways, not limited by the physical parameters of current renderers. Real-time feedback allows artists to immediately see the effects of applied modifications and compatibility with existing workflows enables easy integration of our algorithms into production pipelines

    Perceptually-motivated, interactive rendering and editing of global illumination

    Get PDF
    This thesis proposes several new perceptually-motivated techniques to synthesize, edit and enhance depiction of three-dimensional virtual scenes. Finding algorithms that fit the perceptually economic middle ground between artistic depiction and full physical simulation is the challenge taken in this work. First, we will present three interactive global illumination rendering approaches that are inspired by perception to efficiently depict important light transport. Those methods have in common to compute global illumination in large and fully dynamic scenes allowing for light, geometry, and material changes at interactive or real-time rates. Further, this thesis proposes a tool to edit reflections, that allows to bend physical laws to match artistic goals by exploiting perception. Finally, this work contributes a post-processing operator that depicts high contrast scenes in the same way as artists do, by simulating it "seen'; through a dynamic virtual human eye in real-time.Diese Arbeit stellt eine Anzahl von Algorithmen zur Synthese, Bearbeitung und verbesserten Darstellung von virtuellen drei-dimensionalen Szenen vor. Die Herausforderung liegt dabei in der Suche nach Ausgewogenheit zwischen korrekter physikalischer Berechnung und der künstlerischen, durch die Gesetze der menschlichen Wahrnehmung motivierten Praxis. Zunächst werden drei Verfahren zur Bild-Synthese mit globaler Beleuchtung vorgestellt, deren Gemeinsamkeit in der effizienten Handhabung großer und dynamischer virtueller Szenen liegt, in denen sich Geometrie, Materialen und Licht frei verändern lassen. Darauffolgend wird ein Werkzeug zum Editieren von Reflektionen in virtuellen Szenen das die menschliche Wahrnehmung ausnutzt um künstlerische Vorgaben umzusetzen, vorgestellt. Die Arbeit schließt mit einem Filter am Ende der Verarbeitungskette, der den wahrgenommen Kontrast in einem Bild erhöht, indem er die Entstehung von Glanzeffekten im menschlichen Auge nachbildet

    Compression, Modeling, and Real-Time Rendering of Realistic Materials and Objects

    Get PDF
    The realism of a scene basically depends on the quality of the geometry, the illumination and the materials that are used. Whereas many sources for the creation of three-dimensional geometry exist and numerous algorithms for the approximation of global illumination were presented, the acquisition and rendering of realistic materials remains a challenging problem. Realistic materials are very important in computer graphics, because they describe the reflectance properties of surfaces, which are based on the interaction of light and matter. In the real world, an enormous diversity of materials can be found, comprising very different properties. One important objective in computer graphics is to understand these processes, to formalize them and to finally simulate them. For this purpose various analytical models do already exist, but their parameterization remains difficult as the number of parameters is usually very high. Also, they fail for very complex materials that occur in the real world. Measured materials, on the other hand, are prone to long acquisition time and to huge input data size. Although very efficient statistical compression algorithms were presented, most of them do not allow for editability, such as altering the diffuse color or mesostructure. In this thesis, a material representation is introduced that makes it possible to edit these features. This makes it possible to re-use the acquisition results in order to easily and quickly create deviations of the original material. These deviations may be subtle, but also substantial, allowing for a wide spectrum of material appearances. The approach presented in this thesis is not based on compression, but on a decomposition of the surface into several materials with different reflection properties. Based on a microfacette model, the light-matter interaction is represented by a function that can be stored in an ordinary two-dimensional texture. Additionally, depth information, local rotations, and the diffuse color are stored in these textures. As a result of the decomposition, some of the original information is inevitably lost, therefore an algorithm for the efficient simulation of subsurface scattering is presented as well. Another contribution of this work is a novel perception-based simplification metric that includes the material of an object. This metric comprises features of the human visual system, for example trichromatic color perception or reduced resolution. The proposed metric allows for a more aggressive simplification in regions where geometric metrics do not simplif

    Towards a High Quality Real-Time Graphics Pipeline

    Get PDF
    Modern graphics hardware pipelines create photorealistic images with high geometric complexity in real time. The quality is constantly improving and advanced techniques from feature film visual effects, such as high dynamic range images and support for higher-order surface primitives, have recently been adopted. Visual effect techniques have large computational costs and significant memory bandwidth usage. In this thesis, we identify three problem areas and propose new algorithms that increase the performance of a set of computer graphics techniques. Our main focus is on efficient algorithms for the real-time graphics pipeline, but parts of our research are equally applicable to offline rendering. Our first focus is texture compression, which is a technique to reduce the memory bandwidth usage. The core idea is to store images in small compressed blocks which are sent over the memory bus and are decompressed on-the-fly when accessed. We present compression algorithms for two types of texture formats. High dynamic range images capture environment lighting with luminance differences over a wide intensity range. Normal maps store perturbation vectors for local surface normals, and give the illusion of high geometric surface detail. Our compression formats are tailored to these texture types and have compression ratios of 6:1, high visual fidelity, and low-cost decompression logic. Our second focus is tessellation culling. Culling is a commonly used technique in computer graphics for removing work that does not contribute to the final image, such as completely hidden geometry. By discarding rendering primitives from further processing, substantial arithmetic computations and memory bandwidth can be saved. Modern graphics processing units include flexible tessellation stages, where rendering primitives are subdivided for increased geometric detail. Images with highly detailed models can be synthesized, but the incurred cost is significant. We have devised a simple remapping technique that allowsfor better tessellation distribution in screen space. Furthermore, we present programmable tessellation culling, where bounding volumes for displaced geometry are computed and used to conservatively test if a primitive can be discarded before tessellation. We introduce a general tessellation culling framework, and an optimized algorithm for rendering of displaced BĂ©zier patches, which is expected to be a common use case for graphics hardware tessellation. Our third and final focus is forward-looking, and relates to efficient algorithms for stochastic rasterization, a rendering technique where camera effects such as depth of field and motion blur can be faithfully simulated. We extend a graphics pipeline with stochastic rasterization in spatio-temporal space and show that stochastic motion blur can be rendered with rather modest pipeline modifications. Furthermore, backface culling algorithms for motion blur and depth of field rendering are presented, which are directly applicable to stochastic rasterization. Hopefully, our work in this field brings us closer to high quality real-time stochastic rendering

    Remotely Operated Aerial Vehicles and Their Applications

    Get PDF
    This project examines relevant designs and applications of unmanned aerial vehicles (UAVs). We propose UAV design solutions, which can be refined and incorporated into emergency medical services. Mathematical and engineering concepts are used to select the design solutions. We believe that the proposed design solutions will enhance the quality of care in emergency medical services

    Artistic Path Space Editing of Physically Based Light Transport

    Get PDF
    Die Erzeugung realistischer Bilder ist ein wichtiges Ziel der Computergrafik, mit Anwendungen u.a. in der Spielfilmindustrie, Architektur und Medizin. Die physikalisch basierte Bildsynthese, welche in letzter Zeit anwendungsübergreifend weiten Anklang findet, bedient sich der numerischen Simulation des Lichttransports entlang durch die geometrische Optik vorgegebener Ausbreitungspfade; ein Modell, welches für übliche Szenen ausreicht, Photorealismus zu erzielen. Insgesamt gesehen ist heute das computergestützte Verfassen von Bildern und Animationen mit wohlgestalteter und theoretisch fundierter Schattierung stark vereinfacht. Allerdings ist bei der praktischen Umsetzung auch die Rücksichtnahme auf Details wie die Struktur des Ausgabegeräts wichtig und z.B. das Teilproblem der effizienten physikalisch basierten Bildsynthese in partizipierenden Medien ist noch weit davon entfernt, als gelöst zu gelten. Weiterhin ist die Bildsynthese als Teil eines weiteren Kontextes zu sehen: der effektiven Kommunikation von Ideen und Informationen. Seien es nun Form und Funktion eines Gebäudes, die medizinische Visualisierung einer Computertomografie oder aber die Stimmung einer Filmsequenz -- Botschaften in Form digitaler Bilder sind heutzutage omnipräsent. Leider hat die Verbreitung der -- auf Simulation ausgelegten -- Methodik der physikalisch basierten Bildsynthese generell zu einem Verlust intuitiver, feingestalteter und lokaler künstlerischer Kontrolle des finalen Bildinhalts geführt, welche in vorherigen, weniger strikten Paradigmen vorhanden war. Die Beiträge dieser Dissertation decken unterschiedliche Aspekte der Bildsynthese ab. Dies sind zunächst einmal die grundlegende Subpixel-Bildsynthese sowie effiziente Bildsyntheseverfahren für partizipierende Medien. Im Mittelpunkt der Arbeit stehen jedoch Ansätze zum effektiven visuellen Verständnis der Lichtausbreitung, die eine lokale künstlerische Einflussnahme ermöglichen und gleichzeitig auf globaler Ebene konsistente und glaubwürdige Ergebnisse erzielen. Hierbei ist die Kernidee, Visualisierung und Bearbeitung des Lichts direkt im alle möglichen Lichtpfade einschließenden "Pfadraum" durchzuführen. Dies steht im Gegensatz zu Verfahren nach Stand der Forschung, die entweder im Bildraum arbeiten oder auf bestimmte, isolierte Beleuchtungseffekte wie perfekte Spiegelungen, Schatten oder Kaustiken zugeschnitten sind. Die Erprobung der vorgestellten Verfahren hat gezeigt, dass mit ihnen real existierende Probleme der Bilderzeugung für Filmproduktionen gelöst werden können

    Methods for transform, analysis and rendering of complete light representations

    Get PDF
    Recent advances in digital holography, optical engineering and computer graphics have opened up the possibility of full parallax, three dimensional displays. The premises of these rendering systems are however somewhat different from traditional imaging and video systems. Instead of rendering an image of the scene, the complete light distribution must be computed. In this thesis we discuss some different methods regarding processing and rendering of two well known full light representations: the light field and the hologram. A light field transform approach, based on matrix optics operators, is introduced. Thereafter we discuss the relationship between the light field and the hologram representations. The final part of the thesis is concerned with hologram and wave field synthesis. We present two different methods. First, a GPU accelerated approach to rendering point-based models is introduced. Thereafter, we develop a Fourier rendering approach capable of generating angular spectra of triangular mesh models.Aktuelle Fortschritte in den Bereichen der digitalen Holographie, optischen Technik und Computergrafik ermöglichen die Entwicklung von vollwertigen 3D-Displays. Diese Systeme sind allerdings auf Eingangsdaten angewiesen, die sich von denen traditioneller Videosysteme unterscheiden. Anstatt für die Visualisierung ein zweidimensionales Abbild einer Szene zu erstellen, muss die vollständige Verteilung des Lichts berechnet werden. In dieser Dissertation betrachten wir verschiedene Methoden, um dies für zwei verschiedene gebräuchliche Darstellungen der Lichtverteilung zu erreichen: Lichtfeld und Hologramm. Wir stellen dafür zunächst eine Methode vor, die Operatoren der Strahlenoptik auf Lichtfelder anzuwenden, und diskutieren daraufhin, wie die Darstellung als Lichtfeld mit der Darstellung als Hologramm zusammenhängt. Abschliessend wird die praktische Berechnung von Hologrammen und Wellenfeldern behandelt, wobei wir zwei verschiedene Ansätze untersuchen. Im ersten Ansatz werden Wellenfelder aus punktbasierten Modellen von Objekten erzeugt, unter Einsatz moderner Grafikhardware zur Optimierung der Rechenzeit. Der zweite Ansatz, Fourier-Rendering, ermöglicht die Generierung von Hologrammen aus Oberflächen, die durch Dreiecksnetze beschrieben sind
    • …
    corecore