175 research outputs found

    Consolidation and assessment of a technique to provide fast and precise point positioning (Fast-PPP)

    Get PDF
    Tesi per compendi de publicacions. La consulta íntegra de la tesi, inclosos els articles no comunicats públicament per drets d'autor, es pot realitzar prèvia petició a l'Arxiu de la UPCPremi extraordinari doctorat UPC curs 2015-2016, àmbit de CiènciesThe research of this paper-based dissertation is focused on the Fast Precise Point Positioning (Fast-PPP) technique. The novelty relies on using an accurate ionosphere model, in combination with the standard precise satellite clock and orbit products, to reduce the convergence time of state-of-the-art high-accuracy navigation techniques from approximately one hour to few minutes. My first contribution to the Fast-PPP technique as a Ph.D. student has been the design and implementation of a novel user navigation filter, based on the raw treatment of undifferenced multi-frequency code and carrier-phase Global Navigation Satellite System (GNSS) measurements. The innovative strategy of the filter avoids applying the usual ionospheric-free combination to the GNSS observables, exploiting the full capacity of new multi-frequency signals and increasing the robustness of Fast-PPP in challenging environments where the sky visibility is reduced. It has been optimised to take advantage of the corrections required to compensate the delays (i.e., errors) affecting the GNSS signals. The Fast-PPP corrections, and most important, their corrections uncertainties (i.e., the confidence bounds) are added as additional equations in the navigation filter to obtain Precise Point Positioning (PPP) in few minutes. A second contribution performed with the new user filter, has been the consolidation of the precise ionospheric modelling of Fast-PPP and its extension from a regional to a global scale. The correct use of the confidence bounds has been found of great importance when navigating in the low-latitude areas of the equator, where the ionosphere is difficult to be accurately modelled. Even in such scenario, a great consistency has been achieved between the actual positioning errors with respect to the formal errors, as demonstrated using similar figures of merit used in civil aviation, as the Stanford plot. A third contribution within this dissertation has been the characterisation of the accuracy of different ionospheric models currently used in GNSS. The assessment uses actual, unambiguous and undifferenced carrier-phase measurements, thanks to the centimetre-level modelling capability within the Fast-PPP technique. Not only the errors of the ionosphere models have been quantified in absolute and relative terms, but also, their effect on navigation.La investigació d'aquesta Tesi Doctoral per compendi d'articles es centra en la tècnica de ràpid Posicionament de Punt Precís (Fast-PPP). La novetat radica en l'ús d'un model ionosfèric precís que, combinat amb productes estàndard de rellotge i de l'òrbita de satèl·lit, redueix el temps de convergència de les actuals tècniques de navegació precisa d'aproximadament una hora a pocs minuts. La meva primera contribució a la tècnica Fast-PPP com a estudiant de Doctorat ha estat el disseny i la implementació d'un filtre de navegació d'usuari innovador, basat en el tractament de múltiples freqüències de mesures de codi i fase sense diferenciar (absolutes). La estratègia del filltre de navegació evita l'aplicació de l'habitual combinació lineal lliure de ionosfera per a aquests observables. Així, s'explota la capacitat completa dels senyals multi-freqüència en el nous Sistemes Globals de Navegació per Satèl·lit (GNSS) i s'augmenta la robustesa del Fast-PPP en entorns difícils, on es redueix la visibilitat del cel. S'ha optimitzat per tal de prendre avantatge de les correccions necessàries per a compensar els retards (és a dir, els errors) que afecten els senyals GNSS. Les correccions de Fast-PPP i més important, les seves incerteses (és a dir, els intervals de confiança) s'afegeixen com a equacions addicionals al filltre per aconseguir Posicionat de Punt Precís (PPP) en pocs minuts. La segona contribució ha estat la consolidació del modelat ionosfèric precís de Fast-PPP i la seva extensió d'un abast regional a una escala global. La correcta determinació i ús dels intervals de confiança de les correccions Fast-PPP ha esdevingut de gran importància a l'hora de navegar en zones de baixa latitud a l'equador, on la ionosfera és més difícil de modelar amb precisió. Fins i tot en aquest escenari, s'ha aconseguit una gran consistència entre els errors de posicionament reals i els nivells de protecció dels usuaris de Fast-PPP, tal com s'ha demostrat amb figures de mèrit similars a les utilitzades en l'aviació civil (els diagrames de Stanford). La tercera contribució d'aquesta Tesi Doctoral ha estat la caracterització de l'exactitud dels models ionosfèrics utilitzats actualment en GNSS. L'avaluació utilitza mesures de fase, sense ambigüitats i sense diferenciar, gràcies a la capacitat de modelatge centimètric emprat a la tècnica de Fast-PPP. No només els errors dels models de la ionosfera han estat quantificats en termes absoluts i relatius, sinó també, el seu efecte sobre la navegacióLa investigación de esta Tesis Doctoral, por compendio de artículos, se centra en la técnica de rápido Posicionamiento de Punto Preciso (Fast-PPP). La novedad, radica en el uso de un modelo ionosférico preciso que, combinado con productos estándard de reloj y órbita de satélite, reduce el tiempo de convergencia de las actuales técnicas de navegación precisa de una hora a pocos minutos.Mi primera contribución a la técnica Fast-PPP como estudiante de Doctorado ha sido el diseño y la implementación de un filtro de navegación de usuario innovador, basado en el tratamiento de múltiples frecuencias de medidas de código y fase sin diferenciar (absolutas). La estrategia del filtro de navegación evita la aplicación de la habitual combinación lineal libre de ionosfera para dichos observables. Así, se explota la capacidad de la señal multi-frecuencia en los nuevos Sistemas Globales de Navegación por Satélite (GNSS) y se aumenta la robustez del Fast-PPP en entornos difíciles, donde se reduce la visibilidad del cielo. Se ha optimizado para tomar ventaja de las correcciones necesarias para compensar los retardos (es decir, los errores) que afectan las señales GNSS. Las correcciones de Fast-PPP y más importante, sus incertidumbres (es decir, los intervalos de confianza) se añaden como ecuaciones adicionales al filtro para conseguir Posicionamiento de Punto Preciso (PPP) en pocos minutos. La segunda contribución ha estado la consolidación del modelado ionosférico preciso de Fast-PPP y la extensión de su cobertura regional a una escala global. La correcta determinación y uso de los intervalos de confianza de las correcciones Fast-PPP ha sido de gran importancia a la hora de navegar en zonas de latitudes ecuatoriales, donde la ionosfera es más difícil de modelar con precisión. Incluso en dicho escenario, se ha conseguido una gran consistencia entre los errores de posicionamiento reales y los niveles de protección de los usuarios de Fast-PPP, tal como se ha demostrado con figuras de mérito similares a las utilizadas en la aviación civil (los diagramas de Stanford).La tercera contribución de esta Tesis Doctoral ha sido la caracterización de la exactitud de los modelos ionosféricos utilizados actualmente en GNSS. El método usa medidas de fase, sin ambigüedad y sin diferenciar, gracias a la capacidad de modelado centimétrico empleado en la técnica de Fast-PPP. No solo los errores de los modelos de la ionosfera han sido cuantificados en términos absolutos y relativos, sino también, su efecto sobre la navegación.Award-winningPostprint (published version

    Desarrollo de algoritmos para el tratamiento de datos GNSS : su aplicación a los escenarios GPS modernizado y Galileo

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Ciencias Matemáticas, Sección Departamental de Física de la Tierra, Astronomía y Astrofísica I (Geofísica y Meteorología) (Astronomía y Geodesia), leída el 24-07-2012Nowadays, the major GNSS systems are the american GPS and the russian GLONASS, however, in a near future the european project Galileo and the chinesse system COMPASS will become part of the current GNSS scenario. These systems will transmit for the first time three different frequencies, giving place to a multi-system and multi-frequency scenario which will dramatically push the boundaries of the positioning techniques. Currently, one of the most studied positioning techniques is known as Precise Point Positioning (PPP), which is aimed at estimating precise receiver position from undifferenced GNSS code and carrier phase observations and precise satellite products. In this thesis, some new and original algorithms for static PPP have been developed, which are able to deal with the future multi-system and multifrequency GNSS observations. The new algorithms have been named MAP3. In the new approach, the least squares theory is applied twice to estimate the ionospheric delay, initial ambiguities and smoothed pseudodistances from undifferenced observations, which in turn are used to recover the receiver position and its clock offset. MAP3 provides position estimations with an accuracy of 2.5 cm after 2 hours observation and 7 mm in 1 day, being at the same level as other PPP programs and even better results are obtained with MAP3 in short observation periods. Moreover, MAP3 have provided some of the first results in positioning from GIOVE observations and GPC products. In addition, these algorithms have been applied in the analysis of the influence of ionospheric disturbances on the point positioning, concluding that the presence of a high ROT (Rate of TEC), observed at equatorial latitudes, reflects a significant degradation of the point positioning from dual-frequency observations.Actualmente, los únicos sistemas globales de navegación por satélites operativos son GPS y GLONASS, sin embargo, en un futuro cercano el proyecto europeo Galileo y el sistema chino COMPASS entrarán a formar parte del actual escenario GNSS. Estos sistemas emplearán por primera vez, tres frecuencias distintas, dando lugar a un escenario multi-frecuencia que revolucionará las técnicas de posicionamiento. Entre las técnicas actuales de posicionamiento con GNSS destaca el Posicionamiento Preciso Puntual (PPP), que consiste en determinar la posición de un receptor a partir de observaciones de código y fase no differenciadas y productos precisos. En este trabajo de tesis se han desarrollado unos nuevos y originales algoritmos para PPP estático, llamados MAP3, capaces de procesar observaciones GNSS multifrecuencia y multi-sistema del futuro escenario GNSS y determinar la posición de un receptor de forma precisa y exacta. Los algoritmos MAP3 se dividen en dos partes en las cuales se ha aplicado la teoría mínimos cuadrados y se han obtenido expresiones explícitas para estimar el retraso ionosférico, ambigüedades de fase inicial y pseudodistancias suavizadas, que se emplean para determinar la posición del receptor y el offset de su reloj. MAP3 proporciona una estimación de la posición con una exactitud de 2.5 cm tras 2 horas de observación y de 7 mm tras 24 h, resultados que mejoran los obtenidos hasta el momento con otros programas para PPP en periodos cortos de tiempo. Además, MAP3 han proporcionado los primeros resultados en el posicionamiento con observaciones GIOVE y productos del GPC. Por otro lado, estos algoritmos se han aplicado al análisis de los efectos de ciertas perturbaciones ionosféricas en el posicionamiento concluyendo que la presencia de un ROT (Rate of TEC) elevado, observado en latitudes ecuatoriales, refleja una degradación significativa del posicionamiento puntual con observaciones doble frecuencia.Unidad Deptal. de Astronomía y GeodesiaFac. de Ciencias MatemáticasTRUEunpu

    Performance Evaluation of Blind Tropospheric Delay correction Models over Africa

    Get PDF
    Tropospheric delay is a major error source in positioning by Global Navigation Satellite Systems (GNSS). Many techniques are available for tropospheric delay mitigation consisting of surface meteorological  models and global empirical models. Surface meteorological models need surface meteorological data to give high accuracy mitigation while the global empirical models need not. However, most GNSS stations in the African region are not equipped with a meteorological sensor for the collection of surface  meteorological data during the measurement. Zenith Tropospheric Delay (ZTD) is often calculated by the various high precision GNSS software packages by utilising standard atmosphere values. Lately,  researchers in the University of New Brunswick and Vienna University of Technology have both developed global models (University of New Brunswick (UNB3M) and Global Pressure and Temperature 2 wet (GPT2w) models) for tropospheric delay correction, respectively. This report represents an appraisal of the performance of the GPT2w and UNB3M models with accurate International GNSS Service (IGS)- tropospheric estimations for fifteen IGS stations over a period of 1 year on the Africa continent. Both models perform significantly better at low latitudes than higher latitudes. There was better agreement  between the GPT2w model and the IGS estimate than the UNB3m at all stations. Thus, the GPT2w model is recommended as a correction model of the tropospheric error for the GNSS positioning and navigation on the African Continent.Keywords: Global Navigation Satellite Systems (GNSS), Zenith Tropospheric Delay (ZTD), Zenith Wet Delay (ZWD), Zenith Hydrostatic Delay (ZHD), International GNSS Service (IGS), Blind Tropospheric model

    Establishment of GPS Reference Network in Ghana

    Get PDF
    The quest for the use of GNSS in developing countries is on the rise following the realization of its numerous advantages over the conventional methods of positioning, navigation and timing. Africa's attempt to harness this technology has made it imperative to investigate the regional problems associated with its implementation by its member states, which constitute the AFREF. This study goes beyond the establishment of a GNSS reference network in Ghana by investigating and finding solutions to some of the regional problems associated with its implementation. The problem of turbulent atmospheric conditions which includes the severe ionospheric fluctuations and the erratic tropospheric conditions coupled with the sparsely populated base stations has led to the development of a new concept of correction, the Corridor Correction, which is able to correct the atmospheric effect comparable with the established concepts like the Virtual Reference Station, VRS, Flaechen-Korrektur-Parameter, FKP and Master Auxiliary Concept, MAC. In spite of the ionospheric problems in the equatorial region, the number of single frequency receivers in use for precise positioning is on the increase as compared with the relatively few multiple frequency receivers. This has necessitated the investigation of the code-plus-carrier processing approach which uses the idea of opposite signs of the propagation delay of the ionosphere in the code and carrier signals to eliminate the ionospheric delay, which normally requires dual frequency receivers to do same. This improved processing technique has led to the achievement of an accuracy of 5 cm with single frequency over a distance of 194 km. Sub-decimeter is generally achieved after 12 hours and 18 hours of observation for a distance of 200 km and 1200 km respectively with this technique as shown in this study. In addition to the improved processing techniques, the ambiguity that characterizes the use of mean-sea-level for the definition of vertical references as a result of either the sea level change or movement of the earth crust can be resolved with the use of GNSS which is independent of these two phenomena. This is achieved by collocating a GPS base station at the reference tide gauge located at Takoradi. The orthometric height derived from the tide gauge and the corresponding ellipsoidal height at the collocated GNSS base station is used to determine the local quasi-geoid. This is compared with the global geoid derived from EGM96, the global model from NGA, to obtain a difference that can be applied as a correction factor to obtain orthometric heights. The release of EGM2008 which has undergone remarkable improvement over EGM96 in terms of resolution makes it important to investigate into how it can be used to improve the orthometric height determination using ellipsoidal heights from GNSS observation. This can be achieved by following up what has been derived with EGM96 at the Takoradi tide gauge with this newly released EGM2008. To be able to move through a smooth transition from the existing geodetic reference system based on the War Office Ellipsoid to the newly established system based on the geocentric ITRF05, a set of seven parameter transformation has been derived for the project area, the Golden Triangle of Ghana.Das Bestreben GNSS in Entwicklungsländern zu nutzen nimmt stetig zu, da man die zahlreichen Vorteile gegenüber herkömmlichen Verfahren der Positionierung, Navigation und Zeitübertragung erkannt hat. Afrikas Versuch, diese Technologie zu nutzen, gebietet es, die regionalen Probleme im Zusammenhang mit der Umsetzung durch die AFREF Mitgliedsstaaten zu untersuchen. Diese Abhandlung geht über die Errichtung eines GNSS Referenznetzwerks in Ghana hinaus, indem sie Lösungen zu einigen regionalen Problemen in der Umsetzung aufzeigt und untersucht. Das Problem der turbulenten Atmosphäre, die schweren ionospärische Fluktuationen und sprunghafte troposphärische Bedingungen verbunden mit den sehr spärlich gestreuten Referenzstationen, hat zu der Entwicklung eines neuen Konzeptes von Korrekturverfahren, der Corridor Correction, geführt, die es ermöglicht, atmosphärische Einflüsse ähnlich wie etablierte Verfahren wie Virtual Reference Station, VRS, Flaechen-Korrektur-Paramter, FKP and Master Auxiliary Concept, MAC, zu korrigieren. Trotz der Probleme mit der Ionosphäre in der Äquatorregion, übersteigt die Anzahl der Ein-Frequenz-Empfänger für die präzise Positionierung die der relativ wenigen Mehrfrequenzempfänger. Dies machte die Untersuchung des Code-plus-Carrier Prozessierungsansatzes notwendig. Dieser nutzt den Effekt von unterschiedlichen Vorzeichen bei der Änderung der Ausbreitungsgeschwindigkeit von Code- und Trägersignalen durch die Ionosphäre um den ionosphärischen Effekt zu eliminieren, was in der herkömmlichen Prozessierung Zweifrequenzempfänger benötigt. Diese verbesserte Prozessierungstechnik hat zur Erzielung von Genauigkeiten von 5 cm mit Einfrequenzempfängern über eine Basislinienlänge von 194 km geführt. Damit werden im Allgemeinen Sub-Dezimeter Genauigkeiten nach 12 Stunden Beobachtungsdauer für Basislinienlängen von 200 km bzw. 18 Stunden für Basislinien von 1200 km erreicht, wie diese Abhandlung zeigt. Zusätzlich zu den oben genannten Verbesserungen in der Prozessierung, wird eine Methode aufgezeigt, die die Unsicherheit durch Meeresspiegeländerungen oder Bewegungen der Erdkruste, die der Gebrauch des mittleren Meeresspiegels als Definition des vertikalen Datums in sich birgt, durch den Gebrauch von GNSS, das von diesen beiden Phänomenen unberührt ist. Dies wird dadurch erreicht, dass GPS Basisstationen an Orten mit einer Pegelstation eingerichtet werden. Die orthometrische Höhe des Referenzpegels und die ellipsoidische Höhe der Basisstation werden dann zur Bestimmung eines lokalen Geoids verwendet. Das in dieser Abhandlung verwendete lokale Geoid ist an das globale Geoid angeschlossen worden, das aus dem EGM96, dem Modell der NGA, abgeleitet ist. Die Veröffentlichung des EGM2008, das gegenüber dem EGM96 im Hinblick auf die Auflösung erfahren hat bedeutende Verbesserungen, erfordert es, zu untersuchen, wie es Ghana zur Bestimmung von orthometrischen Höhen durch GNSS Beobachtungen nutzen kann. Das kann durch eine Weiterentwicklung des Ansatzes erreicht werden, der in dieser Studie schon mit dem EGM96 für Ghana bei Takoradi begonnen wurde. Das hierbei aufgebaute GNSS Referenznetzwerk wurde an den Pegel von Takoradi angeschlossen, einem der ältesten Level auf dem afrikanischen Kontinent. Um einen glatten Übergang vom vorhandenen Referenzsystem, das auf dem War Office Ellipsoid basiert, zum neuen, auf dem ITRF05 basierendem System zu ermöglichen, wurde ein Satz von sieben Transformationsparametern abgeleitet, die auf den Messungen im Projektgebiet „Goldenes Dreieck“ in Ghana basieren

    Using PPP Information to Implement a Global Real-Time Virtual Network DGNSS Approach

    Full text link
    Global Navigation Satellite Systems (GNSS) provide positioning services for connected and autonomous vehicles. Differential GNSS (DGNSS) has been demonstrated to provide reliable, high quality range correction information enabling real-time navigation with sub-meter or centimeter accuracy. However, DGNSS requires a local reference station near each user, which for a continental or global scale implementation would require a dense network of reference stations whose construction and maintenance would be prohibitively expensive. Precise Point Positioning (PPP) affords more flexibility as a public service for GNSS receivers, but its State Space Representation (SSR) format is not currently supported by most receivers. This article proposes a novel Virtual Network DGNSS (VN-DGNSS) design that capitalizes on the PPP infrastructure to provide global coverage for real-time navigation without building physical reference stations. Correction information is computed using data from public GNSS SSR data services and transmitted to users by Radio Technical Commission for Maritime Services (RTCM) Observation Space Representation (OSR) messages which are accepted by most receivers. The real-time stationary and moving platform testing performance, using u-blox M8P and ZED-F9P receivers, surpasses the Society of Automotive Engineering (SAE) specification (68% of horizontal error \leqslant 1.5 m and vertical error \leqslant 3 m) and shows significantly better horizontal performance than GNSS Open Service (OS). The moving tests also show better horizontal performance than the ZEDF9P receiver with Satellite Based Augmentation Systems (SBAS) enabled and achieve the lane-level accuracy which requires 95% of horizontal errors less than 1 meter.Comment: 14 pages, 8 tables, 4 figures, Code and data are available at https://github.com/Azurehappen/Virtual-Network-DGNSS-Projec

    EGNOS 1046 maritime service assessment

    Get PDF
    The present contribution evaluates how the European Geostationary Navigation Overlay System (EGNOS) meets the International Maritime Organization (IMO) requirements established in its Resolution A.1046 for navigation in harbor entrances, harbor approaches, and coastal waters: 99.8% of signal availability, 99.8% of service availability, 99.97% of service continuity and 10 m of horizontal accuracy. The data campaign comprises two years of data, from 1 May 2016 to 30 April 2018 (i.e., 730 days), involving 108 permanent stations located within 20 km of the coast or in islands across the EGNOS coverage area, EGNOS corrections, and cleansed GPS broadcast navigation data files. We used the GNSS Laboratory Tool Suite (gLAB) to compute the reference coordinates of the stations, the EGNOS solution, as well as the EGNOS service maps. Our results show a signal availability of 99.999%, a horizontal accuracy of 0.91 m at the 95th percentile, and the regions where the IMO requirements on service availability and service continuity are met. In light of the results presented in the paper, the authors suggest the revision of the assumptions made in the EGNOS Maritime Service against those made in EGNOS for civil aviation; in particular, the use of the EGNOS Message Type 10.This research was funded by the European GNSS Agency within the framework Integration of the Fundamental Elements, Contract GSA/OP/12/16/Lot1/SC1, and the APC was funded by the Spanish Ministry of Science, Innovation and Universities Project RTI2018-094295-B-I00.Peer ReviewedPostprint (published version

    SBAS ionospheric performance evaluation tests

    Get PDF
    Satellite Based Augmentation systems (SBAS) provide to Global Navigation Satellite Systems (GNSS) users with an extra set of information, in order to enhance accuracy and integrity levels of GNSS stand alone positioning. In this context, different test methods to analyze the ionospheric corrections performance are presented. The first set of tests involves two of the ionospheric calculations that are applied daily to the Global Ionospheric Maps (GIM), computed by the IGS Associate Analysis Centers: a TEC TOPEX comparison test and the STEC variations test. The second family of tests provides two very accurate analyses based on large-baselines ambiguity resolution techniques giving comparisons for absolute STEC and double differenced STEC determinations. Those four analyses have been applied using EGNOS System Test Bed (ESTB) data showing some satellite dependent biases.Peer Reviewe

    Performance Evaluation of Different GNSS Positioning Modes

    Get PDF
    This paper gives a comparison of different GPS positioning modes using RTKLIB which is free and open-source software. The modes tested in this work are Single point positioning (SPP), precise point positioning (PPP), Satellite-based augmentation system (SBAS), Differential GPS (DGPS), and Real-Time Kinematic (RTK). The data for tests were obtained from NetR9 receivers, these types of receivers are multi-frequencies and multi-constellation receivers that provide carrier and phase measurements. The SPP mode is the very simplest mode, it can be used for applications where accuracy is not less than 5m, and it can be improved to achieve 1m by using SBAS corrections but only in the coverage area of the system. The DGPS can also provide 1m accuracy using a second receiver as a base station which can increase the cost of the operation. For applications that need very high accuracy, RTK and PPP can be used to reach centimeter-level accuracy. RTK needs a base station in addition to the rover receiver used for the positioning; PPP uses precise orbital and clock solutions which are not available in real time for all users
    corecore