7,512 research outputs found

    Validation of the performance of a GMO multiplex screening assay based on microarray detection

    Get PDF
    A new screening method for the detection and identification of GMO, based on the use of multiplex PCR followed by microarray, has been developed and is presented. The technology is based on the identification of quite ubiquitous GMO genetic target elements first amplified by PCR, followed by direct hybridisation of the amplicons on a predefined microarray (DualChip® GMO, Eppendorf, Germany). The validation was performed within the framework of a European project (Co-Extra, contract no 007158) and in collaboration with 12 laboratories specialised in GMO detection. The present study reports the strategy and the results of an ISO complying validation of the method carried out through an inter-laboratory study. Sets of blind samples were provided consisting of DNA reference materials covering all the elements detectable by specific probes present on the array. The GMO concentrations varied from 1% down to 0.045%. In addition, a mixture of two GMO events (0.1% RRS diluted in 100% TOPAS19/2) was incorporated in the study to test the robustness of the assay in extreme conditions. Data were processed according to ISO 5725 standard. The method was evaluated with predefined performance criteria with respect to the EC CRL method acceptance criteria. The overall method performance met the acceptance criteria; in particular, the results showed that the method is suitable for the detection of the different target elements at 0.1% concentration of GMO with a 95% accuracy rate. This collaborative trial showed that the method can be considered as fit for the purpose of screening with respect to its intra- and inter-laboratory accuracy. The results demonstrated the validity of combining multiplex PCR with array detection as provided by the DualChip® GMO (Eppendorf, Germany) for the screening of GMO. The results showed that the technology is robust, practical and suitable as a screening too

    Detection of genetically modified organisms (GMOs) using isothermal amplification of target DNA sequences

    Get PDF
    BACKGROUND: The most common method of GMO detection is based upon the amplification of GMO-specific DNA amplicons using the polymerase chain reaction (PCR). Here we have applied the loop-mediated isothermal amplification (LAMP) method to amplify GMO-related DNA sequences, 'internal' commonly-used motifs for controlling transgene expression and event-specific (plant-transgene) junctions. RESULTS: We have tested the specificity and sensitivity of the technique for use in GMO studies. Results show that detection of 0.01% GMO in equivalent background DNA was possible and dilutions of template suggest that detection from single copies of the template may be possible using LAMP. CONCLUSION: This work shows that GMO detection can be carried out using LAMP for routine screening as well as for specific events detection. Moreover, the sensitivity and ability to amplify targets, even with a high background of DNA, here demonstrated, highlights the advantages of this isothermal amplification when applied for GMO detection

    GMDD: a database of GMO detection methods

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Since more than one hundred events of genetically modified organisms (GMOs) have been developed and approved for commercialization in global area, the GMO analysis methods are essential for the enforcement of GMO labelling regulations. Protein and nucleic acid-based detection techniques have been developed and utilized for GMOs identification and quantification. However, the information for harmonization and standardization of GMO analysis methods at global level is needed.</p> <p>Results</p> <p>GMO Detection method Database (GMDD) has collected almost all the previous developed and reported GMOs detection methods, which have been grouped by different strategies (screen-, gene-, construct-, and event-specific), and also provide a user-friendly search service of the detection methods by GMO event name, exogenous gene, or protein information, etc. In this database, users can obtain the sequences of exogenous integration, which will facilitate PCR primers and probes design. Also the information on endogenous genes, certified reference materials, reference molecules, and the validation status of developed methods is included in this database. Furthermore, registered users can also submit new detection methods and sequences to this database, and the newly submitted information will be released soon after being checked.</p> <p>Conclusion</p> <p>GMDD contains comprehensive information of GMO detection methods. The database will make the GMOs analysis much easier.</p

    Application of DNA and immunoassay analytical methods for GMO testing in agricultural crops and plant-derived products

    Get PDF
    The introduction of new agricultural commodities and products derived from modern biotechnology may have an impact on human and animal health, the environment and economies of countries. As more Genetically Modified Organisms (GMO) enter markets worldwide, the monitoring of GMOs is being preferred for obvious reasons such as determination of seed purity, verification of non-GMO status of agricultural crops and fulfilling GMO labeling provisions, to mention a few. Numerous GMO analytical methods which include screening, identification and quantification have been developed to reliably determine the presence and/or amount of GMO in agricultural commodities, in raw agricultural materials and in processed and refined ingredients. The detection of GMOs relies on the detection of transgenic DNA or protein material. For routine analysis, a good sample preparation technique should reproducibly generate DNA/protein of sufficient quality, purity and yield while minimizing the effects of inhibition and contamination. The key sample preparation steps include homogenization, pretreatment, extraction and purification. Due to the fact that analytical laboratories receive samples that are often processed and refined, the quality and quantity of transgenic target analyte (e.g. protein and DNA) frequently challenge the sensitivity of any detection method. With the development of GMO analysis techniques, the Polymerase Chain Reaction (PCR) technique has been the mainstay for GMO detection, and the real-time PCR is the most effective and important method for GMO quantification. The choice of target sequence; for example a promoter, a terminator, a gene, or a junction between two of these elements, is the single most important factor controlling the specificity of the PCR method. Recent developments include event-specific methods, particularly useful for identification and quantification of GM content. Although PCR technology has obvious limitations, the potentially high degree of sensitivity and specificity explains why PCR in its various formats, is currently the leading analytical technology employed in GMO analysis. Comparatively, immunoassays are becoming attractive tools for rapid field monitoring for the integrity of agricultural commodities in identity preservation systems, whereby non-specialised personnel can employ them in cost-effective manner. This review discusses various popular extraction methodologies and summarises the current status of the most widely used and easily applicable GMO analysis technologies in laboratories, namely the PCR and immunoassay technologies

    Current and new approaches in GMO detection: challenges and solutions

    Get PDF
    In many countries, genetically modified organisms (GMO) legislations have been established in order to guarantee the traceability of food/feed products on the market as well as to protect the consumer freedom of choice. Therefore, several GMO detection strategies, mainly based on DNA, have been developed to implement these legislations. Due to its numerous advantages, the quantitative PCR (qPCR) is the method of choice for the enforcement laboratories in GMO routine analysis. However, given the increasing number and diversity of GMO developed and put on the market around the world, some technical hurdles could be encountered with the qPCR technology, mainly owed to its inherent properties. To address these challenges, alternative GMO detection methods have been developed, allowing faster detections of single GM target (e.g. Loop-mediated isothermal amplification), simultaneous detections of multiple GM targets (e.g. PCR capillary gel electrophoresis, microarray and Luminex®), more accurate quantification of GM targets (e.g. digital PCR) or characterization of partially known (e.g. DNA walking and Next Generation Sequencing (NGS)) or unknown (e.g. NGS) GMO. The benefits and drawbacks of these methods are discussed in this review

    Transgenes monitoring in an industrial soybean oil processing by conventional and real-time polymerase chain reaction

    Get PDF
    In recent years a great effort has been devoted to the development of new methods for the qualitative and quantitative detection of transgenic sequences in food. The EU has elaborated legislation for genetically modified organisms (GMO) in food control, which establishes both the legal basis for the approval procedure of GMO and the post market traceability and labelling requirements for GMO and GMO-derived food and feeds (Regulations (EC) No. 1829/2003, 1830/2003). Most of the developed analytical methods for GMO detection are DNA-based, since protein-based assays are not suitable for processed food. For that purpose, polimerase chain reaction (PCR) and real-time quantitative PCR have been successfully applied. Since the approval of Roundup Ready (RR) soybean in Europe, the production of soybean oil using GM seeds has been increasing. Although several reports show the possibility of DNA detection in crude vegetable oils, due to the chemical treatments and high temperatures along refining, that detection is difficult to accomplish after refining1. The aim of the present work was to detect soybean DNA along the industrial processing of soybean oil extraction and refining. Four DNA extraction protocols were tested based on previous reports2, namely, CTAB, Wizard, Nucleospin® food kit and Wizard® Magnetic DNA purification system for food. The Nucleospin food kit evidenced the best results for DNA amplification from crude to refined soybean oils. The detection of lectin gene by conventional PCR was succeeded in all steps of refining process (crude, neutralized, washed, bleached and deodorised oil). The amplification by real-time PCR using TaqMan probes confirmed the presence of soybean DNA in all the stages along the oil refining. The detection of RR soybean was observed in all the steps along the industrial oil extraction, until the crude oil, confirming the use of GM seeds. That was also obtained in the final refined oil, but not after washing and bleaching, which was consistent with the low DNA yields in those extracts, probably due to instability of those samples. These findings were never reported and represent a great achievement when considering the detection GMO in vegetable oils

    Integrated DNA walking system to characterize a broad spectrum of GMOs in food/feed matrices

    Get PDF
    Background: In order to provide a system fully integrated with qPCR screening, usually used in GMO routine analysis, as well as being able to detect, characterize and identify a broad spectrum of GMOs in food/feed matrices, two bidirectional DNA walking methods targeting p35S or tNOS, the most common transgenic elements found in GM crops, were developed. These newly developed DNA walking methods are completing the previously implemented DNA walking method targeting the t35S pCAMBIA element. Results: First, the newly developed DNA walking methods, anchored on the sequences used for the p35S or tNOS qPCR screening, were tested on Bt rice that contains these two transgenic elements. Second, the methods were assessed on a maize sample containing a low amount of the GM MON863 event, representing a more complex matrix in terms of genome size and sensitivity. Finally, to illustrate its applicability in GMO routine analysis by enforcement laboratories, the entire workflow of the integrated strategy, including qPCR screening to detect the potential presence of GMOs and the subsequent DNA walking methods to characterize and identify the detected GMOs, was applied on a GeMMA Scheme Proficiency Test matrix. Via the characterization of the transgene flanking region between the transgenic cassette and the plant genome as well as of a part of the transgenic cassette, the presence of GMOs was properly confirmed or infirmed in all tested samples. Conclusion: Due to their simple procedure and their short time-frame to get results, the developed DNA walking methods proposed here can be easily implemented in GMO routine analysis by the enforcement laboratories. In providing crucial information about the transgene flanking regions and/or the transgenic cassettes, this DNA walking strategy is a key molecular tool to prove the presence of GMOs in any given food/feed matrix

    Multiplex quantitative PCR for single-reaction genetically modified (GM) plant detection and identification of false-positive GM plants linked to Cauliflower mosaic virus (CaMV) infection.

    Get PDF
    BACKGROUND:Most genetically modified (GM) plants contain a promoter, P35S, from the plant virus, Cauliflower mosaic virus (CaMV), and many have a terminator, TNOS, derived from the bacterium, Agrobacterium tumefaciens. Assays designed to detect GM plants often target the P35S and/or TNOS DNA sequences. However, because the P35S promoter is derived from CaMV, these detection assays can yield false-positives from non-GM plants infected by this naturally-occurring virus. RESULTS:Here we report the development of an assay designed to distinguish CaMV-infected plants from GM plants in a single multiplexed quantitative PCR (qPCR) reaction. Following initial testing and optimization via PCR and singleplex-to-multiplex qPCR on both plasmid and plant DNA, TaqMan qPCR probes with different fluorescence wavelengths were designed to target actin (a positive-control plant gene), P35S, P3 (a CaMV-specific gene), and TNOS. We tested the specificity of our quadruplex qPCR assay using different DNA extracts from organic watercress and both organic and GM canola, all with and without CaMV infection, and by using commercial and industrial samples. The limit of detection (LOD) of each target was determined to be 1% for actin, 0.001% for P35S, and 0.01% for both P3 and TNOS. CONCLUSIONS:This assay was able to distinguish CaMV-infected plants from GM plants in a single multiplexed qPCR reaction for all samples tested in this study, suggesting that this protocol is broadly applicable and readily transferrable to any interested parties with a qPCR platform
    corecore