1,739 research outputs found

    Incremental Perspective for Feature Selection Based on Fuzzy Rough Sets

    Get PDF

    Fuzzy-rough set models and fuzzy-rough data reduction

    Get PDF
    Rough set theory is a powerful tool to analysis the information systems. Fuzzy rough set is introduced as a fuzzy generalization of rough sets. This paper reviewed the most important contributions to the rough set theory, fuzzy rough set theory and their applications. In many real world situations, some of the attribute values for an object may be in the set-valued form. In this paper, to handle this problem, we present a more general approach to the fuzzification of rough sets. Specially, we define a broad family of fuzzy rough sets. This paper presents a new development for the rough set theory by incorporating the classical rough set theory and the interval-valued fuzzy sets. The proposed methods are illustrated by an numerical example on the real case

    Multigranulation Super-Trust Model for Attribute Reduction

    Get PDF
    IEEE As big data often contains a significant amount of uncertain, unstructured and imprecise data that are structurally complex and incomplete, traditional attribute reduction methods are less effective when applied to large-scale incomplete information systems to extract knowledge. Multigranular computing provides a powerful tool for use in big data analysis conducted at different levels of information granularity. In this paper, we present a novel multigranulation super-trust fuzzy-rough set-based attribute reduction (MSFAR) algorithm to support the formation of hierarchies of information granules of higher types and higher orders, which addresses newly emerging data mining problems in big data analysis. First, a multigranulation super-trust model based on the valued tolerance relation is constructed to identify the fuzzy similarity of the changing knowledge granularity with multimodality attributes. Second, an ensemble consensus compensatory scheme is adopted to calculate the multigranular trust degree based on the reputation at different granularities to create reasonable subproblems with different granulation levels. Third, an equilibrium method of multigranular-coevolution is employed to ensure a wide range of balancing of exploration and exploitation and can classify super elitists’ preferences and detect noncooperative behaviors with a global convergence ability and high search accuracy. The experimental results demonstrate that the MSFAR algorithm achieves a high performance in addressing uncertain and fuzzy attribute reduction problems with a large number of multigranularity variables

    Coevolutionary fuzzy attribute order reduction with complete attribute-value space tree

    Get PDF
    Since big data sets are structurally complex, high-dimensional, and their attributes exhibit some redundant and irrelevant information, the selection, evaluation, and combination of those large-scale attributes pose huge challenges to traditional methods. Fuzzy rough sets have emerged as a powerful vehicle to deal with uncertain and fuzzy attributes in big data problems that involve a very large number of variables to be analyzed in a very short time. In order to further overcome the inefficiency of traditional algorithms in the uncertain and fuzzy big data, in this paper we present a new coevolutionary fuzzy attribute order reduction algorithm (CFAOR) based on a complete attribute-value space tree. A complete attribute-value space tree model of decision table is designed in the attribute space to adaptively prune and optimize the attribute order tree. The fuzzy similarity of multimodality attributes can be extracted to satisfy the needs of users with the better convergence speed and classification performance. Then, the decision rule sets generate a series of rule chains to form an efficient cascade attribute order reduction and classification with a rough entropy threshold. Finally, the performance of CFAOR is assessed with a set of benchmark problems that contain complex high dimensional datasets with noise. The experimental results demonstrate that CFAOR can achieve the higher average computational efficiency and classification accuracy, compared with the state-of-the-art methods. Furthermore, CFAOR is applied to extract different tissues surfaces of dynamical changing infant cerebral cortex and it achieves a satisfying consistency with those of medical experts, which shows its potential significance for the disorder prediction of infant cerebrum

    Heuristic-based feature selection for rough set approach

    Get PDF
    The paper presents the proposed research methodology, dedicated to the application of greedy heuristics as a way of gathering information about available features. Discovered knowledge, represented in the form of generated decision rules, was employed to support feature selection and reduction process for induction of decision rules with classical rough set approach. Observations were executed over input data sets discretised by several methods. Experimental results show that elimination of less relevant attributes through the proposed methodology led to inferring rule sets with reduced cardinalities, while maintaining rule quality necessary for satisfactory classification

    Case-based maintenance : Structuring and incrementing the Case.

    No full text
    International audienceTo avoid performance degradation and maintain the quality of results obtained by the case-based reasoning (CBR) systems, maintenance becomes necessary, especially for those systems designed to operate over long periods and which must handle large numbers of cases. CBR systems cannot be preserved without scanning the case base. For this reason, the latter must undergo maintenance operations.The techniques of case base’s dimension optimization is the analog of instance reduction size methodology (in the machine learning community). This study links these techniques by presenting case-based maintenance in the framework of instance based reduction, and provides: first an overview of CBM studies, second, a novel method of structuring and updating the case base and finally an application of industrial case is presented.The structuring combines a categorization algorithm with a measure of competence CM based on competence and performance criteria. Since the case base must progress over time through the addition of new cases, an auto-increment algorithm is installed in order to dynamically ensure the structuring and the quality of a case base. The proposed method was evaluated through a case base from an industrial plant. In addition, an experimental study of the competence and the performance was undertaken on reference benchmarks. This study showed that the proposed method gives better results than the best methods currently found in the literature

    Internet-based solutions to support distributed manufacturing

    Get PDF
    With the globalisation and constant changes in the marketplace, enterprises are adapting themselves to face new challenges. Therefore, strategic corporate alliances to share knowledge, expertise and resources represent an advantage in an increasing competitive world. This has led the integration of companies, customers, suppliers and partners using networked environments. This thesis presents three novel solutions in the tooling area, developed for Seco tools Ltd, UK. These approaches implement a proposed distributed computing architecture using Internet technologies to assist geographically dispersed tooling engineers in process planning tasks. The systems are summarised as follows. TTS is a Web-based system to support engineers and technical staff in the task of providing technical advice to clients. Seco sales engineers access the system from remote machining sites and submit/retrieve/update the required tooling data located in databases at the company headquarters. The communication platform used for this system provides an effective mechanism to share information nationwide. This system implements efficient methods, such as data relaxation techniques, confidence score and importance levels of attributes, to help the user in finding the closest solutions when specific requirements are not fully matched In the database. Cluster-F has been developed to assist engineers and clients in the assessment of cutting parameters for the tooling process. In this approach the Internet acts as a vehicle to transport the data between users and the database. Cluster-F is a KD approach that makes use of clustering and fuzzy set techniques. The novel proposal In this system is the implementation of fuzzy set concepts to obtain the proximity matrix that will lead the classification of the data. Then hierarchical clustering methods are applied on these data to link the closest objects. A general KD methodology applying rough set concepts Is proposed In this research. This covers aspects of data redundancy, Identification of relevant attributes, detection of data inconsistency, and generation of knowledge rules. R-sets, the third proposed solution, has been developed using this KD methodology. This system evaluates the variables of the tooling database to analyse known and unknown relationships in the data generated after the execution of technical trials. The aim is to discover cause-effect patterns from selected attributes contained In the database. A fourth system was also developed. It is called DBManager and was conceived to administrate the systems users accounts, sales engineers’ accounts and tool trial monitoring process of the data. This supports the implementation of the proposed distributed architecture and the maintenance of the users' accounts for the access restrictions to the system running under this architecture

    An adaptable fuzzy-based model for predicting link quality in robot networks.

    Get PDF
    It is often essential for robots to maintain wireless connectivity with other systems so that commands, sensor data, and other situational information can be exchanged. Unfortunately, maintaining sufficient connection quality between these systems can be problematic. Robot mobility, combined with the attenuation and rapid dynamics associated with radio wave propagation, can cause frequent link quality (LQ) issues such as degraded throughput, temporary disconnects, or even link failure. In order to proactively mitigate such problems, robots must possess the capability, at the application layer, to gauge the quality of their wireless connections. However, many of the existing approaches lack adaptability or the framework necessary to rapidly build and sustain an accurate LQ prediction model. The primary contribution of this dissertation is the introduction of a novel way of blending machine learning with fuzzy logic so that an adaptable, yet intuitive LQ prediction model can be formed. Another significant contribution includes the evaluation of a unique active and incremental learning framework for quickly constructing and maintaining prediction models in robot networks with minimal sampling overhead
    • …
    corecore